小学奥数华杯赛试题五常见汇总

合集下载

华杯赛练习题五年级

华杯赛练习题五年级

华杯赛练习题五年级五年级同学们:大家好!今天我们要进行华杯赛的练习题。

这是一项非常重要的考试,我们需要做好充分准备。

下面,我将为大家提供一些练习题,希望能够帮助大家查漏补缺,提高自己的学习水平。

练习题一:计算题1. 请计算下列各题。

a) 15 + 7 = ?b) 36 - 19 = ?c) 4 × 6 = ?d) 45 ÷ 5 = ?2. 请判断下列各题的计算结果是否正确。

a) 9 × 8 = 82b) 54 ÷ 6 = 10c) 23 + 14 = 37d) 75 - 41 = 34练习题二:选择题1. 在下列各个数中,哪个数是一个偶数?a) 17b) 22c) 33d) 442. 下列哪个图形是一个正方形?a) △ABCb) ○DEFc) □GHId) ⊗JKL练习题三:填空题1. 请根据题目的意思填入合适的单词。

a) 今天是星期__。

b) 一天有__小时。

c) 鱼住在__里。

2. 请填入下一个数字。

3, 6, 9, __, 15, 18, ...练习题四:解答题1. 请用小学语文课本中学到的知识,写一篇关于你最喜欢的动物的作文。

不少于50个字。

2. 请解答下列问题。

a) 地球上最大的洲是哪个?b) 鸟类如何孵化蛋?c) 什么是水循环?练习题五:绘画题1. 请根据题目的要求,用颜色填充图画。

题目:画一个绿色的森林,里面有一只黄色的小鸟和一颗红色的苹果树。

2. 请在下面给出的空白画布上画一幅你自己的作品。

以上就是本次华杯赛练习题的内容,希望同学们都能认真做好准备。

通过这些练习,我们可以进一步巩固已学知识,查漏补缺,为参加华杯赛奠定更坚实的基础。

祝愿大家在比赛中取得优异成绩!加油!注:本练习题仅供参考,大家可以根据自己的实际情况进行针对性的练习。

希望大家能够在学习中发现更多的乐趣,并享受进步的喜悦!。

华杯赛数学竞赛试题及答案

华杯赛数学竞赛试题及答案

华杯赛数学竞赛试题及答案一、选择题(每题5分,共30分)1. 若一个数的平方根是4,那么这个数是:A. 16B. -16C. 8D. 42. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 83. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π4. 一个数的立方是-64,这个数是:A. -4B. 4C. -2D. 25. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 都不是6. 以下哪个数是无理数?A. 3.1416B. 0.33333(无限循环)C. πD. 根号2二、填空题(每题5分,共20分)1. 一个数的平方是25,那么这个数是______。

2. 一个数的倒数是1/4,那么这个数是______。

3. 如果一个数的立方根是2,那么这个数是______。

4. 一个数的绝对值是10,那么这个数可能是______。

三、解答题(每题10分,共50分)1. 一个长方体的长、宽和高分别是8厘米、6厘米和5厘米,求这个长方体的体积。

2. 一个圆的半径是7厘米,求这个圆的周长和面积。

3. 一个直角三角形的两条直角边分别为9厘米和12厘米,求这个直角三角形的斜边长度。

4. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和。

求这个数列的第10项。

答案一、选择题1. A2. A3. B4. A5. C6. C二、填空题1. ±52. 43. 84. ±10三、解答题1. 长方体的体积 = 长× 宽× 高= 8 × 6 × 5 = 240 立方厘米。

2. 圆的周长= 2πr = 2 × π × 7 = 14π 厘米,面积= πr² = π × 7² = 49π 平方厘米。

3. 直角三角形的斜边长度= √(a² + b²) = √(9² + 12²) =√(81 + 144) = √225 = 15 厘米。

小学奥数华杯赛考题

小学奥数华杯赛考题

小学奥数华杯赛考题这篇关于小学奥数华杯赛试题,是笔者特地为大家整理的,希望对大家有所帮助!一、选择题(每小题10分,以下每题的四个选项中,仅有一个是正确的,请单击选择答案。

)1、如图,时钟上的表针从(1)转到(2)最少经过了()。

(A)、2小时30分(B)、2小时45分(C)、3小时30分(D)、3小时45分2、在2012年,1月1日是星期日,并且()(A)、1月份有5个星期三,2月份只有4个星期三(B)、1月份有5个星期三,2月份也有5个星期三(C)、1月份有4个星期三,2月份也有4个星期三(D)、1月份有4个星期三,2月份有5个星期三3、有大小不同的4个数,从中任取3个数相加,所得的和分别是180,197,208和222,那么,第二小的数所在的和一定不是()。

(A)、180 (B)、197 (C)、208 (D)、2224、四百米比赛进入冲刺阶段,甲在乙前面30米,丙在丁后面60米,乙在丙前面20米,这时,跑在最前面的两位同学相差()米。

