高中必修第三册《2 闭合电路的欧姆定律》优质课教案教学设计
人教版{)高中物理必修3第12章第2节闭合电路的欧姆定律 教案
闭合电路的欧姆定律教学设计电源、用电器连成闭合电路,那么电路中的电流大小与哪些因素有关?为什么多接几个小灯泡之后,会比之前要暗呢?今天我们就学习这方面的知识学生观察图片并思考为什么多接几个小灯泡之后,会比之前要暗呢?引起学生学习的兴趣讲授新课一、认识闭合电路闭合电路1.闭合电路:由导线、电源和用电器连成的电路叫作闭合电路。
2.外电路:用电器和导线组成的电路是外电路。
3.内电路:电源内部是内电路。
二、电动势思考:你能说出闭合电路中外电路和内电路中电流的方向吗?在外电路中,电流方向由正极流向负极;在内电路中,电流方向为负极流向正极。
观察“闭合电路”图片,说出闭合电路、内电路和外电路学生思考回答锻炼学生的观察能力和语言表达能力温故而知新为下面的问题做铺垫在金属导体中,能够自由移动的电荷是自由电子。
但电流的方向为正电荷移动的方向,下面按正电荷的移动进行讨论。
思考与讨论1:在外电路中,正电荷由电源正极流向负极。
如果电路中只存在静电力的作用,会发生什么情况?参考答案:电源正极的正电荷与负极的负电荷很快就会中和,电路中不能维持稳定的电流。
思考与讨论2:为什么电源能让外电路中能维持稳定的电流?这是因为电源能把负极的正电荷经过电源内部不断地搬运至正极。
所以能让外电路中能维持稳定的电流。
思考与讨论3:电源的这种能力是怎么来的呢?在电源内部,存在着由正极指向负极的电场。
在这个电场中,静电力阻碍正电荷向正极移动。
因此,在电源内部要使正电荷向正极移动,就一定要有一种与静电力方向相反的力作用于电荷,我们把这种力叫作非静电力。
即电源把正电荷从负极搬运到正极的过程中,非静电力做功,电荷的电势能增加。
1.从能量转化的角度看,电源是通过非静电力做功把其他形式的能转化为电势能的装置。
学生阅读课文并回答问题锻炼学生的自主学习的能力和理解问题解决问题的能力在化学电池中,非静电力是化学作用,它使化学能转化为电势能;在发电机中,非静电力是电磁作用,它使机械能转化为电势能思考与讨论:想一想,不同电源把其他形式的能转化为电势能的本领相同吗?参考答案:不同电源把其他形式的能转化为电势能的本领一般不同,电动势就是反映电源把其他形式的能转化为电势能本领强弱的物理量。
高中物理《闭合电路欧姆定律》教案
高中物理《闭合电路欧姆定律》教案一、教学目标1.知识与技能–了解欧姆定律的基本概念和公式–掌握计算电流、电阻和电压关系的方法–理解闭合电路中电流、电阻、电压的作用和相互关系2.过程与方法–通过实验观察和数据分析,帮助学生理解欧姆定律–引导学生进行思维导图和概念表的绘制,加深对欧姆定律的理解–进行小组合作和讨论,培养学生合作与交流的能力3.情感、态度和价值观–培养学生的实验探究能力和科学思维–引导学生正确对待电路中的安全问题–培养学生对物理学科的兴趣和积极参与的态度二、教学重难点•教学重点:欧姆定律的基本概念和公式,计算电流、电阻和电压关系的方法•教学难点:欧姆定律与电路实际问题的应用三、教学过程1. 导入(5分钟)•使用一个简单的问题来引导学生思考:为什么我们打开水龙头,水就会流出来?•引导学生讨论,从中引出电流的概念以及与水流的类比。
2. 欧姆定律的引入(10分钟)•通过实验演示,展示欧姆定律的实验验证过程,引出欧姆定律的概念。
•让学生观察演示实验并记录相关数据,进行电压、电流和电阻的初步计算。
3. 欧姆定律的讲解与推导(15分钟)•结合实验数据和观察结果,讲解欧姆定律的定义和公式。
•通过推导欧姆定律的数学表达方式,让学生理解电流、电阻和电压之间的关系。
4. 欧姆定律的应用(15分钟)•分发练习题,让学生运用欧姆定律解决相关问题。
•引导学生分析不同电路中电流、电阻、电压的变化情况,加深对欧姆定律的理解。
5. 实例分析与讨论(15分钟)•列举一些生活中常见的电路问题,并引导学生分析和解决。
•小组合作讨论,让学生共同探讨电路问题背后的物理原理。
6. 总结归纳(10分钟)•引导学生进行思维导图和概念表的绘制,总结和归纳欧姆定律的重点内容。
•鼓励学生提出问题,解答学生的疑惑。
7. 课堂作业(5分钟)•布置相关练习题,巩固学生对欧姆定律的掌握程度。
•提示学生注意实验安全问题,并鼓励他们积极参与物理实验。
《闭合电路的欧姆定律》教学设计
《闭合电路的欧姆定律》教学设计一、教学目标:1.了解闭合电路的基本概念和组成元素;2.掌握欧姆定律的基本公式和应用方法;3.能够计算电路中的电流、电压和电阻的关系;4.能够通过实验验证欧姆定律的正确性。
二、教学重点:1.闭合电路的概念和组成元素;2.欧姆定律的基本理论和公式;3.电流、电压和电阻的关系。
三、教学难点:1.欧姆定律的应用方法;2.通过实验验证欧姆定律的正确性。
四、教学准备:1.实验器材:电流表、电压表、电阻器、电池等;2.实验辅助工具:示波器、万用表等;3.实验环境:安全、整洁的实验室环境;4.实验材料:闭合电路实验的相关资料和教学资料。
五、教学过程:1.导入:通过展示闭合电路的示意图,引发学生对电路的好奇和兴趣,并向学生介绍闭合电路的基本概念和组成元素。
2.讲解欧姆定律:介绍欧姆定律的概念和公式,即电流、电压和电阻之间的关系:U=IR,其中U表示电压,I表示电流,R表示电阻。
3.实验演示:教师向学生演示闭合电路的搭建过程,并利用电流表和电压表测量电流和电压的数值,验证欧姆定律的正确性。
4.实验操作:让学生自行操作电路搭建和测量电流、电压的实验,并记录实验数据。
5.数据分析:让学生计算实验数据,验证欧姆定律的正确性,并进行讨论和分析。
6.拓展应用:让学生思考闭合电路中不同元素发生变化时,对电流、电压和电阻之间的影响,并进行讨论和总结。
7.实验报告:要求学生根据实验数据和分析结果,撰写实验报告,包括实验目的、实验步骤、实验数据、数据分析和结论等内容。
六、教学反思:1.欧姆定律的基本理论和公式,对学生来说是一个相对抽象和难以理解的概念,故需要通过实验操作和数据分析等方式深化学生的理解。
2.实验环节是教学中的重要环节,能够帮助学生通过实践操作,增强对理论知识的理解和应用能力。
3.在教学过程中,要注意激发学生的学习兴趣,采用生动有趣的教学方式,提高学生的学习效果和学习兴趣。
高中物理《闭合电路的欧姆定律》教案设计
