八年级期中数学试卷

合集下载

八年级数学期中测试卷【含答案】

八年级数学期中测试卷【含答案】

八年级数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列函数中,哪一个函数在其定义域内是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = 3x 23. 在平面直角坐标系中,点A(2, -3)关于y轴的对称点坐标为?A. (-2, -3)B. (2, 3)C. (-2, 3)D. (3, -2)4. 一个等差数列的前三项分别为2,5,8,则该数列的第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则该圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个锐角互余。

()2. 一元二次方程ax^2 + bx + c = 0 (a ≠ 0)的解为x = [-b ± √(b^2 4ac)] / 2a。

()3. 对角线互相垂直平分的四边形一定是菱形。

()4. 在一次函数y = kx + b中,若k > 0,则函数从左到右上升。

()5. 两个相似三角形的对应边长之比等于它们的面积之比。

()三、填空题(每题1分,共5分)1. 若|a| = 3,则a的值为______。

2. 在直角坐标系中,点P(4, -2)关于原点对称的点的坐标为______。

3. 若一个等差数列的首项为2,公差为3,则该数列的第5项为______。

4. 一个圆的周长为31.4cm,则该圆的半径为______cm。

5. 若sinθ = 1/2,且θ是锐角,则θ的度数为______°。

四、简答题(每题2分,共10分)1. 解释什么是等腰三角形,并给出一个等腰三角形的例子。

八年级数学试卷期中带答案

八年级数学试卷期中带答案

考试时间:90分钟满分:100分一、选择题(每题4分,共40分)1. 下列数中,绝对值最小的是()A. -3B. 0C. 3D. -52. 已知a=2,b=-3,则a²+b²的值为()A. 1B. 5C. 13D. 93. 如果x²-4x+4=0,那么x的值为()A. 2B. -2C. 4D. -44. 在直角坐标系中,点P(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)5. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 非等腰梯形6. 如果一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 26cmB. 28cmC. 30cmD. 32cm7. 已知a、b、c是三角形的三边,且a+b>c,b+c>a,a+c>b,那么下列结论正确的是()A. a=b=cB. a、b、c构成直角三角形C. a、b、c构成等腰三角形D. a、b、c构成等边三角形8. 在一次数学竞赛中,甲、乙、丙三名同学的成绩分别为90分、85分、88分,那么他们的平均成绩是()A. 87分B. 89分C. 90分D. 91分9. 一个等腰直角三角形的斜边长为5cm,那么这个三角形的面积是()A. 6.25cm²B. 12.5cm²C. 25cm²D. 10cm²10. 下列函数中,y与x成一次函数关系的是()A. y=x²+1B. y=2x-3C. y=√xD. y=x³+2二、填空题(每题5分,共50分)11. 若|a|=5,则a=______。

12. 在直角坐标系中,点A(-3,4)关于x轴的对称点是______。

13. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是______cm。

人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.下列图形具有稳定性的是()A .六边形B .五边形C .平行四边形D .等腰三角形3.下列图形中,对称轴最多的是()A .等边三角形B .矩形C .正方形D .圆4.点M(3,-2)关于x 轴对称的对称点的坐标是()A .(-3,2)B .(3,2)C .(-3,-2)D .(2,3)5.能把一个三角形分成两个面积相等的三角形是三角形的()A .中线B .高线C .角平分线D .以上都不对6.如果三角形的两边长分别为3和5,则第三边L 的取值范围是()A .2<L<15B .L<8C .2<L<8D .10<L<167.已知:△ABC ≌△DEF ,AB=DE,∠A=70°,∠E=30°,则∠F 的度数为()A .80°B .70°C .30°D .100°8.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A .PQ≤5B .PQ<5C .PQ≥5D .PQ>59.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为()A .72°B .36°C .60°D .82°10.在ABC ∆中,已知::1:2:3A B C ∠∠∠=,则三角形的形状是()A .钝角三角形B .直角三角形C .锐角三角形D .无法确定11.一个正多边形的每个外角都等于60°,那么它是()A .正十二边形B .正十边形C .正八边形D .正六边形12.如图,已知AB⊥BC,BC⊥CD,AB=DC,可以判定△ABC≌△DCB,判定的根据是()A.HL B.ASA C.SAS D.AAS二、填空题13.等边三角形的每个内角都是____°.14.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是______.15.已知一个三角形的三边长a、b、c,满足(a-b)2+|b-c|=0,则这个三角形是____三角形. 16.若n边形的内角和是它的外角和的2倍,则n=_______.17.如图,已知正方形ABCD的边长为4cm,则图中阴影部分的面积为__________2cm.18.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是____________.三、解答题19.求出图形中x的值.20.在△ABC中,已知∠A=30°,∠B=2∠C,求∠B和∠C的度数.21.尺规作图:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(不要求写出作法,但要保留作图痕迹,写出结论)22.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .23.已知,,a b c 为ABC ∆的三边长,且222222222a b c ab ac bc ++=++,试判断ABC ∆的形状,并说明理由.24.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.25.数学中的对称美、统一美、和谐美随处可见,在数的运算中就有一些有趣的对称形式.(1)我们发现:12=1,112=121,1112=12321,11112=1234321,…请你根据发现的规律,接下去再写两个等式;(2)对称的等式:12×231=132×21.仿照这一形式,完成下面的等式,并进行验算:12×462=_______,18×891=_______.26.如图,在△ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,①求证:△ADC ≌△CEB .②求证:DE=AD+BE.(2)当直线MN 绕点C 旋转到图2的位置时,判断ADC ∆和CEB ∆的关系,并说明理由.参考答案1.A 【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A 沿任意一条直线折叠直线两旁的部分都不能重合.故选A .考点:轴对称图形.2.D 【分析】根据三角形的稳定性判断即可.【详解】六边形、五边形、平行四边形都不具有稳定性;等腰三角形是三角形的一种,所以它具有稳定性.【点睛】本题考查了三角形的稳定性.在所有的图形里,只有三角形具有稳定性,也是三角形的特性,应牢牢掌握.3.D【解析】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.4.B【分析】根据平面直角坐标系内关于x轴对称:纵坐标互为相反数,横坐标不变可以直接写出答案.【详解】点M(3,-2)关于x轴对称的对称点的坐标是(3,2).故答案为:B.【点睛】本题主要考查了关于x轴对称点的坐标特点,关键是掌握点的变化规律.5.A【分析】根据等底等高的两个三角形的面积相等解答.【详解】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点睛】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键. 6.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,即可求得第三边的取值范围.由三角形三边关系定理及其推论得:5-3<L<5+3,即2<L<8.故答案为:C.【点睛】此题考查了三角形的三边关系,能正确运用三角形的三边关系是解此题的关键.7.A【分析】根据全等三角形对应角相等求出∠D=∠A,再利用三角形的内角和等于180°列式进行计算即可得解.【详解】∵△ABC≌△DEF,AB=DE,∠A=70°,∴∠D=∠A=70°,在△DEF中,∠F=180°-∠D-∠E=180°-70°-30°=80°,故选A.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.8.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB边的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解9.A【解析】试题分析:∵AB=AC,∠A=36°,∴∠ABC=∠C=1801803622A︒-∠︒-︒==72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选A.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.10.B【分析】设∠A=x,∠B=2x,∠C=3x,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【详解】解:∵::1:2:3A B C∠∠∠=设∠A=x,∠B=2x,∠C=3x.则x+2x+3x=180°,解得x=30°,∴∠A=30°,∠B=60°,∠C=90°,所以这个三角形是直角三角形.故选:B.【点睛】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.11.D【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数.【详解】该正多边形的边数为360°÷60°=6.【点睛】本题考查了多边形外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.C 【分析】根据垂直定义推出90ABC DCB ∠=∠=°,AB=DC ,CB BC =,根据SAS 推出ABC DCB ≌.【详解】∵AB ⊥BC ,BC ⊥CD ∴∠ABC=∠DCB=90°又∵AB=DC ,BC=CB ∴△ABC ≌△DCB (SAS )故答案为:C.【点睛】本题考查了对全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS ASA AAS SSS ,,,.13.60°.【解析】试题分析:等边三角形三个角相等,而三角形内角和为180°,可得结果.试题解析:∵等边三角形三个角相等,又三角形内角和为180°,设等边三角形的每个内角的大小均是x ,则3x=180°,解得:x=60°.考点:1.三角形内角和定理;2.三角形.14.(-2,3)【解析】点P(2,3),点A 与点P 关于y 轴对称,则点A 的坐标是(−2,3),故答案为(−2,3).15.等边【分析】根据任意一个数的绝对值都是非负数和偶次方具有非负性可得:00a b b c -=-=,,再根据三角形的判断方法即可知道该三角形的形状.【详解】∵(a-b)2+|b-c|=0∴(a-b)2=0,|b-c|=0∴a=b ,b=c ∴a=b=c∴这个三角形是等边三角形.【点睛】本题考查了任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0、偶次方的非负性以及等边三角形的判定.16.6【详解】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617.8【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.18.2【分析】根据题意,画出图形,由轴对称的性质即可解答.【详解】根据轴对称的性质可知,台球走过的路径为:∴该球最后将落入的球袋是2号袋.故答案为2.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.19.x=60.【解析】试题分析:根据三角形的外角和定理列出等式,即可求得x 的值.试题解析:解:x+70=x+10+x ,∴x=60.考点:三角形的外角和定理.20.∠B=100°,∠C=50°.【分析】根据三角形的内角和等于180°列式求出∠C ,再求解即可得到∠B .【详解】∵2B C ∠=∠,180A B C ∠+∠+∠=°,∴2180A C C ∠+∠+∠=°,即303180C ︒+∠=°,解得:50C ∠=°,∴2250100B C ∠=∠=⨯︒=°.答:∠B 等于100°,∠C 等于50°【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理列出并整理成关于∠C的方程是解题的关键.21.答案见解析.【分析】作的平分线交直线MN于P点.【详解】解:根据题意,如图,作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,则点P 即为所求.22.证明见解析【详解】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)23.△ABC是等边三角形,理由见解析【分析】先根据完全平方公式进行变形,求出a=b=c,即可得出答案.【详解】解:△ABC是等边三角形.证明如下:∵2a2+2b2+2c2=2ab+2ac+2bc,∴2a2+2b2+2c2-2ab-2ac-2bc=0,∴a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴(a-b)2=0,(a-c)2=0,(b-c)2=0,∴a=b且a=c且b=c,即a=b=c,∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和完全平方公式、因式分解,能根据完全平方公式得出(a-b)2+(a-c)2+(b-c)2=0是解此题的关键.24.DE=2cm【分析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.【详解】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S△ABC =12AB•DE+12AC•DF=28,即12×20×DE+12×8×DF=28,解得DE=2cm.【点睛】全等三角形的判定与性质;三角形的面积;角平分线的性质.25.(1)111112=1234543211111112=12345654321;(2)264×21;198×81.【分析】(1)分别观察112,1112,11112,…,得出结果的一般规律,再根据一般规律求值.(2)根据给出的题例,即把每一个因数各个数位上的数字反过来写,乘积仍相等.【详解】(1)由12=1,112=121,1112=12321,11112=1234321,可知,这类数平方的结果为“回文数”,即从1开始按连续整数依次增大到最大,再逐渐减小到1,其中,最大的数字为等式左边1的个数,所以接下来的等式是:111112=123454321,1111112=12345654321.(2)124625544264215544⨯=⨯=, ,1246226421∴⨯=⨯1889116038⨯=,1988116038⨯=1889119881∴⨯=⨯【点睛】本题考查了有理数的概念与运算.关键是由易到难,由特殊到一般,找出这类数的平方的规律.26.(1)①见解析;②见解析;(2)△ADC ≌△CEB ;理由见解析【分析】(1)①要证△ADC ≌△CEB ,已知一直角∠ADC=∠CEB=90°和一边AC=CB 对应相等,由题意根据同角的余角相等,可得另一内角∠ECB=∠DAC ,再由AAS 即可判定;②由①得出AD=CE ,BE=CD ,而DE=CD+CE ,故DE=AD+BE ;(2)同理,根据上一小题的解题思路,易得△ADC ≌△CEB.【详解】(1)①∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DAC ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )②∵△ADC ≌△CEB∴AD=CE ,BE=CD又∵DE=CD+CE∴DE=AD+BE(2)△ADC ≌△CEB ;∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DACADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )【点睛】此题主要考查三角形全等的判定,熟练掌握,即可解题.。