(A)、10 (B)、20 (C)、50 (D)、605、如图所示的两位数的加法算式中,已知A+B+C+D=22,则X+Y=( )(A)、2 (B)、4 (C)、7 (D)、136、小明在正方形的边上标出若干个点,每条边上恰有3个,那么所标出的点最少有()个。

(A)、12 (B)、10 (C)、8 (D)、6二、填空题(每小题10分,满分40分,请将你的答案填写到框内。

)7、如图,用一条线段把一个周长是30cm的长方形分割成一个正方形和一个小的长方形。

如果小长方形的周长是16cm,则原来长方形的面积是【】c㎡8、将10,15,20,30,40和60填入下图的圆圈中,使A,B,C三个小三角形顶点上的3个数的积都相等,相等的积为【】9、用3,5,6,18,23这五个数组成一个四则运算式,得到的非零自然数最小是【】10、里山镇A到省城C的高速路全长189千米,途径县城B,县城离里山镇54千米,早上8:30一辆客车从里山镇开往县城,9:15到达,停留15分钟后开往省城,午前11:00能够到达,另有一辆客车于当日9:00从省城径直开往里山镇,每小时行驶60千米,那么两车相遇时,省城开往里山镇的客车行驶了【】分钟。

三年级华杯赛试题及答案

三年级华杯赛试题及答案

三年级华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪一项是华杯赛的全称?A. 华罗庚数学竞赛B. 华罗庚数学奥林匹克C. 华罗庚数学邀请赛D. 华罗庚数学挑战赛答案:C2. 华杯赛的参赛对象通常是什么年级的学生?A. 一年级B. 二年级C. 三年级D. 四年级答案:C3. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A4. 华杯赛的试题难度通常如何?A. 非常简单B. 相对容易C. 适中D. 非常困难答案:C二、填空题(每题5分,共20分)1. 华杯赛的试题通常包括_______和_______两部分。

答案:选择题、填空题2. 参加华杯赛的学生需要具备一定的_______能力。

答案:数学3. 华杯赛的试题设计旨在考察学生的_______和_______。

答案:逻辑思维、解决问题4. 华杯赛的获奖者通常能够获得_______和_______。

答案:荣誉证书、奖品三、解答题(每题10分,共20分)1. 请解释华杯赛对于培养学生数学兴趣的重要性。

答案:华杯赛通过竞赛的形式激发学生对数学的兴趣,让学生在解决问题的过程中体验到数学的乐趣,从而提高他们的学习动力和数学素养。

2. 描述一下华杯赛的评分标准。

答案:华杯赛的评分标准通常依据学生解答问题的正确性、解题思路的清晰度以及解题过程的规范性来综合评定。

每道题目都有明确的得分点,评委会根据学生的答题情况给予相应的分数。

四、综合题(每题15分,共30分)1. 假设你是一名三年级的学生,你将如何准备华杯赛?答案:首先,我会定期复习数学课本中的知识点,确保基础知识的牢固。

其次,我会参加一些数学辅导班或兴趣小组,以提高解题技巧。

此外,我还会做一些历年的华杯赛试题,以熟悉题型和考试节奏。

最后,我会保持良好的心态,积极面对比赛。

2. 如果你在华杯赛中遇到了难题,你会如何应对?答案:面对难题,我会先冷静下来,仔细阅读题目,尝试从不同角度理解问题。

小学华杯赛试题及答案

小学华杯赛试题及答案

小学华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 华罗庚数学竞赛B. 华罗庚杯数学竞赛C. 华杯数学竞赛D. 华罗庚数学邀请赛答案:B2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象通常是:A. 小学生B. 初中生C. 高中生D. 大学生答案:A4. 华杯赛的试题类型包括:A. 选择题B. 填空题C. 计算题D. 所有以上答案:D二、填空题(每题5分,共20分)1. 华杯赛的试题通常由_________组成。

