第十五届全国小学奥数华杯赛决赛试题答案2010

合集下载

2010年第15届华杯赛小学组六年级决赛试题及详解word文档

2010年第15届华杯赛小学组六年级决赛试题及详解word文档

2010年第15届华杯赛小学组六年级决赛试题及详解一、填空题(每小题10分,共80分)1.在10个盒子中放乒乓球,每个盒子中的球的个数不能少于11,不能是13,也不能是5的倍数,且彼此不同,那么至少需要个乒乓球。

2.有五种价格分别为2元、5元、8元、11元、14元的礼品以及五种价格分别为1元、3元、5元、7元、9元的包装盒。

一个礼品配一个包装盒,共有种不同价格。

3.汽车A从甲站出发开往乙站,同时汽车B、C从乙站出发与A相向而行开往甲站,途中A与B相遇20分钟后再与C相遇。

已知A、B、C的速度分别是每小时90km, 80km, 60km,那么甲乙两站的路程是km。

4.将和这6个分数的平均值从小到大排列,则这个平均值排在第位。

5.将一个数的各位数字相加得到新的一个数称为一次操作,经连续若干次这样的操作后可以变为6的数称为“好数”,那么不超过2012的“好数”的个数为,这些“好数”的最大公约数是。

6.右图所示的立体图形由9个棱长为1的立方块搭成,这个立体图形的表面积为。

7.数字卡片“3”、“4”、“5”各10张,任意选出8张使它们的数字和是33,则最多有张是卡片“3”。

8.若将算式的值化为小数,则小数点后第1个数字是。

二、解答下列各题(每题10分,共40分,要求写出简要过程)9.右图中有5个由4个1×1的小正方格组成的不同形状的硬纸板。

问能用这5个硬纸板拼成右图中4×5的长方形吗?如果能,请画出一种拼法;如果不能,请简述理由。

10.长度为L的一条木棍,分别用红、蓝、黑线将它等分为8,12和18段,在各划分线处将木棍锯开,问一共可以得到多少段?其中最短的一段的长是多少?11.足球队A,B,C,D,E进行单循环赛(每两队赛一场),每场比赛胜队得3分,负队得0分,平局两队各得1分。