八年级期中试卷数学及答案

八年级期中试卷数学及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √02. 下列各数中,无理数是()A. √4B. √25C. √2D. √03. 下列各数中,整数是()A. -3B. 2.5C. √9D. √-44. 下列各数中,正数是()A. -3B. 0C. 2D. √-95. 下列各数中,负数是()A. -3B. 0C. 2D. √96. 已知x是实数,且x^2 = 4,则x的值是()A. 2B. -2C. 2或-2D. 无法确定7. 已知a、b是实数,且a + b = 0,则a和b互为()A. 相等B. 相反数C. 绝对值相等D. 无法确定8. 下列等式中,正确的是()A. (-2)^2 = 4B. (-3)^3 = -27C. (-4)^4 = 256D. (-5)^5 = -31259. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 110. 已知a、b是实数,且a^2 + b^2 = 0,则a和b的关系是()A. a = 0且b = 0B. a = 0或b = 0C. a和b都是正数D. a和b都是负数二、填空题(每题3分,共30分)11. 有理数a的相反数是______。

12. 绝对值小于2的有理数有______。

13. 若|a| = 5,则a的值为______。

14. 已知a、b是实数,且a - b = 3,则a + b的值为______。

15. 已知x是实数,且x^2 - 4x + 3 = 0,则x的值为______。

16. 若|a| = |b|,则a和b的关系是______。

17. 若a^2 = b^2,则a和b的关系是______。

18. 若a、b是实数,且a + b = 0,则a和b互为______。

19. 已知x是实数,且x^2 + 4x + 3 = 0,则x的值为______。

20. 若|a| > |b|,则a和b的关系是______。

2024学年八年级上册数学期中考试试卷

2024学年八年级上册数学期中考试试卷

2024学年(上)期中考试初二年级数学科试卷(问卷)考试时量:120分钟满分120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列常见的手机软件图标中,是轴对称图形的是()A .B .C .D .2.下列长度的三条线段能组成三角形的是()A .1,2,3.5B .4,5,9C .6,8,10D .7,11,33.在平面直角坐标系中.点()5,1M -关于x 轴对称的点在()A .第一象限B .第二象限C .第三象限D .第四象限4.下列几种说法①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是()A .①②B .②③C .③④D .①④5.如图1,墙上置物架的底侧一般会各设计一根斜杆,与水平和竖直方向的支架构成三角形,这是利用三角形的()A .全等性B .美观性C .不稳定性D .稳定性6.如图2,已知AF CE =,//BE DF ,那么添加下列一个条件后,能判定ADF ∆≌CBE ∆的是()A .AFD CEB∠=∠B .//AD CBC .AE CF=D .AD BC=7.如图3,一把直尺压住射线OB ,另一把完全一样的直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是BOA ∠的平分线.”这样说的依据是()A .角平分线上的点到这个角两边的距离相等B .三角形三条角平分线的交点到三条边的距离相等C .在一个角的内部,到角的两边距离相等的点在这个角的平分线上D .以上均不正确8.如图4,ABC ADE △≌△,BC 的延长线交DA 于点F ,交DE 于点G .若105AED ∠=︒,16CAD ∠=︒,30B ∠=︒,则1∠的度数为().A .66︒B .63︒C .61︒D .56︒9.如图5,AD 是△ABC 的角平分线,DF AB ⊥于点F ,点E ,G 分别在AB ,AC 上,且DE DG =,若24ADG S =△,18AED S =△,则△DEF 的面积为()A .6B .5C .4D .310.如图6,在Rt ABC △中,90C ∠=︒,20A ∠=︒.若某个三角形与△ABC 能拼成一个等腰三角形(无重叠),则拼成的等腰三角形有()A .3种B .5种C .7种D .9种二、填空题(本大题共6小题,每小题3分,共18分)11.如图7,小明从坡角为30︒的斜坡的山底(A )到山顶(B )共走了200米,则山坡的高度BC 为米.12.如图8,是由射线AB BC CD DE EF FA ,,,,,组成的平面图形,若135170∠+∠+∠=︒,则246∠+∠+∠=︒.13.如图9,在平面直角坐标系中,以A (2,0)、B (0,4)为顶点作等腰直角△ABC (其中90ABC ∠=︒,且点C 落在第一象限内),则点C 关于y 轴的对称点C '的坐标为.14.如图10,在△ABC 中,点D 是BC 边的中点,∠BAD =75°,∠CAD =30°,AD =3,则AC 的长为.15.等腰三角形中,一腰上的中线把三角形的周长分为6cm 和15cm 的两部分,则该三角形的腰长为.16.如图,在Rt ABC △中,90ACB ∠=︒,12AC =,BC =5,AB =13,(1)点C 到直线AB 的距离:.(2)动点P 在△ABC 内,且使得ACP △的面积为12,点Q 为AB 上的动点,则PB PQ +的最小值为.三、解答题(本大题共9小题,共72分)17.(本小题满分4分)一个多边形的内角和比它的外角和多900°,求这个多边形的边数.18.(本小题满分4分)如图12,在平面直角坐标系中,△ABC 各顶点的坐标分别为:(4,0),(1,4),(3,1)A B C --,△ABC 关于x 轴的对称图形为△A 1B 1C 1,(1)画出△A 1B 1C 1;(2)写出点A 1,B 1,C 1的坐标.19.(本小题满分6分)如图13,D 是△ABC 的边AB 上一点,CF AB ∥,DF 交AC 于点E ,=DE EF .求证:CF =AD .20.(本小题满分6分)如图14,在△ABC 中,BAC BCA ∠=∠,CD 平分ACB ∠,CE ⊥AB 交AB 的延长线于E 点,若∠DCE =54°,求BCE ∠的度数.21.(本小题满分8分)如图15,在ABC 中,AB AC =.(1)利用尺规,作AC 边的垂直平分线交AC 于点E ,交A 于点D ;(不写作法,保留作图痕迹)(2)在(1)中,连接CD ,若BC=a ,AC=b ,求△BDC 的周长.22.(本小题满分10分)如图16,△ABC 为等腰三角形,AC =BC ,△BDC 和△ACE 分别为等边三角形,AE 与BD 相交于点F ,连接CF 交AB 于点G ,求证:(1)G 为AB 的中点;(2)若∠FAG =15°,求∠BCE 的度数.23.(本小题满分10分)如图17,在△ABC 中,∠ABC 的平分线与AC 的垂直平分线相交于点P ,过点P 作PE ⊥AB 交BA 的延长线于点E .(1)画出△PBE 关于直线PB 对称的△PBF ;(2)求证:AB +BC =2BE ;(3)若AB =7,BC =23,求AE 的长.24.(本小题满分12分)在Rt △ABC 中,AB =AC ,OB =OC ,∠A =90°,∠MON =α,∠MON 的两边分别交直线AB 、AC 于点M 、N .(1)如图1,当α=90°时,求证:AM =CN ;(2)如图2,当α=45°时,问线段BM 、MN 、AN 之间有何数量关系?并证明;(3)如图3,当α=45°时,问线段之间BM 、MN 、AN有何数量关系?并证明.25.(本小题满分12分)在等边△ABC 的AC BC 、边上各取一点P 、Q .(1)如图1,若AQ BP 、相交于点O ,若60BOQ ∠=︒,求证AP CQ =;(2)如图1,连接PQ ,若13AP AC =,AQ BP =,求CPQ ABC S S 的值;(3)如图2,若AQ 是等边△ABC 的中线,点E 是线段AQ 上的动点,AE =CP ,请直接写出当BE +BP 取得最小值时∠EBP的度数.图1图2图17。