答案:选择题、填空题、解答题2. 华杯赛的举办地点通常在_________。

答案:学校或指定的考试中心3. 华杯赛的参赛者需要具备_________。

答案:数学竞赛的基本知识和解题技巧4. 华杯赛的获奖者通常会获得_________。

答案:证书和奖品三、解答题(每题10分,共60分)1. 已知一个数列的前三项为1,2,4,求第四项的值。

答案:82. 一个长方形的长是宽的两倍,如果宽增加3厘米,长减少2厘米,面积不变,求原来长方形的长和宽。

答案:设原来长方形的宽为x厘米,则长为2x厘米。

根据题意得方程:x(2x-2) = (x+3)(2x-2-3),解得x=6,所以原来长方形的长为12厘米,宽为6厘米。

3. 甲乙两人同时从A地出发,甲的速度是乙的1.5倍,如果甲到达B地后立即返回,与乙在C地相遇,求甲乙两人的速度比。

答案:设乙的速度为v,则甲的速度为1.5v。

设A、B两地之间的距离为d,则甲从A到B再返回C的总距离为2d,乙从A到C的距离为d。

由于甲乙两人相遇,所以他们所用的时间相同,即2d/1.5v = d/v,解得v = 2d/3,所以甲乙两人的速度比为1.5:1。

4. 一个水池有甲乙两个进水管,甲管单独注满水池需要4小时,乙管单独注满水池需要6小时。

如果两管同时开启,需要多少时间才能注满水池?答案:设水池的容量为1,甲管的注水速度为1/4,乙管的注水速度为1/6。

华杯赛试题及答案小学

华杯赛试题及答案小学

华杯赛试题及答案小学一、选择题(每题5分,共20分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 32. 如果一个数的因数只有1和它本身,那么这个数是:A. 合数B. 质数C. 偶数D. 奇数3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24立方厘米B. 26立方厘米C. 28立方厘米D. 30立方厘米4. 一个数的平方是36,那么这个数是:A. 6B. -6C. 6或-6D. 无法确定二、填空题(每题5分,共20分)1. 一个数的最小倍数是______。

2. 一个数的最大因数是______。

3. 一个数的因数的个数是______。

4. 一个数的倍数的个数是______。

三、解答题(每题10分,共30分)1. 一个长方体的长、宽、高分别是5cm、4cm、3cm,求它的体积。

2. 一个数的平方是64,求这个数。

3. 一个班级有45名学生,如果每排坐5名学生,那么需要排几排?四、应用题(每题15分,共30分)1. 小明买了3支铅笔和2本笔记本,每支铅笔的价格是1元,每本笔记本的价格是2元。

请问小明一共花了多少钱?2. 一个长方体的长是10cm,宽是8cm,高是6cm,求它的表面积。

答案:一、选择题1. C2. B3. A4. C二、填空题1. 它本身2. 它本身3. 有限个4. 无限个三、解答题1. 体积 = 长× 宽× 高= 5cm × 4cm × 3cm = 60立方厘米2. 这个数是8或-8(因为8^2 = 64且(-8)^2 = 64)3. 需要排的排数 = 学生总数÷ 每排人数= 45 ÷ 5 = 9排四、应用题1. 小明一共花了3 × 1元+ 2 × 2元 = 3元 + 4元 = 7元2. 表面积= 2 × (长× 宽 + 长× 高 + 宽× 高)= 2 × (10cm × 8cm + 10cm × 6cm + 8cm × 6cm) = 2 × (80平方厘米 + 60平方厘米 + 48平方厘米) = 2 × 188平方厘米 = 376平方厘米。