若A,B,C,D队总分分别是1,4,7,8,请问:E队至多得几分?至少得几分?12.华罗庚爷爷出生于1910年11月12日。

第十五届“华杯赛”总决赛团体赛(口试)试题答案

第十五届“华杯赛”总决赛团体赛(口试)试题答案

第十五届全国华罗庚金杯少年数学邀请赛总决赛团体赛(口试)试题解答上半场题1(开场共答1)15++=⨯⨯华杯赛少俊金坛论数上面的算式中, 不同的汉字代表1~9中的不同数字, 当三位数“华杯赛”取得最大值时, 请你写出一种使等式成立的填数法.【答案】97515284613=⨯++⨯ 或97515.164328=⨯++⨯ 【解答】由15++=⨯⨯华杯赛少俊金坛论数可知, 华杯赛被15整除. 要求三位数“华杯赛”取得最大值, 我们从最大的被15整除的3位数进行筛选:990, 975, 960, 945, 930, 915, ……最大的合要求的是975, 而975 ÷ 15 = 65, 也就是++⨯⨯少俊金坛论数=65.容易由1, 2, 3, 4, 6, 8试凑得: 2×8+46+1×3=65. 于是得出合于题目要求的如下填数法,97515284613=⨯++⨯.或试凑1×6+43+2×8=65, 得97515.164328=⨯++⨯图A-57图A-56【解答】 因为正六边形的一个内角为120, 是一个周角的1.3所以, 以正六边形的顶点为圆心、正六边形的边长为半径的圆弧, 等于1厘米. 阴影部分周长可以拼接为2个圆周, 所以是6厘米.题3(必答A1)班级小书架共有12本科普读物.据统计, 数学小组的每个成员恰借阅过其中的两本, 而每本科普读物都恰被3名数学小组的成员借阅过. 问:这个数学小组共有多少人? 【答案】18人.【解答】 因为小书架共有12本科普读物, 而每本科普读物都恰被3名数学小组的成员借阅过. 所以共被借阅12336⨯=(人次). 设数学小组共有x 名成员, 由于每个成员恰借阅过其中的两本科普读物, 所以共被借阅2x 人次.因此 236x =,18x =.题4(必答A2)如图A-57, 有一个圆和三个正方形. 中间正方形的顶点在圆上, 圆与最大正方形的交点以及最小正方形的顶点都是所在线段的中点. 最大正方形的面积是12平方厘米, 问: 最小正方形的面积是多少平方厘米?【答案】3平方厘米.【解答】如图A-58, 绕中心O 旋转圆面, 使得点P 重合于E , 于是点Q 重合于F , 点S 重合于G , 点T 重合于H .成右图. 容易看出,图A-59图A-601111112322244IJKL PQST ABCD ABCD S S S S ⎛⎫====⨯= ⎪⎝⎭(平方厘米). 题5(必答A3)国家规定年满18周岁不超过70周岁的成人才有资格申请机动车驾驶证.小学六年级的学生李明说:“我老爸有汽车驾照, 他的年龄数与生辰月、日数的乘积为2975”, 请问李明的父亲多少岁? 【答案】35.【解答】17535177252975⨯⨯=⨯⨯=, 由于月份数取1~12的自然数, 日期数取1~31的自然数, 所以, 李明父亲要么是25岁, 7月17日生, 要么是35岁, 5月17日生.由于李明已经小学六年级, 他老爸不可能25岁, 所以李明父亲的年龄是35岁.题6(必答A4)如图A-59, D 是BC 边上一点, 且2,BD DC = DP//CA . 三角形APD 的面积为14cm 2, 问三角形ABC 的面积是多少cm 2.【答案】63cm 2.【解答】连结PC , 见图A-60. 因为 DP//CA , 所以14PCD APD S S ∆∆==.又因为2,BD DC = 所以21428PBD S ∆=⨯=( cm 2). 所以281442ABD PBD APD S S S ∆∆∆=+=+=( cm 2).因此,33426322ABC ABD S S ∆∆=⨯=⨯= ( cm 2).题7(必答A5)如果一个自然数既能写成两个连续自然数之和也能写成三个连续自然数之和, 就称为一个“好数”. 请找出2007, 2008, 2009, 2010, 2011图A-62图A-61中的“好数”. 【答案】2007.【解答】 易知:一个数为“好数”, 当且仅当它是一个奇数且能被3整除. 因此, 2007是“好数”, 而2008, 2010不是“好数”, 因为它们不是奇数, 2009, 2011也不是“好数”, 因为它们不能被3整除.事实上, 2007=1003+1004=668+669+670, 符合“好数”的定义. 题8(必答A6)如图A-61, 大正六边形的面积是1平方厘米, 问绿色正六边形的面积是多少平方厘米?【答案】31平方厘米.【解答】由正六边形的性质, 图A-62中阴影跳棋盘部分被分成12个边长相等的正三角形. 而图中未着色的6个三角形都是等腰三角形, 其中一个角为120, 两个底角为30. 腰长等于小正三角形的边长. 因此未着色的三角形的面积等于小正三角形的面积. 正六边形A’B’C’D’E’F’的面积是正六边形ABCDEF 的31186=. 故正六边形A’B’C’D’E’F’的面积是31平方厘米. 题9(必答A7)袋里的红球占袋中总球数的167;再往袋里放入40个红球后, 红球占总数的43. 问最后袋里共有多少个球? 【答案】72个.【解答】设最后袋里共有球x 个, 则根据题设, 有4340167)40(⨯=+⨯-x x , 即图A-63图A-64图A-657(40)16401272.x x x ⨯-+⨯==,题10(必答A8)图A-63中所标出的10个角的度数总和是多少?【答案】1080︒.【解答】图A-64中, 阴影四边形的内角和是360, 这样四边形有5个, 度数和是1800;其中围绕中间的五边形 ABCDE 顶点的10个角度数的和恰是这个五边形外角和360的2倍, 故图中所求的10个内角和是180023601080-⨯=.题11(群答2)将分别写有华、杯、赛、好的四张卡片, 选出其中三张, 字面朝下依次摆在桌子上.甲、乙、丙三人分别猜每张卡片上是什么字, 猜的情况如下:第一张 第二张 第三张 甲 华 杯 赛 乙 华 好 杯 丙赛华好结果是一人全对, 一人全错, 另外一人只对一个. 请指出全猜错的是谁. 【答案】丙.【解答】全对的只能是甲(或乙), 只对一个的是乙(或甲)(因为甲、乙两人第一张猜到同样的结果), 因此, 全错是丙.题12(群答3)如图A-65, A 是邮局, B , C , D , E , F 是5户人家. 相邻两家的路程如图所标示. 邮递员从邮局出发要给这5户人家送信(每家都有信), 要求最后把信送到D 户. 问:邮递员走的最短路程是多少米?图A-66图A-68【答案】500米.【解答】100100100100100.A B C F E D −−→−−→−−→−−→−−→题13(共答2)在3×3×3的正方体玻璃支架上有27 个单位立方体空格.每个单位立方体空格中至多放有一个彩球. 要使主视图、俯视图、左视图都如图A-66中所示. 问正方体支架上至少需放多少个彩球?请你放置出来. 【答案】9个. 一种放法如图A-67.题14(必答B1)如图A-68, 在正方形ABCD 中, 正方形AMOP 的面积是8平方厘米, 正方形CNOQ 的面积是24.5平方厘米. 问:正方形ABCD 的面积是多少平方厘米? 【答案】60.5平方厘米.【解答】因为正方形AMOP 的面积是8平方厘米, 所以对角线AO = 4厘米, 正方形CNOQ 的面积是24.5平方厘米, 所以对角线OC =7厘米. 因此正方形ABCD 的对角线等于 4 + 7 = 11厘米.所以正方形ABCD 的面积=5.6011212=⨯平方厘米.图A-67图A-69图A-70题15 (必答B2)在两个□中分别填入整数, 使得 7⨯□5+⨯□11111= 成立, 请你回答, 两个□中填入的整数之和能等于偶数吗? 试说明理由. 【答案】不能.【解答】设两个□中填入的整数分别为,x y , 若x y +等于偶数, 则,x y 奇偶性相同. 若,x y 同为奇数, 则7,5x y 都为奇数, 75x y +为偶数, 不能等于11111;若,x y 同为偶数, 则7,5x y 都为偶数, 75x y +也为偶数, 也不能等于11111. 综上可知, 两个□中填入的整数之和不能等于偶数.题16(必答B3) 如图A-69, MN 是面积为76平方厘米的梯形ABCD 的中位线. P 是下底BC 上一点. 问:三角形MNP 的面积是多少平方厘米? 【答案】19平方厘米.【解答】设梯形的高为h , 则 1111()()22242M N P h S A D B C A D B C h ∆=⨯+⨯=⨯+1761944ABCD S ===(平方厘米). 题17 (必答B4)一种电子表在10点28分6秒时, 显示的时间如图A-70所示. 那么从10点至10点半这段时间内, 电子表上六个数字都不相同的时间共有多少秒?【答案】 90秒.【解答】在10点至10点半这段时间内, 要使电子表上六个数字都不相同, 前三个数字显然是1, 0, 2.设时间为10:2a :bc , 其中b 可在3, 4, 5中选择, a , c 可在3, 4, 5, 6, 7, 8, 9中选择.先确定b , 有3种选法;然后确定a , 有6种选法;最后确定c , 有5种选法. 所以, 从10点至10点半这段时间内, 电子表上六个数字都不相同的时间一共有3 × 6 × 5 = 90(个), 也就是图A-72电子表上六个数字都不相同的时间共有90秒.题18(必答B5)如图A-71, E , F , G , H 分别是四边形ABCD 的边AB , BC , CD , DA 的中点. BH 与DE 的交点为M , BG 与 DF 的交点为N . 问?BMDNABCDS S = 【答案】13BMDN ABCD S S =. 【解答】如图A-72, 连接BD , CN , 填入面积,x y , 则由三角形CDF 与BGD 比较可知,13BDN BCD S x y S ∆∆=+=.同理可得,13BDM ABD S S ∆∆=.相加即得13BMDN ABCD S S =. 题19(必答B6)如图A-73, 五行五列共亮着的25个灯.共有5个行开关和5个列开关, 每个开关只同时控制一行或一列的5个灯泡. 规定每次操作都要从中选一列改变状态, 再从中选一行改变状态. 问能否通过有限次操作使得25盏灯都熄灭?【答案】不能.【解答】依题意, 每次操作都对一行、一列进行操作, 则一次操作改变状态灯泡的为10个灯次, 设k 次操作能使得25盏灯都熄灭, 则k 次操作共改变灯泡状态为10k 个灯次, 是个偶数;而若要使得一盏灯由亮到熄灭, 必须改变奇数次状态, 25盏灯都熄灭时改变状态的灯次总数为25个奇数之和, 等于奇数个灯次, 但奇数个灯次不等于偶数个灯图A-74图A-76图A-75次, 所以不能通过有限次操作使得25盏灯都熄灭.题20(必答B7)如图A-74, P 为正六边形ABCDEF 的AB 边上一点. PM//CD 交EF 于M , PN//BC 交CD 于N .红、蓝两个小精灵从N 点同时出发分别沿五边形NPMED 周界和六边形CBAFED 周界匀速行走, 各绕一周后同时回到N 点. 问:蓝精灵的速度是红精灵速度的多少倍?【答案】1.2倍.【解答】 如图A-75, 设正六边形边长为a , 则蓝精灵走一周的路程为6a , 红精灵走一周的路程为5a , 所以蓝精灵速度:是红精灵速度的61.25=倍. 题21(必答B8)将33写成n 个连续自然数之和. 当n 取最大值时, 将写成的和式中的所有“+”号全变为“×”号后, 其乘积等于多少? 【答案】20160.【解答】因为12345672833,++++++=<23456783533.++++++=>所以33不能写成7个或多于7个的连续自然数之和. 因此 6.n ≤而33 = 3 + 4 + 5 + 6 + 7 + 8, 所以n 得最大值为 6. 又n =6时,87654333+++++=, 从而有20160876543=⨯⨯⨯⨯⨯.下半场题22 (共答3) 将长方形ABCD 绕顶点A 顺时针旋转90, 边CD 扫过的面积如图A-76中阴影所示. 请用无刻度直尺、圆规为工具在图中画出一个圆, 使它的面积等于图中阴影部分的面积.图A-78图A-77【答案】作法如图A-78所示.【解答】如图A-77, 连接AC , AC 1, 则阴影部分面积S 2222()444AC AD AC AD πππ=-=-2242CD CD ππ⎛⎫== ⎪⎝⎭.阴影部分面积等于以CD 为直径的圆面积. 因此, 得如下作图法:延长C 1B 1交BC 于E , 连接BB 1与AE 交于M , 连接AC 1与D 1B 1交于N , 连接MN 交AB 1于O . 以O 为圆心AO 为半径画圆, 该圆的面积即等于图中阴影部分面积.题23(群答4)1+++=++++振兴中华两岸四地同心在上面的算式中, 不同的汉字代表 0 - 9 中的不同的数字. 若已知“同心=10”, 问:振 + 兴 + 中 + 华 = ?【答案】 27. 【解答】由于1+++=++++振兴中华两岸四地同心,易知振+兴+中+华=两+岸+四+地+10,即(振+兴+中+华)-(两+岸+四+地)=10. ①但振+兴+中+华+两+岸+四+地+1+0=45,所以+(振+兴+中+华)(两+岸+四+地)=44. ② 因此, 由① + ②得振+兴+中+华=10445427.22+== 题24(群答5)给出字谜算式:()()+++2010⨯=华老百年华诞三年-(金坛+翻+番),其中不同的汉字代表0~9中的不同数字, 相同的汉字代表相同数字, 使得等式成立. 请你写出一种使等式成立的填数法.【答案】 ()(291028)50(3746)2010.++⨯-+++=【解答】()20106730(291028)50(3746).=⨯=++⨯-+++【注】常州日报2010年8月1日消息, 金坛市推出“3年翻番计划”, 将规划建设“二城一都”; 华罗庚科技新城和环钱资荡滨湖城, 同时, 全力打造“光伏之都”. 经济总量计划三年翻番.题25(抢答1)现在有11个齿轮如图A-79啮合在一起. 问这样一个齿轮系统能否转动起来?试说明理由.图A-79【答案】 不能.【解答】 齿轮要么逆时针转动, 要么顺时针转动. 一个齿轮不可能同时既逆时针转动又顺时针转动.如图A-80, 将齿轮依次编号, 假设1号轮为主动轮是逆时针转动, 那么2号轮则顺时针转动, 3号轮则逆时针转动, 4号轮则顺时针转动, 依次下去, 奇数号的轮逆时针转动, 偶数号的轮顺时针转动, 所以第11号轮应逆时针转动. 但第11号轮又将传动第1号轮, 于是第1号轮(相当于第12号轮)应顺时针转动. 这样, 第1号轮同时既要逆时针转动, 又要顺时针转动, 这是不可能的! 所以图A-79中所示的11个齿轮的传动系统是不可能转动起来的!题26(抢答2)将某同学生日的月份数与31的乘积、日数与12的乘积相加, 得到和为376. 问这位同学的生日是几月几号.【答案】4月21日.【解答】设这个同学的生日为x 月y 日, 其中,x y 都是正整数, 112,x ≤≤131.y ≤≤ 且满足关系式3112376x y +=.由于376与12都被4整除, 所以31x 被4整除, 由于31与4互质, 所以x 被4整除, 因此x 只能取4或8或12. 376被3除余1, 12y 被3整除, 所以31x 被3除余1, 而31被3除余1, 所以只能x 被3除余1. 因此 4.x =图A-80而 12376314376124252,y =-⨯=-=所以25221.12y == 即这个同学的生日是 4月21日.题27(抢答3)将半径分别为1cm, 3cm, 5cm 的三个半圆形量角器的圆心重合于O , 直径也重合在一条直线上, 如图A-81所示. 记甲、乙两块阴影截扇形与半圆丙的面积分别为S S S 甲乙丙,,, 求 ::S S S 甲乙丙.【答案】::48:40:1S S S =甲乙丙【解答】因为211.22S ππ=⨯=丙21143.3223S πππ⎡⎤=⨯-=⎢⎥⎣⎦乙22111853.5225S πππ⎡⎤=⨯-⨯=⎢⎥⎣⎦甲所以84::::48:40:15.532S S S πππ==甲乙丙 题28(抢答4)某城市网上挑选机动车号牌编码规则为:号牌后五位必须有两个英文字母(其中字母I 、O 不可用)且最后一位必须为数字. 问:满足规定的编码共有多少个?图A-81图A-82图A-83【答案】3456000个.【解答】根据网上选号规则, 可供挑选的英文字母有26-2=24(个), 且只能在第一至第四位上的两个位置出现, 而其余两个位置以及第五位则出现数字.两个字母为前4位中占2位, 共6种方法. 每个字母有24种选法, 其余3个位置是数码, 每个数码有10种选法. 所以满足规定的编码共有624241010103456000⨯⨯⨯⨯⨯=(个).题29(抢答5)机器人在长为16米宽为8米的长方形场地上, 沿图A-82所示的小路按箭头的指向表演行走. 问当机器人从A 处走到B 处时共走了多少米的路程?假设图中相邻的两条平行小路之间的宽度都是1米 (B 点与竖直路段最近的距离也是1米). 【答案】152米.【解答】将横、竖各段路程长度加起来就会得到结果:16 + 8 + 16 + 7 + 15 + 6 + 14 + 5 + 13 + 4 + 12 + 3 + 11 + 2 + 10 + 1 + 9(116)161616178161361522+⨯=+=+⨯=+=(米). 另法: 如图A-83所示, 将16×8的长方形各边都向外扩充0.5米, 成为一个17×9的长方形. 这样黑粗线成为了宽为1米的平行线的正中平行线, 其中只少了A , B 处两个白色的面积为0.5×1=0.5的小矩形. 所以设想的拖地板的服务员, 拖的地板面积比总面积少拖1平方米, 因此, 机器人走的总路程=17×9-1=152(米).题30(抢答题6)图A-84为金坛市政区图, 现在用棕、绿、黄、粉四种颜色给该市未涂彩色的四个政区涂色. 如果要求相邻(有公共边界)政区的颜色不同, 则共有多少种涂色方法?图A-84【答案】18种.【解答】分两种情况:(1)直溪镇与指前镇同色.给直溪镇与指前镇染色: 有3种情况; 给朱林镇染色: 2种情况;给薛埠镇染色: 2 种情况. 共计3×2×2=12种.(2)直溪镇与指前镇异色.给直溪镇与指前镇染色: 有6种情况; 给朱林镇染色: 1种情况;给薛埠镇染色: 1 种情况. 共计6×1×1=6种.总计:共有12+6=18种染色方法.题31(抢答7)由数字0、1、2(既可全用也可不全用)组成的大于1000的自然数, 按照从小到大排列, 2010排在第几个?【答案】第30个.图A-85图A-86【解答】 由数字0、1、2生成的最高位为1的4位数共有3×3×3=27个, 其中大于1000的共有27-1=26个. 由0, 1, 2生成的最高位为2而不大于2010的自然数从小到大只有2000, 2001, 2002, 2010四个. 因此, 由数字0、1、2(既可全用也可不全用)组成的大于1000且不超过2010的自然数, 总计有26 + 4=30个, 2010是其中最大的, 因此按照从小到大排列, 排在第30个.题32(抢答8)如图A-85, P 为正方形ABCD 内一点, 并且∠APB =90°, AC 、BD 交于O .已知AP =3cm 、BP =5cm.求三角形OBP 的面积. 【答案】2.5 cm 2.【解答】连DP , 并将三角形ADP 绕A 点顺时针旋转90, 到三角形ABM 的位置, 见图A-86. 则AMBP 是直角梯形. 其面积等于(5+3)×3÷2=12, 即凹四边形ABPD 的面积是12. 又正方形ABCD 的面积为 2223534AB =+=. 从而三角形ABD 的面积为17.所以, 三角形PBD =(17-12)=5. 因此, 三角形OBP 的面积 = 2.5 cm 2.题33(共答4)如图A-87, 房间里有一只老鼠, 门外有一只小猫, 立在北墙跟第3块地板砖的右上角点. 整个地面由80块大小相同的正方形地砖铺成, 那么小猫能监控到的范围占整个地板面积的百分之多少?(小猫和老鼠分别看作两个点, 墙的厚度忽略不计)【答案】66.875%.【解答】设地板正方形边长为1, 则这个房间面积为80. 如图A-88,图A-88阴影部分区域为老鼠在地面上能避开小猫视线的活动范围. 这个范围的总面积为(27)52422S +⨯⨯=+= 26.5. 所以小猫能监控到的面积为8026.553.5.-=占房间总面积的53.50.6687566.875%.80== 题34(群众共答)在每个人心里都默记住两个不等于0的数. 算出这两个数和的平方, 其结果记做“共”; 算出这两个数差的平方, 其结果记做“迎”; 再算出这两个数的乘积, 记做“接”. 请用你的“共”, “迎”, “接”来计算式子2?-⎛⎫= ⎪⎝⎭共迎接 请大家一起同声回答!图A-87【答案】16.【解答】设想的两个非0数为,.a b 则222222()()4416.a b a b ab ab ab ⎛⎫-+--⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭共迎接。

