小升初数学专项训练+典型例题分析-找规律篇(附答案)

合集下载

通用版小升初数学专项训练+典型例题分析-找规律篇(含答案)

通用版小升初数学专项训练+典型例题分析-找规律篇(含答案)

测试卷 找规律篇时间:15分钟 满分5分 姓名_________ 测试成绩_________1 (12年清华附中考题)如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (13年三帆中学考题)观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律, 然后填写20012+( )=200223 (12年西城实验考题) 一串分数:12123412345612812,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是 .4 (12年东城二中考题)在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少?2......7......5......8 (3)5 (04年人大附中考题)请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。

为了达到这些目的。

(1)请你说明:11这个数必须选出来;(2)请你说明:37和73这两个数当中至少要选出一个;(3)你能选出55个数满足要求吗?【附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、143。

2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……,所以下面括号中填的数字为奇数列中的第2001个,即4003。

3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8…88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律一、单选题1.用小棒按照下面的方式摆图形。

像这样,连着摆5个正六边形需要( )根小棒。

A .26B .21C .31D .362.下图是按一定规律连续拼摆制作的图案,按此规律N 处的图案应是( )。

A .B .C .D .3.用棱长为1cm 的正方体进行摆放(如下图),n (n 为大于0的自然数)个这样的正方体摆成的长方体的表面积是( )cm 2。

A .3n +2B .4(n +2)C .4n -2D .4n +24.有这样一组数:325、300、275、250、225……要继续往下写数,这些数的规律是( )A .按照25递减B .按照25递增C .按照50递减D .按照50递增5.如图分割下去,第(8)号图形中一共有( )个三角形。

A .24B .48C .60D .无法确定6.12、34、56、78……这一列数中的第10个数应该是( ) 。

A .910B .1920C .1516D .1718二、填空题7.悦悦按这样的顺序摆三角形,如果摆60个三角形,一共要用  根小棒。

8.按规律填数:5、10、15、20、 、 、 、40。

9.笑笑发现:2×2-1×1=2+1,4×4-3×3=4+3,6×6-5×5=6+5,…。

根据规律直接写出得数:10×10-9×9+8×8-7×7+…+2×2-1×1= 。

10.淘气利用三角形学具摆出了如下的图案,按照这样的规律摆下去,第5个图形用了 个三角形。

11.根据前四幅图的规律,第5幅图中有 个●,第n幅图中有 个△。

12.如下图,照这样摆下去,第6幅图需要 根这样的小木棒,第n幅图需要 根这样的小木棒。13.观察下面用小棒摆出的图形,照这样的规律,摆4个八边形需要 根小棒,摆n个八边形需要 根小棒。

2023-2024年人教版六年级下册数学小升初分班考专题:探索规律(含答案)

2023-2024年人教版六年级下册数学小升初分班考专题:探索规律(含答案)

2023-2024年人教版六年级下册数学小升初分班考专题:探索规律一、单选题1.用3根小棒可以摆一个三角形,按下面的方式摆下去,摆100个三角形需要( )根小棒.A.3×1 00 B.3×50+50+1C.2×99+1 D.3×100﹣1002.有一列数,第一个数是16,第二个数是8,从第三个数开始,每个数都是它前面两个数的平均数,则第2010个数的整数部分是( ) A.8 B.9C.10D.113.按的方式摆放在桌面上.8个按这种方式摆放,有( )个面露在外面.A.20B.23C.26D.294.用6根小棒可以拼成1个正六边形,用11根小棒可以拼成2个正六边形,用16根小棒可以拼3个正六边形,照这样拼下去,用46根可以拼( )个正六边形.A.6B.7C.8D.95.根据15×15=225,25×25=625,35×35=1225,45×45=2025可以推算出65×65=( )A.3025B.4225C.5625D.72256.木材厂将木头按下图堆放,第五堆有( )个.A.15B.21C.28D.34二、填空题7.2000多年前,古希腊毕达哥拉斯在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类(如图),1,3,6,10……由于这些数能够表示成三角形,将其称为三角形数。

按照这样的规律,第11个三角形数有 个小石子。

8.如图,下面是一些小正方形组成的图案,按照规律继续往下画,第5个图案有 个小正方形组成。

9.按下图的规律排列,第一个图形由4张卡片组成,第四个图形由 张卡片组成。

10.如果将一个边长为3的正方形四周涂上红色的框,然后剪成9个小正方形,则小正方形会有三种情况:第一种是两边有红框:第二种是一边有红框:第三种是四边都没有红框。

如果按上述方法要想得到一边有框的小正方形200个,这个正方形的边长应该为 。

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律一、单选题1.把一些正方形纸片按规律拼成如下的图案,第( )个图案中恰好有365个纸片。

A.73B.81C.91D.932.正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形,……,以此类推,根据以上操作,若要得到53个正方形,需要操作的次数是( )A.12B.13C.14D.153.按如图的方法堆放小球。