小学华杯赛试题及答案

小学华杯赛试题及答案

小学华杯赛试题及答案【篇一:各届华杯赛真题集锦-含答案哦!】届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则a、b、c处填的数各是多少? 4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?【篇二:六年级华杯赛奥数竞赛模拟题(30套)】=txt>一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+?+170)-(41+42+?+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?小学奥数模拟试卷.2 姓名得分一、填空题:1.用简便方法计算下列各题:(3)100+99-98-97+?+4+3-2-1=______.2.上右面算式中a代表_____,b代表_____,c代表_____,d代表_____(a、b、c、d各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟_____岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_____面,黄旗_____面.6.如图中,能看到的方砖有______块,看不到的方砖有______块. 7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考____次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,??这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若p点在岸上,则a点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点b,他脱鞋的次数与穿鞋的次数和是奇数,那么b点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,1 5 6 7 8 9 10 11 12 13 14 152025 2627 28 29 3035 40 41 42 43 44 4546 47 48 49 50 55 56 57 58 59 603.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.小学奥数模拟试卷.3 姓名得分一、填空题:2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,?,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5. 2.如图,把四边形abcd的各边延长,使得ab=ba′,bc=cb′cd=dc′,daad′,得到一个大的四边形a′b′c′d′,若四边形abcd的面积是1,求四边形a′b′c′d′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?小学奥数模拟试卷.4 姓名得分【篇三:2015小高华杯赛答案及解析】=txt>决赛试题b(小学高年级组)一、填空题(每小题10份,共80分)1. 计算:57.6?81845?28.8?5?14.4?80?1212?________.【难度】★【考点】计算:提取公因数【答案】121【解析】原式?57.6?818415?28.8?5?14.4?80?12228.8165?28.8?1845?14.4?80?121228.82005?14.4?80?121228.84014.4240121212122. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.【难度】★★【考点】应用题:分数应用题【答案】13【解析】甲=总数的三分之一=20,乙=总数的四分之一=15,丙=总数的五分之一=12,所以丁?60?20?15?12?13(棵)3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.【难度】★★【考点】行程:时钟问题【答案】106【解析】4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.【难度】★★【考点】数论:余数、最小公倍数【答案】122【解析】这个三位数减去2得到3、4、5、6的公倍数,取三位数120,所以最小值为122.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.【难度】★★★★【考点】计数:组合计数【答案】7【解析】用a1,a2,a3,a4,a5,a6,a7这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7?2?2?7条虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.a2必与两个点连接虚线,不妨记为a1,a3,而a3必然再与一个点连接虚线,记为a4;a4虚线连接a5,否则剩下3个点互为敌国关系;a5虚线连接a6,否则剩下两个点无法由2条虚线连接;a6虚线连接a7,最后a7只能虚线连接a1.最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件.有135,136,146,246,247,257,357,这7种.(为了直观我们用1,2,3,4,5,6,7分别代表a1,a2,a3,a4,a5,a6,a7)6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.【难度】★★★【考点】数论:位值原理【答案】9421,1249【解析】设其中最小的四位数为abcd,一共可组成4?3?2?1?24个不同的四位数,由于每个数字在每位上均出现6次,则24个数和为6??a?b?c?d??1111?106656,则四个数字之和为16,所以最大和最小的可能为,9421和1249、8521和1258、8431和1348、7621和1267、7531和1357、7432和2347、6541和1456、6532和2356.7. 见右图,三角形abc的面积为1,do:ob?1:3,eo:oa?4:5,则三角形doe的面积为________.【难度】★★★★【考点】几何:等积变形【答案】11135【解析】ye12xab设三角形doe的面积为4x,由比例关系不难得出图中另三块的面积分别为5x,12x,15x,再设三角形dce的面积为y,则有ceyy?4x?5 be?4x?12x?x12x?15x,得y?14411x,则三角形doe的面积为4?114?5?12?15?135.118. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.【难度】★★★★★【考点】组合:分类讨论数论综合【答案】4【解析】设三个数的个位分别为a,b,c⑴如果a,b,c都相等,则只能都为0;⑵如果a,b,c中有两个相等,①a,a,c且a?c,必有c?a?10?a,则c?10,与c为数字矛盾;②a,a,c且a?c,则有c?a?a,a?a?10?c,则a?5,c?0;⑶如果a,b,c都不相等,设a?b?c,则c?b?10?a,c?a?10?b,则c?10,与c为数字矛盾;综上三个数的个位分别为0,0,0或0,5,5;⑴如果都为0,则乘积末尾3位为000;⑵如果为0,5,5①如果个位为0的数,末尾3位都为0,则乘积末尾3位为000;②如果个位为0的数,末尾2位都为0,则乘积末尾3位为500或000;③如果个位为0的数,末尾1位为0设末尾两位为c0,设另外两个末尾2位为a5,b5,则a5?b5?100ab?50?a?b??25,若?a?b?为奇数,则乘积末尾3位为75;若?a?b?为偶数则乘积为25,在乘上c0,无论c为多少,末尾三位只有000,250,500,750这4种.综上,积的末尾3位有000,500,250,750这4种可能.二、解答下列各题(每题10分,共40分,要求写出简要过程) 9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.【难度】★★★★【考点】数论:完全平方数【答案】不能【解析】原数的数字和为1?2?3??9?1?0?1?1?48,为3的倍数,而交换数字位置不会改变数字和,所以无论怎么调整得到的数一定为3的倍数;而一个平方数如果为3的倍数,则一定为9的倍数,而48不是9的倍数,所以无法通过交换数字位置得到一个完全平方数.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为y,5,x的长方体(x,y为整数),余下部分的体积为120,求x和y.x4y15【难度】★★★【考点】几何:长方体正方体【答案】x?3,y?12。

[华杯赛初赛试题]华杯赛试题

[华杯赛初赛试题]华杯赛试题

[华杯赛初赛试题]华杯赛试题篇一:[华杯赛试题]小学组华杯赛初赛试题精选8道题小学组华杯赛初赛试题1、全世界胡杨90%在中国,中国胡杨90%在新疆,新疆胡杨90%在塔里木.塔里木的胡杨占全世界的%.2、50个各不相同的正整数,它们的总和是2022,那么这些数里奇数至多有个。