高中物理《闭合电路的欧姆定律》教案设计一、教学目标1. 让学生理解闭合电路的概念,了解欧姆定律的定义和意义。
2. 让学生掌握欧姆定律的数学表达式,并能进行相关的计算。
3. 培养学生运用物理知识解决实际问题的能力。
二、教学内容1. 闭合电路的概念介绍。
2. 欧姆定律的定义和数学表达式。
3. 欧姆定律的应用和计算。
三、教学重点与难点1. 重点:欧姆定律的数学表达式和应用。
2. 难点:闭合电路的概念和欧姆定律的实际应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察和实验发现欧姆定律。
2. 使用多媒体教学辅助工具,展示实验过程和结果,帮助学生形象理解。
3. 组织学生进行小组讨论和问题解答,培养学生的合作和思考能力。
五、教学过程1. 引入:通过电路实验,引导学生观察电流和电压的关系,激发学生对闭合电路和欧姆定律的兴趣。
2. 讲解:介绍闭合电路的概念,讲解欧姆定律的定义和数学表达式,解释其物理意义。
3. 实践:学生进行电路实验,测量电流和电压值,验证欧姆定律。
4. 应用:引导学生运用欧姆定律解决实际问题,如电流的计算、电阻的测量等。
5. 总结:对本节课的内容进行总结,强调闭合电路和欧姆定律的重要性和应用。
六、教学评估1. 课堂问答:通过提问方式检查学生对闭合电路概念和欧姆定律的理解程度。
2. 实验报告:评估学生在电路实验中的操作技能和对实验结果的分析能力。
3. 课后作业:布置相关计算题和应用题,检验学生对欧姆定律的应用能力。
七、教学拓展1. 介绍欧姆定律在现代科技领域中的应用,如电路设计、手机电池等。
2. 探讨欧姆定律的局限性,如在非线性电路中的适用性问题。
八、教学资源1. 多媒体课件:展示实验过程、电路图和计算实例。
2. 实验器材:电路实验所需的器材,如电阻、电压表、电流表等。
3. 参考资料:提供相关学术论文或书籍,供有兴趣深入了解的学生参考。
九、教学建议1. 鼓励学生在课堂上积极提问,培养学生的质疑精神。
高中物理《闭合电路的欧姆定律》优质课教案、教学设计
《闭合电路的欧姆定律》教学设计(第一课时)一、实验引入,激发兴趣实验:三节电池供电,两个完全相同的灯泡组成两个支路并联,电源对每一个灯泡供电亮度一样,同时对两个灯泡供电两个灯泡都变暗。
先介绍实验器材,电路组成和连接方式,让学生猜想:电源对每一个灯泡单独供电亮度较大,同时对两个灯泡供电两个灯泡的亮度变大还是变小?提问:为什么亮度越变小呢?(接着引入今天的话题)要想解决这个问题需要学习今天的内容:闭合电路欧姆定律。
设计意图:实验演示,为下面的学习埋下伏笔,引发学生的思考,同时也激发了学生学习的兴趣点。
二、合作探究、精讲点拨(一)闭合电路欧姆定律1、提出问题:什么是闭合电路呢?首先我们认识一下什么是闭合电路,闭合电路由内电路,外电路,组成。
在这里我们要知道七个概念:电源,内电路和外电路,内电阻和外电阻,内电压和外电压。
2、建立模型Ir问题1:在闭合回路中,电源在电路中起何作用?描述电源性能有哪些重要参数?这些参数有何物理意义? E U 电源提供电压可以产生持续不断的电流,描述电源的参数有电动势和内阻,电动势是描述电源做功本领的物理量,内阻是电源内部电流流过电池内部所受到的阻力,问题2:如图,流过电阻R 和电阻r 的电流大小有何关系? E r R I R 与r 是怎样联接的?电流大小相等,串联关系。
问题3:在闭合电路中,电势如何变化呢?通过电势变化过程分析和动画让学生体会在内外电路中电势的变化情况,并通过课本上的物理模型让学生直观的看到变化情况:在外电路中,沿电流方向电势降低,在内电路中,一方面,存在内阻,沿电流方向电势也降低;另一方面,沿电流方向存在电势“跃升”。
而且,它们还满足E=U 外+U 内3、解决问题过渡引入:为什么会有这样的关系呢?我们从理论上再分析一下。
E r R I看下面的电路:如图,外电路有一电阻R,电源为一节干电池,内阻为r,电动势为E。
问题1、若闭合开关S 后,电路电流为I,则在t 时间内,在电源内部有多少正电荷从负极移到正极?有多少化学能转化为电能?这种能量的转化是通过什么力做功实现的?正电荷的数目为q=It,由W 非=Eq 得W 非=EIt,通过非静电力做功把化学能转化为电能E 电= EIt问题2、在电源内部由于电阻r 的存在,接通电路电流为I,在t 时间内消耗了多少电能?转化成什么能量?因为电源内部有电阻,内电阻消耗电能转化为内能,t 时间内消耗电能转化为的内能为:Q 内= I2rt问题3、接通电路电流为I,在外电路有电阻R 存在,t 时间内它消耗了多少电能?转化成什么能量?外电阻消耗电能,电能将转化为内能,即:Q 外=I2Rt问题4、E 电,Q 外和Q 内三者之间有何关系?由能量守恒思想得E 电=Q 外+Q 内4、总结规律推导:E电=Q外+Q内①E It=I2R t+I2rt②E I=I2R+I2r③E=IR+I r④I=⑤4 式反应了闭合电路沿电流方向电势变化的什么规律?外电路电势降低,内电路电势“升中有降”电动势等于内外电路电势降落之和5 式反应了闭合电路中的什么规律?闭合电路欧姆定律:①公式表述:I=②语言表述:闭合电路中的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比,这个结论叫做闭合电路的欧姆定律。
优质课《闭合电路欧姆定律》教学设计
闭合电路欧姆定律优质课教学设计一、教材分析课标分析:知道电源的电动势和内阻,理解闭合电路的欧姆定律教材地位:闭合电路欧姆定律是恒定电流一章的核心内容,具有承前启后的作用。
既是本章知识的高度总结,又是本章拓展的重要基础;通过学习,既能使学生从部分电路的认知上升到全电路规律的掌握,又能从静态电路的计算提高到对含电源电路的动态分析及推演。
同时,闭合电路欧姆定律能够充分体现功和能的概念在物理学中的重要性,是功能关系学习的好素材。
二、学情分析学生通过前面的学习,理解了静电力做功与电荷量、电势差的关系、了解了静电力做功与电能转化的知识,认识了如何从非静电力做功的角度描述电动势,并处理了部分电路欧姆定律的相关电路问题,已经具备了通过功能关系分析建立闭合电路欧姆定律,并应用闭合电路欧姆定律分析问题的知识与技能。
三、教学目标(一)知识与技能1、通过探究推导出闭合电路欧姆定律及其公式,知道电源的电动势等于内、外电路上电势降落之和。
2、理解路端电压与负载的关系,知道这种关系的公式表达,并能用来分析有关问题。