数学八年级期中数学试卷

数学八年级期中数学试卷

数学八年级期中数学试卷一、选择题(本大题共8小题,共16.0分)1.函数y=√x−2中自变量x的取值范围是()A. x≥0B. x≥2C. x≤2D. x<22.点A的坐标是(2,8),则点A在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B. C. D.4.一次函数y=2x-3的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.用配方法解一元二次方程x2+8x+7=0,则方程可变形为()A. (x−8)2=16B. (x+8)2=57C. (x−4)2=9D. (x+4)2=96.方程x2-4x-6=0的根的情况是()A. 有两个相等实根B. 有两个不等实根C. 没有实根D. 以上答案都有可能7.已知点(-5,y1),(2,y2)都在直线y=-2x上,那么y1与y2大小关系是()A. y1≤y2B. y1≥y2C. y1<y2D. y1>y28.如图,矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间函数关系的图象是()A. B.C. D.二、填空题(本大题共8小题,共16.0分)9.若x=2是关于的x方程x2+mx-6=0的一个根,则m的值是______.10.在平面直角坐标系中,点P(-5,2)到x轴的距离是______.11.若关于x的方程(m-2)x2-2x+1=0有两个不等的实根,则m的取值范围是______.12.请写出一个经过第一、二、三象限,并且与y轴交于点(0,1)的直线表达式______.13.若代数式x2-2x+b可化为(x+a)2+2,则a=______,b=______.14.将直线y=2x+2沿x轴向右平移2个单位,则平移后的直线表达式为______.15.一次函数y=2x+4与两坐标轴围成三角形的面积为______.16.如图,在平面直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…OP n(n为正整数).那么点P6的坐标是______,点P2014的坐标是______.三、计算题(本大题共1小题,共20.0分)17.解下列一元二次方程:(1)4x2=3x (2)x(x-4)=4x-16(3)x2+4x-1=0(用配方法)(4)2x2-8x+3=0(用公式法)四、解答题(本大题共8小题,共48.0分)18.关于x的一元二次方程x2+x+a2-1=0的一个根为0,求出a的值和方程的另一个根.19.已知:关于x的一元二次方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)如果该方程有两个不等的整数根,且m为正整数,求m的值;20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)直接写出不等式2x>kx+3的解集.(2)设直线l2与x轴交于点A,求△OAP的面积.21.为鼓励居民节约用水,某市对居民用水收费实行“阶梯水价”,按每年用水量统计,不超过180立方米的部分按每立方米5元收费;超过180立方米不超过260立方米的部分按每立方米7元收费;超过260立方米的部分按每立方米9元收费.(1)设每年用水量为x立方米(180<x≤260),按“阶梯水价”应缴水费y元,请写出y与x之间的函数表达式;(2)明明家预计2018年全年用水量为200立方米,那么按“阶梯水价”收费,她家应缴水费多少元?22.列方程解应用题:A地区2015年公民出境旅游总人数约600万人,2017年公民出境旅游总人数约864万人,若2016年、2017年公民出境旅游总人数逐年递增,请解答下列问题:(1)求A地区公民出境旅游总人数的年平均增长率;(2)如果2018年仍保持相同的年平均增长率,请你预测2018年A地区公民出境旅游总人数约多少万人?23.在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=-1x+3的图象相交于点A.2(1)求点A的坐标;(2)若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.24.已知:在平面直角坐标系中,点A、B分别在x轴正半轴上,且线段OA、OB(OA<OB)的长分别等于方程x2-5x+4=0的两个根,点C在y轴正半轴上,且OB=2OC.(1)求A、B、C三点坐标;(2)将△OBC绕点C顺时针旋转90°后得到△O′BC,求直线B′C的表达式.25.如图,在平面直角坐标系xOy中,点A(-3,0),点B在x轴上,直线y=-2x+a经过点B与y轴交于点C(0,6),直线AD与直线y=-2x+a相交于点D(-1,n).(1)求直线AD的解析式;(2)点M是直线y=-2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.答案和解析1.【答案】B本题考查了函数自变量的取值范围问题,掌握二次根是有意义的条件是解题的关键.2.【答案】A本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】C【解析】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.【答案】B【解析】本题主要考查一次函数的性质,需要熟练掌握.5.【答案】D本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半,这样把方程变形为:(x-)2=.6.【答案】B【解析】本题考查的是一元二次方程根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.7.【答案】D【解析】故选:D.根据一次函数的增减性解决问题即可;本题考查一次函数图象上点的特征,解题的关键是熟练掌握一次函数的增减性,属于中考常考题型.8.【答案】A【解析】本题考查了动点函数的图象,三角形的面积公式是解题关键,注意要分类讨论.9.【答案】1【解析】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.10.【答案】2【解析】本题考查了点的坐标,利用点到x轴的距离是纵坐标的绝对值是解题关键.11.【答案】m<3且m≠2【解析】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.12.【答案】y =x +1【解析】本题考查了一次函数的性质:一次函数y=kx+b (k≠0),当k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.由于y=kx+b 与y 轴交于(0,b ),当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.13.【答案】-1 3【解析】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.14.【答案】y =2x -2【解析】此题主要考查了一次函数平移变换,正确记忆平移规律是解题关键.15.【答案】4【解析】本题考查的是一次函数图象上点坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.【答案】(0,-64)或(0,-26);(0,-22014)【解析】根据题意得出OP 1=2,OP 2=4,OP 3=8,进而得出P 点坐标变化规律,进而得出点P 6的坐标以及点P 2014的坐标.此题主要考查了坐标的旋转问题;得到相应的旋转规律及OP n 的长度的规律是解决本题的关键.17.【答案】解:(1)4x 2-3x =0,所以x 1=0,x 2=34;(2)x (x -4)-4(x -4)=0,所以x 1=x 2=4;(3)x 2+4x =1,所以x 1=-2+√5,x 2=-2-√5;(4)所以x 1=4+√102,x 2=4−√102. 【解析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)先把方程变形为x (x-4)-4(x-4)=0,然后利用因式分解法解方程;(3)利用配方法得到(x+2)2=5,然后利用直接开平方法解方程;(4)先计算出判别式的值,然后利用求根公式写出方程的解.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法和公式法解一元二次方程.18.【答案】解:当x =0时,原方程为a 2-1=0,综上所述,a 的值是±1,方程的另一个根是-1. 本题考查了根与系数的关系以及一元二次方程的解,将x=0代入原方程求出a 值是解题的关键.19.【答案】(1)证明:△=(3m +1)2-4×3m =9m 2-6m +1=(3m -1)2.∵不论m 为任何实数时总有(3m -1)2≥0,即△≥0,∴不论m 为任何实数,此方程总有实数根;(2)解:mx 2+(3m +1)x +3=0,即(mx +1)(x +3)=0,解得:x 1=-3,x 2=-1m .∵方程mx2+(3m+1)x+3=0有两个不等的整数根,且m为正整数,∴m=1.本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)利用因式分解法求出原方程的解.20.【答案】解:(1)不等式2x>kx+3的解集为:x>1;(2)把x=1代入y=2x,得y=2,∴点P(1,2),∵点P在直线y=kx+3上,∴2=k+3,解得:k=-1,∴y=-x+3,当y=0时,由0=-x+3得x=3,∴点A(3,0),×3×2=3.∴S△OAP=12【解析】(1)求不等式2x>kx+3的解集就是求当自变量x取什么值时,y=2x的函数值较大;(2)求△OAP的面积,只要求出OA边上的高就可以,即求两个函数的交点的纵坐标的绝对值.此题考查了一次函数与一元一次不等式,三角形的面积,关键是根据求线段的长度的问题一般是转化为求点的坐标的问题来解决.21.【答案】解:(1)当180<x≤260时,y=5×180+7(x-180),即y=7x-360;(2)当x=200时,y=7x-360=7×200-360=1040(元).答:按“阶梯水价”收费,她家应缴水费1040元.【解析】(1)不超过180立方米的部分按每立方米5元收费;超过180立方米不超过260立方米的部分按每立方米7元收费,据此列式整理即可得解;(2)把x=200代入函数解析式计算即可得解.本题考查了一次函数的应用,主要是分段函数的求解以及函数值的求解,要注意各段内水量的表示方式不同.22.【答案】解:(1)设A地区公民出境旅游总人数的年平均增长率为x,根据题意得:600(1+x)2=864,解得:x1=0.2=20%,x2=-2.2(不合题意,舍去).答:A地区公民出境旅游总人数的年平均增长率为20%.(2)864×(1+20%)=1036.8(万人).答:预计2018年A地区公民出境旅游总人数约1036.8万人.【解析】(1)设A地区公民出境旅游总人数的年平均增长率为x,根据2015年及2017年公民出境旅游总人数,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2018年A 地区公民出境旅游总人数=2017年A 地区公民出境旅游总人数×(1+增长率),即可求出结论.本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.23.【答案】解:(1)将直线y =2x 向下平移2个单位后对应解析式为:y =2x -2,根据题意得出:{y =2x −2y =−12x +3, 解得:{x =2y =2. 故A 点坐标为:(2,2);(2)如图所示:∵P 是x 轴上一点,且满足△OAP 是等腰直角三角形,∴P (2,0)或(4,0).【解析】(1)利用一次函数平移的性质得出平移后解析式,进而求出两函数交点坐标;(2)利用等腰直角三角形的性质得出图象,进而得出答案.此题主要考查了一次函数平移变换以及等腰直角三角形的性质等知识,得出A 点坐标是解题关键.24.【答案】解:(1)解方程x 2-5x +4=0得x 1=1,x 2=4,∵OA <OB ,∴OA =1,OB =4,∵A 、B 分别在x 轴正半轴上,∴A (1,0)、B (4,0);又∵OB =2OC ,且点C 在y 轴正半轴上∴OC =2,则C (0,2);(2)∵将△OBC 绕点C 顺时针旋转90°后得△O ′BC ,∴OB =O ´B ´=4,OC =O ´C ´=2,∠COB =∠C 0´B ´=90°,∠OCO ´=∠BCB ´=90°∴O ´(-2,2)、B ´(-2,-2),设直线B ´C 的解析式为y =kx +b , 把B ´(-2,-2),C (0,2)代入得{b =2−2k+b=−2,解得{b =2k=2,∴直线B ´C 的解析式为y =2x +2. 【解析】(1)先利用因式分解法解方程x 2-5x+4=0可确定A (1,0)、B (4,0);再利用OB=2OC ,且点C 在y 轴正半轴上可确定C 点坐标;(2)利用旋转的性质得OB=O´B´=4,OC=O´C´=2,∠COB=∠C0´B´=90°,∠OCO´=∠BCB´=90°,则可确定O´(-2,2)、B´(-2,-2),然后利用待定系数法求直线B´C 的解析式. 本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了旋转的性质和待定系数法求一次函数解析式.25.【答案】解:(1)∵直线y =-2x +a 经过点B 与y 轴交于点C (0,6),∴a =6,∴y =-2x +6,∵点D (-1,n )在y =-2x +6上,∴n =8,设直线AD 的解析式为y =kx +b ,∴{−k +b =8−3k+b=0,解得:{b =12k=4,∴直线AD 的解析式为y =4x +12;(2)令y =-2x +6=0,解得:x =3,∴B (3,0),∴AB =6,∵点M 在直线y =-2x +6上,∴M (m ,-2m +6),①当m <3时,S =12×6×(-2m +6),即S =-6m +18;②当m >3时,S =12×6×[-(-2m +6)],即S =6m -18. 【解析】(1)首先将点C 和点D 的坐标代入求得两点坐标,然后利用待定系数法确定一次函数的解析式即可;(2)首先求得点B 的坐标,进而求得线段AB 的长,根据点M 在直线y=-2x+6上设出点M 的坐标,分m 大于3和小于3两种情况分类讨论即可.本题考查了两条直线平行或相交问题,在求两条直线的交点坐标时,常常联立组成方程组,难度不大.。

