步进电机选择的详细计算过程上课讲义

合集下载

步进电机——步进电机选型的计算方法

步进电机——步进电机选型的计算方法

步进电机——步进电机选型的计算方法步进电机选型表中有部分参数需要计算来得到。

但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。

◎驱动模式的选择驱动模式是指如何将传送装置的运动转换为步进电机的旋转。

下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。

●必要脉冲数的计算必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。

必要脉冲数按下面公式计算:必要脉冲数=物体移动的距离距离电机旋转一周移动的距离×360 o步进角●驱动脉冲速度的计算驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。

驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。

(1)自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。

自启动运行方式通常在转速较低的时候使用。

同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。

自启动运行方式的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒](2)加/减速运行方式加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。

其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。

加/减速时间需要根据传送距离、速度和定位时间来计算。

在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。

加/减速运行方式下的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 定位时间[秒]-加/减速时间[秒]◎电机力矩的简单计算示例必要的电机力矩=(负载力矩+加/减速力矩)×安全系数●负载力矩的计算(T L)负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。

最全的步进电机选型计算过程

最全的步进电机选型计算过程

最全的步进电机选型计算过程1.驱动模式的选择:驱动模式是指如何将传送装置的运动转换为步进电机的旋转,下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于此驱动模式图。

2.必要脉冲数的计算:必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。

必要脉冲数按下面公式计算:步距角移动的距离步进电机旋转一周物体物体移动的总距离必要脉冲数︒=360x3.驱动脉冲速度的计算:驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数,驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。

(1)自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。

自启动运行方式通常在转速较低的时候使用,同时由于在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。

[][][]秒定位时间必要脉冲数驱动脉冲速度Hz Hz =(2)加/减速运行方式加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式,其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。

加/减速时间需要根据传送距离、速度和定位时间来计算,在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。

[][][][][]秒减速时间加秒定位时间秒减速时间加起始脉冲速度必要脉冲数驱动脉冲速度/-/x -Hz Hz =4.一般步进电机力矩简单计算:电机力矩=(摩擦负载力矩T L +启动时的惯性负载力矩T a )×安全系数。

步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。

静力矩选择的依据是电机工作的负载,而负载可分为启动时的惯性负载和恒速运行时的摩擦负载两种,自启动运行方式启动(一般指由低速启动)时的启动时的惯性负载力矩和恒速运行时的摩擦负载力矩均要考虑,加速起动时主要考虑启动时的惯性负载力矩,恒速运行进只要考虑摩擦负载力矩。

最全的步进电机选型计算过程

最全的步进电机选型计算过程

最全的步进电机选型计算过程1.驱动模式的选择:驱动模式是指如何将传送装置的运动转换为步进电机的旋转,下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于此驱动模式图。

2.必要脉冲数的计算:必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。

必要脉冲数按下面公式计算:步距角移动的距离步进电机旋转一周物体物体移动的总距离必要脉冲数︒=360x3.驱动脉冲速度的计算:驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数,驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。

(1)自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。

自启动运行方式通常在转速较低的时候使用,同时由于在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。

[][][]秒定位时间必要脉冲数驱动脉冲速度Hz Hz =(2)加/减速运行方式加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式,其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。

加/减速时间需要根据传送距离、速度和定位时间来计算,在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。

[][][][][]秒减速时间加秒定位时间秒减速时间加起始脉冲速度必要脉冲数驱动脉冲速度/-/x -Hz Hz =4.一般步进电机力矩简单计算:电机力矩=(摩擦负载力矩T L +启动时的惯性负载力矩T a )×安全系数。

步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。

静力矩选择的依据是电机工作的负载,而负载可分为启动时的惯性负载和恒速运行时的摩擦负载两种,自启动运行方式启动(一般指由低速启动)时的启动时的惯性负载力矩和恒速运行时的摩擦负载力矩均要考虑,加速起动时主要考虑启动时的惯性负载力矩,恒速运行进只要考虑摩擦负载力矩。

步进电机(计算)课件

步进电机(计算)课件

混合驱动技术在步进电机中的应用
总结词
混合驱动技术的应用将拓宽步进电机的应用 领域,满足不同场景下的需求。
详细描述
混合驱动技术结合了传统驱动方式和新型驱 动方式的优势,能够实现更高效、更稳定的 运行。例如,采用永磁同步电机和步进电机 的混合驱动方式,可以实现高速、高精度的 定位控制,满足高动态性能的应用需求。此 外,混合驱动技术还可以实现电机的可逆控 制,提高电机的能源利用效率。
加工精度高
步进电机能够实现高精度的加工, 提高数控机床的加工质量和效率。
易于编程和控制
步进电机可以通过数控系统进行编 程和控制,实现自动化加工。
步进电机在智能家居领域的应用
门窗控制
步进电机用于智能家居的门窗控 制,实现门窗的自动开关和调节。
节能环保
步进电机能够实现智能家居的节 能控制,降低能源消耗和减少环
控制参数调整
通过调整控制参数,可以 实现对步进电机运行状态 的精确控制,提高电机的 性能和响应速度。
步进电机的优化设计计算
优化设计计算
结构优化
涉及步进电机结构、材料和制造工艺的优 化设计。通过对这些方面的计算和分析, 可以提高步进电机的性能和可靠性。
通过对电机结构的分析和优化,可以减小 电机的体积、重量和制造成本,提高电机 的刚度和强度。
2023
步进电机(计算)课件
REPORTING
• 步进电机简介 • 步进电机的数学模型 • 步进电机的计算方法 • 步进电机应用案例分析 • 步进电机的发展趋势与展望
2023
PART 01
步进电机简介
REPORTING
步进电机的定义与工作原理
步进电机是一种将电脉冲信号转换成角位移或线位移的开环控制电机。