3、掌握电源断路和短路两种特殊情况下的特点。
知道电源的电动势等于电源没有接入电路时两极间的电压。
4、了解路端电压与电流的U-I图像,认识E和r对U-I图像的影响。
5、熟练应用闭合电路欧姆定律进行相关的电路分析和计算(二)过程与方法1、经历闭合电路欧姆定律及其公式的推导过程,体验能量转化和守恒定律在电路中的具体应用,培养学生推理能力。
2、通过路端电压与负载的关系实验,培养学生利用实验探究物理规律的科学思路和方法。
3、了解路端电压与电流的U-I图像,培养学生利用图像方法分析电学问题的能力。
4、利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力。
(三)情感态度价值观1、通过探究物理规律培养学生的创新精神和实践能力。
2、通过实验探究,加强对学生科学素质的培养。
3、通过实际问题分析,拉近物理与生活的距离,增强学生学习物理的兴趣。
高中物理《闭合电路欧姆定律》教案范文
一、教学目标1. 让学生理解闭合电路的概念,掌握欧姆定律的内容及应用。
2. 培养学生运用物理知识解决实际问题的能力。
3. 引导学生通过实验探究,提高观察、分析、总结的能力。
二、教学内容1. 闭合电路的定义及特点2. 欧姆定律的表述:电流I等于电压U与电阻R的比值,即I=U/R。
3. 欧姆定律的应用:计算电路中的电流、电压和电阻。
三、教学重点与难点1. 重点:闭合电路的概念,欧姆定律的表述及应用。
2. 难点:欧姆定律在复杂电路中的应用。
四、教学方法1. 采用问题驱动法,引导学生思考和探究。
2. 利用实验现象,让学生直观地理解欧姆定律。
3. 运用案例分析,培养学生解决实际问题的能力。
五、教学过程1. 引入新课:通过讨论闭合电路的概念,引导学生了解欧姆定律的研究对象。
2. 讲解闭合电路的特点,阐述欧姆定律的表述。
3. 演示实验:测量不同电阻下的电流和电压,让学生观察欧姆定律的实验现象。
4. 分析实验结果,引导学生总结欧姆定律的规律。
5. 案例分析:让学生运用欧姆定律计算实际电路中的电流、电压和电阻。
6. 课堂小结:强调闭合电路欧姆定律的重要性及应用范围。
7. 布置作业:设计一些有关闭合电路欧姆定律的应用题,巩固所学知识。
六、教学策略1. 采用问题驱动法,引导学生思考和探究。
2. 通过实验现象,让学生直观地理解欧姆定律。
3. 运用案例分析,培养学生解决实际问题的能力。
4. 利用多媒体教学,增强学生的学习兴趣。
5. 组织小组讨论,提高学生的合作能力。
七、教学准备1. 准备实验器材:电流表、电压表、电阻箱、电源等。
2. 设计实验方案,确定实验步骤。
3. 准备案例资料,挑选适合的题目。
4. 制作多媒体课件,辅助教学。
八、教学评价1. 课堂问答:检查学生对闭合电路欧姆定律的理解程度。
2. 实验报告:评估学生在实验中的观察、分析、总结能力。
3. 作业完成情况:检查学生对知识的掌握和应用能力。
4. 小组讨论:评价学生的合作精神和解决问题能力。
高中物理《闭合电路欧姆定律(2)》优质课教案、教学设计
R + r一、教学目标闭合电路欧姆定律1. 知识与技能目标:(1) 知道电动势是表征电源特性的物理量,它在数值上等于电源没有接入电路时两极间的电压;从能量转化的角度理解电动势的物理意 义。
(2) 明确在闭合回路中电动势等于电路上内、外电压之和。
(3) 熟练掌握闭合电路欧姆定律的两种表达式 E =U + Ir 和I = E及其适用条件。
(4) 知道路端电压随外电阻变化的规律。
2. 过程与方法目标:通过电动势等于电路上内、外电压之和的教学,使学生学会运用实验探索物理规律的方法。
3. 情感态度与价值观目标:通过探究的过程培养学生实事求是严谨认真的科学态度。
二、教学重点、难点分析1.重点:闭合电路欧姆定律的内容;2.难点:电动势的概念;应用闭合电路欧姆定律进行简单电路的分析计算。
三、教学方法:实验演示,探究式教学四、教学过程:电源的电动势是表征电源把其他形式的能量转化为电能的本领大小的物理量。
不同类型的电源电动势大小是不一样的。
电源的电动势等于电源没有接入电路时电源两端的电压。
类比教师讲解展示干电池规格是1.5v 的,用电压表测量两端的电压,电压表示数是1.5v电源的电动势等于闭合电路的内外电压之和,如图所示电路闭合电键电路中就有电流。
电源电动势为E,内阻为r,外电阻为R,分析电路中的电流I 与哪些因素有关?教师提出问题引导学生规律推导:总结∵E=U+U′而U=IRU′=Ir∴E=IR+Ir或者写成闭合电路中的电流跟电源的电动势成正比,跟整个电路的电阻成反比,这就是闭合电路欧姆定律。
I =E R +r闭合电路欧姆定律的适用条件是纯电阻电路I =ER +r新知应用闭合电路确定了电流与电动势和内外电阻之间的关系。
在这些量中,电源的电动势和内电阻一般是不变的当电路状态(外电阻)变化时,通过测量电流或电压就能求出电源的电动势和内阻。
例题:在如图5 所,学生练习,并投影学生的计算结果结合学生计算时出现的问题进行讲运用所学知识解决,实际问题评价反馈正确的是:A 闭合电路的路端电压增大时,其电动势也增大。
高中物理《闭合电路欧姆定律》优质课教案、教学设计
《闭合电路欧姆定律》教学设计课题闭合电路欧姆定律时间教学目标1.经历闭合电路欧姆定律的理论推导过程,体验能量转化和守恒定律在电路中的具体应用,理解内外电路的能量转化;2.理解内、外电路的电势降落,理解闭合电路欧姆定律;3.会用闭合电路欧姆定律分析路端电压与负载的关系,并能进行相关的电路分析和运算。
重点闭合电路欧姆定律的理解难点闭合电路欧姆定律分析路端电压与负载的关系教学方法1.学生实验验证、探究;2.理论推导实验现象。
教学过程【引入】问题:电路有持续电流的条件?实验1:连接一个闭合电路,观察灯泡亮否?实验2:连接电路,观察电建闭合前后电压表示数变化?讨论:电源两端的电压为什么会变化呢?本节课学习闭合电路欧姆定律【内容】一、闭合回路的结构电源内部是内电路,电源外部由导线,电键,负载构成外电路。