小学华杯赛试题及答案

小学华杯赛试题及答案

小学华杯赛试题及答案【篇一:各届华杯赛真题集锦-含答案哦!】届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则a、b、c处填的数各是多少? 4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?【篇二:六年级华杯赛奥数竞赛模拟题(30套)】=txt>一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+?+170)-(41+42+?+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?小学奥数模拟试卷.2 姓名得分一、填空题:1.用简便方法计算下列各题:(3)100+99-98-97+?+4+3-2-1=______.2.上右面算式中a代表_____,b代表_____,c代表_____,d代表_____(a、b、c、d各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟_____岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_____面,黄旗_____面.6.如图中,能看到的方砖有______块,看不到的方砖有______块. 7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考____次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,??这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若p点在岸上,则a点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点b,他脱鞋的次数与穿鞋的次数和是奇数,那么b点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,1 5 6 7 8 9 10 11 12 13 14 152025 2627 28 29 3035 40 41 42 43 44 4546 47 48 49 50 55 56 57 58 59 603.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.小学奥数模拟试卷.3 姓名得分一、填空题:2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,?,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5. 2.如图,把四边形abcd的各边延长,使得ab=ba′,bc=cb′cd=dc′,daad′,得到一个大的四边形a′b′c′d′,若四边形abcd的面积是1,求四边形a′b′c′d′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?小学奥数模拟试卷.4 姓名得分【篇三:2015小高华杯赛答案及解析】=txt>决赛试题b(小学高年级组)一、填空题(每小题10份,共80分)1. 计算:57.6?81845?28.8?5?14.4?80?1212?________.【难度】★【考点】计算:提取公因数【答案】121【解析】原式?57.6?818415?28.8?5?14.4?80?12228.8165?28.8?1845?14.4?80?121228.82005?14.4?80?121228.84014.4240121212122. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.【难度】★★【考点】应用题:分数应用题【答案】13【解析】甲=总数的三分之一=20,乙=总数的四分之一=15,丙=总数的五分之一=12,所以丁?60?20?15?12?13(棵)3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.【难度】★★【考点】行程:时钟问题【答案】106【解析】4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.【难度】★★【考点】数论:余数、最小公倍数【答案】122【解析】这个三位数减去2得到3、4、5、6的公倍数,取三位数120,所以最小值为122.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.【难度】★★★★【考点】计数:组合计数【答案】7【解析】用a1,a2,a3,a4,a5,a6,a7这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7?2?2?7条虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.a2必与两个点连接虚线,不妨记为a1,a3,而a3必然再与一个点连接虚线,记为a4;a4虚线连接a5,否则剩下3个点互为敌国关系;a5虚线连接a6,否则剩下两个点无法由2条虚线连接;a6虚线连接a7,最后a7只能虚线连接a1.最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件.有135,136,146,246,247,257,357,这7种.(为了直观我们用1,2,3,4,5,6,7分别代表a1,a2,a3,a4,a5,a6,a7)6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.【难度】★★★【考点】数论:位值原理【答案】9421,1249【解析】设其中最小的四位数为abcd,一共可组成4?3?2?1?24个不同的四位数,由于每个数字在每位上均出现6次,则24个数和为6??a?b?c?d??1111?106656,则四个数字之和为16,所以最大和最小的可能为,9421和1249、8521和1258、8431和1348、7621和1267、7531和1357、7432和2347、6541和1456、6532和2356.7. 见右图,三角形abc的面积为1,do:ob?1:3,eo:oa?4:5,则三角形doe的面积为________.【难度】★★★★【考点】几何:等积变形【答案】11135【解析】ye12xab设三角形doe的面积为4x,由比例关系不难得出图中另三块的面积分别为5x,12x,15x,再设三角形dce的面积为y,则有ceyy?4x?5 be?4x?12x?x12x?15x,得y?14411x,则三角形doe的面积为4?114?5?12?15?135.118. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.【难度】★★★★★【考点】组合:分类讨论数论综合【答案】4【解析】设三个数的个位分别为a,b,c⑴如果a,b,c都相等,则只能都为0;⑵如果a,b,c中有两个相等,①a,a,c且a?c,必有c?a?10?a,则c?10,与c为数字矛盾;②a,a,c且a?c,则有c?a?a,a?a?10?c,则a?5,c?0;⑶如果a,b,c都不相等,设a?b?c,则c?b?10?a,c?a?10?b,则c?10,与c为数字矛盾;综上三个数的个位分别为0,0,0或0,5,5;⑴如果都为0,则乘积末尾3位为000;⑵如果为0,5,5①如果个位为0的数,末尾3位都为0,则乘积末尾3位为000;②如果个位为0的数,末尾2位都为0,则乘积末尾3位为500或000;③如果个位为0的数,末尾1位为0设末尾两位为c0,设另外两个末尾2位为a5,b5,则a5?b5?100ab?50?a?b??25,若?a?b?为奇数,则乘积末尾3位为75;若?a?b?为偶数则乘积为25,在乘上c0,无论c为多少,末尾三位只有000,250,500,750这4种.综上,积的末尾3位有000,500,250,750这4种可能.二、解答下列各题(每题10分,共40分,要求写出简要过程) 9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.【难度】★★★★【考点】数论:完全平方数【答案】不能【解析】原数的数字和为1?2?3??9?1?0?1?1?48,为3的倍数,而交换数字位置不会改变数字和,所以无论怎么调整得到的数一定为3的倍数;而一个平方数如果为3的倍数,则一定为9的倍数,而48不是9的倍数,所以无法通过交换数字位置得到一个完全平方数.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为y,5,x的长方体(x,y为整数),余下部分的体积为120,求x和y.x4y15【难度】★★★【考点】几何:长方体正方体【答案】x?3,y?12。

第十五届“华杯赛”一组总决赛二试题答案

第十五届“华杯赛”一组总决赛二试题答案

“华杯赛”组委会办公室 咨询电话:4006500888
“华杯赛”官方网站
3a a 当 1时, 20 100 a 3a 3a a a 3 3 , a 300 . , 100 20 20 100 100 3a a 当 1时, 20 100 a 3a 3a a a 3 2 , a 200 . 1, 100 20 20 100 100
当 x 1时, 原式化为 x 2 ( x 1) 2 或 3 2 . 可见, 当 x 1 时, 原式 恒成立. 于是, x 应满足条件是 1.5 x 0.5 . 解答 2:当 x 2 时, 原不等式化为 | x 2 (1 x) | 2 ,
76 21 个取值在 1~12 的差. 这些差中 2
(1)不可能出现 am an ak an ; (2)若有 am an an al , 即 2an am al , (m n l ) , 则不能有
m1 m, l1 l ( m1 n l1 ), 使得 2an am1 al1 , 否则存在 2 对牌, 其中一对牌的
“华杯赛”组委会办公室 咨询电话:4006500888
“华杯赛”官方网站
在将 1、3 和 5 反面后, 仍放在原来位置. 将整摞纸片从任一张纸片分成两摞, 将 上一摞整摞反转后再放在下一摞上, 或者把 5 张纸片整摞反转, 算是一次“反转 ” . 若要使上述摆放的五张纸片都转变成正面向上的状态, 则至少要进行 “反转 ”. (有数字的面为正面) 【答案】5. 【解答】若把整摞纸片看成为, 每一部分都是同方向的“子摞”而成. 因此 原来的整摞纸片有 5 摞纸片组成. 一次“反转”只能从一张纸片开始, 把上部分最上面的纸片与下部分的上面 第一张纸片相邻 . 注意到上部分反转时 , 中间次序没有发生变化 , 一次反正后 “子摞”数只会出现三种情况:增加 1, 不变, 减少 1. 并且整摞反转时, “子摞” 数目, 不会发生变化. 按照要求, 要把 5 变成正面向上, 一定有一次要 5 张纸片一次“反转”. 而 整摞的数码保持不变. 要把 5 个“子摞”变成一个子摞, 至少“反转”4 次. 因此, 至少反转 5 次. 下面说明 5 次可以保证 5 张纸片都是正面向上的状态: 即将 1 先 “反转” , 再 将 1 和 2 同时反转, 依次再反转 2、1、3;再反转 3、1、2、4. 最后反转 4、2、 1、3、5 就全都正面向上了. 共 5 次. (此种反转为其中一种) 3. [a] 表示不大于 a 的最大整数, 已知 次

第15届华杯赛小学组初赛试卷及详解

第15届华杯赛小学组初赛试卷及详解

第15届华杯赛小学组初赛试卷及详解第十五届华罗庚金杯赛少年数学邀请赛初赛试卷(小学组)试题答案及详解参考答案:1、A2、B3、B4、D5、B6、C7、508、5569、610、126答案详解:1、每个空白正六边形能分成六个相同的正三角形,所以空白部分总共包含12个这样的正三角形;而整个大平行四边形能分成24个这样的正三角形,所以空白部分占整个平行四边形的一半,那么阴影部分也占整个平行四边形的一半。

所以选A。

2、设剪下的长度为x厘米则可以列出不等式:23-x≥2(15-x),整理得x≥7所以剪下的长度至少是7厘米,选B。

3、两池中鱼的条数相等,亮亮捞到第一个水池里金鱼数目的3/7,捞到第二个水池里金鱼数目的5/8,而第一次比第二次少捞了33条,可以求出每个水池中鱼的条数为:33÷(5/8-3/7)=168(条),所以选B4、这五个分数的总和为1.45,而6/7=0.857…,前者比后者大0.592857…,所以题目即需要从前面五个分数中选出两个,使他们的和最接近0.592857…,比较后可得应选1/3和1/4,选D。