第15堆有( )个小球。

A.95B.105C.110D.1204.用边长是1厘米的等腰三角形拼成等腰梯形如图:……按照这样的规律,第n个等腰梯形是由( )个这样的三角形拼成的。

A.2n B.3n C.2n+1D.2n+35.把一些规格相同的杯子叠起来(如图),4个杯子叠起来高20厘米,6个杯子叠起来高26厘米。

n个杯子叠起来的高度可以用下面( )的关系式来表示。

A.6n﹣10B.3n+11C.6n﹣4D.3n+86.用小棒摆六边形,按这个规律摆4个六边形需要( )根小棒。

A.23B.22C.21D.20二、判断题7.如图所示:,摆9个这样的三角形需21根小棒。

( )8.按0、1、3、6、10、15……的规律,下一个数应该是21。

( )9.用火柴棒按下图所示搭正方形,搭一个正方形用4根火柴棒,搭n个正方形用4n根火柴棒。

( )10.因为1÷A=0.0909…;2÷A=0.1818…;3÷A=027272…;所以4÷A=0.3636…。

( )11.根据33×4=132,333×4=1332,3333×4=13332,可知33333×4=133332。

( )12.按□□○▲□□○▲□□○▲……的规律排列,第35个是▲。

( )三、填空题13.观察图形的规律,第8个图形一共由 个小三角形组成。

小升初六年级数学专项练习《(6)找规律》知识点总结复习训练

小升初六年级数学专项练习《(6)找规律》知识点总结复习训练

小升初小学六年级数学复习总结·知识点专项练习题+答案(6)找规律知识要点:对题目中给出的图形或数据认真观察分析,找到图形、数据中的数量变化规律,再根据规律递推,找出正确的解答。

这一类题型主要考察学生根据已有条件进行归纳与猜想的能力。

下面的题请同学运用各种学过的方法,如周期性分析,递推法,列表法等找出规律来解答以下各题。

1、数字规律:数字之间和差倍的规律,典型的有:兔子数列、间隔数列、等差数列、等比数列等。

2、图形规律:①图形中数量变化:点数、角数、边数、对称轴数、区域数……②图形中位置变化:一般来说,一组图形中元素个数完全相同,不同的是局部元素位置有变化,这时从位置的角度出发来解题。

位置变化的类型分为平移、旋转、翻转。

③图形的叠加减变化:图形组成的元素部分相似,进行加减同异。

习题精选:1. 按规律填数:5,2,8,6,11,10,14,()。

A.13B.16C.15D.142. 一组按规律排列的数:14,39,716,1325,2136,……,请你推断第6个数是()。

A.2948B.3148C.2949D.31493. 按顺序排列的数:3,4,6,9,14,22,35,.....,中的第八个数是()A.56B.64C.50D.524. 根据下面四个算式,发现其中规律,然后在括号中填入适当的数,其中正确的一组是()。

1×5+4=9=3×3;2×6+4=16=4×4;3×7+4=25=5×5;4X8+4=36=6×6;10×()+4=()=()×()A.14、81、9、9B.14、144、12、12C.12、121、11、11D.以上答案均不对5. 观察前两个图的规律,填出方框中的数。

()A.5B.7C.6D.86. 观察下列图形:它们是按一定规律排列的,依照此规律,第50个图形共有()个★。

A.161B.151C.141D.1317. 根据图形的排列规律,那么第50个图形中有()个小圆点。

2024年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2024年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2024年人教版六年级下册数学小升初专题训练:探索规律一、单选题1.1、4、9、a 、25、36……在这组数中a 是( )。

A .18B .16C .142.按下面的规律,第15个图形一共有( )个 • 。

A .60B .100C .2253.将小正方体按下图方式摆放在地上,接着往下摆,第6组小正方体有( )个面露在外面。

A .23B .25C .274.按照1,12,14,18,☆……的规律,☆代表的数是( )。

A .110B .116C .1125.根据999×2+2=2000,999×3+3=3000,999×4+4=4000,可知999×5+5=( )。

A .5000B .6000C .70006.如图,……如果有n 个三角形,需要( )根小棒。

A .3B .2n+1C .2n+2二、填空题7.,摆7个六边形需要  根小棒,摆n 个六边形需要  根小棒。

8.按规律填一填,24,32,40,  ,56,  ,  。

9.已知9×0.7=6.3,99×0.77=76.23,999×0.777=776.223,9999 ×0.7777=7776.2223,那么99999×0.77777= 。

10.“37”是个有趣的数,你瞧:37×3=111,37×6=222。

写出下面两题的结果:37×9=  ,37×15= 。

11.唐唐在桌面上用小正方体按下图方式摆放。

摆1个小正方体有5个面露在外面,摆2个小正方体有8个面露在外面……摆n 个小正方体有 个面露在外面。

12.林林用火柴棒在桌面上摆图形(如下图),已经摆了3个正方形。

照这样继续摆下去,要摆出6个正方形,一共需要 根火柴棒。

13.已知:2+ 23=22×23,3+ 38=32×38,4+ 415=42×415,5+ 524=52×524,按照这个规律,下一个式子是 。

小升初数学专项训练+典型例题分析-找规律篇(附答案)

小升初数学专项训练+典型例题分析-找规律篇(附答案)