二、闭合电路欧姆定律1、回路中电势的变化外电路电流方向电势降低,内电路电流方向电势继续降低,在两极附近有化学反应层,层内非静电力克服静电力,将正电荷由低电势移动到高电势,电势升高,总的降低的电势差等于升高的电势差2、回路中能量变化(1)若外电路中的用电器都是纯电阻R,在时间t 内外电路中有多少电能转化为内能?(2)内电路也有电阻r,当电流通过内电路时,也有一部分电能转化为内能,是多少?(3)电流流经电源时,在时间t 内非静电力做多少功EIt =I 2 Rt +I 2 rtI = (4) 电路中能量守恒:E =IR +IrE 或R +r 或 E =U 外 +Ir3、内容:闭合电路中的电流跟电源的电动势 成正比,跟内、外电路的电阻之和成反比.4、公式课堂练习 11、(多选)以下说法正确的有( )A. 电源内阻属于外电路的一部分;B. 在外电路中,沿电流方向电势降低,在内电路中,沿电流方向电势一直升高;C. 在闭合回路中,电动势等于路端电压和内电压的和;D. 用电压表直接与电源两极相连,电压表的的示数略小于电源的电动势。
闭合电路的欧姆定律教案优质课教案
闭合电路的欧姆定律一、教学目标1、在物理知识方面的要求:(1)巩固产生恒定电流的条件;(2)知道电动势是表征电源特性的物理量,它在数值上等于电源没有接入电路时两极间的电压.(3)明确在闭合回路中电动势等于电路上内、外电压之和.(4)掌握闭合电路的欧姆定律,理解各物理量及公式的物理意义(5)知道什么是路端电压.2、在物理方法上的要求:(1)通过电动势等于电路上内、外电压之和的教学,使学生学会运用实验探索物理规律的方法.(2)从能量和能量转化的角度理解电动势的物理意义.(4)通过用公式分析外电压随外电阻以及电流的改变规律,培养学生用多种方式分析物理问题的方法。
二、教学重点、难点1、重点:(1)闭合电路欧姆定律的内容。
(2)短路、断路特征。
(3)应用闭合电路欧姆定律讨论电路中的路端电压、电流强度随外电阻变化的关系。
2、难点:(1)电动势是表示电源特性的物理量及电动势的物理意义。
(2)闭合回路中电源电动势等于电路上内、外电压之和。
三、教学过程设计(一):引入新课:提出问题:1.电荷的定向移动形成电流.那么,导体中形成电流的条件是什么呢?导体两端有电势差2.将小灯泡接在充满电的电容器两端,会看到什么现象?(小灯泡闪亮一下就熄灭.)为什么会出现这种现象呢?分析:当电容器充完电后,其上下两极板分别带上正负电荷,两板间形成电势差.当用导线把小灯泡和电容器两极板连通后,电子就在电场力的作用下通过导线产生定向移动而形成电流,但这是一瞬间的电流.因为两极板上正负电荷逐渐中和而减少,两极板间电势差也逐渐减少为零,所以电流减小为零,因此只有电场力的作用是不能形成持续电流的.教师:为了形成持续的电源,必须有一种本质上完全不同于静电性的力,能够不断地分离正负电荷来补充两极板上减少的电荷.这才能使两极板保持恒定的电势差,从而在导线中维持恒定的电流,能够提供这种非静电力的装置叫电源.电源在维持恒定电流时,电源中的非静电力将不断做功,从而把已经流到低电势处的正电荷不断地送回到高电势处.使它的电势能增加.(二):新课教学:1:电源演示实验:电路图如下:新旧那个电池的时候比较灯泡的亮度。
高中物理《闭合电路的欧姆定律》教案设计
高中物理《闭合电路的欧姆定律》教案设计一、教学目标1. 让学生理解闭合电路的概念,掌握欧姆定律的内容及公式。
2. 培养学生运用欧姆定律分析和解决实际问题的能力。
3. 引导学生通过实验探究,提高观察、思考、动手能力。
二、教学内容1. 闭合电路的概念介绍。
2. 欧姆定律的内容讲解:电流I与电压U、电阻R之间的关系,公式I=U/R。
3. 欧姆定律的应用:分析电路中电流、电压、电阻的变化规律。
三、教学重点与难点1. 重点:欧姆定律的内容、公式及应用。
2. 难点:闭合电路中电流、电压、电阻之间的关系及动态变化分析。
四、教学方法1. 采用问题驱动法,引导学生探究闭合电路的欧姆定律。
2. 利用实验演示,让学生直观地了解欧姆定律的原理。
3. 运用案例分析法,培养学生解决实际问题的能力。
五、教学过程1. 引入新课:通过讲解电源、电压、电流等基本概念,引出闭合电路的概念。
2. 讲解欧姆定律:阐述电流、电压、电阻之间的关系,给出欧姆定律的公式I=U/R。
3. 实验演示:安排学生进行实验,观察电流、电压、电阻的变化规律,验证欧姆定律。
4. 案例分析:提供一些实际问题,让学生运用欧姆定律进行分析解决。
5. 总结提高:对本节课内容进行总结,强调欧姆定律在实际应用中的重要性。
6. 作业布置:布置一些有关欧姆定律的应用题,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对闭合电路概念和欧姆定律的理解程度。
2. 实验报告:评估学生在实验过程中的观察、分析、总结能力。
3. 作业完成情况:检查学生对欧姆定律应用题的解答,评估其应用能力。
七、教学反思1. 反思教学内容:确保欧姆定律的知识点讲解清晰,便于学生理解。
2. 反思教学方法:观察学生对问题的探究和实验操作,调整教学方法,提高教学效果。
3. 反思教学效果:根据学生作业和实验报告,分析学生的掌握程度,为后续教学提供参考。
八、拓展与延伸1. 讲解其他定律:介绍与欧姆定律相关的其他物理定律,如电压定律、电流定律等。
高中物理闭合电路欧姆定律优秀教案教学设计
高中物理闭合电路欧姆定律优秀教案教学设计中学物理闭合电路欧姆定律优秀教案教学设计一.教学要求1.懂得电动势是为了表征电源的特性而引入的概念,它在数值上等于电源没有接入电路时两极间的电压2.导出闭合电路的欧姆定律I=ε/(R+r)3.探究路端电压的改变规律,驾驭闭合电路中的U-R关系,U-I关系.4.学会运用闭合电路的欧姆定律解决简洁电路的问题.二.教学重点探究路端电压的改变规律,驾驭闭合电路中的U-R关系,U-I关系.三.教学方式讲授和探讨相结合四.教学过程一、电动势同种电源两极间的电压一样,不同种类的电源两极间电压不同.这说明电源两极间的电压是由电源本身的性质确定的.为了表征电源的这种特性,物理学中引入了电动势的概念.电源电动势在数值上等于电源没有接入电路时两极间的电压.用符号ε表示,单位是伏特.电动势的物理意义:表征了电源把其它形式的能转化为电能的本事.故ε在数值上等于电路中通过1库仑电量时电源所供应的能量.二、闭合电路的欧姆定律1学生推导推导闭合电路的欧姆定律的数学表达式,并说明其物理意义.给出条件:闭合电路中,电源电动势为ε,内电阻为r,外电阻为R,电路中的电流强度为I.提出要求:找寻IεRr的关系.2得出结论闭合电路里的电流强度,跟电源的电动势成正比,跟整个电路的电阻成反比.这就是闭合电路的欧姆定律.三、路端电压随外电阻的改变规律假如把外电路电阻的数值变更了,可以确定路端电压是会改变的。