步进电机的计算与选型---实用计算

步进电机的计算与选型---实用计算

步进电机的计算与选型---实用计算步进电机的计算与选型对于步进电动机的计算与选型,通常可以按照以下几个步骤:1) 根据机械系统结构,求得加在步进电动机转轴上的总转动惯量eq J ;2) 计算不同工况下加在步进电动机转轴上的等效负载转矩eq T ;3) 取其中最大的等效负载转矩,作为确定步进电动机最大静转矩的依据;4) 根据运行矩频特性、起动惯频特性等,对初选的步进电动机进行校核。

1. 步进电动机转轴上的总转动惯量eq J 的计算加在步进电动机转轴上的总转动惯量eq J 是进给伺服系统的主要参数之一,它对选择电动机具有重要意义。

eq J 主要包括电动机转子的转动惯量、减速装置与滚珠丝杠以及移动部件等折算到电动机转轴上的转动惯量等。

2. 步进电动机转轴上的等效负载转矩eq T 的计算步进电动机转轴所承受的负载转矩在不同的工况下是不同的。

通常考虑两种情况:一种情况是快速空载起动(工作负载为0),另一种情况是承受最大工作负载。

(1)快速空载起动时电动机转轴所承受的负载转矩eq1T eq1amax f 0T =T +T +T (4-8)式中amax T ――快速空载起动时折算到电动机转轴上的最大加速转矩,单位为N m ;f T ――移动部件运动时折算到电动机转轴上的摩擦转矩,单位N m ;0T ――滚珠丝杠预紧后折算到电动机转轴上的附加摩擦转矩,单位为N m 。

具体计算过程如下:1)快速空载起动时折算到电动机转轴上的最大加速转矩:amax eq 2T =J =60eq ma J n t πε (4-9)式中eq J ――步进电动机转轴上的总转动惯量,单位为2kg m ?;ε――电动机转轴的角加速度,单位为2/rad s ;m n ――电动机的转速,单位r/min ;a t ――电动机加速所用时间,单位为s ,一般在0.3~1s 之间选取。

2)移动部件运动时折算到电动机转轴上的摩擦转矩:f T =2F i πη摩hP (4-10)式中F 摩――导轨的摩擦力,单位为N ;h P ――滚珠丝杠导程,单位为m ;η――传动链总效率,一般取0.70.85η= ;i ――总的传动比,/s m i n n =,其中m n 为电动机转速,s n 为丝杠的转速。

步进电机的选型和计算方法

步进电机的选型和计算方法

1、步进电机的选用计算方法步进电机是一种将电脉冲转化为角位移的执行机构。

通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。

您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。

步进电机惯量低、定位精度高、无累积误差、控制简单等特点,广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。

选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。

而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。

在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。

一般地说最大静力矩Mjmax大的电机,负载力矩大。

选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。

在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。

但细分只能改变其分辨率,不改变其精度。

精度是由电机的固有特性所决定。

选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。

选择步进电机需要进行以下计算:(1)计算齿轮的减速比根据所要求脉冲当量,齿轮减速比i计算如下:i=(φ.S)/(360.Δ) (1-1) 式中φ -步进电机的步距角(o/脉冲) S -丝杆螺距(mm) Δ-(mm/脉冲)(2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。

Jt=J1+(1/i2)[(J2+Js)+W/g(S/2π)2] (1-2)式中Jt-折算至电机轴上的惯量(Kg.cm.s2)J1、J2 -齿轮惯量(Kg.cm.s2) Js -丝杆惯量(Kg.cm.s2) W-工作台重量(N)S-丝杆螺距(cm)(3)计算电机输出的总力矩MM=Ma+Mf+Mt (1-3)Ma=(Jm+Jt).n/T×1.02×10ˉ2 (1-4)式中Ma -电机启动加速力矩(N.m) Jm、Jt-电机自身惯量与负载惯量(Kg.cm.s2) n-电机所需达到的转速(r/min)T---电机升速时间(s)Mf=(u.W.s)/(2πηi)×10ˉ2 (1-5)Mf-导轨摩擦折算至电机的转矩(N.m) u-摩擦系数η-传递效率Mt=(Pt.s)/(2πηi)×10ˉ2 (1-6)Mt-切削力折算至电机力矩(N.m) Pt-最大切削力(N)(4)负载起动频率估算。

步进电机的选型和计算方法

步进电机的选型和计算方法

1、步进电机的选用计算方法步进电机是一种将电脉冲转化为角位移的执行机构。

通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。

您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。

步进电机惯量低、定位精度高、无累积误差、控制简单等特点,广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。

选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。

而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。

在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。

一般地说最大静力矩Mjmax大的电机,负载力矩大。

选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。

在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。

但细分只能改变其分辨率,不改变其精度。

精度是由电机的固有特性所决定。

选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。

选择步进电机需要进行以下计算:(1)计算齿轮的减速比根据所要求脉冲当量,齿轮减速比i计算如下:i=(φ.S)/(360.Δ) (1-1) 式中φ -步进电机的步距角(o/脉冲) S -丝杆螺距(mm) Δ-(mm/脉冲)(2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。