5、20=20=2×10=4×5=2×2×5四种情况下的最小自然数分别为:219、29×3、24×33、24×3×5,其中最小的是最后一个,为240,选B。

6、选C7、原式=5/7+2/3=29/21,所以m+n=29+21=50.8、5569、根据弃九法,所有加数的各位数字总和与求得总和的各位数字之和应该差9的整数倍。

由于xxxx的各位数字之和为3,而0+1+2+…+9=45,所以应该从中去掉6.10、回到A点次数所花总时间到达A点时A点连接位置10.3分C 20.6分C30.9分C41.2分B51.35分B61.5分B 71.65分B81.8分B91.95分B102.1分C所以花2.1分钟,即126秒。

第十五届“华杯赛”小学组决赛试题B答案

第十五届“华杯赛”小学组决赛试题B答案

第十五届全国华罗庚金杯少年数学邀请赛决赛试题B 解答(小学组)一、填空题1.在10个盒子中放乒乓球,每个盒子中球的个数不能少于11,不能是17,也不能是6的倍数,并且彼此不同,那么至少需要 个乒乓球.【答案】174.【解答】至少需要17423222120191615141311=+++++++++(个).2.有五种价格分别为2元、5元、8元、11元、14元的礼品,以及五种价格分别为3元、6元、9元、12元、15元的包装盒. 一个礼品配一个包装盒,共有 种不同的价格.【答案】9.【解答】任意的搭配共有25种,其中有价格重复的情况.由于礼品和包装盒的价格都是公差为3的等差数列,故当礼品和包装盒可以组成一个5元,8元,11元,14元,17元,20元,23元,26元,29元,共有9种不同的价格.3. 汽车A 从甲站出发开往乙站, 同时汽车B 、C 从乙站出发与A 相向而行开往甲站, 途中A 与B 相遇20分钟后再与C 相遇. 已知 A 、B 、C 的速度分别是每小时90km, 80km, 60km, 那么甲乙两站的路程是 km.【答案】425.【解答】设A 与B 出发t 小时后相遇, 两地距离为s , 则s t =+)8090(, s t =++)31)(9060(. 解之得 4255.2170=⨯=s .4. 将21, 31, 41, 51, 61, 71和这6个分数的平均值从大到小排列, 则这个平均值排在第 位.【答案】 3.【解答】先从小到大排列这6个分数: 2131********<<<<<, 因为前三个分数之和比后三个分数之和小,因此这6个分数的平均值不可能排在它们的中间.因为416716151413121⨯-⎪⎭⎫ ⎝⎛+++++417151-⎪⎭⎫ ⎝⎛+==020171>-, 且⎪⎭⎫ ⎝⎛+++++-⨯7161514131213160715143>⎪⎭⎫ ⎝⎛+-=. 所以这6个分数的平均值大于14,小于13. 即这六个分数的平均值排在第3位. 5. 若两位数的平方只有十位上的数字是0,则这样的两位数共有 个.【答案】9.【解答】设符合条件的两位数是ab . 两位数ab 的平方的十位上的数字等于2ab 个位上的数与2b 的十位上的数字之和的个位数字,为 0. 因为ab 的平方只有十位上的数字为0,所以0≠b .当b 取1~9时,2b 的十位上的数字分别为 0、0、0、1、2、3 、4、6、8.ab 2个位上的数字如下:当a 为 1时,分别为2、4、6、8、0、2、4、6、8;当a 为2时,分别为4、8、2、6、0、4、8、2、6;当a 为3时,分别为3、6、9、2、5、8、1、4、7;当a 为4时,分别为8、6、4、2、0、8、6、4、2;当a 为5时,分别为0、0、0、1、2、3、4、6、8;当a 为6或7时,分别与1或2时相同;当a 为8时,分别为6、2、8、4、0、6、2、8、4;当a 为9时,分别为8、6、4、2、0、8、6、4、2.所以这样的两位数有47,48,49,51,52,53,97,98,99,共9个.6. 图A-16所示的立体图形由10个棱长为1的立方块搭成, 这个立体图形的表面积为 .【答案】34. 【解答】 从上、下、前、后、左、右看这个立体图形的表面的面积分别为 6, 6, 5, 5, 6, 6, 总和为 34 .7. 数字卡片“3”、 “4”、 “5”各10张,从中任意选出8张,它们的数字和是31,则最多有 张是卡片“3”.【答案】4.【解答】假设摸出的8张卡片全是数字“3”,则其和为3×8=24,与实际的和31相差8,这是因为将摸出的卡片“4”、 “5”都当成是卡片“3”的缘故. 用一张卡片“5”和“4”换一张卡片“3”,数字和可分别增加2和1. 为了使卡片“3”尽可能地多,应该多用卡片“5”换卡片“3”,现在8÷2=4,因此可用4张卡片“5”换卡片“3”,这样8张卡片的数字之和正好等于32. 所以最多可能有4张是卡片“3”.8. 能同时表示成连续9个、10个和11个非零自然数的和的最小自然数是 .【答案】495.【解答】设所求的正整数为A ,则由题意得:A =459)9()3()2()1(+=++++++++p p p p p , ①A =5510)10()3()2()1(+=++++++++m m m m m , ②A =6611)9()3()2()1(+=++++++++n n n n n , ③其中p , m , n 均为整数. 由①、②可得:5510459+=+m p ,所以)1(109+=m p . ④由②、③可得:66115510+=+n m ,所以)1(1110+=n m . ⑤因为10与11互质,所以由⑤可知,m 是11的倍数,由④可知,1+m 是9的倍数,所以m 是11的倍数,且被9除的余数为8,于是m 的最小值为44,A 的最小值为495554410=+⨯.二、解答下列各题9. 图A-17中有5个由4个1×1的小正方格组成的不同形状的硬纸板. 问能用这5个硬纸板拼成图A-17中4×5的长方形吗?如果能, 请画出一种拼法;如果不能, 请简述理由.【答案】不能.【解答】 假设能拼成4×5的长方形, 如图A-18小方格黑白相间染色. 其中黑格、白格各10个.将五块纸板编号, 如图A-19所示, 除纸板④之外, 其余4张硬纸板每一张都盖住2个黑格, 而④盖住3个黑格或一个黑格. 这样一来, 由4个1×1的小正方 ① ②③④ ⑤图A-19图A-18格组成的不同形状的5个硬纸板, 只能盖住9或11个黑格, 与10个黑格不符.10. 图A-20中,ABCD 是一个梯形,且CD AB //,三角形ABO 和三角形OCD 的面积分别是16和4,求DC AB. 【答案】12. 【解答】由三角形面积公式,BCO OCD ABO AOD S S OC S S AO∆∆∆∆==. 又有AOD BCO S S ∆∆=,故416BCO BCOS S ∆∆=. 所以8BCO BCO S S ∆∆==.设梯形高为h , 因为, 22ABC DAC h AB h CD S S ∆∆⨯⨯==, 所以DAC ABC S CD S AB∆∆=. 又因为24, 12ABC ABO BCO DAC OCD AOD S S S S S S ∆∆∆∆∆∆=+==+=,所以12DC AB =.图A-2011. 长度为L 的一条木棍,分别用红、蓝、黑线将它等分为8,12和18段,在各划分线处将木棍锯开,问一共可以得到多少段?其中最短的一段的长是多少?【答案】28,72L . 【解答】(1)易知,红线与蓝线重合的条数是 31)12,8(=-;红线与黑线重合的条数是 1121)18,8(=-=-;蓝线与黑线重合的条数是 51)18,12(=-;红线、蓝线、黑线都重合的条数是 1121)18,12,8(=-=-.由红线7条,蓝线11条,黑线17条确定的位置的个数是271)513(17117=+++-++.因此,依不同位置的线条锯开一共得到28127=+(段).(2) 最小公倍数72362]9,3,4[2]18,12,8[=⨯=⨯=.因此,将木棍等分成72段时,至少有一段是在上述红、蓝、黑线的某两条之间,并且再短(段数更多)时就做不到了. 所以锯得的木棍最短的一段的长度是72L . 12. 华罗庚爷爷出生于1910年11月12日. 将这些数字排成一个整数, 并且分解成=⨯19101112116316424, 请问这两个数1163和16424中有质数吗? 并说明理由.【答案】1163是质数.【解答】1163是质数, 理由如下:(1)显然16424是大于2的偶数, 是合数.(2)如果1163是合数, 但不是完全平方数, 则至少有2个不同的质因数, 因为31113311163=>, 所以, 如果1163有3个以上不同的质因数, 必有一个小于11. 但是显然2, 3, 5, 7都不能整除1163, 11也不能整除1163, 因此1163仅有2个不同的大于11的质因数. 大于11的质数有:13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 等等.既然237116337311147<<⨯=, 1163的两个不同的质因数一定有一个小于37, 另一个大于11. 计算97131261116311578913⨯=<<=⨯;73171241116311566817⨯=<<=⨯;67191273116311596119⨯=<<=⨯;53231219116310814723⨯=<<=⨯;41291189116310733729⨯=<<=⨯;41311271116311433731⨯=<<=⨯.所以1163是质数.三、解答下列各题13. 一批货物重13.5吨,每包货物重量不超过350千克,请问:能否用11辆载重为1.5吨的小货车一次运走?并对你的结论加以说明.【答案】能.【解答】一种方案如下:把11辆货车顺序编号为1,2,3,…,11. 先把1至8号车装上货物,每车一直装到不超过1.5吨为上限, 只要再装一包便超过1.5吨为止,并把这8个最后一包分成两组,每组4包,每组重量不超过14004350=⨯千克5.1<吨,用9,10号车可将这两组8包货物运走,这样1至10号车共装运了超过1.51213=5.-吨,这128=⨯(吨)货物,还剩下的货物的重量不超过5.1样可以用11号车把剩下的货物运走.14. 已知两位自然数“虎威”能被它的数字之积整除,求出“虎威”代表的两位数.【答案】11,12,15,24,36.【解答】两位自然数共有90个,一个一个地去试算检验它是不是满足条件,工作量太大,显然需要开动脑筋,缩小试算范围.设“虎”、“威”两个汉字分表代表的数字为a,b. 显然a, b不等于0.因为10=+,10a bab a b+能+能被ab整除意味着10a b+能被a整除且10a b被b整除. 如果10a b+能被a整除,说明b能被a整除;如果10a b+能被b整除,说明10a能被b整除. 这就是说,数字a,b同时要满足两个条件:(1)a整除b,(2)b整除10a。

15届华杯赛入围赛三年级试卷答案

15届华杯赛入围赛三年级试卷答案

参考答案:一、填空题(每小题10分,满分80分)1.4+6+8+10+12+14+16+18+20+22+24+26+28+30+32+34+36=( 340 )2.仔细观察下图,找找变化规律,猜猜在第3组的空白格内填一个什么样的图?3.下面的字母各代表什么数字,算式才能成立?A = ( 9),B =(4 ),C = ( 8),D =( 0 ),E =( 1 )。