名校真题测试卷找规律篇时间:15 分钟满分 5 分姓名_________ 测试成绩________1 (12 年清华附中考题)如果将八个数14,30,33,35,39,75,143,169 平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (13 年三帆中学考题)4+5=9;9+7=16 ;16+9=25 ;25+11=36 这五道算式,观察1+3=4 ;找出规律,然后填写2001 2+()=2002 23 (12 年西城实验考题)一串分数:1,21,2,3,4,1,2,3,4,5,6 7,1,2................................ 8, 1, 2 , ............ ,其中的第2000个分数3 3,5 5 5 5 7 7 7 7 7 7 9 9 9 11 11(1) 请你说明:11 这个数必须选出来;(2) 请你说明:37和73这两个数当中至少要选出一个;(3) 你能选出55 个数满足要求吗?附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33 、35、30、169 和14、39、75、4 (12 年东城二中考题)在2、3 两数之间, 第一次写上5, 第二次在2、5 和5、3 之间分别写上7、8(如下所示), 每次都在已写上的两个相邻数之间写上这两个相邻数之和. 这样的过程共重复了六次, 问所有数之和是多少?2⋯⋯7⋯⋯5⋯⋯8⋯⋯35 (04 年人大附中考题)请你从01、02、03、⋯、98、99中选取一些数,使得对于任何由0~9 当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。

为了达到这些目的。

143。

2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7 、9 、11所以下面括号中填的数字为奇数列中的第2001 个,即4003。

3 【解】分母为 3 的有 2 个,分母为4 个,分母为7 的为 6 个,这样个数2+4+6+8⋯88=1980<2000,这样2000个分数的分母为89,所以分数为20/89 。

小升初专项训练_找规律篇

小升初专项训练_找规律篇

名校真题--找规律篇1 如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律,然后填写20012+()=200223一串分数:12123412345612812 ,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是 .4 在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3)5 请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。

为了达到这些目的。

(1)请你说明:11这个数必须选出来;(2)请你说明:37和73这两个数当中至少要选出一个;(3)你能选出55个数满足要求吗?专项训练 找规律篇一、典型例题解析1 与周期相关的找规律问题【例1】、 7n 化小数后,小数点后若干位数字和为1992,求n 为多少?【例2】、 有一数列1、2、4、7、11、16、22、29……那么这个数列中第2006个数除以5的余数为多少?【例3】、 某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资).已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是星期日. 问:这人打工结束的那一天是2月几日?2 图表中的找规律问题【例4】、图中,任意_--个连续的小圆圈内三个数的连乘积郡是891,那么B=_______.【例5】 自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?3较复杂的数列找规律【例6】、设1,3,9,27,81,243是6个给定的数。

(小升初真题专项)六年级数学找规律题(易错题、难题)名师详解连载三

(小升初真题专项)六年级数学找规律题(易错题、难题)名师详解连载三

(小升初真题)六年级数学找规律题(易错题、难题)名师详解连载三第十一关:我会找规律1.小强用小棒玩搭房子游戏(如下图),搭1间房用5根小棒,搭2间房用9根小棒.像这样搭3间房用( )根小棒,搭4间房用( )根小棒,搭n间房用( )根小棒。

4.下面的每一个图形都是由△、口、○中的两个组成的。

观察各个图形,根据图形下面的数找出规律,画出表示“23”和“12”的图形。

2.观察思考。

上面每个图形都是由边长为1 cm的正方形拼成的,请仔细观察,并填表。

第个图形①②③④⑤…面积/cm2 1 3 6 …周长/cm 4 8 12 …第十二关:我会找规律1.有黄、红、绿、蓝、紫五种颜色的花,每两种颜色的花为一组,最多可以配成不重复的( )组。

2.用黑白两种颜色的正方形纸片,按黑色纸片逐渐加1的规律拼成一列图案(如下图):(1)第4个图案中白色纸片有( )张; (2)第n个图案中白色纸片有( )张。

3.一个正方形和一个三角形可以组合成一个不规则的五边形,如图所示:下列每个五边形的面积随着三角形高度的加倍而增加,其中每个五边形中正方形的边长为20厘米,三角形的高分别为5厘米、10厘米、20厘米、40厘米,按照这一模式,第6个五边形的面积是多少平方厘米?5.小明在一条长凳上做摆卡片的游戏,如下图,他用三种摆法都正好从长凳的一端摆到另一端而没有剩余(第三种摆法中最后一个长方形是横向摆放的)。

已知卡片长18厘米,宽12厘米,板凳最短是( )厘米。

A.36B.72C.180D.360第十三关:我会找规律1.观察与猜想。

3 5 5 13 6 104 12 8观察这三个直角三角形的三条边的长度,你可以发现这三条边长度之间的关系吗?由此你会猜想到什么结论? (2分)2.观察与发现。

(6分)为了学生的身体健康,学校的课桌和椅子的高度是按一定的关系科学设计的。

小明对学校添置的一批课桌和椅子进行研究,发现它们可以根据人的身高调节高度,于是测量了一套课桌和椅子相对应的四档的高度,数据如下表:档次高度第一档第二档第三档第四档椅子高度37.040.042.045.0课桌高度70.074.878.082.8(1)小明经过对数据的研究,发现课桌的高度y(厘米)和椅子的高度x(厘米)的关系,请你帮小明写出关于工和y的字母关系式;(2)小明回家后,测量了家里自己的写字台和椅子,测得写字台的高度为77厘米,椅子的高度为43.5厘米。

小升初真题之找规律篇(含答案)

小升初真题之找规律篇(含答案)

小升初真题之找规律篇1 (西城实验考题)有一批长度分别为 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 和 11 厘米的细木条,它们的数量都足够多,从中适当选取 3 根木条作为三条边,可围成一个三角形 ;如果规定底边是 11 厘米,你能围成多少个不同的三角形?2 (三帆中学考题)有 7 双白手套, 8 双黑手套, 9 双红手套放在一只袋子里。