Jt=J1+(1/i2)[(J2+Js)+W/g(S/2π)2] (1-2)式中Jt-折算至电机轴上的惯量(J1、J2 -齿轮惯量( Js -丝杆惯量( W-工作台重量(N)S-丝杆螺距(cm)(3)计算电机输出的总力矩MM=Ma+Mf+Mt (1-3)Ma=(Jm+Jt).n/T×1.02×10ˉ2 (1-4)式中Ma -电机启动加速力矩(N.m) Jm、Jt-电机自身惯量与负载惯量( n-电机所需达到的转速(r/min)T---电机升速时间(s)Mf=( (1-5)Mf-导轨摩擦折算至电机的转矩(N.m) u-摩擦系数η-传递效率Mt=(Pt.s)/(2πηi)×10ˉ2 (1-6)Mt-切削力折算至电机力矩(N.m) Pt-最大切削力(N)(4)负载起动频率估算。

步进电机计算与选型

步进电机计算与选型

步进电机计算与选型第1章步进电机计算与选型步进电机是一种将电脉冲转化为角位移的执行机构。

通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(即步进角)。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。

随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。

我司主要机械设计中运动部件的动力源主要是步进电机。

因此着重介绍步进电机的计算与选型。

1.1步进电机基本术语保持转矩(HOLDINGTORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。

它是步进电机最重要的参数之一,通常V:电机转速(R/S);P:脉冲频率(Hz);θ:e 电机固有步距角;m:细分数(整步为1,半步为21.2电机计算与选型方法选择电机一般应遵循以下步骤:1.电机最大速度选择步进电机最大速度一般在600~1200 rpm。

交流伺服电机额定速度一般在3000 rpm,最大转速为5000rpm。

机械传动系统要根据此参数设计。

2. 电机定位精度的选择机械传动比确定后,可根据控制系统的定位精度选择步进电机的步距角及驱动器的细分等级。

一般选电机的一个步距角对应于系统定位精度的1/2 或更小。

注意:当细分等级大于1/4后,步距角的精度不能保证。

3. 电机力矩选择步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。

静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。

直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。

一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)A.转动惯量计算物体的转动惯量为:⎰⋅Jρ2r=dV式中:dV为体积元,ρ为物体密度,r为体积元与转轴的距离。

步进电机详细讲

步进电机详细讲
Ji —— 第i个转动部件的转动惯量 kg . m2
Vj —— 第j个移动部件的移动速度 m/min
Mj —— 第j个移动部件的质量 kg
计算惯量 步进电机选择步骤 图示的一级齿轮减速系统 V=nz2 . t 式中 V——工作台移动速度 m/min t——丝杆导程 m
i=Z1/Z2= t / 360
θ: 步进电机步距角, (o)/脉冲 t : 滚珠丝杆导程,mm δ: 脉冲当量,mm/脉冲
2)步进电机选择步骤
计算惯量
下一页
上一页
设传动系统如右图所示:
2)步进电机选择步骤
② 计算惯量
nm —— 步进电机速度 r/min ni —— 第i个转动部件的转速r/min
开环伺服系统
一、组成
伺服驱动单元、执行元件、传动机构
CNC
二、步进电机
将电脉冲转变成机械角位移的装置
电脉冲机械角位移
大小 输入脉冲个数 速度 输入脉冲频率 方向:绕组通电顺序
3.工作原理
三拍通电激磁,步距角α= = 3o
② 计算惯量
2)步进电机选择步骤
式中 Jz1 —— 齿轮1的转动惯量 kg . m2
Jz2 —— 齿轮2的转动惯量 kg . m2
Js —— 丝杆2的转动惯量 kg . m2
Mw —— 工作台的质量 kg
例题
某数控机床的进给伺服系统中,已知齿轮分度圆直径d1=64mm,d2=80mm,齿轮宽度B=20mm,丝杠直径d3=40mm,长度l=1500mm,工作台质量m=150kg。在某一时刻,齿轮转速n1=500r/min,n2=400r/min,工作台移动速度v=2m/min,试求此系统转换到电动机轴上的等效转动惯量。

步进电机的选型和计算方法

步进电机的选型和计算方法

1、步进电机的选用计算方法步进电机是一种将电脉冲转化为角位移的执行机构。

通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。

您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。

步进电机惯量低、定位精度高、无累积误差、控制简单等特点,广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。

选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。

而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。

在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。

一般地说最大静力矩Mjmax大的电机,负载力矩大。

选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。

在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。

但细分只能改变其分辨率,不改变其精度。

精度是由电机的固有特性所决定。

选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。

选择步进电机需要进行以下计算:(1)计算齿轮的减速比根据所要求脉冲当量,齿轮减速比i计算如下:i=(φ.S)/(360.Δ) (1-1) 式中φ -步进电机的步距角(o/脉冲) S -丝杆螺距(mm) Δ-(mm/脉冲)(2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。