3、在一个正方形里面画一个最大的圆,这个圆的面积是正方形面积的_______%。

(π取3.14)4、如果物价下降50%,那么原来买1件东西的钱现在就能买2件。

1件变2件增加了100%,这就相当于我手中的钱增值了100%。

如果物价上涨25%,相当于手中的钱贬值了_____%。

5、算式的计算结果是_______。

6、如图,大等边三角形中放了三个面积都是30平方厘米的小正六边形。

大三角形的面积是______平方厘米。

7、小学组华杯赛初赛试题:如果(A、B均为自然数),那么B最大是______。

8、甲、乙两车都从A地到B地。

甲车比乙车提前30分钟出发,行到全程三分之一时,甲车发生了故障,修车花了15分钟,结果比乙车晚到B地15分钟。

甲车修车前后速度不变,全程为300千米。

那么乙车追上甲车时在距A地_______千米。

篇二:[华杯赛试题]有关小学奥数华杯赛试题小学奥数华杯赛试题:一、选择题(每小题10分,以下每题的四个选项中,仅有一个是正确的,请单击选择答案。

)1、如图,时钟上的表针从(1)转到(2)最少经过了()。

(A)、2小时30分(B)、2小时45分(C)、3小时30分(D)、3小时45分2、在2022年,1月1日是星期日,并且()(A)、1月份有5个星期三,2月份只有4个星期三(B)、1月份有5个星期三,2月份也有5个星期三(C)、1月份有4个星期三,2月份也有4个星期三(D)、1月份有4个星期三,2月份有5个星期三3、有大小不同的4个数,从中任取3个数相加,所得的和分别是180,197,208和222,那么,第二小的数所在的和一定不是()。

小学奥数华杯赛试题五常见汇总汇编

小学奥数华杯赛试题五常见汇总汇编

华杯试题精选一数字迷数字迷类型的题目每年必考这种题型不但能够增加题目的趣味性,还能联系时事,与时俱进。

据统计,在近三年的试卷中出现了六道数字迷的题目,其所占比例高达8.7%。

其中,在四则运算中,数字迷的题型更加倾向与乘法数字迷。

真题分析【第13届"华罗庚金杯"少年数学邀请赛决赛】设六位数abcdef满足fabcde=f×abcdef,请写出所有这样的六位数。

解:分析:其实数字迷的题目看上去虽然千变万化,但其本质却没有改变,这种题的解决方法往往是首先将横式转化竖式,然后寻找到突破口。

解决数字迷常用的分析方法有:1、个位数字分析法(加法个位数规律、剑法个位数规律和乘法个位数规律)2、高位分析法(主要在乘法中运用)3、数字估算分析法(最大值与最小值得考量,经常要结合数位考虑)4、加减乘法中的进位与借位分析5、分解质因数分析法6、奇偶性分析(加减乘法)个位分析、高位分析和进位借位分析都是常用的突破顺序,然后依次进行递推,同事要求学生熟悉数字的运算结果和特征,通过结合数位、奇偶分析和分解质因数等估算技巧,进行结果的取舍判断。

真题训练1、【第14届华罗庚金杯少年数学邀请赛初赛】下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字。