一位小朋友在黑暗中从袋中摸取手套,每次摸一只,但无法看清颜色,为了确保能摸到至少 6 双手套,他最少要摸出手套( )只。

(手套不分左、右手,任意二只可成一双 ) 。

3 (人大附中考题)某次中外公司谈判会议开始 10 分钟听到挂钟打钟 (只有整点时打钟,几点钟就响几下),整个会议当中共听到 14 下钟声,会议结束时,时针和分针恰好成 90 度角,求会议开始的时间结束的时间及各是什么时刻。

4 (101 中学考题)4 道单项选择题,每题都有 A、B 、C 、D 四个选项,其中每题只有一个选项是正确的,有800 名学生做这四道题,至少有 _________人的答题结果是完全一样的?5 (三帆中学考题)设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要 1 分钟,注满第二个人的桶需要 2 分钟,…… .如此下去,当只有两个水龙头时,巧妙安排这十个人打水,使他们总的费时时间最少 .这时间等于_________分钟.预测 1在右图的方格表中,每次给同一行或同一列的两个数加 1,经过若干次后,能否使表中的四个数同时都是 5 的倍数?为什么?1 24 3预测 2甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用 16 天生产上衣, 14 天做裤子,共生产448 套衣服(每套上衣、裤子各一件);乙厂每月用 12 天生产上衣, 18 天生产裤子,共生产720 套衣服。

两厂合并后,每月(按 30 天计算)最多能生产多少套衣服?找规律篇之答案1 (西城实验考题)【解】由于数量足够多,所以考虑重复情况;现在底边是 11,我们要保证的是两边之和大于第三边,这样我们要取出的数字和大于 11.情况如下:一边长度取 11,另一边可能取 1~11 总共 11 种情况;一边长度取 10,另一边可能取 2~10 总共 9 种情况;… …一边长度取 6,另一边只能取 6 总共 1 种;下面边长比 6 小的情况都和前面的重复,所以总共有 1+3+5+7+9+11=36 种。

小升初特训专题:找规律考题及答案讲解学习

小升初特训专题:找规律考题及答案讲解学习

小升初特训专题:找规律考题及答案专题三:典型找规律问题答案1. 一条直线把圆分为两部分,两条直线可把圆分4部分,3条直线把圆分为(7 )部分,10条直线把圆分为(56)部分。

[规律:1 n (n 1),n表示22. 在平面上画一个圆把平面分为2部分,画2个圆把平面分为4部分,画5个圆把平面分为(22 )部分,画10个圆把平面分为(92 )部分。

[规律:2 n (n 1), n表示圆的个数。

]3. 在平面上画一个三角形把平面分为2部分,画2个三角形把平面分为8部分,画3个三角形把平面分为(20 )部分,画10个三角形把平面分为(272)部分。

[规律:2 3n (n 1), n表示三角形的个数。

]4. 在平面上画一个四边形把平面分为2部分,画2个四边形把平面分为10部分,画5个四边形把平面分为(82)部分,画10个四边形把平面分为(362)部分.[规律:2 4n (n 1), n表示四边形的个数。

]5. 找规律填上合适的数或字母:① 1、2、3、5、8、(13 )、(21 )、34.【斐波那契数列】②1、4、9、16、(25 )、(36 )............. 这个数列中的第90个数是(8100),第100个数是(10000)。

【规律:第n个数二n x n】③1、2、5、10、17、(26 )、(37)......... 这个数列中个数是(8101),第101 个数是(10001 )。

【规律:第n 个数=(n-1)X(n-1)+1 】101,1,98 )、(99,4,100 )、(97,9,102 ) .......... 这个数列中个括号内的三个数分别是(83,100,116 )。

⑤A B C D E FD E A F B CF B D C E A(C E F A B D ). 【规律:每行的第一个字母是上一行的第四个字母。

以此类推】⑥111,31,15,11.8,( 11.16),11.032 【规律:从相邻两数的差80、16、3.2……中发现前一个差是后一个差的5倍】3 1 12 12 16 1 10 1⑦——,一,,,,1 ,(2 ).【规律:分子分母同时乘以6得89 14 79 37 23 2 59 146即可发现:后一个分数的分子是前个分数的分子的2倍,后一个分数的分84母是前个分数的分母小5。

人教版六年级下册数学小升初专题训练:探索规律(含答案)

人教版六年级下册数学小升初专题训练:探索规律(含答案)

人教版六年级下册数学小升初专题训练:探索规律一、单选题1.下图中每个小正方形的棱长都是2cm,如下图摆法,( )个正方体摆成的长方体表面积是808平方厘米?A.25B.50C.100D.2002.用小棒按照下面的方式摆图形。

像这样,连着摆5个正六边形需要( )根小棒。

A.26B.21C.31D.363.如图是由大小相同的棋子按照一定规律排列组成的图形,摆第1个图需要6枚棋子,摆第2个图需要9枚棋子,摆第3个图需要12枚棋子,……按此规律,摆第32个图需要( )枚棋子。

A.93B.96C.99D.1024.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A.13=3+10B.25=9+16C.36=15+21D.49=18+315.如图,1 个正方形有4 个顶点,2 个正方形有7 个顶点,3 个正方形有10 个顶点。