Jt=J1+(1/i2)[(J2+Js)+W/g(S/2π)2] (1-2)式中Jt-折算至电机轴上的惯量(Kg.cm.s2)J1、J2 -齿轮惯量(Kg.cm.s2) Js -丝杆惯量(Kg.cm.s2) W-工作台重量(N)S-丝杆螺距(cm)(3)计算电机输出的总力矩MM=Ma+Mf+Mt (1-3)Ma=(Jm+Jt).n/T×1.02×10ˉ2 (1-4)式中Ma -电机启动加速力矩(N.m) Jm、Jt-电机自身惯量与负载惯量(Kg.cm.s2) n-电机所需达到的转速(r/min)T---电机升速时间(s)Mf=(u.W.s)/(2πηi)×10ˉ2 (1-5)Mf-导轨摩擦折算至电机的转矩(N.m) u-摩擦系数η-传递效率Mt=(Pt.s)/(2πηi)×10ˉ2 (1-6)Mt-切削力折算至电机力矩(N.m) Pt-最大切削力(N)(4)负载起动频率估算。

步进电机选择的详细计算过程

步进电机选择的详细计算过程

步进电机选择的详细计算过程步进电机是一种简单易用的电机,广泛应用于各种自动化设备中,如打印机、数控机床等。

在选择步进电机时,需要考虑到一系列参数和计算过程,下面详细介绍步进电机的选择计算过程。

一、确定所需的步进电机参数:1. 负载参数:确定需要驱动的负载的最大转矩(T_load_max)和转动惯量(J_load);2.运动参数:确定需要的转速(N)和加速度(α);3. 系统参数:确定驱动系统的滞后比(Kd)和系统的惯量(J_sys)。

二、计算步进电机的额定参数:1. 额定转矩(T_rated):根据负载的最大转矩(T_load_max)和滞后比(Kd),计算得到额定转矩:T_rated = T_load_max / Kd2. 额定电流(I_rated):根据额定转矩(T_rated)和驱动系统的惯性(J_sys),计算得到额定电流:I_rated = (T_rated * α) / (J_sys * N)3. 电枢电阻(R_phase):根据额定电流(I_rated)和驱动电压(V_drive),计算得到电枢电阻:R_phase = V_drive / I_rated4. 惯性比(K_sys):根据转动惯量(J_load)和驱动系统的惯性(J_sys),计算得到惯性比:K_sys = J_load / J_sys5. 山形系数(K_dimp):根据滞后比(Kd)和惯性比(K_sys),计算得到山形系数:K_dimp = sqrt(1 + K_sys * Kd) / sqrt((K_sys^2 + 1) * (Kd^2 + 1))6. 开环支持的最大转速(N_max_open):根据驱动电压(V_drive)、电枢电阻(R_phase)和步进电机的电感(L_phase),计算得到开环支持的最大转速:N_max_open = V_drive / (2π * R_phase * L_phase)三、选择适合的步进电机:1. 步进角(θ_step):根据所需的转速(N)和步进电机的步进角(θ_step),选择合适的步进电机型号。

步进电机的选型和计算方法.(DOC)

步进电机的选型和计算方法.(DOC)

1、步进电机的选用计算方法步进电机是一种将电脉冲转化为角位移的执行机构。

通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。

您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。

步进电机惯量低、定位精度高、无累积误差、控制简单等特点,广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。

选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。

而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。

在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。

一般地说最大静力矩Mjmax大的电机,负载力矩大。

选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。

在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。

但细分只能改变其分辨率,不改变其精度。

精度是由电机的固有特性所决定。

选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。

选择步进电机需要进行以下计算:(1)计算齿轮的减速比根据所要求脉冲当量,齿轮减速比i计算如下:i=(φ.S)/(360.Δ) (1-1) 式中φ -步进电机的步距角(o/脉冲) S -丝杆螺距(mm) Δ-(mm/脉冲)(2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。

Jt=J1+(1/i2)[(J2+Js)+W/g(S/2π)2] (1-2)式中Jt-折算至电机轴上的惯量(Kg.cm.s2)J1、J2 -齿轮惯量(Kg.cm.s2) Js -丝杆惯量(Kg.cm.s2) W-工作台重量(N)S-丝杆螺距(cm)(3)计算电机输出的总力矩MM=Ma+Mf+Mt (1-3)Ma=(Jm+Jt).n/T×1.02×10ˉ2 (1-4)式中Ma -电机启动加速力矩(N.m) Jm、Jt-电机自身惯量与负载惯量(Kg.cm.s2) n-电机所需达到的转速(r/min)T---电机升速时间(s)Mf=(u.W.s)/(2πηi)×10ˉ2 (1-5)Mf-导轨摩擦折算至电机的转矩(N.m) u-摩擦系数η-传递效率Mt=(Pt.s)/(2πηi)×10ˉ2 (1-6)Mt-切削力折算至电机力矩(N.m) Pt-最大切削力(N)(4)负载起动频率估算。

步进电机选型计算方法

步进电机选型计算方法

步进电机选型的计算方法步进电机选型表中有部分参数需要计算来得到。

但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。

◎驱动模式的选择驱动模式是指如何将传送装置的运动转换为步进电机的旋转。

下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。

●必要脉冲数的计算必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。

必要脉冲数按下面公式计算:必要脉冲数=物体移动的距离距离电机旋转一周移动的距离×360 o步进角●驱动脉冲速度的计算驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。

驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。

(1)自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。

自启动运行方式通常在转速较低的时候使用。

同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。

自启动运行方式的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]=必要脉冲数[脉冲]定位时间[秒](2)加/减速运行方式加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。