团团×圆圆=大熊猫则"大熊猫"代表的三位数是()。

2、【第14届"华罗庚金杯"少年数学邀请赛决赛B卷】在如图所示的乘法算式中,汉字代表1至9这9个数字,不同汉字代表不同的数字。

若"祝"字和"贺"字分别代表数字"4"和"8",求出"华杯赛"所代表的整数。

3、【第13届"华罗庚金杯"少年数学邀请赛决赛】右图是一个分数等式:等式中的汉字代表数字1、2、3、4、5、6、7、8和9,不同的汉字代表不同的数字。

历年华杯赛试题及答案小学

历年华杯赛试题及答案小学

历年华杯赛试题及答案小学华杯赛,全称“全国青少年数学华罗庚金杯赛”,是中国最具影响力的青少年数学竞赛之一,旨在激发青少年对数学的兴趣,培养他们的数学思维能力。

以下是一些历年华杯赛小学组的试题及答案,供参考。

试题一:小明有3个红球和2个蓝球,他随机从袋子里摸出一个球,然后放回。

接着,他又随机摸出一个球。

请问小明两次都摸到红球的概率是多少?答案:小明第一次摸到红球的概率是3/5,放回后,第二次摸到红球的概率仍然是3/5。

因此,两次都摸到红球的概率是(3/5) * (3/5) = 9/25。

试题二:有一个数字序列:1, 1, 2, 3, 5, 8, 13, 21, ... 这个序列的特点是每一项都是前两项的和。

请问这个序列的第10项是多少?答案:这是一个斐波那契数列。

根据题目给出的数列,第10项是第9项(21)和第8项(13)的和,即21 + 13 = 34。

试题三:一个班级有40名学生,其中20名男生和20名女生。

如果随机选择一名学生,那么选择到男生的概率是多少?答案:班级中有20名男生,总共40名学生,所以选择到男生的概率是20/40 = 1/2。

试题四:一个圆形的直径是14厘米,求这个圆的面积。

答案:圆的面积公式是A = πr²,其中r是圆的半径。

直径是14厘米,所以半径是14/2 = 7厘米。

代入公式得到面积A = π * 7² = 49π ≈ 153.94平方厘米。

试题五:小华有5个苹果,他决定将这些苹果平均分给3个朋友。

如果每个朋友分得的苹果数必须是整数,小华应该如何分配?答案:小华可以将5个苹果分成1, 2, 2的组合,这样每个朋友得到的苹果数都是整数。

试题六:一个长方体的长、宽、高分别是8厘米、6厘米和5厘米。

求这个长方体的体积。

答案:长方体的体积公式是V = 长 * 宽 * 高。

代入数值得到V = 8 * 6 * 5 = 240立方厘米。

试题七:如果一个数的平方等于这个数本身,那么这个数是什么?答案:这个数是0或1,因为0² = 0,1² = 1。

华杯赛数学试题及答案

华杯赛数学试题及答案

华杯赛数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于它本身,这个数可能是?A. 0B. 1C. 2D. 3答案:A、B3. 如果一个三角形的两边长分别为3和4,那么第三边的长度x满足的条件是?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 2 < x < 6答案:C4. 一个圆的半径是2,那么它的周长是多少?A. 4πB. 6πC. 8πD. 10π答案:C5. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:无正确选项,因为所有选项都可以化简。

6. 如果一个数列的前三项是2, 4, 6,那么第四项是多少?A. 8B. 10C. 12D. 14答案:A7. 一个长方体的长、宽、高分别是3cm、4cm、5cm,那么它的体积是多少?A. 60cm³B. 120cm³C. 180cm³D. 240cm³答案:A8. 一个等差数列的前三项是2, 5, 8,那么第六项是多少?A. 14B. 15C. 16D. 17答案:B9. 一个等比数列的前三项是2, 6, 18,那么第四项是多少?A. 54B. 42C. 24D. 12答案:A10. 一个数的立方等于它本身,这个数可能是?A. 0B. 1C. -1D. 以上都是答案:D二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。

答案:512. 如果一个数的绝对值是4,那么这个数可能是________或________。

答案:4或-413. 一个圆的直径是10,那么它的面积是________。

答案:25π14. 如果一个三角形的内角和是180度,其中一个角是90度,另外两个角的度数之和是________。

历届六年级华杯竞赛试题

历届六年级华杯竞赛试题

历届六年级华杯竞赛试题华杯赛,即“华罗庚金杯”数学竞赛,是一项面向中小学生的数学竞赛活动,它以中国著名数学家华罗庚的名字命名,旨在激发学生对数学的兴趣,培养他们的数学思维能力。

以下是历届六年级华杯竞赛的一些典型试题,供参考:1. 数列问题:- 某数列的前几项为:2, 4, 7, 11, ... 请问第10项是多少?2. 几何问题:- 一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。

3. 组合问题:- 有5个不同的球和3个不同的盒子,将这些球放入盒子中,每个盒子至少有一个球,有多少种不同的放法?4. 逻辑推理:- 一个班级有40名学生,如果每个学生至少参加一个兴趣小组,而班级中至少有5个学生参加了相同的兴趣小组,求至少有多少个兴趣小组。

5. 代数问题:- 解方程:\( x^2 - 5x + 6 = 0 \)。

6. 概率问题:- 一个袋子里有5个红球和3个蓝球,随机抽取3个球,求至少抽到2个红球的概率。

7. 行程问题:- 甲乙两地相距120公里,一辆汽车以每小时60公里的速度从甲地开往乙地,同时另一辆汽车以每小时40公里的速度从乙地开往甲地,两车何时相遇?8. 比例问题:- 如果一个班级的学生人数是另一个班级的1.5倍,且两个班级的总人数为100人,求每个班级的人数。

9. 图形变换:- 一个正方形的边长为4厘米,将其对角线延长1厘米,求新形成的四边形的面积。

10. 计数问题:- 一个数字钟在显示时间时,数字“1”在一天内出现的次数是多少?这些题目涵盖了数学竞赛中的多个领域,包括数列、几何、组合、逻辑推理、代数、概率、行程、比例、图形变换和计数等。

解决这些问题需要学生具备扎实的数学基础知识、灵活的解题技巧以及良好的逻辑思维能力。

小学华赛杯试题及答案

小学华赛杯试题及答案

小学华赛杯试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是正确的分数表示?A. 2/3B. 三分之二C. 2除以3D. 二分之三答案:A2. 一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 32B. 24C. 16D. 12答案:A3. 一个数加上5后是10,这个数是多少?A. 5B. 10C. 15D. 0答案:A4. 以下哪个图形是轴对称图形?A. 三角形B. 正方形C. 圆形D. 五边形答案:B5. 一个班级有40名学生,其中男生人数是女生人数的2倍,那么男生有多少人?A. 20B. 16C. 24D. 28答案:C6. 一个数的3倍是15,这个数是多少?A. 5B. 3C. 4D. 2答案:A7. 一个数减去它的一半等于10,这个数是多少?A. 20B. 15C. 10D. 5答案:A8. 以下哪个选项是正确的小数表示?A. 0.5B. 0.05C. 0.005D. 0.0005答案:A9. 一个数的4倍加上8等于32,这个数是多少?A. 6B. 7C. 8D. 9答案:B10. 一个班级有45名学生,其中女生人数是男生人数的3倍,那么女生有多少人?A. 35B. 30C. 40D. 36答案:C二、填空题(每题3分,共30分)1. 一个数的5倍是25,这个数是______。