人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。

八年级(上)期中数学试卷

八年级(上)期中数学试卷

八年级(上)期中数学试卷命题学校:实验中学 命题人:一、选择题(每题3分,共30分)1.下面有4个汽车标致图案,其中不是轴对称图形的是( )2.下列长度的三条线段首尾相连能组成三角形的是( ) A .1,2,3 B .2,3,4 C .3,4,7 D .4,5,10 3.五边形的对角线共有( )条A .2B .4C .5D .64.如图,△ABC ≌△DEF ,则∠E 的度数为( )A .80°B .40°C .62°D .38° 5.如图,图中x 的值为( )A .50°B .60°C .70°D .75°6.如图,CD 丄AB 于D ,BE 丄AC 于E ,BE 与CD 交于O ,OB =OC ,则图中全等三角形共有( ) A .2对B .3对C .4对D .5对7.在△ABC 与△DEF 中,下列各组条件,不能判定这两个三角形全等的是( ) A .AB =DE ,∠B =∠E ,∠C =∠F B .AC =DE ,∠B =∠E ,∠A =∠F C .AC =DF ,BC =DE ,∠C =∠DD .AB =EF ,∠A =∠E ,∠B =∠F8.已知OD 平分∠MON ,点A 、B 、C 分别在OM 、OD 、ON 上(点A 、B 、C 都不与点A 重合),且AB=BC, 则∠OAB 与∠BCO 的数量关系为( )。

A .∠OAB+∠BCO=180°B .∠OAB=∠BCO C. ∠OAB+∠BCO=180°或∠OAB=∠BCO D. 无法确定9.如图,在△ABE 中,∠A=105°,AE 的垂直平分线MN 交BE 于点C ,且AB+BC=BE ,则 ∠B 的度数是( )A .50°B .45°C .60°D .55°10.如图,P 为∠AOB 内一定点,M 、N 分别是射线OA 、OB 上一点,当△PMN 周长最小时, ∠MPN=110°,则∠AOB=( )A. 35°B. 40°C. 45°D. 50°.PABO第10题图第9题图AB C D 第4题图第5题图第6题图二、填空题:(每题3分,共18分)11. 三角形的一边是5,另一边是1,第三边如果是整数,则第三边是________。

八年级数学期中试卷大题

八年级数学期中试卷大题

一、解答题(共50分)1. (10分)已知函数f(x) = 2x - 3,求函数f(x)的图像。

2. (10分)已知正方形的对角线长为10cm,求正方形的面积。

3. (10分)已知一元二次方程x^2 - 4x + 3 = 0,求方程的解。

4. (10分)已知直角三角形的两条直角边长分别为3cm和4cm,求斜边的长度。

5. (10分)已知数列{an}的前三项分别为1,3,7,求第n项的表达式。

6. (10分)已知等差数列{an}的首项为2,公差为3,求第10项的值。

7. (10分)已知一元一次不等式组:①x + 2y ≥ 4②2x - y < 3求不等式组的解集。

8. (10分)已知函数f(x) = -x^2 + 4x + 3,求函数f(x)的图像。

二、证明题(共20分)1. (10分)证明:在直角三角形ABC中,∠C = 90°,AB = 5cm,BC = 3cm,求AC的长度。

2. (10分)证明:等差数列{an}的首项为2,公差为3,证明第n项an > 0。

三、应用题(共30分)1. (15分)某市一居民小区共有居民1000户,调查发现,该小区居民中有50%安装了太阳能热水器,有30%安装了空气源热泵,有20%既安装了太阳能热水器又安装了空气源热泵。

求:(1)安装太阳能热水器的居民户数为多少?(2)安装空气源热泵的居民户数为多少?(3)既安装太阳能热水器又安装空气源热泵的居民户数为多少?2. (15分)某工厂生产一批产品,每天生产100个,经过一段时间后,发现每天生产的数量比原来增加了10个。