在ε和r不变的状况下,路端电压随外电阻改变的规律到底是怎样的呢?ε=U+Ir〔电压形式〕Ir表示内电阻U’;U表示路端电压U随着R的增大而增大路端电路随外部电阻的改变而发生改变的缘由是电源有内阻r;外电路断开时,R--∞U=ε即路端电压等于电源电动势。
这正是说明可以用伏特表干脆测量电源电动势的道理。
外电路短路时,R=0U=0I=ε/r由于r一般很小,所以短路电流很大.电流太大不但会烧坏电源,还可能引起火灾,要留意幸免发生.ε/rIUOε四、U-I关系U=ε-Ir〔U=-Ir+ε〕讲解图象的物理意义ε表示电动势ε/r表示短路电流斜率的肯定值表示电源内阻五、电源的功率εI=UI+I2r〔功率形式〕式中P总=εIP出=UIP内=I2r电源的效率:讲电源的最大输出功率〔见教后记〕六、例题和练习例1:如图所法,当滑线变阻器的滑动触点向上端移动时(A) A.伏特表V的读数增大,安培表A的读数减小B.伏特表V和安培表A的读数都增大C.伏特表V和安培表A的读数都减小D.伏特表V的读数减小,安培表A的读数增大思索:如下图电路中,电源电动势和内电阻为定值,固定电阻的阻值R2小于变阻器ab两端之间的总阻值R3,R1≠0。
优质课《闭合电路欧姆定律》教学设计
优质课《闭合电路欧姆定律》教学设计闭合电路欧姆定律优质课教学设计一、教材分析课标分析:知道电源的电动势和内阻,理解闭合电路的欧姆定律教材地位:闭合电路欧姆定律是恒定电流一章的核心内容,具有承前启后的作用。
既是本章知识的高度总结,又是本章拓展的重要基础;通过学习,既能使学生从部分电路的认知上升到全电路规律的掌握,又能从静态电路的计算提高到对含电源电路的动态分析及推演。
同时,闭合电路欧姆定律能够充分体现功和能的概念在物理学中的重要性,是功能关系学习的好素材。
二、学情分析学生通过前面的学习,理解了静电力做功与电荷量、电势差的关系、了解了静电力做功与电能转化的知识,认识了如何从非静电力做功的角度描述电动势,并处理了部分电路欧姆定律的相关电路问题,已经具备了通过功能关系分析建立闭合电路欧姆定律,并应用闭合电路欧姆定律分析问题的知识与技能。
三、教学目标(一)知识与技能1、通过探究推导出闭合电路欧姆定律及其公式,知道电源的电动势等于内、外电路上电势降落之和。
2、理解路端电压与负载的关系,知道这种关系的公式表达,并能用来分析有关问题。
3、掌握电源断路和短路两种特殊情况下的特点。
知道电源的电动势等于电源没有接入电路时两极间的电压。
4、了解路端电压与电流的U-I图像,认识E和r对U-I图像的影响。
5、熟练应用闭合电路欧姆定律进行相关的电路分析和计算(二)过程与方法1、经历闭合电路欧姆定律及其公式的推导过程,体验能量转化和守恒定律在电路中的具体应用,培养学生推理能力。
2、通过路端电压与负载的关系实验,培养学生利用实验探究物理规律的科学思路和方法。
3、了解路端电压与电流的U-I图像,培养学生利用图像方法分析电学问题的能力。
4、利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力。
(三)情感态度价值观1、通过探究物理规律培养学生的创新精神和实践能力。
2、通过实验探究,加强对学生科学素质的培养。
高中物理《闭合电路的欧姆定律》教案设计
高中物理《闭合电路的欧姆定律》教案设计一、教学目标:1. 让学生理解闭合电路的概念,掌握欧姆定律的表述和含义。
2. 培养学生运用欧姆定律解决实际问题的能力。
3. 引导学生通过实验探究,提高观察、思考、分析问题的能力。
二、教学内容:1. 闭合电路的概念及其组成。
2. 欧姆定律的表述:在一段电路中,电流强度与两端电压成正比,与电路的总电阻成反比。
3. 欧姆定律的应用:解决电路中电流、电压、电阻的问题。
三、教学重点与难点:1. 教学重点:闭合电路的概念,欧姆定律的表述和应用。
2. 教学难点:欧姆定律的推导过程,以及如何运用欧姆定律解决复杂电路问题。
四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究闭合电路的欧姆定律。
2. 利用实验现象,让学生直观地理解欧姆定律的内涵。
3. 通过举例分析,让学生学会运用欧姆定律解决实际问题。
五、教学过程:1. 引入新课:通过讲解电源、导线、电阻等基本电路元件,引出闭合电路的概念。
2. 讲解欧姆定律:介绍欧姆定律的表述,解释电流、电压、电阻之间的关系。
3. 实验探究:安排学生进行实验,观察电流、电压、电阻的变化规律,引导学生发现欧姆定律。
4. 公式推导:在实验基础上,引导学生推导欧姆定律的公式。
5. 应用练习:布置一些实际问题,让学生运用欧姆定律进行解答,巩固所学知识。
6. 总结与反思:对本节课的内容进行总结,让学生谈谈自己在学习过程中的收获和感悟。
7. 布置作业:布置一些有关闭合电路欧姆定律的练习题,巩固所学知识。
六、教学评价:1. 评价学生对闭合电路概念的理解程度。
2. 评价学生对欧姆定律表述和应用的掌握情况。
3. 评价学生在实验探究中观察、思考、分析问题的能力。
七、教学拓展:1. 介绍欧姆定律在现代科技领域的应用,如电动汽车、太阳能电池等。
2. 引导学生关注电路中的其他定律,如基尔霍夫定律、法拉第电磁感应定律等。
八、教学资源:1. 实验器材:电源、导线、电阻、电压表、电流表等。
12.2闭合电路的欧姆定律教案- 高二上学期物理人教版 必修第三册
《闭合电路的欧姆定律》教学设计教材分析:闭合电路的欧姆定律是电路知识的核心内容,该定律可以让学生在上一章的基础上更加完整深入地理解电路知识。
闭合电路欧姆定律进一步揭示了闭合电路中内外电压与电源电动势的关系,是分析电路的重要理论基础,也是能量守恒规律的应用。
在本节第一课时中,利用能量守恒的观点推导闭合电路的欧姆定律,让学生充分感受和理解闭合电路欧姆定律,也是本节内容要突破的教学难点。
本课时将通过探究使学生亲眼证实内电路符合部分电路欧姆定律,再探究在外电阻不变的情况下,内阻改变时仍有电动势与总电阻的比值恰等于电路电流的结论,使学生对闭合电路欧姆定律深信不疑,这符合学生的认知规律,也让学生体会运用实验的证据意识解决问题的研究思路。
最后让学生自行探究路端电压与外电阻的关系,得出结论。
这样处理能让学生通过合作交流参与知识形成的过程。