4.用边长为10厘米的五个小正方形拼成如下图的形状,这个图形的周长是(120)厘米。

5.按上面的规律往下摆,第28颗是(黑)色。

6.光华路小学三年级学生有125人参加运动会入场式,他们每5人一行,前后每行间隔为2米,主席台长42米,他们以每分钟45米的速度通过主席台,需要2 分钟.7.弟弟今年8岁,哥哥今年14岁,当二人年龄之和是50岁时,弟弟 22 岁,哥哥28 岁.8.用一个杯子向空瓶里倒水,如果倒进2杯水,连瓶共重200克。

如果倒进5杯水,连瓶共重380克。

算一算:一杯水重(60)克,一个空瓶重(80)克。

二、简答题(每题10分,满分40分,要求写出简要过程)9.小伟做一道减法题,把被减数十位上的6当作9,把减数个位上的3当成5,结果是217,正确答案是多少?10.一根木头长24分米,要锯成4分米长的木棍,每锯一次要3分,锯完一段休息2分,全部锯完需要多少分?11.南京长江大桥比美国纽约大桥长4570米,纽约大桥比我国武汉长江大桥长530米.已知三座桥长共10640米,南京长江大桥是多少米?美国纽约大桥是多少米?武汉长江大桥是多少米?12.兄弟三人分24个桔子,每人所得个数分别等于他们三年前各自的岁数.如果老三先把所得的桔子的一半平分给老大与老二,接着老二把现有的桔子的一半平分给老三与老大,最后老大把现有的桔子的一半平分给老二与老三,这时每人的桔子数恰好相同.问:兄弟三人的年龄各多少岁?。

第十五届华赛杯小学组初赛试题及答案

第十五届华赛杯小学组初赛试题及答案

第十五届华罗庚金杯少年数学邀请赛初赛试题(小学组)一、选择题(每小题 10 分,满分60分. 以下每题的四个选项中,仅有一个是正确的. 请将表示正确答案的英文字母写在每题的圆括号内)1. 如图Q-1所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的 ( ).(A ) 21 (B )32 (C )52 (D )125 2. 两条纸带,较长的一条为23cm ,较短的一条为15cm. 把两条纸带剪下同样长的一段后,剩下的两条纸带中,要求较长的纸带的长度不少于较短的纸带长度的两倍,那么剪下的长度至少是 ( ) cm.(A) 6 (B )7 (C )8 (D )93. 两个水池内有金鱼若干条, 数目相同. 亮亮和红红进行捞鱼比赛, 第一个水池内的金鱼被捞完时,亮亮和红红所捞到的金鱼数目比是3:4;捞完第二个水池内的金鱼时,亮亮比第一次多捞33条,与红红捞到的金鱼数目比是5:3. 那么每个水池内有金鱼( ) 条.(A) 112 (B )168 (C )224 (D )3364. 从21,31,41,51,61中去掉两个数,使得剩下的三个数之和与76最接近,去掉的两个数是 ( ).(A ) 21,51 (B )21,61 (C )31,51 (D )31,41 5. 恰有20个因数的最小自然数是 ( ).(A) 120 (B )240 (C )360 (D )4326. 图Q-2的大正方形格板是由81个1平方厘米的小正方形铺成, B , C 是两个格点. 若请你在其它的格点中标出一点A ,使得△ABC 的面积恰等于3平方厘米,则这样的A点共有 ( ) 个.(A )6 (B )5 (C )8 (D )10二、填空题 (每小题 10 分,满分40分) 7. 算式 4.03.13.0241325.0721-⨯+⨯+-的值为 . 8. “低碳生活”从现在做起,从我做起. 据测算,1公顷落叶阔叶林每年可吸收二氧化碳14吨. 如果每台空调制冷温度在国家提倡的26℃基础上调到27℃,相应每年减排二氧化碳21千克. 某市仅此项减排就相当于25000公顷落叶阔叶林全年吸收的二氧化碳;若每个家庭按3台空调计,该市家庭约有 万户. (保留整数)9. 从0、1、2、3、4、5、6、7、8、9这十个数字中,选出九个数字,组成一个两位数、一个三位数和一个四位数,使这三个数的和等于2010,那么其中未被选中的数字是 .10. 图Q-3是一个玩具火车轨道,A 点有个变轨开关,可以连接B 或者C . 小圈轨道的周长是1.5米,大圈轨道的周长是3米. 开始时,A 连接C ,火车从A 点出发,按照顺时针方向在轨道上移动,同时变轨开关每隔1分钟变换一次轨道连接. 若火车的速度是每分钟10米,则火车第10次回到A 点时用了 分钟.第十五届全国华罗庚金杯少年数学邀请赛初赛试题解答(小学组)一、选择题1. 如图A-1所示, 平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的 ( ).(A ) 21 (B )32 (C )52 (D )125 【答案】A.【解答】由图可知, 左上角和右上角的阴影部分的面积分别恰等于一个平行四边形内正六边形的面积, 因此阴影部分的面积占平行四边形面积的21. 2. 两条纸带, 较长的一条为23cm, 较短的一条为15cm. 把两条纸带剪下同样长的一段后, 剩下的两条纸带中, 要求较长的纸带的长度不少于较短的纸带长度的两倍, 那么剪下的长度至少是 ( ) cm.(A) 6 (B )7 (C )8 (D )9【答案】B.【解答】设剪下的长度为x cm, 那么有:)15(223x x -≥-,解得7≥x . 因此, 剪下的长度至少为7 cm.3. 两个水池内有金鱼若干条, 数目相同. 亮亮和红红进行捞鱼比赛, 第一个水池内的金鱼被捞完时, 亮亮和红红所捞到的金鱼数目比是3:4;捞完第二个水池内的金鱼时, 亮亮比第一次多捞33条, 与红红捞到的金鱼数目比是5:3. 那么每个水池内有金鱼 ( ) 条.(A) 112 (B )168 (C )224 (D )336【答案】B.【解答】解法1:这是一道工程问题的变形, 每个水池内有金鱼168343355(33=+-+÷(条). 解法2:可以认为是比例应用题, 设亮亮第一次捞到3n 条, 则红红第一次捞到4n 条, 依题意, 有35334333=-+n n , 解得n =24, 因此水池内共有金鱼7n =168条. 4. 从21,31,41,51,61中去掉两个数, 使得剩下的三个数之和与76最接近, 去掉的两个数是 ( ).(A ) 21,51 (B )21,61 (C )31,51 (D )31,41 【答案】D.【解答】通分21=420210, 31=420140, 41=420105, 51=42084, 61=42070, 76=420360. 显然, 210+84+70=364最接近360.5. 恰有20个因数的最小自然数是 ( ).(A) 120 (B )240 (C )360 (D )432【答案】B.【解答】因为20=2×10=4×5=2×2×5, 因此, 具有20个因数的自然数是3与9个2的乘积, 即:3×2×2×2×2×2×2×2×2×2=1536; 或者是3个3与4个2的乘积, 即: 3×3×3×2×2×2×2=432; 或者是3, 5与4个2的乘积, 即: 3×5×2×2×2×2=240, 因此最小的自然数为240.6. 如图A-2的大正方形格板是由81个1平方厘米的小正方形铺成, B , C 是两个格点. 若请你在其它的格点中标出一点A , 使得△ABC 的面积恰等于3平方厘米, 则这样的A 点共有( ) 个.(A )6 (B )5 (C )8 (D )10【答案】C.【解答】 从最上面的水平线开始将水平线分别记为第1、第2、…、第10条水平线, 每条水平线均由左至右判断哪个格点符合题目要求. 以此穷举法可以得到:第1条水平线上没有格点符合要求, 第2条水平线上仅有7A 符合要求. 如图A-3所示, 类似可以得到格点2A ,1A ,6A 符合要求, 对称地, 可以得到5A ,4A ,3A ,8A 符合要求. 故答案是C.二、填空题 7. 算式 4.03.13.0241325.0721-⨯+⨯+-的值为 . 【答案】1218. 【解答】 4.03.13.0241325.0721-⨯+⨯+-=10953434175++=75+32=1218. 8. “低碳生活”从现在做起, 从我做起. 据测算, 1公顷落叶阔叶林每年可吸收二氧化碳14吨. 如果每台空调制冷温度在国家提倡的26℃基础上调到27℃, 相应每年减排二氧化碳21千克. 某市仅此项减排就相当于25000公顷落叶阔叶林全年吸收的二氧化碳;若每个家庭按3台空调计, 该市家庭约有 万户. (保留整数)【答案】556.【解答】 25000⨯14⨯1000÷(21⨯3)≈5555555.6.9. 从0、1、2、3、4、5、6、7、8、9这十个数字中, 选出九个数字, 组成一个两位数、一个三位数和一个四位数, 使这三个数的和等于2010, 那么其中未被选中的数字是 .【答案】6.【解答】由于和为2010 所以四位数首位只能为1, 设四位数、三位数、两位数分别为abc 1, ,def gh . 设没有被选的数字为x , 那么100()10()()1010a d b e g c f h +++++++=.两边同时减去h g f e d c b a +++++++, 由于451=+++++++++x h g f e d c b a , 则x g e b d a +=++++966)(9)(99.两边都可以被9整除, 因此6=x .事实上, 由去掉6以后的9个数码0, 1, 2, 3, 4, 5, 7, 8, 9可以组成一个两位数, 一个三位数, 一个四位数: 78, 540, 1392, 满足78 + 540 + 1392 = 2010.【说明】1) 另一解法. 设四位数、三位数、两位数分别为abc 1, ,def gh , 既然他们的和是2010, 三个整数的个位、十位和百位相加, 一定都有进位, 所以进位的数目至少是3, 设为k . 已知:所有加数数字之和=和的数字之和+9×k =3+9k , 由于012945++++=, 故有:363945k ≤+<, 33423599k <≤<<, 所以4k =, 三个整数abc 1, ,def gh 的数字和是3939k +=, 因此没有被选的数字为6.2) 可以询问:有多少不同的 {abc 1, ,def gh } 满足它们的和是2010呢?从条件可知:20c f h ++=或10c f h ++=. 如果20c f h ++=, 则19b e g ++≠, 否则39c f h b e g +++++=, 这是不可能的;当10c f h ++=时,9b e g ++≠, 否则9937c f h b e g +++++++=, 也是不可能的, 因为38a b cdefgh +++++++=. 故有20 (1)9 (2)9 (3)c f h b e g a d ++=⎧⎪++=⎨⎪+=⎩用穷举法, (1)的解是{3,8,9},{4,7,9},{5,7,8};(2)的解是{0,2,7},{0,4,5},{2,3,4};(2)的解是{0,9},{2,7},{4,5};8个数字,,,,,,,a b c d e f g h 所取的数字各不相同, 并且0,0d g ≠≠故有1. {},,c f h ={3,8,9}, {}{}{}{},,0,2,7,,4,5b e g a d ==, 有不同的642=48⨯⨯组解;2. {},,c f h ={3,8,9}, {}{}{}{},,0,4,5,,2,7b e g a d ==, 有不同的642=48⨯⨯组解;3. {}{}{}{}{}{},,5,7,8,,,2,3,4,,0,9c f h b e g a d ===, 有不同的661=36⨯⨯组解,即当20c f h ++=时共有132组解.类似, (1)和(2)交换, 此时8=+d a ,有108组解答.因此, 共有240组答案.10. 图A-4是一个玩具火车轨道, A 点有个变轨开关,可以连接B 或者C . 小圈轨道的周长是1.5米, 大圈轨道的周长是3米. 开始时, A 连接C , 火车从A 点出发, 按照顺时针方向在轨道上移动, 同时变轨开关每隔1分钟变换一次轨道连接. 若火车的速度是每分钟10米, 则火车第10次回到A 点时用了 分钟.【答案】 2.1.【解答】根据条件, 在小圈火车行驶一圈用时15.0105.1=÷分钟, 在大圈火车行驶一圈用时3.0103=÷分钟. 设回到A 点时用时为t 分钟, 这样我们有下表:下面我们给出一个一般的解答.设玩具火车绕小圈轨道m 圈, 绕大圈轨道n 圈, 则玩具火车运动路程是1.53S m n =+, 时间是1.5310m n +. 如果 1.5310m n +⎡⎤⎢⎥⎣⎦是偶数, 则变轨开关AC 连通, 如果 1.5310m n +⎡⎤⎢⎥⎣⎦是奇数, 则变轨开关AC 连通. 我们寻找最小的m n +, 使1.5310m n +是偶数. 无妨设 1.5310m n K +=, 或3620m n K +=,这里K 是偶数, 并且有3为约数, 是玩具火车运动的时间, 因此最小的K 是6. 即求m 和n 使240m n +=.当n =3, 3010n ⎡⎤=⎢⎥⎣⎦, 故开始玩具火车绕大圈轨道4圈之后进入小圈, 时间是12 1.210=(分钟);当n =4, m =5时, 7.512110+⎡⎤=⎢⎥⎣⎦, 912210+⎡⎤=⎢⎥⎣⎦, 故玩具火车绕小圈轨道6之后再次进入大圈轨道, 此时1.5310m n +=1.56342.110⨯+⨯=(分钟)(可以称为一个拟循环) 将玩具火车再次进入大圈运行, 运行圈数记为2n . 2n =3时,1.5637310⨯+⨯=(分钟), 玩具火车应当再次进入小圈运行, 运行圈数记为2m , 既然1.57 1.5611010⨯⨯>>, 故玩具火车绕小圈运行7圈后, 应再次进入大圈运行, 此时1.53 1.51337 4.051010m n +⨯+⨯==(分钟). 将玩具火车再次进入大圈运行, 运行圈数记为3n . 既然1.513311 1.51331051010⨯+⨯⨯+⨯>>, 故玩具火车绕大圈运行4圈后, 应再次进入小圈运行, 此时1.53 1.513311 5.251010m n +⨯+⨯==(分钟), 则玩具火车绕大圈运行5圈后,1.53 1.51831161010m n +⨯+⨯==(分钟). 结论玩具火车第29次回到A 时, 变轨开关AC 连通, 即回到原始状态.。