像这样摆下去,摆n个正方形,有( )个顶点。

A.4n-1B.4n+1C.3n+1D.3n-1二、判断题6.在2、5、11、20、Y、47、65……这列数中,Y表示一个任意的自然数。

( )7.用火柴棒按下图所示搭正方形,搭一个正方形用4根火柴棒,搭n个正方形用4n根火柴棒。

( )8.因为1÷A=0.0909…;2÷A=0.1818…;3÷A=027272…;所以4÷A=0.3636…。

( )9.一根木头长10m,要把它平均分成5段,每锯下一段需要8分钟,锯完一共要花40分钟。

( )10.○▲□○▲□○▲□……,按照这样的规律摆,第20个图形是▲。

()三、填空题11.找规律填数:1、2、4、7、11、 。

2、4、8、16、 。

12.如图,像这样把同样的杯子叠在一起,3 只共高18 厘米,5只共高24厘米,一只杯子高 厘米,9只杯子叠起来高 厘米。

小升初数学之找规律专题(含解析)

小升初数学之找规律专题(含解析)

小升初之找规律专题教学目标;1、规律题是观察,实验,归纳,猜想和验证的综合考察;2、以退为进的解题过程在找规律的过程中尤其重要;3、规律的总结是抽象思维能力和计算能力,形象思维能力等的综合考察;4、规律题的积累经验也是非常必要的。

复习检查:此版块适用于除首课之外的课程设计,授课教师可灵活采用各种方式对学生上节课所学知识掌握情况进行效果检查。

如:放置需要学生作答的笔试题目或需要口头作答的提问。

1、甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?思路分析:这道问题是典型的追及问题,求追及时间,根据追及问题的公式: 追及时间=路程差÷速度差150÷(75-60)=10(分钟) 答:10分钟后乙追上甲。

2、下午放学时,弟弟以每分钟40米的速度步行回家。

5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家)()()10202004060540=÷=-÷⨯(分钟)3、一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一个方向前进,摩托车在前,每小时行28千米,汽车在后,每小时行65千米,经过4小时汽车追上摩托车,甲乙两地相距多少千米?()14842865=⨯-(千米)4、环湖一周共400米,甲、乙二人同时从同一地点同方向出发,甲过10分钟第一次从乙身后追上乙。

若二人同时从同一地点反向而行,只要2分钟二人就相遇。

求甲、乙的速度。

速度差:4010400=÷(米/分钟) 速度和:2002400=÷(米/分钟) 甲速度:()120220040=÷+(米/分钟) 乙速度:80120200=-(米/分钟) 5、甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练。

出发后10分钟,甲便从乙身后追上了乙。

2022年小升初名校奥数专题训练:找规律(附答案解析)

2022年小升初名校奥数专题训练:找规律(附答案解析)

2022年小升初名校奥数专题训练:找规律一、解答题。

1.直接写得数,你能用字母表示出它们的规律吗?12+13= 12−13= 13+15= 13−15= 14+19= 14−19=我发现的规律是:1a +1b = 1a−1b=2.在横线上填写合适的数. (1)12、14、18、116、132、 、 (2)14、38、516、732、964、 、(3)2.4、3.4、2.8、3.8、3.2、 、 (4)23、34、45、56、()()、()()、89、 、3.如图的每一个图形都是由△、□、〇中的两个构成的,观察各个图形,根据图所表示的数找出规律,画出表示“23”的图形.4.真分数a7化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992.那么a = .5.用三根等长的火柴可以摆成一个等边三角形.用这样的等边三角形如图所示,拼成一个大的等边三角形,如果这个大的等边三角形的底为10根火柴长,那么一共要用多少根火柴?6.序号12345算式1+12+33+51+72+9序号6789……算式3+111+132+153+17……根据上面的规律,第40个序号的算式是什么?算式“1+103”的序号是多少?7.边长为1厘米的正方体如下图层层重叠放置(1)当重叠到第5层时,有多少个正方体?(2)当重叠到第5层时,这个立体图形的表面积是多少平方厘米?8.有一串数字8262……从第三个数码起,每一个数码都是它前面两个数码的积的个位数字.问:第50个数码是多少?前50个数码之和是多少?9.找一找,如图中有多少个梯形?10.序号12345算式 1+2 3+4 5+6 1+8 3+10 序号 6 7 8 9 …… 算式5+121+143+165+18……根据上面的规律,第56个序号的算式是什么?算式“5+204”的序号是多少? 11.3根等长的火柴可以摆成一个等边三角形,如下图所示,用这样的等边三角形拼合成一个更大的等边三角形,如果这个大等边三角形的每边由20根火柴组成,那么一共要用多少根火柴?12.真分数a7化成小数后,如果从小数点后第一位数字开始连续若干个数字的和是282,那么a 是 .13.图中有 个长方形.14.有一串数字9213……从第三个数码起,每一个数码都是它前面两个数码的和的个位数字.问:第50个数码是多少?前50个数码之和是多少?2022年小升初名校奥数专题训练:找规律参考答案与试题解析一、解答题。

(小升初高频考点)探索规律(专项训练)2022-2023学年六年级下册数学人教版(含答案)

(小升初高频考点)探索规律(专项训练)2022-2023学年六年级下册数学人教版(含答案)