其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。

加/减速时间需要根据传送距离、速度和定位时间来计算。

在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。

加/减速运行方式下的驱动脉冲速度计算方法如下:必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒]驱动脉冲速度[Hz]=定位时间[秒]-加/减速时间[秒]◎电机力矩的简单计算示例必要的电机力矩=(负载力矩+加/减速力矩)×安全系数●负载力矩的计算(T L)负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。

步进电机的选型及计算方法

步进电机的选型及计算方法

步进电机选型的计算方法
我们也可以通过这种方法得到负载力矩:用弹簧秤拉动滑轮慢慢转动,此时弹簧秤会有一个读数,这个数值就是所用力的大小(FB),然后乘以滑轮的半径就可以得到负载力矩(如下式)。

通常这种方法得到数值要比计算得到得结果要精确。

TL=FBD
[kgf·cm]
=转子惯性惯量[kgm2]+负载惯性惯量[kgm2]
重力加速度[cm/sec2]
×
π×步进角[o]×驱动脉冲速度2[Hz]
180×3.6/步进角[o]
※加/减速运行方式
加/减速力矩[kgf·cm]
=转子惯性惯量[kgm2]+负载惯性惯量[kgm2]
重力加速度[cm/sec2]
×
π×步进角[o]
180 o
×运行脉冲速度[Hz]-启动脉冲速度[Hz]
加/减速时间[sec]。

步进电机的计算与选型---实用计算

步进电机的计算与选型---实用计算

步进电机的计算与选型对于步进电动机的计算与选型,通常可以按照以下几个步骤:1) 根据机械系统结构,求得加在步进电动机转轴上的总转动惯量eq J ;2) 计算不同工况下加在步进电动机转轴上的等效负载转矩eq T ;3) 取其中最大的等效负载转矩,作为确定步进电动机最大静转矩的依据;4) 根据运行矩频特性、起动惯频特性等,对初选的步进电动机进行校核。

1. 步进电动机转轴上的总转动惯量eq J 的计算加在步进电动机转轴上的总转动惯量eq J 是进给伺服系统的主要参数之一,它对选择电动机具有重要意义。

eq J 主要包括电动机转子的转动惯量、减速装置与滚珠丝杠以及移动部件等折算到电动机转轴上的转动惯量等。

2. 步进电动机转轴上的等效负载转矩eq T 的计算步进电动机转轴所承受的负载转矩在不同的工况下是不同的。

通常考虑两种情况:一种情况是快速空载起动(工作负载为0),另一种情况是承受最大工作负载。

(1)快速空载起动时电动机转轴所承受的负载转矩eq1Teq1amax f 0T =T +T +T (4-8)式中 amax T ——快速空载起动时折算到电动机转轴上的最大加速转矩,单位为N ·m ;f T ——移动部件运动时折算到电动机转轴上的摩擦转矩,单位N ·m ;0T ——滚珠丝杠预紧后折算到电动机转轴上的附加摩擦转矩,单位为N ·m 。

具体计算过程如下:1)快速空载起动时折算到电动机转轴上的最大加速转矩:amax eq 2T =J =60eq ma J n t πε (4-9)式中 eq J ——步进电动机转轴上的总转动惯量,单位为2kg m ⋅;ε——电动机转轴的角加速度,单位为2/rad s ;m n ——电动机的转速,单位r/min ;a t ——电动机加速所用时间,单位为s ,一般在0.3~1s 之间选取。

2)移动部件运动时折算到电动机转轴上的摩擦转矩:f T =2F i πη摩hP (4-10)式中 F 摩——导轨的摩擦力,单位为N ;h P ——滚珠丝杠导程,单位为m ;η——传动链总效率,一般取0.70.85η=;i ——总的传动比,/s m i n n =,其中m n 为电动机转速,s n 为丝杠的转速。

步进电机及驱动器参数计算与选型

步进电机及驱动器参数计算与选型

7. 步进电机的特点 ① 一般步进电机的精度为步距角的3-5%,且不累积; ② 步进电机外表允许的最高温度取决于不同电机磁性材料的退磁点; ③ 步进电机的力矩会随转速的升高而下降(U=E+L(di/dt)+I*R)
矩频特性曲线
④ 空载启动频率:即步进电机在空载情况下能够正常启动的脉
冲频率,如果脉冲频率高于该值,电机不能正常启动,可能 发生丢步或堵转。 步进电机的起步速度一般在10~100RPM,伺服电机的起步 速度一般在100~300RPM。根据电机大小和负载情况而定, 大电机一般对应较低的起步速度。 ⑤ 低频振动特性:步进电动机以连续的步距状态边移动边重复
步进电机及驱动器的 参数计算与选用
主要内容
一、步进电动机简介
二、驱动器简介
三、电机选型计算方法 四、计算例题
五、雷赛公司步进驱动器的命名方法
六、雷赛公司驱动器产品线介绍 七、电机接线
八、评判步进系统好坏的依据
九、使用过程中常见问题及原因分析 十、步进驱动系统的常见问题 (FAQ)
十一、步进电动机与交流伺服电动机的性能比较
驱动器细分数:m C /(200 0.05 / i) 3.14 故,取4细分就很合适了。
实际脉冲当量: C /(200 m / i) 0.04mm
4. 计算电机力矩,选择电机型号
第2级主动轮上的力矩:T2=FΦ 3 / 2
第1级主动轮上,即电机轴上的力矩:T1=T2 i =F Φ3 / 2 i = 0.155 Nm
三、电机选型计算方法
1. 电机最大速度选择
2. 电机定位精度的选择 3. 电机力矩选择
三、电机选型计算方法
选择电机一般应遵循以下步骤:

步进电机的计算与选型---实用计算

步进电机的计算与选型---实用计算

步进电机的计算与选型对于步进电动机的计算与选型,通常可以按照以下几个步骤:1) 根据机械系统结构,求得加在步进电动机转轴上的总转动惯量eq J ;2) 计算不同工况下加在步进电动机转轴上的等效负载转矩eq T ;3) 取其中最大的等效负载转矩,作为确定步进电动机最大静转矩的依据;4) 根据运行矩频特性、起动惯频特性等,对初选的步进电动机进行校核。

1. 步进电动机转轴上的总转动惯量eq J 的计算加在步进电动机转轴上的总转动惯量eq J 是进给伺服系统的主要参数之一,它对选择电动机具有重要意义。

eq J 主要包括电动机转子的转动惯量、减速装置与滚珠丝杠以及移动部件等折算到电动机转轴上的转动惯量等。

2. 步进电动机转轴上的等效负载转矩eq T 的计算步进电动机转轴所承受的负载转矩在不同的工况下是不同的。

通常考虑两种情况:一种情况是快速空载起动(工作负载为0),另一种情况是承受最大工作负载。

(1)快速空载起动时电动机转轴所承受的负载转矩eq1Teq1amax f 0T =T +T +T (4-8)式中 amax T ——快速空载起动时折算到电动机转轴上的最大加速转矩,单位为N ·m ;f T ——移动部件运动时折算到电动机转轴上的摩擦转矩,单位N ·m ;0T ——滚珠丝杠预紧后折算到电动机转轴上的附加摩擦转矩,单位为N ·m 。

具体计算过程如下:1)快速空载起动时折算到电动机转轴上的最大加速转矩:amax eq 2T =J =60eq ma J n t πε (4-9)式中 eq J ——步进电动机转轴上的总转动惯量,单位为2kg m ⋅;ε——电动机转轴的角加速度,单位为2/rad s ;m n ——电动机的转速,单位r/min ;a t ——电动机加速所用时间,单位为s ,一般在0.3~1s 之间选取。

2)移动部件运动时折算到电动机转轴上的摩擦转矩:f T =2F i πη摩h P (4-10)式中 F 摩——导轨的摩擦力,单位为N ;h P ——滚珠丝杠导程,单位为m ;η——传动链总效率,一般取0.70.85η=;i ——总的传动比,/s m i n n =,其中m n 为电动机转速,s n 为丝杠的转速。

步进电机选择的详细计算过程知识分享

步进电机选择的详细计算过程知识分享

步进电机选择的详细计算过程知识分享步进电机选择的详细计算过程1,如何正确选择伺服电机和步进电机?主要视具体应⽤情况⽽定,简单地说要确定:负载的性质(如⽔平还是垂直负载等),转矩、惯量、转速、精度、加减速等要求,上位控制要求(如对端⼝界⾯和通讯⽅⾯的要求),主要控制⽅式是位置、转矩还是速度⽅式。

供电电源是直流还是交流电源,或电池供电,电压范围。

据此以确定电机和配⽤驱动器或控制器的型号。

2,选择步进电机还是伺服电机系统?其实,选择什么样的电机应根据具体应⽤情况⽽定,各有其特点。

请见下表,⾃然明⽩。

步进电机系统伺服电机系统⼒矩范围中⼩⼒矩(⼀般在20Nm以下)⼩中⼤,全范围速度范围低(⼀般在2000RPM以下,⼤⼒矩电机⼩于1000RPM)⾼(可达5000RPM),直流伺服电机更可达1~2万转/分控制⽅式主要是位置控制多样化智能化的控制⽅式,位置/转速/转矩⽅式平滑性低速时有振动(但⽤细分型驱动器则可明显改善)好,运⾏平滑精度⼀般较低,细分型驱动时较⾼⾼(具体要看反馈装置的分辨率)矩频特性⾼速时,⼒矩下降快⼒矩特性好,特性较硬过载特性过载时会失步可3~10倍过载(短时)反馈⽅式⼤多数为开环控制,也可接编码器,防⽌失步闭环⽅式,编码器反馈编码器类型 - 光电型旋转编码器(增量型/绝对值型),旋转变压器型响应速度⼀般快耐振动好⼀般(旋转变压器型可耐振动)温升运⾏温度⾼⼀般维护性基本可以免维护较好价格低⾼3,如何配⽤步进电机驱动器?根据电机的电流,配⽤⼤于或等于此电流的驱动器。

如果需要低振动或⾼精度时,可配⽤细分型驱动器。

对于⼤转矩电机,尽可能⽤⾼电压型驱动器,以获得良好的⾼速性能。

4,2相和5相步进电机有何区别,如何选择?2相电机成本低,但在低速时的震动较⼤,⾼速时的⼒矩下降快。

5相电机则振动较⼩,⾼速性能好,⽐2相电机的速度⾼30~50%,可在部分场合取代伺服电机。

5,何时选⽤直流伺服系统,它和交流伺服有何区别?直流伺服电机分为有刷和⽆刷电机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

步进电机选择的详细计算过程1,如何正确选择伺服电机和步进电机?主要视具体应用情况而定,简单地说要确定:负载的性质(如水平还是垂直负载等),转矩、惯量、转速、精度、加减速等要求,上位控制要求(如对端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。

