热传导公式(教学备用)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节传导传热
传导传热也称热传导,简称导热。导热是依靠物质微粒的热振动而实现的。产生导热的必要条件是物体的内部存在温度差,因而热量由高温部分向低温部分传递。热量的传递过程通称热流。发生导热时,沿热流方向上物体各点的温度是不相同的,呈现出一种温度场,对于稳定导热,温度场是稳定温度场,也就是各点的温度不随时间的变化而变化。本课程所讨论的导热,都是在稳定温度场的情况下进行的。
一、传导传热的基本方程式----傅立叶定律
在一质量均匀的平板内,当t1> t2热量以导热方式通过物体,从t1向t2方向传递,如图3-7所示。
图3-7 导热基本关系
取热流方向微分长度dn,在dt的瞬时传递的热量为Q,实验证明,单位时间内通过平板传导的热量与温度梯度和传热面积成正比,即:
dQ∝dA·dt/dn
写成等式为:
dQ=-λdA·dt/dn (3-2)
式中Q-----导热速率,w;
A------导热面积,m2;
dt/dn-----温度梯度,K/m;
λ------比例系数,称为导热系数,w/m·K;
由于温度梯度的方向指向温度升高的方向,而热流方向与之相反,故在式(3-2)乘一负号。式
(3-2)称为导热基本方程式,也称为傅立叶定律,对于稳定导热和不稳定导热均适用。
二、导热系数λ
导热系数是物质导热性能的标志,是物质的物理性质之一。导热系数λ的值越大,表示其导热性能越好。物质的导热性能,也就是λ数值的大小与物质的组成、结构、密度、温度以及压力等有关。λ的物理意义为:当温度梯度为1K/m时,每秒钟通过1m2的导热面积而传导的热量,其单位为W/m·K或W/m·℃。
各种物质的λ可用实验的方法测定。一般来说,金属的λ值最大,固体非金属的λ值较小,液体更小,而气体的λ值最小。各种物质的导热系数的大致范围如下:
金属2.3~420 w/m·K
建筑材料0.25~3 w/m·K
绝缘材料0.025~0.25 w/m·K
液体0.09~0.6 w/m·K
气体0.006~0.4 w/m·K
固体的导热在导热问题中显得十分重要,本章有关导热的问题大多数都是固体的导热问题。因而将某些固体的导热系数值列于表3-1,由于物质的λ影响因素较多,本课程中采用的为其平均值以使问题简化。
表3-1 某些固体在0~100℃时的平均导热系数
金属材料建筑和绝缘材料
物料密度kg/m3λ①w/m℃物料密度kg/m3λ①w/m℃
铝2700204石棉6000.15
紫铜800065混凝土2300 1.28
黄铜850093绒毛毯3000.046
铜8800383松木6000.14~0.38
铅1140035建筑用砖砌17000.7~0.8
钢785045耐火砖砌1840 1.04
不锈钢790017绝热砖砌6000.12~0.12
铸铁750045~9085%氧化镁粉2160.07②
银10500411锯木屑2000.07
镍890088软木1600.043
三、平面壁稳定热传导
1、单层平面壁
设有一均质的面积很大的单层平面壁,厚度为b,平壁内的温度只沿垂直于壁面的x轴方向变化,如图3-8所示。
图3-8 单层平壁稳定热传导
在稳定导热时,导热速率Q不随时间变化,传热面积A和导热系数λ也是常量,则傅立叶公式可简化为:
将此式积分,当x=0,t=t1;x=b时,t=t2,积分结果为:
若改写成传热速率方程的一般形式,则有:
(3-4)
式中b-----平面壁厚度,m;
△t-----平壁两侧温度差,即导热推动力,K;
R= b/λA------导热热阻,K/W。
此式说明,单层平面壁的导热速率,与推动力△t成正比,与热阻成反比。
例3-1 加热炉的平壁用耐火砖砌成,壁厚0.32m,测得壁的内表面温度为700℃,外表面温度为100℃,耐火砖的导热系数λ=1.05w/m·k,求每小时每平方米壁面所传递的热量。
解:这是一个平面壁稳定热传导的问题,将式(3-3)移项得:
将t1=700℃,t2=100℃,λ=1.05w/m·k,b=0.32m代入:
Q/A={1.05(700-100)}/0.32 = 1969w/m2 = 7088KJ/m2·hr
2、多层平面壁
在工业生产上常见的是多层平壁,如锅炉的炉墙。现以一个三层平壁为例,说明多层平面壁稳定热传导的计算。如图3-9所示。
图3-9 多层平面壁的热传导
设各层壁厚及导热系数分别为 b1,b2,b3及λ1,λ2,λ3.内表面温度为t1,外表面温度为t4,中间两分界面的温度分别为t2和t3。
对于稳定导热过程,各层的导热速率必然相等。将式(3-3)分别用于各层,可得:
即△t1=Q1R1………………(a)
即△t2=Q2R2………………(b)
即△t3=Q3R3………………(c)
(a)+(b)+(c)有:△t1+△t2+△t3=Q1R1+Q2R2+Q3R3
稳定热传导时:Q1+Q2+Q3=Q 故:
(3-5)