(小升初高频考点)探索规律(专项训练)2022-2023学年六年级下册数学人教版一.选择题(共9小题)1.(2022•睢县)找规律:4,9,16,25,____,49;横线的数是()A.28B.36C.452.(2022•西山区)有三个正整数。

如果其中两个数的平方的和等于第三个数的平方,那么这三个数就是勾股数。

例如:3、4、5这三个数,因为32=9;42=16;52=25,可以计算得出32+42=52,所以3、4、5是勾股数。

运用上述信息进行判断。

下列选项中是勾股数的是()A.1、2、3B.6、8、10C.3、5、7D.2、2、4 3.(2022•岳阳)按如图所示的方式排列点阵,则第六个点阵中有()个点。

A.16B.21C.25D.36 4.(2020•涟水县)将正整数按如图的位置顺序排列:根据排列规律,则2020应在()A.A处B.B处C.C处D.D处5.(2022•唐山)按3个红球、4个白球、5个黄球的顺序排列180个球,第160个球是()A.红球B.白球C.黄球D.不确定6.(2020•广宁县)9个点可以连()条线段。

A.27B.10C.36D.18 7.(2022•神木市)如图,连接在一起的两个正方形,边长都是1分米。

一个微型机器人由A处开始,按ABCDEFCGABCDEFCG…的顺序,沿正方形的边循环移动。

当微型机器人移动了2019分米时,它停在()处。

A.A B.B C.C D.D8.(2022•固始县)找规律:1,4,9,16,……,第6个数是()A.25B.36C.499.(2022•魏县)根据6×9=54,66×99=6534,666×999=665334,可知6666×9999=()A.66653334B.6666533334C.6665553334二.填空题(共8小题)10.(2022•九江)将321化成小数后,小数点后第1980位上的数字是.11.(2022•黔东南州)有一列数:2,1,3,5,2,1,3,5,…第174个数是,这174个数相加的和是。

小升初专项训练-第06讲找规律篇-答案

小升初专项训练-第06讲找规律篇-答案

第6讲小升初专项训练找规律篇-答案一、小升初考试热点及命题方向找规律问题在小升初考试中几乎每年必考,但考题的分值较低,多以填空题型是出现。

二、知识要点规律无处不在。

找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.为培养这方面的能力。

1、与周期相关的找规律问题2、图表中的找规律问题3、较复杂的数列找规律4、与斐波那契数列相关的找规律裴波那契数列:1,2,3,5,8,13,21,34…特征:从1开始的数列,从第三项开始,每一项等于它前面两项的和。

5、有趣的猫捉耗子规律6、图形的规律。

①图形数量的变化;②图形形状的变化;③图形大小的变化;④图形颜色的变化;⑤图形位置的变化;⑥图形方向的变化;⑦图形繁简的变化三、典型例题解析1、与周期相关的找规律问题【例1】(★★)n7化成小数后,小数点后若干位数字和为1992,问n=__6__。

解:∴无论n为何值,循环节均为1,4,2,8,5,7这六个数字∴一个循环节的和是:1+4+2+8+5+7=271992÷27=73(组) (21)27-21=6,即:循环节末尾的一个或几个数的和是6,4+2=6,所以这个分数的循环节应该是:857142 ,所以n=6.【例2】(★★)有一数列1、2、4、7、11、16、22、29、32、36、41……那么这个数列中第2006个数除以5的余数为多少?解:该数列除以5的余数分别是1,2,4,2,1,1,2,4,2,1,1……∴余数是按照1,2,4,2,1的周期循环。

∴2006÷5=401(组)……1(个)∴该数列第2006个数除以5的余数是1【例3】(★★★)某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资).已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是星期日. 问:这人打工结束的那一天是2月几日?解:根据已知结论制作如下日历:将这人的工资看成按星期循环,则他一星期的工资是10×5+5=55(元)∵ 190÷55=3(周)…25(元)可知,他工作了3周零几天。

六年级下册数学试题 - 小升初专项训练 找规律篇 全国通用(含答案)

六年级下册数学试题 - 小升初专项训练  找规律篇   全国通用(含答案)

小升初专项训练 找规律篇一、小升初考试热点及命题方向找规律问题在小升初考试中几乎每年必考,但考题的分值较低,多以填空题型是出现。

在刚刚结束的小升初选拔考试中,人大附中,首师附中,十一学校,西城实验,三帆,西外,东城二中和五中都涉及并考察了这一类题型。

二、2018年考点预测18年的这一题型必然将继续出现,题型的出题热点在利用通项表达式(即字母表示)总结出已知条件中等式的内在规律和联系,这一类题型主要考察学生根据已有条件进行归纳与猜想的能力,希望同学们多加练习。

1 与周期相关的找规律问题【例1】、(★★)7n 化小数后,小数点后若干位数字和为1992,求n 为多少? 【解】7n 化小数后,循环数字和都为27,这样1992÷27=73…21,所以n=6。

【例2】、(★★)有一数列1、2、4、7、11、16、22、29……那么这个数列中第2006个数除以5的余数为多少?【解】数列除以5的余数为1、2、4、2、1、1、2、4、2、1…这样就使5个数一周期,所以2003÷5=400…3,所以余4。

【例3】、(★★★)某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资).已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是星期日. 问:这人打工结束的那一天是2月几日?【来源】 第五届“华杯赛”初赛第16题【解】因为3×7<24<4×7,所以24天中星期六和星期日的个数,都只能是3或4.又,190是10的整数倍。