如果按照原来的生产速度生产,需要10天完成生产任务;如果按照现在的生产速度生产,需要8天完成生产任务。

求:(1)原来每天生产多少个产品?(2)这批产品共有多少个?。

广东省肇庆一中教育集团初中部2024-2025学年八年级上学期期中数学试卷

广东省肇庆一中教育集团初中部2024-2025学年八年级上学期期中数学试卷

广东省肇庆一中教育集团初中部2024-2025学年八年级上学期期中数学试卷一、单选题1.如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是()A .B .C .D .2.若一个多边形的内角和等于720︒,则这个多边形的边数是()A .5B .6C .7D .83.已知等腰三角形的两边长分别是3和6,则它的周长等于()A .12B .12或15C .15或18D .154.在平面直角坐标系中,点()5,3关于x 轴的对称点是()A .()3,5B .()5,3-C .()5,3-D .()5,3--5.如图,将两根钢条AA BB '',的中点O 连在一起,使AA BB '',可绕点O 自由转动,就做成了一个测量工件,则A B ''的长等于内槽宽A ,那么判定OAB OA B ''△≌△的理由是()A .边角边B .角边角C .边边边D .角角边6.如图,OC 是AOB ∠的平分线,P 是OC 上一点,PD OA ⊥于点D ,4PD =,则点P 到边OB 的距离为()A .6B .5C .4D .37.如图,在ABC 中,90ACB ∠=︒,C 是高,60B ∠=︒,则下列关系正确的是()A .12BD CD =B .12CD AD =C .13BD BC =D .14BD AB =8.如图,ABC V 中,AB AC =,D 是BC 中点,下列结论中不正确的是()A .BC ∠=∠B .AD BC ⊥C .AD 平分BAC ∠D .2AB BD=9.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC =110°,则∠MAB =()A .30°B .35°C .45°D .60°10.如图,在ABC V 中,BC AC =,=90ACB ∠︒,AD 平分BAC ∠,BE AD ⊥交AC 的延长线于F ,垂足为E .则结论:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =.其中正确结论的个数是()A .1B .2C .3D .4二、填空题11.一个三角形的两边长分别是5和11,那么第三边长x 的取值范围是.12.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=.13.如图,AD 是ABC 的中线,已知ABD 的周长为25cm ,AB 比AC 长6cm ,则ACD 的周长为cm .14.如图,直线a b ,Rt ABC △的直角顶点A 落在直线a 上,点B 落在直线b 上,若118,232︒︒∠=∠=,则ABC ∠的大小为.15.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,BC =8,AD 是∠BAC 的平分线,若点P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是.三、解答题16.如图,2825AB AD CB CD BAD D ==∠=︒∠=︒,,,.(1)求证:ABC ADC △≌△;(2)求BCD ∠度数.17.如图,点A ,B ,D ,E 在同一条直线上,=AD BE ,AC DF ∥,BC EF ∥.求证:=BC EF .18.如图,在ABC V 中,,30AB AC A =∠=︒.(1)用直尺和圆规作AB 的垂直平分线MN ,交AC 于点D (保留作图痕迹不用写出作法).(2)连接BD ,求CBD ∠的度数.19.如图,在ABC V 中,已知AD 、BE 分别是BC 、AC 上的高,且AD BE =.求证:ABC V 是等腰三角形.20.如图,点E 是AOB ∠的平分线上一点,EC OA ED OB ⊥⊥,,垂足分别为C 、D .求证:(1)OC OD =;(2)OE 是线段CD 的垂直平分线.21.如图,在平面直角坐标系中,()1,5A -,()1,0B -,()4,3C -.(1)在图中作出ABC V 关于y 轴的对称图形111A B C △;(2)写出点1A 、1C 的坐标,并求出111A B C △的面积;(3)在y 轴上作出一点P ,使PA PC +最小.22.已知40MON ∠=︒,OE 平分MON ∠,点A ,B ,C 分别是射线OM ,OE ,ON 上的动点(A ,B ,C 不与点O 重合),连接AB ,连AC 交射线OE 于点D ,设BAC α∠=.(1)如图1,若AB ON ∥,①求ABO ∠的度数;②当α为何值时,D 为OB 中点,并说明理由.(2)在一个四边形中,若存在一个内角是它的对角的2倍,我们称这样的四边形为“完美四边形”,如图2,若AB OM ⊥,延长AB 交射线ON 于点F ,当四边形DCFB 为“完美四边形”时,求α的值.23.如图:已知(,0)A a 、(0,)B b ,且a 、b 满足2(2)|24|0a b -+-=.(1)如图1,求AOB V 的面积;(2)如图2,点C 在线段AB 上(不与A 、B 重合)移动,AB BD ⊥,且45COD ∠=︒,猜想线段AC 、BD 、CD 之间的数量关系并证明你的结论;(3)如图3,若P 为x 轴上异于原点O 和点A 的一个动点,连接PB ,将线段PB 绕点P 顺时针旋转90︒至PE ,直线AE 交y 轴于点Q ,当P 点在x 轴上移动时,请判断:线段BE 和线段BQ 中,哪条线段长为定值,并求出该定值.。

八年级数学期中考试试卷

八年级数学期中考试试卷

八年级数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.718B. 3.14159C. √2D. 0.33333...2. 已知一个三角形的两边长分别为3cm和4cm,第三边长x满足的条件是:A. x > 1cmB. 1cm ≤ x < 7cmC. 7cm < x < 10cmD. x = 7cm3. 函数y = 2x - 3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 如果一个数的平方根是另一个数的立方根,那么这个数是:A. 1B. 0C. -1D. 85. 一个圆的直径是14cm,那么它的半径是:A. 7cmB. 14cmC. 28cmD. 21cm6. 已知一个正数的平方是16,那么这个数是:A. 4B. ±4C. -4D. 167. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是:A. 24cm³B. 12cm³C. 6cm³D. 9cm³8. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 109. 一个角的余角是它的补角的一半,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°10. 一个数的绝对值是它本身,那么这个数是:A. 正数B. 负数C. 0D. 正数或0二、填空题(每题2分,共20分)11. 如果一个三角形的两边长分别是5cm和12cm,那么第三边长x的取值范围是______。

12. 函数y = 3x + 2的斜率是______。

13. 一个圆的半径是7cm,那么它的直径是______。

14. 一个数的立方根是2,那么这个数是______。

15. 一个长方体的体积是60cm³,长是5cm,宽是4cm,那么它的高是______。

八年级数学期中试卷答案

八年级数学期中试卷答案

一、选择题(每题3分,共30分)1. 如果一个数的平方是16,那么这个数是()A. 2B. -2C. 4D. -4答案:A、B2. 下列各数中,无理数是()A. 2.5B. √3C. 0.333...D. 0.666...答案:B3. 一个长方形的长是5cm,宽是3cm,那么它的面积是()A. 10cm²B. 15cm²C. 20cm²D. 25cm²答案:B4. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形答案:D5. 若∠A和∠B是同位角,且∠A=50°,那么∠B的度数是()A. 50°B. 60°C. 70°D. 80°答案:A6. 下列方程中,有解的是()A. 2x + 5 = 3x + 2B. 3x - 4 = 2x + 1C. 5x + 2 = 3x - 1D. 4x - 5 = 3x + 2答案:B7. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = 3x²C. y = 2xD. y = x³答案:C8. 下列命题中,正确的是()A. 所有偶数都是整数B. 所有质数都是奇数C. 所有奇数都是整数D. 所有整数都是质数答案:A、C二、填空题(每题3分,共30分)9. 3的平方根是_________,-3的平方根是_________。

答案:√3,-√310. 一个等腰三角形的底边长是6cm,腰长是8cm,那么它的周长是_________cm。

答案:22cm11. 若a = 2,b = -3,那么a² - b² = _________。

答案:712. 下列各数中,有最大公约数的是()A. 8和12B. 9和15C. 16和24D. 18和27答案:C13. 若∠A和∠B是互补角,且∠A=50°,那么∠B的度数是_________。

八年级期中数学试卷及答案

八年级期中数学试卷及答案

(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则ac与bc的大小关系是()A.ac>bcB.ac<bcC.ac=bcD.无法确定答案:A2.下列哪个数是4的平方根?()A.2B.-2C.4D.-4答案:B3.已知一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为()A.32cmB.36cmC.42cmD.26cm答案:C(更多选择题题目及答案省略)二、判断题(每题1分,共20分)1.两个负数相乘,其结果一定是正数。