供电电源是直流还是交流电源,或电池供电,电压范围。

据此以确定电机和配用驱动器或控制器的型号。

2,选择步进电机还是伺服电机系统?其实,选择什么样的电机应根据具体应用情况而定,各有其特点。

请见下表,自然明白。

步进电机系统伺服电机系统力矩范围中小力矩(一般在20Nm以下)小中大,全范围速度范围低(一般在2000RPM以下,大力矩电机小于1000RPM)高(可达5000RPM),直流伺服电机更可达1~2万转/分控制方式主要是位置控制多样化智能化的控制方式,位置/转速/转矩方式平滑性低速时有振动(但用细分型驱动器则可明显改善)好,运行平滑精度一般较低,细分型驱动时较高高(具体要看反馈装置的分辨率)矩频特性高速时,力矩下降快力矩特性好,特性较硬过载特性过载时会失步可3~10倍过载(短时)反馈方式大多数为开环控制,也可接编码器,防止失步闭环方式,编码器反馈编码器类型 - 光电型旋转编码器(增量型/绝对值型),旋转变压器型响应速度一般快耐振动好一般(旋转变压器型可耐振动)温升运行温度高一般维护性基本可以免维护较好价格低高3,如何配用步进电机驱动器?根据电机的电流,配用大于或等于此电流的驱动器。

如果需要低振动或高精度时,可配用细分型驱动器。

对于大转矩电机,尽可能用高电压型驱动器,以获得良好的高速性能。

4,2相和5相步进电机有何区别,如何选择?2相电机成本低,但在低速时的震动较大,高速时的力矩下降快。

5相电机则振动较小,高速性能好,比2相电机的速度高30~50%,可在部分场合取代伺服电机。

5,何时选用直流伺服系统,它和交流伺服有何区别?直流伺服电机分为有刷和无刷电机。

有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。

因此它可以用于对成本敏感的普通工业和民用场合。

无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。

控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。

电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。

交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。

大惯量,最高转动速度低,且随着功率增大而快速降低。

因而适合做低速平稳运行的应用。

6,使用电机时要注意的问题?上电运行前要作如下检查:1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/-极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大);2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线);3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。

4)一定要搞清楚接地方法,还是采用浮空不接。

5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。

7,步进电机启动运行时,有时动一下就不动了或原地来回动,运行时有时还会失步,是什么问题?一般要考虑以下方面作检查:1)电机力矩是否足够大,能否带动负载,因此我们一般推荐用户选型时要选用力矩比实际需要大50%~100%的电机,因为步进电机不能过负载运行,哪怕是瞬间,都会造成失步,严重时停转或不规则原地反复动。

2)上位控制器来的输入走步脉冲的电流是否够大(一般要>10mA),以使光耦稳定导通,输入的频率是否过高,导致接收不到,如果上位控制器的输出电路是CMOS电路,则也要选用CMOS输入型的驱动器。

3)启动频率是否太高,在启动程序上是否设置了加速过程,最好从电机规定的启动频率内开始加速到设定频率,哪怕加速时间很短,否则可能就不稳定,甚至处于惰态。

4)电机未固定好时,有时会出现此状况,则属于正常。

因为,实际上此时造成了电机的强烈共振而导致进入失步状态。

电机必须固定好。

5)对于5相电机来说,相位接错,电机也不能工作。

8,我想通过通讯方式直接控制伺服电机,可以吗?可以的,也比较方便,只是速度问题,用于对响应速度要求不太高的应用。

如果要求快速的响应控制参数,最好用伺服运动控制卡,一般它上面有DSP和高速度的逻辑处理电路,以实现高速高精度的运动控制。

如S加速、多轴插补等。

9,用开关电源给步进和直流电机系统供电好不好?一般最好不要,特别是大力矩电机,除非选用比需要的功率大一倍以上的开关电源。

因为,电机工作时是大电感型负载,会对电源端形成瞬间的高压。

而开关电源的过载性能不好,会保护关断,且其精密的稳压性能又不需要,有时可能造成开关电源和驱动器的损坏。

可以用常规的环形或R型变压器变压的直流电源。

10,我想用±10V或4~20mA的直流电压来控制步进电机,可以吗?可以,但需要另外的转换模块。

11,我有一个的伺服电机带编码器反馈,可否用只带测速机口的伺服驱动器控制?可以,需要配一个编码器转测速机信号模块。

12,伺服电机的码盘部分可以拆开吗?禁止拆开,因为码盘内的石英片很容易破裂,且进入灰尘后,寿命和精度都将无法保证,需要专业人员检修。

13,步进和伺服电机可以拆开检修或改装吗?不要,最好让厂家去做,拆开后没有专业设备很难安装回原样,电机的转定子间的间隙无法保证。

磁钢材料的性能被破坏,甚至造成失磁,电机力矩大大下降。

14,几台伺服电机可以作同步运行吗?我们的产品是可以的。

15,伺服控制器能够感知外部负载的变化吗?我们的产品是可以的,如遇到设定阻力时停止、返回或保持一定的推力跟进。

16,可以将国产的驱动器或电机和国外优质的电机或驱动器配用吗?原则上是可以的,但要搞清楚电机的技术参数后才能配用,否则会大大降低应有的效果,甚至影响长期运行和寿命。