所以24天中的星期六的天数是偶数.再由240-190=50(元),便可知道,这24天中恰有4个星期六、3个星期日.星期日总是紧接在星期六之后的,因此,这人打工结束的那一天必定是星期六.由此逆推回去,便可知道开始的那一天是星期四.因为1月1日是星期日,所以1月22日也是星期日,从而1月下旬唯一的一个星期四是1月26日.从1月26日往后算,可知第24天是2月18日,这就是打工结束的日子.2 图表中的找规律问题【例4】、(★★)图中,任意_--个连续的小圆圈内三个数的连乘积郡是891,那么B=_______.【来源】第十届<小数报>数学竞赛初赛填空题第5题【解】根据“任意三个连续的小圆圈内三个数的连乘积都是891”,可知任意一个小圆圈中的数和与它相隔2个小圆圈的小圆圈中的数是相同的.于是,B=891÷(9×9)=11.【例5】(★★★)自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?【解】:本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.3较复杂的数列找规律【例6】、(★★★)设1,3,9,27,81,243是6个给定的数。

2020年六年级数学小升初压轴题专项训练七:找规律 含答案

2020年六年级数学小升初压轴题专项训练七:找规律 含答案

含答案一、选择题5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是( ).A.152 B.126 C.90 D.542. 2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 60B. 48C. 42D. 363. 四面体的顶点和各棱中点共10个点,从中取出4个不共面的点,不同的取法有()种.A.150B.147C.144D.1414. 将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()A.10种 B.20种 C.36种 D.52种5.若a÷b=8……3,那么(100a)÷(100b)=8……( )。

A.3 B.300 C.100 D.0.036.在图形◈◈□♣◇◇◈◈□♣◇◇…中,从左边开始第124个是()A.◈ B.□ C.♣ D.◇7.(宜昌)如果按照下面的画法,画到第10个正方形时,图中共有()个直角三角形.A. 28 B. 32 C. 36 D. 408.(龙岗区)找规律:3,6,11,18,27,()….A. 35 B. 36 C. 37 D. 389.(秀屿区)如图,○、△、□各表示一个两位数中的其中一个数字,观察下面图与数的关系,第4图形表示的两位数是()A. 54 B. 43 C. 3410.在一条30米长的道路一边,每隔3米插一面彩旗,一共要插10面彩旗,正确的插法是()C.两端都不插二、填空题11.甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).12.已知:10△3=14, 8△7=2,△,根据这几个算式找规律,如果△=1,那么= .13.724314185x x摆一个△用3根小棒,摆2个△用5根小棒,摆3个△用7根小棒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名校真题 测试卷 找规律篇时间:15分钟 满分5分 姓名_________ 测试成绩_________1 (12年清华附中考题)如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (13年三帆中学考题)观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律,然后填写20012+( )=200223 (12年西城实验考题) 一串分数:12123412345612812,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是 .4 (12年东城二中考题)在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少?2......7......5......8 (3)5 (04年人大附中考题)请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。

为了达到这些目的。

(1)请你说明:11这个数必须选出来;(2)请你说明:37和73这两个数当中至少要选出一个;(3)你能选出55个数满足要求吗?【附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、143。

2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……,所以下面括号中填的数字为奇数列中的第2001个,即4003。

3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8…88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。

4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,……它们的差依次为5、15、45、135、405……为等比数列,公比为3。

它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。

5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。

(2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必须选出一个来。

(3),同37的例子,01和10必选其一,02和20必选其一,……09和90必选其一,选出9个12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。

23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。

………89和98必选其一,选出1个。

如果我们只选两个中的小数这样将会选出9+8+7+6+5+4+3+2+1=45个。

再加上11~99这9个数就是54个。

小升初专项训练 找规律篇一、小升初考试热点及命题方向找规律问题在小升初考试中几乎每年必考,但考题的分值较低,多以填空题型是出现。

在刚刚结束的12年小升初选拔考试中,人大附中,首师附中,十一学校,西城实验,三帆,西外,东城二中和五中都涉及并考察了这一类题型。

二、2007年考点预测07年的这一题型必然将继续出现,题型的出题热点在利用通项表达式(即字母表示)总结出已知条件中等式的内在规律和联系,这一类题型主要考察学生根据已有条件进行归纳与猜想的能力,希望同学们多加练习。

三、典型例题解析 1 与周期相关的找规律问题【例1】、(★★)7n 化小数后,小数点后若干位数字和为1992,求n 为多少? 【解】7n 化小数后,循环数字和都为27,这样1992÷27=73…21,所以n=6。

【例2】、(★★)有一数列1、2、4、7、11、16、22、29……那么这个数列中第2006个数除以5的余数为多少?【解】数列除以5的余数为1、2、4、2、1、1、2、4、2、1…这样就使5个数一周期,所以2003÷5=400…3,所以余4。

希望考入重点中学? 奥数网是我们成就梦想的地方!【例3】、(★★★)某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资).已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是星期日. 问:这人打工结束的那一天是2月几日?【来源】第五届“华杯赛”初赛第16题【解】因为3×7<24<4×7,所以24天中星期六和星期日的个数,都只能是3或4.又,190是10的整数倍。