教学目标与核心素养:(一)物理观念1.知道电源的电动势等于内电压、外电压之和;2.理解闭合电路欧姆定律的公式,理解各物理量及公式的物理意义,并能熟练地用来解决有关的电路问题。
(二)科学思维1.通过实验数据分析培养学生的逻辑思维能力;2.培养学生分析解决问题能力,会用闭合电路欧姆定律分析实际问题。
(三)科学探究1.通过实验培养学生探究的意识与证据意识;2.培养学生对实验现象的分析能力;(四)科学态度与责任利用物理知识解决实际的生活问题和解释生活现象,培养学生的兴趣。
教学重点与难点:闭合电路欧姆定律的建立过程是本节的重点,也是本节的难点,通过自制教具巧妙设计实验来突破难点。
教学准备:多媒体教学设备自制电路示教板(两块)、干电池、化学电池、小灯泡、电阻箱、数字电压表和电流表、开关导线等教学过程:一、回顾旧知与导入新课【回顾旧知】我们先回顾上一课时的理论推导:【提出疑问】1、内电路真的满足部分电路的欧姆定律吗?2、这样的理论推导是否可靠呢?【设计思路】在物理学中,任何理论推导得到的结论均需要通过实验来佐证。
高中物理《闭合电路欧姆定律》教案设计
高中物理《闭合电路欧姆定律》教案设计一、教学目标1.理解闭合电路的概念以及电流的定义;2.掌握欧姆定律的表达方式;3.能够运用欧姆定律解决一些简单的电路问题;4.培养学生的实验精神,提高动手实践能力。
二、教学重点1.电流的定义和相关量的计算;2.欧姆定律的表达和应用。
三、教学过程第一步:导入新知1.引入电路概念,解释闭合电路的定义;2.思考以下问题:电流是什么?如何计算电流的大小?第二步:学习欧姆定律1.定义电阻和阻值的概念;2.介绍欧姆定律的表达方式:U=IR3.;4.解释欧姆定律的含义:电压和电流成正比,电阻是对电流的阻碍;5.讲解欧姆定律在串联和并联电路中的应用。
第三步:实验探究1.给出一组实验电路图,包括电源、电阻、导线等元件;2.教师引导学生进行实验操作,观察电路中的电流变化;3.让学生记录实验数据,计算电流大小,并验证欧姆定律。
第四步:小组讨论1.学生分成小组,互相讨论实验结果和电流计算方法;2.各小组分享实验中遇到的问题和解决方法;3.教师引导学生总结实验过程中的规律和发现。
第五步:巩固练习1.提供一些欧姆定律的练习题,包括计算电流、电阻和电压等;2.学生独立完成练习,教师进行答疑和指导;3.整理学生的答案,进行讲解和讨论。
第六步:拓展应用1.引入电子电路的知识,讲解电路板和电路图的基本概念;2.介绍一些常见的电子元器件和符号;3.学生尝试设计一些简单的电子电路。
四、教学评价1.实验报告:学生完成实验报告,包括实验目的、步骤、数据记录和分析;2.练习和作业:学生完成练习和作业,包括计算题和应用题;3.课堂表现:学生的参与度、讨论情况、问题解决能力等。
五、教学资源1.多媒体教学设备,展示电路图和实验过程;2.实验用具:电源、电阻、导线、电流表等;3.教学资料:电路练习题、电子元器件介绍等。
六、教学反思本节课主要围绕闭合电路和欧姆定律展开教学设计,通过实验探究和小组讨论,培养学生的实验能力和动手操作能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7闭合电路的欧姆定律[学习目标] 1.会从能的守恒和转化定律推导出闭合电路的欧姆定律.2.理解内、外电压,理解闭合电路的欧姆定律.(重点)3.会用闭合电路欧姆定律分析路端电压与负载的关系,会进行相关的电路分析和计算.(难点)一、闭合电路的欧姆定律1.描述闭合电路的几个基本物理量用导线把电源、用电器连接起来就构成了闭合电路,如图所示.(1)内电路:电源内部的电路叫作内电路,其电阻叫作内电阻,通常用r表示.表示Ir,它是内电路的电势降落,称为内电压.闭合电路中,通常用U内(2)外电路:电源两极之间的外部电路叫作外电路,其电阻叫作外电阻.表示IR,它是外电路的电势降落,称为外电压,闭合电路中,通常用U外也常称为路端电压,简单地记为U.2.闭合电路中的能量转化如图所示,电路中电流为I,在时间t内,非静电力做功等于内外电路中电能转化为其他形式的能的总和,即EIt=I2Rt+I2rt.3.闭合电路的欧姆定律(1)内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比.(2)公式:I =E R +r;适用范围:纯电阻电路. (3)常用的变形公式:E =U 外+U 内或U 外=E -Ir ;适用范围:任何闭合电路.二、路端电压与负载的关系1.路端电压与外电阻的关系:U 外=E -U 内=E -E R +rr . 结论:①R 增大→U 外增大;②外电路断路时U 外=E ;③外电路短路时U 外=0.2.路端电压与电流关系(1)公式:U 外=E -Ir .(2)图象(U -I 图象):如图所示是一条倾斜的直线,该直线与纵轴交点的坐标表示电动势E ,斜率的绝对值表示电源内阻r .1.思考判断(正确的打“√”,错误的打“×”)(1)电动势越大,闭合电路的电流就越大. (×)(2)电源的内阻越大,闭合电路的电流就越小. (×)(3)电源一定时,负载电阻越大,电流越小.(√)(4)电源发生短路时,电流为无穷大. (×)(5)外电路断路时,电源两端的电压就是电源电动势. (×)2.一太阳能电池板,测得它的开路电压为800 mV ,短路电流为40 mA.若将该电池板与一阻值为20 Ω的电阻连成一闭合电路,则它的路端电压是( )A .0.10 VB .0.20 VC .0.30 VD .0.40 V D [电源电动势为0.8 V ,根据I 短=E r ,解得r =E I 短=20 Ω,所以U =R R +rE =0.4 V ,D 正确.]3.(多选)如图所示为两个不同闭合电路中两个不同电源的U -I 图象,则下列说法中正确的是()A.电动势E1=E2,短路电流I1>I2B.电动势E1=E2,内阻r1>r2C.电动势E1>E2,内阻r1<r2D.当两电源的工作电流变化量相同时,电源2的路端电压变化较大AD[由图象可知两电源的U-I图线交纵轴于一点,则说明两电源的电动势相同;交横轴于两不同的点,很容易判断电源1的短路电流大于电源2的短路电流,则A项正确.又由两图线的倾斜程度可知图线2的斜率的绝对值大于图线1的斜率的绝对值,即电源2的内阻大于电源1的内阻,则可知B、C项错误.由图象可判断当两电源的工作电流变化量相同时,电源2的路端电压的变化量大于电源1的路端电压的变化量,可知D项正确.]对闭合电路欧姆定律的理解1.