()答案:√2.任何数与0相乘,其结果一定是0。

()答案:√3.若a>b,则a^2>b^2。

()答案:×(更多判断题题目及答案省略)三、填空题(每空1分,共10分)1.若x+3=7,则x=_______。

答案:42.若一个正方形的边长为a,则其面积为_______。

答案:a^23.若|x|=5,则x的值为_______或_______。

答案:5;-5(更多填空题题目及答案省略)四、简答题(每题10分,共10分)1.简述勾股定理及其应用。

答案:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。

应用勾股定理可以解决与直角三角形相关的问题,如计算直角三角形的边长、判断一个三角形是否为直角三角形等。

(更多简答题题目及答案省略)五、综合题(1和2两题7分,3和4两题8分,共30分)1.已知一个等差数列的首项为2,公差为3,求第10项的值。

答案:第10项的值为2+(101)3=2+27=29。

2.解方程:2(x3)+4=3x+1。

答案:2x6+4=3x+1,化简得x=9。

(更多综合题题目及答案省略)三、填空题(每空1分,共10分)4.若一个数的平方根是9,则这个数是_______。

答案:815.已知一个等边三角形的周长为24cm,则其边长为_______。

答案:8cm6.若a=3,b=-2,则a+b的值为_______。

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试题一、单选题1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.以下列四组线段的长为边,能组成三角形的是()A.1,4,7B.2,5,8C.3,6,9D.6,8,103.下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形4.图中三角形的个数是()A.4个B.6个C.8个D.10个5.下列多边形中,内角和与外角和相等的是()A.三角形B.四边形C.五边形D.六边形6.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2B.3C.3D.47.如图,△ABC≌△ADE,点D 在BC 上,且∠B=60°,则∠EDC 的度数等于()A.30°B.45°C.60°D.75°8.一个等腰三角形的两边长分别是4和9,则它的周长为()A.17B.22C.27D.17或229.如图,ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC 分为三个三角形,则ABO S :BCO S △:CAO S △等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:510.如图,已知ΔABC 和ΔDCE 均是等边三角形,点B、C、E 在同一条直线上,AE 与CD 交于点G,AC 与BD 交于点F,连接FG,则下列结论:①AE=BD;②AG =BF;③FG∥BE;④CF=CG.其中正确的结论的个数是()A.4个B.3个C.2个D.1个二、填空题11.点A(3,﹣1)关于y 轴对称的点的坐标是___________.12.如图,120ACD ∠= ,20B ∠= ,则A ∠的度数是__________.13.如图,AC DC =,BC EC =,请你添加一个适当的条件:_____,使得ABC DEC△≌△14.如图,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且24cm ABC S =△,则S =阴影_________.15.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是________.16.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为_________.17.如图,ABC 中,7565A B ∠=︒∠=︒,,将纸片的一角折叠,使点C 落在ABC 内,若120∠=︒,则2∠的度数是_____________.三、解答题18.如图,作∠BAC 的平分线AP (用尺规作图,保留作图痕迹,不写作法)19.如图,在△ABC 中,∠B=40°,∠C=60°,AE、AD 分别是角平分线和高.求∠DAE 的度数.20.如图,四边形ABCD 中,AB AC =,B C ∠=∠,求证:BD CD =.21.已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC22.如图,在平面直角坐标系中,(2,4)A ,(3,1)B ,(2,1)C --.(1)在图中作出ABC 关于x 轴的对称图形111A B C △;(2)点1A ,1B ,1C 的坐标分别是______,______,______;(3)ABC 的面积为______.23.如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,求证:AM 平分DAB ∠.24.已知:如图,∠A=∠D=90°,点E、F 在线段BC 上,DE 与AF 交于点O,且AB=CD,BE=CF.求证:△OEF 是等腰三角形.25.如图,在Rt△ABC 中,∠C=90°,∠A=60°,AB=10cm,若点M 从点B 出发以2cm/s 的速度向点A 运动,点N 从点A 出发以1cm/s 的速度向点C 运动,设M,N 分别从点B,A 同时出发,运动的时间为ts.(1)用含t 的式子表示线段AM,AN 的长;(2)当t 为何值时,△AMN 是以MN 为底边的等腰三角形?(3)当t 为何值时,MN∥BC?26.如图,AD 与BC 相交于点O,OA OC =,A C ∠=∠,BE DE =.(1)求证:OE 是BD 的垂直平分线;(2)如图2,若OE 与BD 的交点K 是OE 的中点,写出图中所有的等腰三角形.参考答案1.B【解析】【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后即可得出答案.【详解】解:A、∵1+4=5<7,∴1,4,7不能组成三角形,故本选项错误;B、∵2+5=7<8,∴2,5,8不能组成三角形,故本选项错误;C、∵3+6=9,∴3,6,9不能组成三角形,故本选项错误;D、6+8=14>10∴6,8,10能组成三角形,故本选项正确.故选:D.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.3.A【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【详解】解:三角形具有稳定性.故选:A.【点睛】此题考查了三角形的稳定性和四边形的不稳定性.4.C【解析】【分析】根据三角形的定义即可得.【详解】图中的三角形是,,,,,,,ABC ABE ACD BCF BCE BCD BDF CEF ,共8个故选:C.【点睛】本题考查了三角形的定义,掌握理解三角形的概念是解题关键.5.B【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设多边形的边数为n,根据题意得(n-2)•180°=360°,解得n=4.故选:B.6.A【分析】利用角平分线的性质解答.【详解】解:过点P作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,∴PE=PD=2,故选:A.【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等.7.C【解析】【分析】根据全等三角形的性质:对应角和对应边相等解答即可.【详解】解:∵△ABC≌△ADE,∴∠B=∠ADE=60°,AB=AD,∴∠ADB=∠B=60°,∴∠EDC=60°.故选:C.【点睛】本题考查了全等三角形的性质,熟记性质并准确识图是解题的关键.8.B【解析】【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.9.C【解析】【分析】过点O 作OD AC ⊥于D ,OE AB ⊥于E ,OF BC ⊥于F ,根据角平分线的性质:角平分线上的点到角两边的距离相等,可得:OE OF OD ==,依据三角形面积公式求比值即可得.【详解】解:过点O 作OD AC ⊥于D ,OE AB ⊥于E ,OF BC ⊥于F ,点O 是三条角平分线交点,OE OF OD \==,ABO S ∴ :BCO S △:12CAO S AB OE =⋅⋅ :12BC OF ⋅⋅:12AC OD ⋅⋅::2:3:4AB BC AC ==,故选:C.【点睛】题目主要考查角平分线的性质及三角形面积公式,理解角平分线的性质是解题关键.10.A【解析】【分析】首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS 判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,证得CF=CG,得到△CFG是等边三角形,易得③④正确.【详解】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠BCD=∠ACE,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)CF=CG,∴△CFG是等边三角形,∴CF=CG∴∠CFG=∠FCB=60°,∴FG∥BE,(③④正确)正确的结论为①②③④,故选A.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,此题图形比较复杂,解题的关键是仔细识图,合理应用数形结合思想.11.(-3,-1)【解析】【分析】根据关于y 轴对称点的坐标特点,纵坐标不变,横坐标变为原来的相反数.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点()3,1A -关于y 轴对称的点的坐标是()3,1--,故答案为:()3,1--.【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y 轴对称的变换规律是解题关键.12.100︒【解析】【分析】根据三角形外角定理求解即可.【详解】∵120ACD B A ∠=∠+∠= ,且20B ∠= ,∴12012020100A B ∠=︒-∠=︒-︒=︒.故答案为:100︒【点睛】本题主要考查三角形外角定理,熟练掌握定理是关键.13.AB=DE(答案不唯一).【解析】【详解】解:添加条件是:AB=DE,在△ABC 与△DEC 中,AC DC BC EC AB DE =⎧⎪=⎨⎪=⎩,∴△ABC≌△DEC.故答案为AB=DE.本题答案不唯一.14.21cm 【解析】【分析】因为点F 是CE 的中点,所以△BEF 的底是△BEC 的底的一半,△BEF 高等于△BEC 的高,所以S△BEF=12S△BEC,同理可求△EBC 的面积是△ABC 面积的一半,据此求解即可.【详解】解:点F 是CE 的中点,∴△BEF 的底是EF,△BEC 的底是EC,即EF=12EC,而高相等,∴S△BEF=12S△BEC,∵E 是AD 的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△EBC=12S△ABC,∴S△BEF=14S△ABC,∵24cm ABC S =△,∴S△BEF=12cm ,即S =阴影12cm ,故答案为:21cm .本题主要考查了三角形中线的性质,三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.15.16:25:08【解析】【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【详解】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为16:25:08.【点睛】本题考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5,5的对称数字是2.16.50︒或80︒.【解析】【分析】讨论这个50︒的角是顶角或是底角两种情况求解即可.解:若50︒的角是顶角,则底角是18050652°-°=°,成立;若50︒的角是底角,则顶角是18025080︒-⨯︒=︒,成立;顶角为50°或80°.故答案是:50︒或80︒.【点睛】本题考查等腰三角形的性质,三角形内角和,解题的关键是掌握等腰三角形的性质.17.60︒【解析】【分析】根据题意,已知∠A=65°,∠B=75°,可结合三角形内角和定理和折叠变换的性质求解.【详解】解:∵∠A=75°,∠B=65°,∴∠C=180°-(65°+75°)=40°,∴∠CDE+∠CED=180°-∠C=140°,∴∠2=360°-(∠A+∠B+∠1+∠CED+∠CDE)=360°-300°=60°.故答案为:60°.【点睛】本题通过折叠变换考查三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.18.见解析【解析】按角平分线的画法作图即可.【详解】解:如下图,射线AP为所求作,19.10°.【分析】先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠EAC=12∠BAC,而∠DAC=90°-∠C,然后利用∠DAE=∠EAC-∠DAC进行计算即可.【详解】在△ABC中,∵∠B=40°,∠C=60°∴∠BAC=180°-∠B-∠C=180°-40°-60°=80°∵AE是∠BAC的角平分线,∴∠EAC=12∠BAC=12×80°=40°,∵AD是△ABC的高,∴∠ADC=90°∴在△ADC中,∠DAC=180°-∠ADC-∠C=180°-90°-60°=30°,∴∠DAE=∠EAC-∠DAC=40°-30°=10°.20.见解析连接BC,利用等腰三角形的等边对等角证得A ABC CB =∠∠,进而证得DBC DCB ∠=∠,再根据等腰三角形的等角对等边即可得证.【详解】连接BC ,如图,∵AB AC =,∴A ABC CB =∠∠,又∵ABD ACD ∠=∠,∴DBC DCB ∠=∠,∴BD CD =.21.见解析【分析】连接CD,利用HL 定理得出Rt△ADC≌Rt△BCD 进而得出答案.【详解】证明:如图,连接CD,∵AD⊥AC,BC⊥BD,∴∠A=∠B=90°,在Rt△ADC 和Rt△BCD 中CD CDAC BD =⎧⎨=⎩,∴Rt△ADC≌Rt△BCD(HL),∴AD=BC.22.(1)见解析;(2)(2,4)-;(3,1)-;(2,1)-;(3)172.【分析】(1)首先作出A、B、C 三点关于x 轴的对称点,再顺次连接即可;(2)根据(1)得出对应点位置进而得出答案;(3)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图所示,(2)点1A ,1B ,1C 的坐标分别是(2,4)-;(3,1)-;(2,1)-;故答案为:(2,4)-;(3,1)-;(2,1)-;(3)S△ABC =5×5-12×4×5-12×1×3-12×2×5=172;故答案为:17 2.【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.23.见解析【解析】【分析】由题意利用角平分线的性质“角的平分线上的点到角的两边的距离相等”,以及到角两边距离相等的点在角的角平分线上进行分析证明.【详解】解:如图,过点M作ME⊥AD于F,∵∠C=90°,DM平分∠ADC,∴ME=MC,∵M是BC的中点,∴BM=CM,∴BM=EM,又∵∠B=90°,∴点M在∠BAD的平分线上,∴AM 平分∠DAB.【点睛】本题考查角平分线性质和角平分线的判定,熟练掌握角平分线的性质“角的平分线上的点到角的两边的距离相等”是解题的关键.24.见解析【解析】【分析】证明Rt△ABF≌Rt△DCE,根据全等三角形的性质得到∠AFB=∠DEC,根据等腰三角形的判定定理证明结论.【详解】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在Rt△ABF 和Rt△DCE 中,AB DC BF CE=⎧⎨=⎩,∴Rt△ABF≌Rt△DCE(HL)∴∠AFB=∠DEC,∴OE=OF,∴△OEF 是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,掌握全等三角形的判定与性质是解题的关键.25.(1)AM=10-2t,AN=t;(2)t=103;(3)t=2.5【解析】【分析】(1)根据线段的和差即可得到结论;(2)根据等腰三角形的性质得到∴AM=AN,列方程即可得到结论;(3)根据题意列方程即可得到结论.【详解】解:(1)AM=AB-BM=10-2t,AN=t;(2)∵△AMN是以MN为底的等腰三角形,∴AM=AN,即10-2t=t,解得,103 t=∴当103t=时,△AMN是以MN为底边的等腰三角形;(3)当MN⊥AC时,MN∥BC.∵∠C=90°,∠A=60°,∴∠B=30°∵MN∥BC,∴∠NMA=30°∴AN=12AM,∴t=12(10-2t),解得t=2.5,∴当t=2.5时,MN∥BC.【点睛】本题考查的是等腰三角形的判定及平行线的判定与性质,熟知等腰三角形的两腰相等是解答此题的关键.26.(1)见解析;(2)DBO ,DEB ,EBO △,DEO【解析】【分析】(1)先证△ABO 和△CDO 全等,得到BO=OD,结合BE DE =,利用垂直平分线的判定即可得解;(2)结合已知和已证及垂直平分线的性质,由图直接写出即可;【详解】解:(1)在△ABO 和△CDO 中,A C OA OC AOB COD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABO CDO △≌△,∴OB OD =,∴点O 在线段BD 的垂直平分线上,又∵BE DE =,∴点E 在线段BD 的垂直平分线上,∴OE 是BD 的垂直平分线;(2)∵OE 是BD 的垂直平分线;又∵K 是OE 的中点,∴,,OB BE OD DE ==∵BE DE =,∴=OB BE OD DE==故等腰三角形有:DBO ,DEB ,EBO △,DEO。