第十五届“华杯赛”小学组决赛试题C答案

第十五届“华杯赛”小学组决赛试题C答案

连续的非零自然数之和,就称这个自然数为“好数”,那么不大于 2011 的自然
数中最大的“好数”为
.
【答案】2007.
【解答】设“好数”可以表示为 m , m 1两个非零自然数的和,也可以表 示为 n , n 1, n 2个非零自然数的和. 所以 2m 1 3n 3,即
m 3 n 1. 2
五队单循环共比赛 10 场, 则 S 30. 如果有一场踢平, 则总分 S 减少 1 分. 因为
a 11000,
b 4 1111 3100,
c 7 3310,
d 8 3 3 11,
所 以 比 赛 至少 有 3 场平 局 , 至多 有 5 场平 局 . 所以 30 5 S 30 7 , 即 25 20 e 27 . 故 5 e 7 .

( 1 1 )( 1 1 ) 1 2 3 4 5 6 78
(
1

1
)1 1 5
2005 2006 2007 2008 2 3 4 12
0.41,
所以小数点后的第 1 个数字是 4.
二、解答下列各题
9. 图 A-21 中有 5 个由 4 个 1×1 的小正方格组成的 不同形状的硬纸板. 问能用这 5 个硬纸板拼成图 A-21 中 4×5 的长方形吗?如果能, 请画出一种拼法;如果不能, 请简述理由.
由此,甲、两人轮流划数,则最后剩下的两个数一定是①描述的一组, 两数 之差为 55.
所以甲可以采取上述的策略使得最后剩下的两个数之差是 55. 12. 华罗庚爷爷出生于 1910 年 11 月 12 日. 将这些数字排成一个整数, 并且 分解成19101112 116316424 , 请问这两个数 1163 和 16424 中有质数吗? 并说 明理由. 【答案】1163 是质数. 【解答】(1)显然 16424 是大于 2 的偶数, 是合数. (2)如果 1163 是合数, 但不是完全平方数, 则至少有 2 个不同的质因数, 因 为113 1331 1163 , 所以, 如果 1163 有 3 个以上不同的质因数, 必有一个小于 11. 但是显然 2, 3, 5, 7 都不能整除 1163, 11 也不能整除 1163, 因此 1163 仅有 2 个不同的大于 11 的质因数. 大于 11 的质数有:

2010年第十五届华杯赛小学组初赛试卷家长详解

2010年第十五届华杯赛小学组初赛试卷家长详解

第十五届华罗庚金杯少年数学邀请赛初赛试卷(小学组)试题时间:2010年3月13日10:00~11:00一、选择题:(每小题10分,满分60分。

以下每题的四个选项中,仅有一个是正确的,请将表 示正确答案的英文字母写在每题的圆括号内)1. 如图所示,平行四边形内有两个大小一样的正六边形,那么阴影部份的面积占平行四边形面积的 。

(A) 21(B) 32 (C) 52 (D) 125 。

每个正六边形有6个小的等边三角形构成,可以看出来右上角的或者左下角的阴影部分也都是6个小三角形所以答案是 1/22. 两条纸带,较长的一条为23cm ,较短的一条为15cm 。

把两条纸带减下同样长的一段后,剩 下的两条纸带中,要求较长的纸带的长度不少于较短的纸带长度的两倍,那么剪下的长度至 少是 cm 。

(A) 6 (B) 7 (C) 8 (D) 9 。

(23-X )>=2*(15-X ) (23-X )>=30-2X X>=73. 两个水池内有金鱼若干条,数目相同。

亮亮和红红进行捞鱼比赛,第一个水池内的金鱼被捞 完时,亮亮和红红所捞到的金鱼数目比是3:4;捞完第二个水池内的金鱼时,亮亮比第一次 多捞33条,与红红捞到的金鱼数目比是5:3。

那么每个水池内有金鱼 条。

(A) 112 (B) 168 (C) 224 (D) 336 。

3/(3+4)X+33=5/(5+3)X 3/7X+33=5/8X 24/56X+33=35/56X 11X=33*56 X=3*56=1684. 从21,31,41,51,61中去掉两个数,使得剩下的三个数之和与76最接近,去掉的两个数 是 。

(A) 21,51 (B) 21,61 (C) 31,51 (D) 31,41。

30/60 20/60 15/60 12/60 10/60 分子乘以 7 其中三个数相加 与 360(=6*60)最接近与360最接近的是 51*7=357 和 52*7=364 30+10+12=52 去掉20/60和15/60即: 1/3 1/45. 恰有20个因子的最小自然数是 。