几种形式说明`(1)E=U+U内(2)I=E R+r(3)U=E-Ir (U、I间关系)(4)U=RR+rE (U、R间关系)(1) I=ER+r和U=RR+rE只适用于外电路为纯电阻的闭合电路(2) 由于电源的电动势E和内电阻r不受R变化的影响,从I=ER+r不难看出,随着R的增加,电路中电流I减小(3) U=E-Ir既适用于外电路为纯电阻的闭合电路,也适用于外电路为非纯电阻的闭合电路(1) 外电路短路时电路中电流较大,为防止将电源、电路烧坏或引发火灾事故,一般不允许这种情况发生.(2) 外电路含有非纯电阻元件(如电动机、电解槽等)时,不能直接用欧姆定律解决电流问题,可以根据串、并联电路特点或能量守恒定律列式计算.【例1】如图所示的电路中,当S闭合时,电压表和电流表(均为理想电表)的示数各为1.6 V和0.4 A.当S断开时,它们的示数各改变0.1 V和0.1 A,求电源的电动势和内电阻.思路点拨:(1)两表读数增减的分析:①开关S断开后,外电阻的变化:由R1、R2并联变化为只有R1接入电路,电阻变大;②两表读数的变化:电流表读数减小,电压表读数变大.(2)电压表测量的是路端电压,电流表测量的是干路电流,它们之间的关系满足闭合电路欧姆定律,即U=E-Ir.[解析]当S闭合时,R1、R2并联接入电路,当S断开时,只有R1接入电路,此时路端电压增大、干路电流减小.当S 闭合时,由闭合电路欧姆定律得:U =E -Ir ,即1.6=E -0.4r ①当S 断开时,只有R 1接入电路,由闭合电路欧姆定律得:U ′=E -I ′r ,即1.6+0.1=E -(0.4-0.1)r ② 由①②得:E =2 V ,r =1 Ω.[答案] 2 V 1 Ω闭合电路问题的求解方法(1)分析电路特点:认清各元件之间的串、并联关系,特别要注意电压表测量哪一部分的电压,电流表测量哪个用电器的电流.(2)求干路中的电流:若各电阻阻值和电动势都已知,可用闭合电路的欧姆定律直接求出,也可以利用各支路的电流之和来求.(3)应用闭合电路的欧姆定律解决问题时,应根据部分电路的欧姆定律和电路的串、并联特点求出部分电路的电压和电流.1.如图所示的电路中,电阻R 1=9 Ω,R 2=15 Ω,电源电动势E =12 V ,内电阻r =1 Ω.求当电流表示数为0.4 A 时,变阻器R 3的阻值多大?[解析] 对R 2,有U 2=I 2R 2=0.4×15 V =6 V则R 1和r 上的电压U =E -U 2=(12-6) V =6 V故总电流I 1=U R 1+r =69+1A =0.6 A流过R3的电流I3=I1-I2=(0.6-0.4) A=0.2 A故R3=U2I3=60.2Ω=30 Ω.[答案]30 Ω闭合电路的动态变化和每一部分的电流、电压都发生变化.其分析的一般思路为:(1)明确电路结构,即电路各元件的连接方式;(2)明确局部电阻的变化和外电路总电阻R总的变化;(3)运用I总=ER总+r判断I总的变化;(4)运用U内=I总r判断U内的变化;(5)运用U外=E-U内判断U外的变化;(6)运用电学公式实行定性分析各支路相关量变化.【例2】如图所示的电路中,电源内阻不可忽略.开关S闭合后,在变阻器R0的滑动端向下滑动的过程中()A.电压表与电流表的示数都减小B.电压表与电流表的示数都增大C.电压表的示数增大,电流表的示数减小D.电压表的示数减小,电流表的示数增大思路点拨:(1)滑动变阻器的滑动端向下滑动时,滑动变阻器接入电路的电阻减小,总电阻减小.(2)分析电路的动态变化的一般思路是“先局部后整体再局部”.A[滑动变阻器R0的滑片向下滑动的过程中,R0接入电路的电阻变小,电路的总电阻变小,总电流变大,电源的内电压变大,外电压变小,电压表的示数变小,R1两端的电压变大,R2两端的电压变小,电流表的示数变小,A正确.]直流电路的动态分析思路基本思路是“部分→整体→部分”,即从阻值变化入手,由串、并联规律判知R总的变化情况,再由欧姆定律判知I总和U端的变化情况,最后由部分电路欧姆定律及串联分压、并联分流等规律判知各部分的变化情况.2.(多选)在如图所示的电路中,闭合S,A、B、C三只灯均正常发光,当可变电阻R′的滑动触头上移时,对A、B、C三只灯亮度的变化,下列叙述正确的是()A.A灯变亮B.B灯变亮C.C灯变亮D.三灯均变暗AC[滑动触头上移,R′变大,则R总变大,I总=ER总减小,U内=I总r减小,U外=E-U内增大,A灯变亮,A正确;I支=I总-I A,I支减小,B灯与R 并联部分的电压减小,C灯与R′并联部分电压增大,故B灯变暗,C灯变亮,C正确,B、D错误.]电源的有关功率和电源的效率1.电源的有关功率和电源的效率(1)电源的总功率:P总=IE=I(U内+U外).(2)电源的输出功率:P出=IU外.(3)电源内部的发热功率:P′=I2r.(4)电源的效率:η=P出P总=U外E,对于纯电阻电路,η=RR+r=11+rR.2.输出功率和外电阻的关系在纯电阻电路中,电源的输出功率为P=I2R=E2(R+r)2R=E2(R-r)2+4RrR=E2(R-r)2R+4r.(1)当R=r时,电源的输出功率最大,P m=E2 4r.(2)当R>r时,随着R增大,P减小.(3)当R<r时,随着R增大,P增大.【例3】电路图如图甲所示,图乙中图线是电路中的电源的路端电压随电流变化的关系图象,滑动变阻器的最大阻值为15 Ω,定值电阻R0=3 Ω.甲乙(1)当R为何值时,R0消耗的功率最大?最大值为多少?(2)当R为何值时,电源的输出功率最大?最大值为多少?思路点拨:(1)由题图乙可求出电源的电动势和内电阻,注意纵轴坐标原点不从0开始.(2)R0为定值电阻,其电流越大,消耗功率越大.(3)对电源来说,R +R 0为电源外电阻,当r =R 0+R 时,电源输出功率最大.[解析] (1)由题图乙知电源的电动势和内阻为:E =20 V ,r =20-52Ω=7.5 Ω 由题图甲分析知道,当R =0时,R 0消耗的功率最大,最大值为P ′max =⎝ ⎛⎭⎪⎫E R 0+r 2R 0=⎝ ⎛⎭⎪⎫203+7.52×3 W ≈10.9 W. (2)当r =R +R 0,即R =4.5 Ω时,电源的输出功率最大,最大值为P max ″=⎝ ⎛⎭⎪⎫E R 0+R +r 2(R 0+R ) =⎝ ⎛⎭⎪⎫203+4.5+7.52×(3+4.5)W ≈13.3 W. [答案] (1)0 10.9 W (2)4.5 Ω 13.3 W上例中,当R 为何值时,R 消耗的功率最大?