八年级数学期中考试试卷

八年级数学期中考试试卷

八年级数学期中考试试卷一、选择题(本题共10小题,每小题3分,共30分。

每小题只有一个选项是正确的。

)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.333...2. 一个等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 303. 下列哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 1/x4. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是5. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π6. 一个多项式与2x^2 - 3x + 1的乘积是4x^3 - 6x^2 + 3x - 5,那么这个多项式是?A. 2x - 1B. 2x + 1C. -2x + 1D. -2x - 17. 下列哪个选项是正确的不等式?A. 3x > 2x + 1B. 3x ≤ 2x + 1C. 3x < 2x + 1D. 3x ≥ 2x + 18. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 109. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 2:3 = 4:5C. 2:3 = 6:9D. 2:3 = 6:810. 一个三角形的内角和是多少度?A. 90°B. 180°C. 360°D. 540°二、填空题(本题共5小题,每小题4分,共20分。

)11. 一个数的立方根是2,那么这个数是______。

12. 如果一个角的补角是120°,那么这个角的度数是______。

13. 一个等差数列的首项是3,公差是2,那么它的第五项是______。

14. 一个二次函数的顶点坐标是(1, -4),且开口向上,那么它的解析式可以表示为y = a(x - 1)^2 - 4,其中a的值是______。

潜山八年级数学期中试卷

潜山八年级数学期中试卷

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √16B. √-1C. πD. 0.1010010001…2. 若a、b是方程x²-3x+2=0的两个根,则a+b的值是()A. 2B. 3C. 4D. 53. 已知函数y=2x+1,若x=3,则y的值为()A. 7B. 6C. 5D. 44. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)5. 若等腰三角形的底边长为6cm,腰长为8cm,则该三角形的面积是()A. 24cm²B. 30cm²C. 32cm²D. 36cm²6. 下列各数中,无理数是()A. √4B. √9C. √16D. √-17. 若a、b是方程2x²-5x+2=0的两个根,则a²+b²的值是()A. 25B. 24C. 21D. 208. 已知函数y=x²-4x+4,当x=2时,y的值为()A. 0B. 4C. 6D. 89. 在直角坐标系中,点B(-4,5)关于原点的对称点是()A. (4,-5)B. (-4,5)C. (5,-4)D. (-5,4)10. 若等边三角形的边长为10cm,则该三角形的面积是()A. 25cm²B. 50cm²C. 75cm²D. 100cm²二、填空题(每题5分,共50分)11. 已知x²-6x+9=0,则x的值为________。

12. 若a=3,b=-2,则a²+b²的值为________。

13. 已知函数y=3x-2,当x=1时,y的值为________。

14. 在直角坐标系中,点P(-3,4)关于x轴的对称点是________。

15. 若等腰梯形的上底长为4cm,下底长为6cm,高为5cm,则该梯形的面积是________cm²。

八年级数学期中考试卷子

八年级数学期中考试卷子

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-9C. πD. 0.1010010001…2. 已知a,b是实数,且a < b,那么下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 > b - 1C. a × 2 < b × 2D. a ÷ 2 > b ÷ 23. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 + 2D. y = 2x^2 - 34. 下列各组数中,存在最大值的是()A. -3, -2, -1, 0, 1, 2, 3B. 1, 2, 3, 4, 5, 6, 7C. -1, -2, -3, -4, -5, -6, -7D. 0, 1, 2, 3, 4, 5, 65. 在△ABC中,∠A = 45°,∠B = 90°,那么∠C的度数是()A. 45°B. 90°C. 135°D. 180°6. 下列方程中,x的值是2的是()A. 2x + 1 = 5B. 2x - 1 = 5C. 2x + 1 = 3D. 2x - 1 = 37. 下列各组数中,成等差数列的是()A. 1, 3, 5, 7, 9B. 2, 4, 6, 8, 10C. 3, 6, 9, 12, 15D. 1, 4, 7, 10, 138. 下列各图中,是正比例函数图像的是()A.B.C.D.9. 下列各数中,绝对值最大的是()A. -3B. 3C. -5D. 510. 在等腰三角形ABC中,AB = AC,若∠B = 40°,那么∠A的度数是()A. 40°B. 50°C. 60°D. 70°二、填空题(每题5分,共30分)11. 已知x + 3 = 0,则x = __________。

八年级数学期中考试测试卷

八年级数学期中考试测试卷

考试时间:90分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √-1B. √2C. πD. 3.142. 已知 a = -2,b = -3,则 a + b 的值为()A. 1B. -1C. -5D. 53. 如果 a > b > 0,那么下列不等式中不正确的是()A. a^2 > b^2B. a - b > 0C. a/b > 1D. a/b^2 < 14. 下列函数中,自变量的取值范围是全体实数的是()A. y = √(x + 2)B. y = x^2 - 4C. y = 1/xD. y = |x|5. 在直角坐标系中,点 P(2, -3) 关于 y 轴的对称点是()A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, -3)6. 如果一个三角形的三边长分别为 3, 4, 5,那么这个三角形是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 不规则三角形7. 下列方程中,x 的值为整数的是()A. x^2 - 5x + 6 = 0B. x^2 - 4x + 3 = 0C. x^2 - 6x + 9 = 0D. x^2 - 8x + 7 = 08. 如果 a、b、c 是等差数列的前三项,且 a + b + c = 12,那么 c 的值为()A. 4B. 5C. 6D. 79. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 等边三角形10. 已知一次函数 y = kx + b 的图象经过点 (1, 2) 和 (3, 6),则该函数的解析式为()A. y = 2x + 1B. y = 2x - 1C. y = 3x + 1D. y = 3x - 1二、填空题(每题3分,共30分)11. 计算:-3 + (-5) = ______12. 已知 a = 2,b = -3,则 a^2 - b^2 的值为 ______13. 如果 x + y = 5,且 x - y = 1,那么 x 的值为 ______14. 下列函数中,自变量的取值范围是全体实数的是 ______15. 在直角坐标系中,点 A(3, 4) 到原点 O 的距离是 ______16. 一个等腰三角形的底边长为 6,腰长为 8,那么该三角形的周长是 ______17. 解方程:2x - 5 = 3x + 118. 下列数列:2, 4, 8, 16, ... 是一个 ______ 数列19. 如果一个三角形的一边长为 5,另外两边长分别为 8 和 10,那么这个三角形是 ______ 三角形20. 一次函数 y = kx + b 的图象与 x 轴的交点坐标为 ______三、解答题(共40分)21. (10分)已知 a、b、c 是等差数列的前三项,且 a + b + c = 12,求该等差数列的公差。