第15届“华杯赛”小学组初赛试题及答案

第15届“华杯赛”小学组初赛试题及答案

第十五届全国华罗庚金杯少年数学邀请赛初赛试题解答(小学组)一、选择题1.如图 A-1 所示, 平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的 ().(A ) 1(B )2(C )2 (D ) 52 3 5 12 图 A-1【答案】A.【解答】由图可知, 左上角和右上角的阴影部分的面积分别恰等于一个平行四边形内正六边形的面积, 因此阴影部分的面积占平行四边形面积的12.2.两条纸带, 较长的一条为23cm, 较短的一条为15cm. 把两条纸带剪下同样长的一段后, 剩下的两条纸带中, 要求较长的纸带的长度不少于较短的纸带长度的两倍, 那么剪下的长度至少是 () cm.(A) 6(B )7(C )8(D )9【答案】B.【解答】设剪下的长度为 x cm,那么有:23x 2(15x) ,解得 x 7.因此,剪下的长度至少为7 cm.3.两个水池内有金鱼若干条, 数目相同. 亮亮和红红进行捞鱼比赛, 第一个水池内的金鱼被捞完时, 亮亮和红红所捞到的金鱼数目比是 3:4;捞完第二个水池内的金鱼时, 亮亮比第一次多捞 33 条, 与红红捞到的金鱼数目比是 5:3. 那么每个水池内有金鱼 () 条.(A) 112(B )168(C )224(D )336【答案】B.【解答】解法 1:这是一道工程问题的变形,每个水池内有金鱼33 (553433) 168 (条).解法 2:可以认为是比例应用题,设亮亮第一次捞到3n条,则红红第一次捞到 4n条, 依题意, 有3n 33 5 , 解得n=24, 因此水池内共有金鱼 7n=168 条.4n 33 34.从12 ,13 ,14 ,15 ,16中去掉两个数, 使得剩下的三个数之和与76最接近, 去掉的两个数是 ( ).(A) 1 , 1(B) 1 , 1(C)1 , 1 (D)1 , 12 5 2 63 5 3 4【答案】D.【解答】通分1 = 210 , 1 = 140 , 1 = 105 , 1 = 84 , 1 = 70 , 6 = 360 .2 4203 4204 4205 4206 4207 420显然, 210+84+70=364 最接近 360.5. 恰有 20 个因数的最小自然数是 ( ).(A) 120(B)240(C)360(D)432【答案】B.【解答】因为 20=2×10=4×5=2×2×5, 因此, 具有 20 个因数的自然数是 3与9 个 2 的乘积, 即:3×2×2×2×2×2×2×2×2×2=1536; 或者是 3 个 3 与 4个2 的乘积, 即: 3×3×3×2×2×2×2=432; 或者是 3, 5 与 4 个 2 的乘积, 即: 3×5×2×2×2×2=240,因此最小的自然数为240.6.如图 A-2 的大正方形格板是由 81 个 1 平方厘米的小正方形铺成, B, C是两个格点. 若请你在其它的格点中标出一点A,使得△ ABC 的面积恰等于3平方厘米,则这样的 A 点共有() 个.图 A-2(A )6(B )5(C )8(D )10【答案】C.【解答】从最上面的水平线开始将水平线分别记为第1、第2、…、第10 条水平线, 每条水平线均由左至右判断哪个格点符合题目要求. 以此穷举法可以得到:第 1条水平线上没有格点符合要求, 第 2 条水平线上仅有A 7符合要求. 如图 A-3 所示, 类似可以得到格点A 2 , A 1 , A 6符合要求, 对称地, 可以得到A 5 , A 4 , A 3 , A 8符合要求. 故图 A-3 答案是 C.二、填空题21 2 0.37. 算式7 .的值为0.25 3 1 1.3 0.4 4【答案】1 8 .211 2 2 0.3 5 35 + 2 8 . 【解答】7 = 7 5 = =1 1 3 1 1.3 0.4 9 7 3 210.25 3 4 4 4 108.“低碳生活”从现在做起,从我做起.据测算, 1公顷落叶阔叶林每年可吸收二氧化碳 14 吨. 如果每台空调制冷温度在国家提倡的 26℃基础上调到 27℃, 相应每年减排二氧化碳 21 千克. 某市仅此项减排就相当于 25000 公顷落叶阔叶林全年吸收的二氧化碳;若每个家庭按 3 台空调计, 该市家庭约有万户. (保留整数)【答案】556.【解答】25000141000(213)5555555.6.9.从 0、1、2、3、4、5、6、7、8、9 这十个数字中, 选出九个数字, 组成一个两位数、一个三位数和一个四位数, 使这三个数的和等于 2010, 那么其中未被选中的数字是.【答案】6.【解答】由于和为 2010 所以四位数首位只能为 1, 设四位数、三位数、两位数分别为1abc,def , gh .设没有被选的数字为x,那么100(a d ) 10(b e g ) (c f h) 1010 .两边同时减去a b c d e f g h, 由于a b c d e f g h 1 x 45,则99(a d) 9(b e g) 966 x .两边都可以被 9 整除, 因此x 6 .事实上, 由去掉 6 以后的 9 个数码 0, 1, 2, 3, 4, 5, 7, 8, 9 可以组成一个两位数,一个三位数, 一个四位数: 78, 540, 1392, 满足 78 + 540 + 1392 = 2010.【说明】1) 另一解法. 设四位数、三位数、两位数分别为1abc ,def , gh ,既然他们的和是2010, 三个整数的个位、十位和百位相加, 一定都有进位, 所以进位的数目至少是 3, 设为k. 已知:所有加数数字之和=和的数字之和+9×k=3+9k, 由于0 1 2 9 45 , 故有:36 3 9k 45 ,3339k4295,所以 k 4,三个整数1abc,def , gh 的数字和是39k 39,因此没有被选的数字为6.2)可以询问:有多少不同的 {1abc , def,gh } 满足它们的和是 2010 呢?从条件可知: c f h 20或 c f h 10.如果 c f h 20,则 b e g 19,否则 c f h b e g 39,这是不可能的;当 c f h 10时,b e g 9,否则c f h b e 9g 937, 也是不可能的 , 因为a b cdefgh 38.故有c f h 20 (1)9 (2)b e g (3) a d 9 用穷举法, (1)的解是{3,8,9},{4,7,9},{5,7,8};(2)的解是{0,2,7},{0,4,5},{2,3,4};(2)的解是{0,9},{2,7},{4,5};8 个数字a, b, c, d , e, f , g , h 所取的数字各不相同, 并且d 0, g 0 故有{3,8,9}, , 有不同的 6 4 2=48 1. c , f , h b, e, g 0, 2, 7 , a , d 4,5 组解;{3,8,9}, , 有不同的 6 4 2=48 2. c , f , h b, e, g 0, 4,5 , a, d 2, 7 组解;有不同的 6 6 1 = 3 6 3. c , f , h 5, 7,8 , b, e, g 2,3, 4 , a , d 0,9 , 组解,即当 c f h 20时共有132组解.类似, (1)和(2)交换, 此时a d 8 ,有 108 组解答.因此, 共有 240 组答案.10. 图 A-4 是一个玩具火车轨道, A 点有个变轨开关,可以连接 B 或者 C.小圈轨道的周长是 1.5米,大圈轨道的周长是 3 米. 开始时, A 连接C, 火车从A 点出发, 按照顺时针方向在轨道上移动, 同时变轨开关每隔 1 分钟变换图 A-4 一次轨道连接. 若火车的速度是每分钟 10 米, 则火车第 10 次回到A 点时用了分钟.【答案】 2.1.。

第15届华杯赛决赛试卷及答案与学而思奥数体系的关联

第15届华杯赛决赛试卷及答案与学而思奥数体系的关联

第15届华杯赛决赛小学组试题分析及其在学而思奥数体系中的对应一、题目分布注:1、有些题目属于多个不同模块。

2、学而思奥数体系中,趣味数学模块的题目也归入组合问题。

(一)按模块分布(二)按难度分布由此可见,华杯决赛中中低档的题目占总分值的三分之二左右,若将基础题和中档题全部做对,即可得一等奖,所以基础至关重要!二、考察特点分析1、15届华杯赛决赛题目基础与能力并重,几乎每道题都能找到它的原型,在学而思奥数体系中都有体现;2、与过去的华杯赛决赛和总决赛一样,突出了对数论、组合、最值、几何的考察,解答题中特别重视代数方法的考察;3、解答题比重比较大,特别是有两道15分的需要写详解的题目。

这对教学方向是一个有力的引导,强调了解数学题必须概念清晰、过程清楚、答案明确三个要求并重,强调了逻辑分析与解答的严密性的重要性。

以第三大题第1题那道几何题为例,这次阅卷中如果只有一个得数,只能得5分;如果是用特殊化的方法,将任意六边形特殊化为正六边形来做的,无过程分。

这次考试结束后,又不少学生反映得分应该挺高,但成绩出来后却相去甚远,其原因就在于此。

三、结合学而思十二级新奥数体系的题目分析(以原题顺序为序)(一)填空题1、【题目】在10个盒子中放乒乓球,每个盒子中的球的个数不能少于11,不能是13,也不能是5的倍数,且彼此不同,那么至少需要个乒乓球。

【解析】考虑极端情况:11121416171819212223173+++++++++=【体系说明】组合问题、最值问题。

考察极端思想与数据筛选的能力。

详见四年级(八级下)《最值问题》2、【题目】有五种价格分别为2元、5元、8元、11元、14元的礼品以及五种价格分别为1元、3元、5元、7元、9元的包装盒。

一个礼品配一个包装盒,共有 种不同价格。

【解析】有序枚举,枚举与筛选: 2581114111113691215+,,,,,,,,,,,, 25811143333358111417+,,,,,,,,,,,, 258111455555710131619+,,,,,,,,,,,, 258111477777912151821+,,,,,,,,,,,, 2581114999991114172023+,,,,,,,,,,,,删去重复数字,共19种【体系说明】组合问题,枚举法。

小学华杯赛试题及答案

小学华杯赛试题及答案

小学华杯赛试题及答案【篇一:各届华杯赛真题集锦-含答案哦!】届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则a、b、c处填的数各是多少? 4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?【篇二:六年级华杯赛奥数竞赛模拟题(30套)】=txt>一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+?+170)-(41+42+?+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?小学奥数模拟试卷.2 姓名得分一、填空题:1.用简便方法计算下列各题:(3)100+99-98-97+?+4+3-2-1=______.2.上右面算式中a代表_____,b代表_____,c代表_____,d代表_____(a、b、c、d各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟_____岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_____面,黄旗_____面.6.如图中,能看到的方砖有______块,看不到的方砖有______块. 7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考____次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,??这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若p点在岸上,则a点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点b,他脱鞋的次数与穿鞋的次数和是奇数,那么b点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,1 5 6 7 8 9 10 11 12 13 14 152025 2627 28 29 3035 40 41 42 43 44 4546 47 48 49 50 55 56 57 58 59 603.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.小学奥数模拟试卷.3 姓名得分一、填空题:2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,?,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5. 2.如图,把四边形abcd的各边延长,使得ab=ba′,bc=cb′cd=dc′,daad′,得到一个大的四边形a′b′c′d′,若四边形abcd的面积是1,求四边形a′b′c′d′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?小学奥数模拟试卷.4 姓名得分【篇三:2015小高华杯赛答案及解析】=txt>决赛试题b(小学高年级组)一、填空题(每小题10份,共80分)1. 计算:57.6?81845?28.8?5?14.4?80?1212?________.【难度】★【考点】计算:提取公因数【答案】121【解析】原式?57.6?818415?28.8?5?14.4?80?12228.8165?28.8?1845?14.4?80?121228.82005?14.4?80?121228.84014.4240121212122. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.【难度】★★【考点】应用题:分数应用题【答案】13【解析】甲=总数的三分之一=20,乙=总数的四分之一=15,丙=总数的五分之一=12,所以丁?60?20?15?12?13(棵)3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.【难度】★★【考点】行程:时钟问题【答案】106【解析】4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.【难度】★★【考点】数论:余数、最小公倍数【答案】122【解析】这个三位数减去2得到3、4、5、6的公倍数,取三位数120,所以最小值为122.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.【难度】★★★★【考点】计数:组合计数【答案】7【解析】用a1,a2,a3,a4,a5,a6,a7这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7?2?2?7条虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.a2必与两个点连接虚线,不妨记为a1,a3,而a3必然再与一个点连接虚线,记为a4;a4虚线连接a5,否则剩下3个点互为敌国关系;a5虚线连接a6,否则剩下两个点无法由2条虚线连接;a6虚线连接a7,最后a7只能虚线连接a1.最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件.有135,136,146,246,247,257,357,这7种.(为了直观我们用1,2,3,4,5,6,7分别代表a1,a2,a3,a4,a5,a6,a7)6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.【难度】★★★【考点】数论:位值原理【答案】9421,1249【解析】设其中最小的四位数为abcd,一共可组成4?3?2?1?24个不同的四位数,由于每个数字在每位上均出现6次,则24个数和为6??a?b?c?d??1111?106656,则四个数字之和为16,所以最大和最小的可能为,9421和1249、8521和1258、8431和1348、7621和1267、7531和1357、7432和2347、6541和1456、6532和2356.7. 见右图,三角形abc的面积为1,do:ob?1:3,eo:oa?4:5,则三角形doe的面积为________.【难度】★★★★【考点】几何:等积变形【答案】11135【解析】ye12xab设三角形doe的面积为4x,由比例关系不难得出图中另三块的面积分别为5x,12x,15x,再设三角形dce的面积为y,则有ceyy?4x?5 be?4x?12x?x12x?15x,得y?14411x,则三角形doe的面积为4?114?5?12?15?135.118. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.【难度】★★★★★【考点】组合:分类讨论数论综合【答案】4【解析】设三个数的个位分别为a,b,c⑴如果a,b,c都相等,则只能都为0;⑵如果a,b,c中有两个相等,①a,a,c且a?c,必有c?a?10?a,则c?10,与c为数字矛盾;②a,a,c且a?c,则有c?a?a,a?a?10?c,则a?5,c?0;⑶如果a,b,c都不相等,设a?b?c,则c?b?10?a,c?a?10?b,则c?10,与c为数字矛盾;综上三个数的个位分别为0,0,0或0,5,5;⑴如果都为0,则乘积末尾3位为000;⑵如果为0,5,5①如果个位为0的数,末尾3位都为0,则乘积末尾3位为000;②如果个位为0的数,末尾2位都为0,则乘积末尾3位为500或000;③如果个位为0的数,末尾1位为0设末尾两位为c0,设另外两个末尾2位为a5,b5,则a5?b5?100ab?50?a?b??25,若?a?b?为奇数,则乘积末尾3位为75;若?a?b?为偶数则乘积为25,在乘上c0,无论c为多少,末尾三位只有000,250,500,750这4种.综上,积的末尾3位有000,500,250,750这4种可能.二、解答下列各题(每题10分,共40分,要求写出简要过程) 9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.【难度】★★★★【考点】数论:完全平方数【答案】不能【解析】原数的数字和为1?2?3??9?1?0?1?1?48,为3的倍数,而交换数字位置不会改变数字和,所以无论怎么调整得到的数一定为3的倍数;而一个平方数如果为3的倍数,则一定为9的倍数,而48不是9的倍数,所以无法通过交换数字位置得到一个完全平方数.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为y,5,x的长方体(x,y为整数),余下部分的体积为120,求x和y.x4y15【难度】★★★【考点】几何:长方体正方体【答案】x?3,y?12。