所以24天中的星期六的天数是偶数.再由240-190=50(元),便可知道,这24天中恰有4个星期六、3个星期日.星期日总是紧接在星期六之后的,因此,这人打工结束的那一天必定是星期六.由此逆推回去,便可知道开始的那一天是星期四.因为1月1日是星期日,所以1月22日也是星期日,从而1月下旬唯一的一个星期四是1月26日.从1月26日往后算,可知第24天是2月18日,这就是打工结束的日子.2 图表中的找规律问题【例4】、(★★)图中,任意_--个连续的小圆圈内三个数的连乘积郡是891,那么B=_______.【来源】第十届<小数报>数学竞赛初赛填空题第5题【解】根据“任意三个连续的小圆圈内三个数的连乘积都是891”,可知任意一个小圆圈中的数和与它相隔2个小圆圈的小圆圈中的数是相同的.于是,B=891÷(9×9)=11.【例5】(★★★)自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?【解】:本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.3 较复杂的数列找规律【例6】、(★★★)设1,3,9,27,81,243是6个给定的数。

从这六个数中每次或者取1个,或者取几个不同的数求和(每一个数只能取1次),可以得到一个新数,这样共得到63个新数。

把它们从小到大一次排列起来是1,3,4,9,10,12,…,第60个数是______。

【来源】1989年小学数学奥林匹克初赛第15题【解】最大的(即第63个数)是1+3+9+27+81+243=364第60个数(倒数第4个数)是364-1-3=360。

【例7】、(★★★)在两位数10,11,…,98,99中,将每个被7除余2的数的个位与十位之间添加-个小数点,其余的数不变.问:经过这样改变之后,所有数的和是多少?【来源】 第五届“华杯赛”初赛第15题【解】原来的总和是10+11+…+98+99=290)9910(⨯+=4905,被7除余2的两位数是7×2+2=16,7×3+2=23,…,7×13十2=93.共12个数.这些数按题中要求添加小数点以后,都变为原数的101,因此这-手续使总和减少了(16+23+…+93)×(1-101)=212)9316(⨯+×109=588.6所以,经过改变之后,所有数的和是4905—588.6=4316.4.【例8】、(★★★)小明每分钟吹-次肥皂泡,每次恰好吹出100个.肥皂泡吹出之后,经过1分钟有-半破了,经过2分钟还有201没有破,经过2分半钟全部肥皂泡都破了·小明在第20次吹出100个新的肥皂泡的时候,没有破的肥皂泡共有 个.【来源】 1990年小学数学奥林匹克决赛第8题【解】小明在第20次吹出100个新的肥皂泡的时候,第17次之前(包括第17次)吹出的肥皂泡全破了.此时没有破的肥皂泡共有 100+100×201+100×21=155(个).4 与斐波那契数列相关的找规律【引言】:有个人想知道,一年之内一对兔子能繁殖多少对?于是就筑了一道围墙把一对兔子关在里面。

已知一对兔子每个月可以生一对小兔子,而一对兔子出生后在第二个月就开始生小兔子。

假如一年内没有发生死亡现象,那么,一对兔子一年内能繁殖成多少对?现在我们先来找出兔子的繁殖规律,在第一个月,有一对成年兔子,第二个月它们生下一对小兔,因此有二对兔子,一对成年,一对未成年;到第三个月,第一对兔子生下一对小兔,第二对已成年,因此有三对兔子,二对成年,一对未成年。

月月如此。

第1个月到第6个月兔子的对数是:1,2,3,5,8,13。

我们不难发现,上面这组数有这样一个规律:即从第3个数起,每一个数都是前面两个数的和。

若继续按这规律写下去,一直写到第12个数,就得:1,2,3,5,8,13,21,34,55,89,144,233。

显然,第12个数就是一年内兔子的总对数。

所以一年内1对兔子能繁殖成233对。

在解决这个有趣的代数问题过程中,斐波那契得到了一个数列。

人们为纪念他这一发现,在这个数列前面增加一项“1”后得到数列:1,1,2,3,5,8,13,21,34,55,89,……叫做“斐波那契数列”,这个数列的任意一项都叫做“斐波那契数”。

【例9】(★★)数学家泽林斯基在一次国际性的数学会议上提出树生长的问题:如果一棵树苗在一年以后长出一条新枝,然后休息一年。

再在下一年又长出一条新枝,并且每一条树枝都按照这个规律长出新枝。

那么,第1年它只有主干,第2年有两枝,问15年后这棵树有多少分枝(假设没有任何死亡)?【解】 1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584 绝对是一棵大树。

【例10】(★★)有一堆火柴共 10根,如果规定每次取 1~3根,那么取完这堆火柴共有多少种不同取法?【解】此题要注重思路,因为没办法直接考虑,这样我们发现这题同样用找规律的方法,我们可以先看只有1根的情况开始:1根,有:1种;2根,有1、1,2,共两种;3根,可以有:1、1、1,1、2,2、1,3,共4种;4根,有:1、1、1、1,1、1、2,1、2、1,2、1、1,2、2,1、3,3、1,共7=4+2+1种;5根,有:1、1、1、1、1,1、1、1、2,1、1、2、1,1、2、1、1,2、1、1、1,1、2、2,2、1、2,2、2、1,1、1、3,1、3、1,3、1、1,2、3,3、2,共13=7+4+2种;6根,得到24=13+7+4种;即:n根,所有的取法种数是它的前三种取法的和。

相关文档
最新文档