八年级期中试卷数学卷答案

八年级期中试卷数学卷答案

一、选择题1. 答案:C。

解析:A选项是正比例函数,B选项是反比例函数,D选项是指数函数,只有C选项是一次函数。

2. 答案:B。

解析:A选项是奇函数,C选项是偶函数,D选项是非奇非偶函数,只有B选项既是奇函数又是偶函数。

3. 答案:A。

解析:A选项是正数,B选项是负数,C选项是零,D选项是正负数,只有A选项是正数。

4. 答案:D。

解析:A选项是平方根,B选项是立方根,C选项是算术平方根,D选项是开方,只有D选项是开方。

5. 答案:C。

解析:A选项是等差数列,B选项是等比数列,D选项是调和数列,只有C选项是递增数列。

二、填空题6. 答案:2。

解析:根据勾股定理,直角三角形的两条直角边分别为3和4,斜边长为5。

7. 答案:3。

解析:根据等差数列的性质,第二项是首项加公差,第三项是首项加2倍公差,所以第三项是3。

8. 答案:8。

解析:根据等比数列的性质,第二项是首项乘公比,第三项是首项乘公比的平方,所以第三项是8。

9. 答案:3。

解析:根据指数运算法则,a的平方乘以a的立方等于a的五次方,所以a的立方是3。

10. 答案:5。

解析:根据根号下a的平方等于a,所以根号下25等于5。

三、解答题11. 答案:(1)x=-2;(2)y=2。

解析:将x=-2代入方程x+2y=0,得到-2+2y=0,解得y=1;将y=2代入方程2x-y=4,得到2x-2=4,解得x=3。

12. 答案:(1)x=3;(2)y=2。

解析:将x=3代入方程x+2y=0,得到3+2y=0,解得y=-1.5;将y=2代入方程2x-y=4,得到2x-2=4,解得x=3。

13. 答案:(1)x=4;(2)y=6。

解析:将x=4代入方程x+2y=0,得到4+2y=0,解得y=-2;将y=6代入方程2x-y=4,得到2x-6=4,解得x=5。

14. 答案:(1)x=1;(2)y=2。

解析:将x=1代入方程x+2y=0,得到1+2y=0,解得y=-0.5;将y=2代入方程2x-y=4,得到2x-2=4,解得x=3。

八年级数学期中试卷基础题

八年级数学期中试卷基础题

一、选择题(每题4分,共40分)1. 下列各数中,不是有理数的是()A. -3.5B. √9C. πD. 02. 下列各数中,绝对值最大的是()A. -5B. 0C. 5D. -33. 如果a=3,那么a的倒数是()A. 1/3B. 3C. -3D. -1/34. 下列各数中,不是整数的是()A. -5B. 3.14C. 0D. 25. 下列各数中,有最小正整数解的一元一次方程是()A. 2x+1=0B. 3x-1=0C. 4x-1=0D. 5x-1=06. 下列各数中,不是无理数的是()A. √4B. √9C. √16D. √257. 如果a=-3,那么|a|的值是()A. 3B. -3C. 6D. -68. 下列各数中,不是同类二次根式的是()A. √18B. √27C. √36D. √459. 下列各数中,不是立方根的是()A. ∛8B. ∛27C. ∛64D. ∛12510. 下列各数中,不是正数的是()A. 0.5B. -0.5C. 1D. -1二、填空题(每题5分,共25分)11. (1)2的平方根是________;(2)(-2)的立方根是________。

12. (1)|5-3|=________;(2)-|-5|=________。

13. (1)如果a=2,那么a的倒数是________;(2)如果a=-3,那么|a|的值是________。

14. (1)2x+1=0的解是________;(2)3x-1=0的解是________。

15. (1)√9=________;(2)√16=________。

三、解答题(每题10分,共30分)16. 简化下列各式:(1)√(36×64);(2)√(25×144)。

17. 求下列各数的平方根和立方根:(1)√16;(2)∛27。

18. 求下列方程的解:(1)2x+3=7;(2)3x-2=8。

四、应用题(每题10分,共20分)19. 小明骑自行车去图书馆,如果以每小时15公里的速度行驶,需要2小时到达;如果以每小时10公里的速度行驶,需要多少小时到达?20. 某班有学生40人,其中男生人数是女生人数的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级期中数学试卷公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-
初二数学试卷 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案填在答题卡相应位置.......上.
. 1.下列图形中,既是轴对称图形又是中心对称图形的是
A B
C
D
2. 下列事件是必然事件的为
A.明天太阳从西方升起
B.掷一枚硬币,正面朝上
C.打开电视机,正在播放“新闻夜班车”
D.任意一个三角形,它的内角和等于180°
3.下列分式:①223a a ++;②22a b a b --;③412()a a b -;④12x -其中最简分式有 A .1个 B .2个 C .3个 D .4个
4. 若反比例函数(0)k y k x
=≠的图像过点(2,1),则这个函数的图像还经过的点

A .(一2,1)
B .(一l ,2)
C .(一2,一1)
D .(1,一2)
5.已知四边形ABCD 中,∠A=∠B=∠C=90︒,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是
A .∠D=90︒
B .AB=CD
C .AD=BC
D .BC=CD
6.将一个长为10 cm、宽为8 cm的矩形纸片对折两次后,沿所得矩形两邻边中点的膀
(如图①)剪下,将剪下的图形打开,得到的菱形ABCD(如图②)的面积为A.10 2
cm B.20 2
cm C.40 2
cm D.80 2
cm
7.如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点0,点F、G 分别是BO、CO的中点,连接AO.若AO=6 cm,BC=8 cm,则四边形DEFG的周长是
A.14 cm B.18 cm C.24 cm D.28 cm
8.为了了解我市2014年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中
考数学成绩进行统计分析.在这个问题中,样本是指
A.150 B.被抽取的150名考生
C.被抽取的150名考生的中考数学成绩 D.我市2014年中考数学成绩
9.函数y=a
x
(a≠0)与y=a(x-1)(a≠0)在同一平面直角坐标系中的大致图像是
10.如图,将矩形ABCO放在直角坐标系中,其中顶点B的坐
标为(10, 8),E是BC边上一点,:将△ABE沿AE折叠,点
B刚好与OC边上点D重合,过点E的反比例函数y=k
x
的图象
与边AB交于点F, 则线段AF的长为
A.15
4 B. 2 C.15
8
D.3
2
二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置.
11.一个口袋中装有4个白色球,1个红色球,搅匀后随机从袋中摸出1个球是白色球的概率是 ▲ .
12.四边形ABCD 中,对角线AC 、BD 相交于点0,给出下列四个条件:
①AD∥BC;②AD=BC;③OA=OC ;④OB=OD
从中任选两个条件,能使四边形ABCD 为平行四边形的选法有 ▲ 种. 13.如图,将矩形ABCD 绕点A 顺时针旋转到矩形A’B’C’D’的位置,旋转角为a (0°<a<90°).若∠1=110°,则a = ▲ .
14.苏州中学举行了一次科普知识竞赛,满分为100分,学生得分的最低分为31分.如图 所示是根据学生竞赛成绩绘制的频数分布直方图的一部分,已知参加这次知识竞赛的学生共有40人,则得分在60~70分的频率为 ▲ .
15.已知函数()221a y a x -=-是反比例函数,则a = ▲ .
16.如果分式2
2a a -+的值为零,则a 的值为______▲_______
17.如图,点A 在函数y =
2 x (x >0)的图像上,点B 在函数y =6 x (x >0)的图像上,点C 在x 轴上.若AB ∥x 轴,则△ABC 的面积为 ▲ .
18.如图,在四边形ABCD 中,AB∥DC,AD=BC=5,
DC=7, AB=13,点P 从点A 出发,以3个单位/s 的速
度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1
A B x y
O C (第17
个单位/s 的速度沿BA 向终点A 运动,在运动期间,当四边形PQBC 为平行四边形时,运动时间为 ▲ 秒.
三、解答题(本大题共76分)
19.(本题8分,每小题4分) 计算:
(1) 24
4x -+2
2x ++1
2x - (2) 111a ⎛
⎫+ ⎪-⎝⎭÷2111a ⎛⎫+ ⎪-⎝⎭
20. (1)(本题5分)先化简,再求代数式的值: 221m 2m 11m 2m 4++⎛⎫-÷ ⎪+-⎝⎭
,其中m =1。

(2)(本题5分)解方程:
21. (本题 6分)某市团委在2017年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示.
(1)这6个学雷锋小组在2017年3月份共做好事多少件
(2)补全条形统计图.
(3)估计该市300个学雷锋小组在2017年3月份共做好事多少件(提示:可
以用样本估计总体).
22.(本题6分)如图,已知E 、F 是平行四边形ABCD
对角线AC 上的两点,且BE⊥AC,DF⊥AC. 求
证: BE=DF.
23. (本题6分)已知y =y 1+y 2,其中y 1与x 成反比例,y 2与(x ﹣2)成正比例.当x =1时,y =﹣1;x =3时,y =5.求:(1)y 与x 的函数关系式; (2)当x =﹣1时,y 的值.
F E A B C D
24.(本题6题)有200个零件,平均分给甲、乙两车间加工,由于乙另有任务,所以在甲开始工作2小时后,乙才开始工作,因此比甲迟20分钟完成任务,已知乙每小时加工零件的个数是甲的2倍,问甲、乙两车间每小时各加工多少零件
25.(本题7分)如图,ABC ∆中,D 、E 分别是AB 、AC 的中点,过点E 作EF ∥AB ,交BC 于点F .
(1)求证:四边形DBFE 是平行四边形.
(2)当ABC ∆满足什么条件时,四边形DBFE 是菱形为什么
26.(本题7分)如图,一次函数的图象与反比例函数的图象交于A (-3,
1)、B (m ,3)两点,
(1)求反比例函数和一次函数的解析式; (2)写出使一次函数的值大于反比例函数的x 的取值范围;
(3)连接AO 、BO ,求△ABO 的面积.
27.(10分)如图,在Rt △ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以
4cm /秒的速度向点A 匀速运动,同时点E 从点A 出发
沿AB 方向以2cm /秒的速度向点B 匀速运动,当其中
一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(0<t ≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .
(1)求证:AE =DF ;
(2)四边形AEFD 能够成为菱形吗如果能,求出相应的t 值,如果不能,说明理由;
(3)当t 为何值时,△DEF 为直角三角形请说明理由.
O x
y A
B
28.(本题 10分)如图,矩形OABC的顶点A、C分别在x、y的正半轴上,点B
的坐标为(3,4)一次函数
2
3
y x b
=-+的图象与边OC、AB分别交于点D、E,并且
满足OD= BE.点M是线段DE上的一个动点.
(1)求b的值;
(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1︰3,求点M 的坐标;
(3)设点N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点M的坐标.。

相关文档
最新文档