第十五届“华杯赛”小学组初赛试题答案

第十五届“华杯赛”小学组初赛试题答案

第十五届全国华罗庚金杯少年数学邀请赛初赛试题解答(小学组)一、选择题1. 如图A-1所示, 平行四边形内有两个大小一样的正六边形, 那么阴影部分的面积占平行四边形面积的 ( ).(A ) 21 (B )32 (C )52 (D )125【答案】A.【解答】由图可知, 左上角和右上角的阴影部分的面积分别恰等于一个平行四边形内正六边形的面积, 因此阴影部分的面积占平行四边形面积的21.2. 两条纸带, 较长的一条为23cm, 较短的一条为15cm. 把两条纸带剪下同样长的一段后, 剩下的两条纸带中, 要求较长的纸带的长度不少于较短的纸带长度的两倍, 那么剪下的长度至少是 ( ) cm.(A) 6 (B )7 (C )8 (D )9 【答案】B.【解答】设剪下的长度为x cm, 那么有:)15(223x x -≥-,解得7≥x . 因此, 剪下的长度至少为7 cm.3. 两个水池内有金鱼若干条, 数目相同. 亮亮和红红进行捞鱼比赛, 第一个水池内的金鱼被捞完时, 亮亮和红红所捞到的金鱼数目比是3:4;捞完第二个水池内的金鱼时, 亮亮比第一次多捞33条, 与红红捞到的金鱼数目比是5:3. 那么每个水池内有金鱼 ( ) 条.(A) 112 (B )168 (C )224 (D )336 【答案】B.【解答】解法1:这是一道工程问题的变形, 每个水池内有金鱼168343355(33=+-+÷(条). 解法2:可以认为是比例应用题, 设亮亮第一次捞到3n 条, 则红红第一次捞到4n 条, 依题意, 有35334333=-+n n , 解得n =24, 因此水池内共有金鱼7n =168条.4. 从21,31,41,51,61中去掉两个数, 使得剩下的三个数之和与76最接近, 去掉的两个数是 ( ).(A ) 21,51 (B )21,61 (C )31,51 (D )31,41【答案】D. 【解答】通分21=420210, 31=420140, 41=420105, 51=42084, 61=42070, 76=420360. 显然, 210+84+70=364最接近360.5. 恰有20个因数的最小自然数是 ( ).(A) 120 (B )240 (C )360 (D )432 【答案】B.【解答】因为20=2×10=4×5=2×2×5, 因此, 具有20个因数的自然数是3与9个2的乘积, 即:3×2×2×2×2×2×2×2×2×2=1536; 或者是3个3与4个2的乘积, 即: 3×3×3×2×2×2×2=432; 或者是3, 5与4个2的乘积, 即: 3×5×2×2×2×2=240, 因此最小的自然数为240.6. 如图A-2的大正方形格板是由81个1平方厘米的小正方形铺成, B , C 是两个格点. 若请你在其它的格点中标出一点A , 使得△ABC 的面积恰等于3平方厘米, 则这样的A 点共有 ( ) 个.(A )6 (B )5 (C )8 (D )10 【答案】C.【解答】 从最上面的水平线开始将水平线分别记为第1、第2、…、第10条水平线, 每条水平线均由左至右判断哪个格点符合题目要求. 以此穷举法可以得到:第1条水平线上没有格点符合要求, 第2条水平线上仅有7A 符合要求. 如图A-3所示, 类似可以得到格点2A ,1A ,6A 符合要求, 对称地, 可以得到5A ,4A ,3A ,8A 符合要求. 故答案是C.二、填空题7. 算式4.03.13.0241325.0721-⨯+⨯+-的值为 .【答案】1218. 【解答】 4.03.13.0241325.0721-⨯+⨯+-=10953434175++=75+32=1218. 8. “低碳生活”从现在做起, 从我做起. 据测算, 1公顷落叶阔叶林每年可吸收二氧化碳14吨. 如果每台空调制冷温度在国家提倡的26℃基础上调到27℃, 相应每年减排二氧化碳21千克. 某市仅此项减排就相当于25000公顷落叶阔叶林全年吸收的二氧化碳;若每个家庭按3台空调计, 该市家庭约有 万户. (保留整数)【答案】556.【解答】 25000⨯14⨯1000÷(21⨯3)≈5555555.6.9. 从0、1、2、3、4、5、6、7、8、9这十个数字中, 选出九个数字, 组成一个两位数、一个三位数和一个四位数, 使这三个数的和等于2010, 那么其中未被选中的数字是 .【答案】6.【解答】由于和为2010 所以四位数首位只能为1, 设四位数、三位数、两位数分别为abc 1, ,def gh . 设没有被选的数字为x , 那么100()10()()1010a d b e g c f h +++++++=.两边同时减去h g f e d c b a +++++++, 由于451=+++++++++x h g f e d c b a , 则x g e b d a +=++++966)(9)(99.两边都可以被9整除, 因此6=x .事实上, 由去掉6以后的9个数码0, 1, 2, 3, 4, 5, 7, 8, 9可以组成一个两位数, 一个三位数, 一个四位数: 78, 540, 1392, 满足78 + 540 + 1392 = 2010.【说明】1) 另一解法. 设四位数、三位数、两位数分别为abc 1, ,def gh , 既然他们的和是2010, 三个整数的个位、十位和百位相加, 一定都有进位, 所以进位的数目至少是3, 设为k . 已知:所有加数数字之和=和的数字之和+9×k =3+9k , 由于012945++++=, 故有: 363945k ≤+<, 33423599k <≤<<, 所以4k =, 三个整数abc 1, ,def gh 的数字和是3939k +=, 因此没有被选的数字为6.2) 可以询问:有多少不同的 {abc 1, ,def gh } 满足它们的和是2010呢? 从条件可知:20c f h ++=或10c f h ++=. 如果20c f h ++=, 则19b e g ++≠, 否则39c f h b e g +++++=, 这是不可能的;当10c f h ++=时,9b e g ++≠, 否则9937c f h b e g +++++++=, 也是不可能的, 因为38a b cdefgh +++++++=. 故有20 (1)9 (2)9 (3)c f h b e g a d ++=⎧⎪++=⎨⎪+=⎩用穷举法, (1)的解是{3,8,9},{4,7,9},{5,7,8};(2)的解是{0,2,7},{0,4,5},{2,3,4};(2)的解是{0,9},{2,7},{4,5};8个数字,,,,,,,a b c d e f g h 所取的数字各不相同, 并且0,0d g ≠≠故有1.{},,c f h ={3,8,9}, {}{}{}{},,0,2,7,,4,5b e g a d ==, 有不同的642=48⨯⨯组解; 2.{},,c f h ={3,8,9}, {}{}{}{},,0,4,5,,2,7b e g a d ==, 有不同的642=48⨯⨯组解; 3.{}{}{}{}{}{},,5,7,8,,,2,3,4,,0,9c f h b e g a d ===, 有不同的661=36⨯⨯组解,即当20c f h ++=时共有132组解.类似, (1)和(2)交换, 此时8=+d a ,有108组解答. 因此, 共有240组答案.10. 图A-4是一个玩具火车轨道, A 点有个变轨开关, 可以连接B 或者C . 小圈轨道的周长是1.5米, 大圈轨道的周长是3米. 开始时, A 连接C , 火车从A 点出发, 按照顺时针方向在轨道上移动, 同时变轨开关每隔1分钟变换一次轨道连接. 若火车的速度是每分钟10米, 则火车第10次回到A 点时用了 分钟.【答案】 2.1.【解答】根据条件, 在小圈火车行驶一圈用时15.0105.1=÷分钟, 在大圈火车行驶一圈用时3.0103=÷分钟. 设回到A 点时用时为t 分钟, 这样我们有下表:下面我们给出一个一般的解答.设玩具火车绕小圈轨道m 圈, 绕大圈轨道n 圈, 则玩具火车运动路程是1.53S m n =+, 时间是1.5310m n +. 如果 1.5310m n +⎡⎤⎢⎥⎣⎦是偶数, 则变轨开关AC 连通, 如果 1.5310m n +⎡⎤⎢⎥⎣⎦是奇数, 则变轨开关AC 连通. 我们寻找最小的m n +, 使1.5310m n+是偶数. 无妨设 1.5310m n K +=, 或3620m n K +=,这里K 是偶数, 并且有3为约数, 是玩具火车运动的时间, 因此最小的K 是6. 即求m 和n 使240m n +=.当n =3, 3010n ⎡⎤=⎢⎥⎣⎦, 故开始玩具火车绕大圈轨道4圈之后进入小圈, 时间是12 1.210=(分钟);当n =4, m =5时, 7.512110+⎡⎤=⎢⎥⎣⎦, 912210+⎡⎤=⎢⎥⎣⎦, 故玩具火车绕小圈轨道6之后再次进入大圈轨道, 此时1.5310m n +=1.56342.110⨯+⨯=(分钟)(可以称为一个拟循环)将玩具火车再次进入大圈运行, 运行圈数记为2n . 2n =3时,1.5637310⨯+⨯=(分钟), 玩具火车应当再次进入小圈运行, 运行圈数记为2m , 既然1.57 1.5611010⨯⨯>>, 故玩具火车绕小圈运行7圈后, 应再次进入大圈运行, 此时1.53 1.51337 4.051010m n +⨯+⨯==(分钟).将玩具火车再次进入大圈运行, 运行圈数记为3n . 既然1.513311 1.51331051010⨯+⨯⨯+⨯>>, 故玩具火车绕大圈运行4圈后, 应再次进入小圈运行, 此时1.53 1.513311 5.251010m n +⨯+⨯==(分钟), 则玩具火车绕大圈运行5圈后,1.53 1.51831161010m n +⨯+⨯==(分钟). 结论玩具火车第29次回到A 时, 变轨开关AC 连通, 即回到原始状态.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档