最好向供应商咨询后再决定。

17,使用大于额定电压值的直流电源电压驱动电机安全吗?正常来说这不是问题,只要电机在所设定的速度和电流极限值内运行。

因为电机速度与电机线电压成正比,因此选择某种电源电压不会引起过速,但可能发生驱动器等故障。

此外, 必须保证电机符合驱动器的最小电感系数要求,而且还要确保所设定的电流极限值小于或等于电机的额定电流。

事实上,如果你能在你设计的装置中让电机跑地比较慢的话 (低于额定电压),这是很好的。

以较低的电压 (因此比较低的速度) 运行会使得电刷运转反弹较少,而且电刷/换向器磨损较小,比较低的电流消耗和比较长的电机寿命。

另一方面,如果电机大小的限制和性能的要求需要额外的转矩及速度,过度驱动电机也是可以的,但会牺牲产品的使用寿命。

18,我如何为我的应用选择适当的供电电源?推荐选择电源电压值比最大所需的电压高10%-50%。

此百分比因Kt, Ke,以及系统内的电压降而不同。

驱动器的电流值应该足够传送应用所需的能量。

记住驱动器的输出电压值与供电电压不同, 因此驱动器输出电流也与输入电流不相同。

为确定合适的供电电流,需要计算此应用所有的功率需求,再增加5%。

按I = P/V公式计算即可得到所需电流值。

19,对于伺服驱动器我可以选择那种工作方式?请见下表(以下模式并不全部存在于所有型号的驱动器中)开环模式输入命令电压控制驱动器的输出负载率。

此模式用于无刷电机驱动器,和有刷电机驱动器的电压模式相同。

电压模式输入命令电压控制驱动器的输出电压。

此模式用于有刷电机驱动器,和无刷电机驱动器的开环模式相同。

电流模式(力矩模式) 输入命令电压控制驱动器的输出电流(力矩)。

驱动器调整负载率以保持命令电流值。

如果驱动器可以速度或位置环工作,一般都含有此模式。

IR补偿模式输入命令控制电机速度。

IR补偿模式可用于控制无速度反馈装置电机的速度。

驱动器会调整负载率来补偿输出电流的变动。

当命令响应为线性时,在力矩扰动情况下,此模式的精度就比不上闭环速度模式了。

Hall速度模式输入命令电压控制电机速度。

此模式利用电机上hall传感器的频率来形成速度闭环。

由于hall传感器的低分辨率,此模式一般不用于低速运动应用。

编码器速度模式输入命令电压控制电机速度。

此模式利用电机上编码器脉冲的频率来形成速度闭环。

由于编码器的高分辨率,此模式可用于各种速度的平滑运动控制。

测速机模式输入命令电压控制电机速度。

此模式利用电机上模拟测速机来形成速度闭环。

由于直流测速机的电压为模拟连续性,此模式适合很高精度的速度控制。

当然,在低速情况下,它也容易受到干扰。

模拟位置环模式(ANP 模式) 输入命令电压控制电机的转动位置。

这其实是一种在模拟装置中提供位置反馈的变化的速度模式(如可调电位器、变压器等)。

在此模式下,电机速度正比于位置误差。

且具有更快速的响应和更小的稳态误差。

20,驱动器和系统如何接地?a. 如果在交流电源和驱动器直流总线(如变压器)之间没有隔离的话,不要将直流总线的非隔离端口或非隔离信号的地接大地,这可能会导致设备损坏和人员伤害。

因为交流的公共电压并不是对大地的,在直流总线地和大地之间可能会有很高的电压。

b. 在多数伺服系统中,所有的公共地和大地在信号端是接在一起的。

多种连接大地方式产生的地回路很容易受噪音影响而在不同的参考点上产生电流。

c. 为了保持命令参考电压的恒定,要将驱动器的信号地接到控制器的信号地。

它也会接到外部电源的地,这将影响到控制器和驱动器的工作(如:编码器的5V电源)。

d. 屏蔽层接地是比较困难的,有几种方法。

正确的屏蔽接地处是在其电路内部的参考电位点上。

这个点取决于噪声源和接收是否同时接地,或者浮空。

要确保屏蔽层在同一个点接地使得地电流不会流过屏蔽层。

21,减速器为什么不能和电机正好相配在标准转矩点?如果考虑到电机产生的经过减速器的最大连续转矩,许多减速比会远远超过减速器的转矩等级。

如果我们要设计每个减速器来匹配满转矩,减速器的内部齿轮会有太多组合(体积较大、材料多)。

这样会使得产品价格高,且违反了产品的“高性能、小体积”原则。

22,我如何选择使用行星减速器还是正齿轮减速器?行星减速器一般用于在有限的空间里需要较高的转矩时,即小体积大转矩,而且它的可靠性和寿命都比正齿轮减速器要好。

正齿轮减速器则用于较低的电流消耗,低噪音和高效率低成本应用。

部分伺服驱动器故障检查方法参考:现象可能原因纠正方法示波器检查驱动器的电流监控输出端时,发现它全为噪声,无法读出电流监控输出端没有与交流电源相隔离(变压器)可以用直流电压表检测观察电机在一个方向上比另一个方向跑得快无刷电机的相位搞错检测或查出正确的相位在不用于测试时,测试/偏差开关打在测试位置将测试/偏差开关打在偏差位置偏差电位器位置不正确重新设定电机失速速度反馈的极性搞错可以尝试以下方法:1. 如果可能,将位置反馈极性开关打到另一位置。

相关文档
最新文档