《圆的一般方程》课件1 (北师大版必修2).ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y r
2 2
2
求圆心和半径
⑴圆 (x-1)2+ (y-1)2=9 圆心 (1, 1) ,半径3 ⑵圆 (x-2)2+ (y+4)2=2 圆心 (2, -4) ,半径 2 . ⑶圆 (x+1)2+ (y+2)2=m2 圆心 (-1, -2) ,半径|m|
圆的一般方程
( x 3) ( y 4) 6
2 2
(1)当
D2 E 2 4F 0
时,表示圆,
D2 E 2 4F 2
D E - , 2 2
D E 圆心 - , 2 2
r
(2)当 (3)当
D E 4F 0
2源自文库2
时,表示点
D2 E 2 4F 0
时,不表示任何图形
圆的一般方程
x y Dx Ey F 0
2 2
D E D2 E 2 4F x y 2 2 4
2 2
(1)当
D2 E 2 4F 0
时,表示圆,
D2 E 2 4F 2
D E - , 2 2
解出a,b,r(或D,E,F), 写出标准方程(或一般方程)
2 2
展开得
x y 6x 8 y 19 0
2 2
x y Dx Ey F 0
2 2
任何一个圆的方程都是二元二次方程 反之是否成立?
圆的一般方程
(1) x y 2x 4 y 1 0
2 2
配方得
( x 1)2 ( y 2)2 4
(2) x y 2x 4 y 6 0
D E 圆心 - , 2 2
r
(2)当 (3)当
D E 4F 0
2 2
时,表示点
D2 E 2 4F 0
时,不表示任何图形
例:求过三点A(5,1),B (7,-3),C(2,8)的圆的 方程 y 方法一:
A(5,1)
几何方法
O E
x
B(7,-3)
C(2,-8)
2 2
以(1,-2)为圆心,以2为半径的圆 配方得
( x 1) ( y 2) 1
2 2
不是圆
x y Dx Ey F 0
2 2
不一定是圆
练习
• 判断下列方程是不是表示圆
(1) x y 4 x 6 y 4 0
2 2
( x 2) ( y 3) 9 以(2,3)为圆心,以3为半径的圆
2 2
(2) x y 4x 6 y 13 0
2 2
(3) x y 4x 6 y 15 0
2 2
( x 2) ( y 3) 0 表示点(2,3)
2 2 2 2
x 2, y 3
( x 2) ( y 3) 2 不表示任何图形
圆心:两条弦的中垂线的交点 半径:圆心到圆上一点
方法二:待定系数法
解:设所求圆的方程为:
( x a) ( y b) r
2 2
2
因为A(5,1),B (7,-3),C(2,8)都在圆上
(5 a ) 2 (1 b) 2 r 2 a2 2 2 2 (7 a ) (3 b) r b 3 (2 a ) 2 (8 b) 2 r 2 r 5
D 4 E 6 F 12
所求圆的方程为
x y 4x 6 y 12 0 2 2 即 ( x 2) ( y 3) 25
2 2
小结
x y Dx Ey F 0
2 2
D E D2 E 2 4F x y 2 2 4
点到直线距离公式
y
S Q l : Ax By C 0
d
R
P0 (x0,y0)
O
d
| Ax0 By0 C | A2 B 2
x
注意: 化为一般式.
圆的标准方程
圆心C(a,b),半径r
y
M(x,y) O x
( x a) ( y b) r
2 2
2
C
标准方程 若圆心为O(0,0),则圆的方程为:
所求圆的方程为
( x 2) ( y 3) 25
2 2
待定系数法
方法三:待定系数法
解:设所求圆的方程为:
x y Dx Ey F 0
2 2
因为A(5,1),B (7,-3),C(2,8)都在圆上
52 12 5D E F 0 2 7 (1) 2 7 D E F 0 2 2 82 2 D 8 E F 0
小结:求圆的方程
几何方法
求圆心坐标 (两条直线的交点) (常用弦的中垂线)
待定系数法
设方程为 ( x a ) 2 ( y b) 2 r 2 (或x 2 y 2 Dx Ey F 0)
求 半径 (圆心到圆上一点的距离)
列关于a,b,r(或D,E,F) 的方程组
写出圆的标准方程