最大值为多少?提示:把R 0看作电源内电阻,则电源的等效内阻为r ′=r +R 0=10.5 Ω 即当R =r ′=10.5 Ω时,R 消耗的功率最大,最大功率P max =⎝ ⎛⎭⎪⎫E R 0+R +r 2R =⎝ ⎛⎭⎪⎫2010.5+10.52×10.5 W =9.5 W.3.如图所示,线段A 为某电源的U -I 图线,线段B 为某电阻的U -I 图线,当上述电源和电阻组成闭合电路时,求:(1)电源的输出功率P 出多大?(2)电源内部损耗的电功率是多少? (3)电源的效率η多大?[解析] (1)由A 的图线可读出电源电动势E =3 V ,内电阻r =E I m =36Ω=0.5 Ω 从图象的交点可读出路端电压U =2 V ,电路电流I =2 A则电源的输出功率为P 出=UI =4 W.(2)电源内部损耗的电功率P 内=I 2r =2 W.(3)电源的总功率为P 总=IE =6 W故电源的效率为η=P 出P 总×100%≈66.7%.[答案] (1)4 W (2)2 W (3)66.7%电路故障问题路、电阻器内部断路、接触不良等,判断故障的基本方法有两种.1.仪表检测法(1)电压表是由灵敏电流计G 和分压电阻R 0串联组成的,内部结构如图甲所示.甲 乙(2)用电压表检测如图乙所示,合上开关S ,若电压表有示数,说明电路中有电流通过电压表,电路为通路(电压表作为一个高电阻把开关和电源接通了),则开关S 和导线不断路,灯L 断路即故障所在.2.假设法已知电路发生某种故障,寻找故障发生的位置时,可将整个电路划分为若干部分,然后逐一假设某部分电路发生故障,运用欧姆定律进行正向推理.推理结果若与题述物理现象不符合,则故障不是发生在这部分电路;若推理结果与题述物理现象符合,则故障可能发生在这部分电路.直到找出发生故障的全部可能为止,亦称排除法.【例4】 如图所示,电灯L 标有“4 V 1 W ”,滑动变阻器R 的总电阻为50 Ω.当滑片P 滑至某位置时,L 恰好正常发光,此时电流表示数为0.45 A .由于外电路发生故障,电灯L 突然熄灭,此时电流表示数变为0.5 A ,电压表示数为10 V .若导线连接完好,电路中各处接触良好.试问:(1)发生的故障是短路还是断路?发生在何处?(2)发生故障前,滑动变阻器接入电路的阻值为多大?(3)电源的电动势和内电阻为多大?[解析] (1)电路发生故障后,电流表读数增大,路端电压U =U 2=I 2R 2也增大,因此外电路总电阻增大,一定在外电路某处发生断路.由于电流表有读数,R 2不可能断路,电压表也有读数.滑动变阻器R 也不可能断路,只可能是电灯L 发生断路.(2)L 断路后,外电路只有R 2,因无电流流过R ,电压表示数即为路端电压U 2=U 端=10 V ,R 2=U 2I 2=100.5Ω=20 Ω. L 未断路时恰好正常发光,U L =4 V ,I L =P U =0.25 AU 端′=U 2′=I 2′·R 2=0.45×20 V =9 VR =U R I R=U 端′-U L I L =9-40.25 Ω=20 Ω. (3)根据闭合电路欧姆定律E =U +Ir .故障前E=9+(0.45+0.25)r,故障后E=10+0.5r.得r=5 Ω,E=12.5 V.[答案](1)电灯L发生断路(2)20 Ω(3)12.5 V 5 Ω如果某用电器被短路,则它两端的电压为零;如果电路中某处断路(且只有一处),则断路处电压不为零,这是解决故障问题的主要依据.4.如图所示的电路中,灯泡A和灯泡B原来都是正常发光的.现在突然发现灯泡A比原来变暗了些,灯泡B比原来变亮了些,则电路中出现的故障可能是()A.R3断路B.R1短路C.R2断路D.R1、R2同时短路C[灯泡A比原来暗了些,说明灯泡A的电流和电压变小;灯泡B比原来亮了些,说明灯泡B的电压和电流变大.采取代入排除法,将选项逐个代入分析:R3断路→R外增大→R总变大→I总减小→U外变大,则易知灯泡A、B两端电压变大,由此可知两灯均变亮,故A错误;R1短路→R外减小→R总减小→I总增大,易知通过灯泡A和B的电流变大,两灯变亮,B错误;同理分析可知C 选项正确,D选项错误.]课堂小结知识脉络1.理解闭合电路欧姆定律.2.分析闭合电路的动态变化问题.3.闭合电路中的功率分析与计算.4.电路中的故障分析.1.关于电源的电动势,下列说法中正确的是()A.电源电动势的大小等于电源没有接入电路时两极间的电压的大小,所以当电源接入电路时,电动势的大小将发生变化B.电路闭合时,并联在电源两端的电压表的示数就是电源电动势的值C.电源的电动势是表示电源把其他形式的能转化为电势能的本领大小的物理量D.在闭合电路中,电动势等于内、外电路上电压之和,所以电动势实际上就是电压C[直接利用电动势的概念分析判断可知,选项C正确.]2.(多选)如图所示为两个独立电路A和B的路端电压与其总电流I的关系图线,则()A.路端电压都为U1时,它们的外电阻相等B.电流都是I1时,两电源内电压相等C.电路A的电源电动势大于电路B的电源电动势D.A中电源的内阻大于B中电源的内阻ACD[在路端电压与总电流的关系图线(U-I)中,图线在U轴上的截距表示电动势E,图线斜率的绝对值表示电源的内阻,可见E A>E B,r A>r B.图中两直线的交点坐标为(I1、U1),由R=UI可知,路端电压都为U1时,它们的外电阻相等.由U′=Ir可知,电流都是I1时,因r不相等,故两电源内电压不相等.所以选项A、C、D正确.]3.如图所示是一实验电路图.在滑动触头由a端滑向b端的过程中,下列表述正确的是()A.路端电压变小B.电流表的示数变大C.电源内阻消耗的功率变小D.电路的总电阻变大A[滑动触头由a端滑向b端的过程中,R1值减小,因此电路总电阻变小,D错误;干路电流变大,路端电压变小,A正确;内阻消耗的功率变大,C错误;定值电阻R3两端的电压变小,电流表示数变小,B错误.]4.一电池外电路断开时的路端电压为3 V,接上8 Ω的负载电阻后路端电压降为2.4 V,则可以判定电池的电动势E和内电阻r为()A.E=2.4 V,r=1 ΩB.E=3 V,r=2 ΩC.E=2.4 V,r=2 ΩD.E=3 V,r=1 ΩB[外电路断开时的路端电压等于电动势,即E=3 V,接上8 Ω的负载电阻后,路端电压U=E-UR r=2.4 V,可得r=2 Ω,B正确.]。