答案:52. 一个数减去7得到3,这个数是______。

答案:103. 一个数的3倍加上4等于19,这个数是______。

答案:54. 一个数的2倍减去8等于4,这个数是______。

答案:85. 一个数加上它的一半等于18,这个数是______。

答案:126. 一个数的4倍减去6等于24,这个数是______。

答案:87. 一个数的6倍加上12等于42,这个数是______。

答案:68. 一个数的3倍减去9等于15,这个数是______。

答案:89. 一个数的5倍加上20等于50,这个数是______。

华杯赛小学生试题及答案

华杯赛小学生试题及答案

华杯赛小学生试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 华杯赛是面向中学生的数学竞赛B. 华杯赛是面向小学生的数学竞赛C. 华杯赛是面向大学生的数学竞赛D. 华杯赛是面向高中生的数学竞赛答案:B2. 华杯赛的全称是什么?A. 华罗庚杯数学竞赛B. 华罗庚杯物理竞赛C. 华罗庚杯化学竞赛D. 华罗庚杯信息学竞赛答案:A3. 华杯赛每年举办几次?A. 一次B. 两次C. 三次D. 四次答案:A4. 华杯赛的主办单位是?A. 教育部B. 科技部C. 体育部D. 文化部答案:A二、填空题(每题5分,共20分)1. 华杯赛的举办时间为每年的________月。

答案:32. 华杯赛的参赛对象是________年级的学生。

答案:小学3. 华杯赛的初赛通常包括________和________两种题型。

答案:选择题填空题4. 华杯赛的决赛题型包括________、________和________。

答案:选择题填空题应用题三、解答题(每题10分,共20分)1. 请简述华杯赛的历史背景。

答案:华杯赛全称华罗庚杯数学竞赛,是为了纪念中国著名数学家华罗庚而设立的,旨在激发小学生学习数学的兴趣,提高他们的数学素养。

该竞赛自1993年起每年举办,已成为中国小学生数学竞赛中的重要赛事之一。

2. 华杯赛的参赛流程是怎样的?答案:华杯赛的参赛流程通常包括报名、初赛、复赛和决赛四个阶段。

首先,学生需要在指定时间内完成报名。

初赛通常在3月份举行,通过初赛选拔出的学生将参加复赛。

复赛成绩优异者将进入决赛,最终角逐华杯赛的各类奖项。

华杯赛复习题及答案

华杯赛复习题及答案

华杯赛复习题及答案一、选择题1. 已知一个数列的前三项分别为1, 2, 4,且每一项都是前一项的两倍,那么第四项是多少?A. 6B. 8C. 10D. 16答案:D2. 如果一个圆的半径是2厘米,那么它的面积是多少平方厘米?A. 4πB. 8πC. 12πD. 16π答案:B二、填空题3. 计算下列表达式的值:\((3x^2 - 2x + 1) - (x^2 + 4x - 3)\)。

答案:\(2x^2 - 6x + 4\)4. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,它的体积是多少立方厘米?答案:60三、解答题5. 一个班级有40名学生,其中20名男生和20名女生。

如果随机选择一名学生,那么选中男生的概率是多少?答案:选中男生的概率是 \(\frac{20}{40} = \frac{1}{2}\)。

6. 一个工厂生产了100个零件,其中有5个是次品。

如果随机抽取5个零件,那么至少抽到一个次品的概率是多少?答案:首先计算没有抽到次品的概率,即从95个合格品中抽取5个的概率,然后用1减去这个概率得到至少抽到一个次品的概率。

计算过程如下:\[ P(\text{至少一个次品}) = 1 - \frac{C(95,5)}{C(100,5)} \] 其中 \(C(n,k)\) 表示从n个不同元素中取出k个元素的组合数。

四、证明题7. 证明对于任意实数 \(a\) 和 \(b\),不等式 \(a^2 + b^2 \geq 2ab\) 成立。

答案:通过展开和重新排列项,可以证明:\[ a^2 + b^2 - 2ab = (a - b)^2 \]由于平方总是非负的,所以 \((a - b)^2 \geq 0\),因此 \(a^2 + b^2 \geq 2ab\)。

8. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。

答案:设直角三角形的两条直角边长分别为 \(a\) 和 \(b\),斜边长为 \(c\)。

小学华杯赛试题及答案

小学华杯赛试题及答案

小学华杯赛试题及答案【篇一:各届华杯赛真题集锦-含答案哦!】届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则a、b、c处填的数各是多少? 4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?【篇二:六年级华杯赛奥数竞赛模拟题(30套)】=txt>一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+?+170)-(41+42+?+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?小学奥数模拟试卷.2 姓名得分一、填空题:1.用简便方法计算下列各题:(3)100+99-98-97+?+4+3-2-1=______.2.上右面算式中a代表_____,b代表_____,c代表_____,d代表_____(a、b、c、d各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟_____岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_____面,黄旗_____面.6.如图中,能看到的方砖有______块,看不到的方砖有______块. 7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考____次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,??这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若p点在岸上,则a点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点b,他脱鞋的次数与穿鞋的次数和是奇数,那么b点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,1 5 6 7 8 9 10 11 12 13 14 152025 2627 28 29 3035 40 41 42 43 44 4546 47 48 49 50 55 56 57 58 59 603.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.小学奥数模拟试卷.3 姓名得分一、填空题:2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,?,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5. 2.如图,把四边形abcd的各边延长,使得ab=ba′,bc=cb′cd=dc′,daad′,得到一个大的四边形a′b′c′d′,若四边形abcd的面积是1,求四边形a′b′c′d′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?小学奥数模拟试卷.4 姓名得分【篇三:2015小高华杯赛答案及解析】=txt>决赛试题b(小学高年级组)一、填空题(每小题10份,共80分)1. 计算:57.6?81845?28.8?5?14.4?80?1212?________.【难度】★【考点】计算:提取公因数【答案】121【解析】原式?57.6?818415?28.8?5?14.4?80?12228.8165?28.8?1845?14.4?80?121228.82005?14.4?80?121228.84014.4240121212122. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.【难度】★★【考点】应用题:分数应用题【答案】13【解析】甲=总数的三分之一=20,乙=总数的四分之一=15,丙=总数的五分之一=12,所以丁?60?20?15?12?13(棵)3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.【难度】★★【考点】行程:时钟问题【答案】106【解析】4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.【难度】★★【考点】数论:余数、最小公倍数【答案】122【解析】这个三位数减去2得到3、4、5、6的公倍数,取三位数120,所以最小值为122.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.【难度】★★★★【考点】计数:组合计数【答案】7【解析】用a1,a2,a3,a4,a5,a6,a7这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7?2?2?7条虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.a2必与两个点连接虚线,不妨记为a1,a3,而a3必然再与一个点连接虚线,记为a4;a4虚线连接a5,否则剩下3个点互为敌国关系;a5虚线连接a6,否则剩下两个点无法由2条虚线连接;a6虚线连接a7,最后a7只能虚线连接a1.最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件.有135,136,146,246,247,257,357,这7种.(为了直观我们用1,2,3,4,5,6,7分别代表a1,a2,a3,a4,a5,a6,a7)6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.【难度】★★★【考点】数论:位值原理【答案】9421,1249【解析】设其中最小的四位数为abcd,一共可组成4?3?2?1?24个不同的四位数,由于每个数字在每位上均出现6次,则24个数和为6??a?b?c?d??1111?106656,则四个数字之和为16,所以最大和最小的可能为,9421和1249、8521和1258、8431和1348、7621和1267、7531和1357、7432和2347、6541和1456、6532和2356.7. 见右图,三角形abc的面积为1,do:ob?1:3,eo:oa?4:5,则三角形doe的面积为________.【难度】★★★★【考点】几何:等积变形【答案】11135【解析】ye12xab设三角形doe的面积为4x,由比例关系不难得出图中另三块的面积分别为5x,12x,15x,再设三角形dce的面积为y,则有ceyy?4x?5 be?4x?12x?x12x?15x,得y?14411x,则三角形doe的面积为4?114?5?12?15?135.118. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.【难度】★★★★★【考点】组合:分类讨论数论综合【答案】4【解析】设三个数的个位分别为a,b,c⑴如果a,b,c都相等,则只能都为0;⑵如果a,b,c中有两个相等,①a,a,c且a?c,必有c?a?10?a,则c?10,与c为数字矛盾;②a,a,c且a?c,则有c?a?a,a?a?10?c,则a?5,c?0;⑶如果a,b,c都不相等,设a?b?c,则c?b?10?a,c?a?10?b,则c?10,与c为数字矛盾;综上三个数的个位分别为0,0,0或0,5,5;⑴如果都为0,则乘积末尾3位为000;⑵如果为0,5,5①如果个位为0的数,末尾3位都为0,则乘积末尾3位为000;②如果个位为0的数,末尾2位都为0,则乘积末尾3位为500或000;③如果个位为0的数,末尾1位为0设末尾两位为c0,设另外两个末尾2位为a5,b5,则a5?b5?100ab?50?a?b??25,若?a?b?为奇数,则乘积末尾3位为75;若?a?b?为偶数则乘积为25,在乘上c0,无论c为多少,末尾三位只有000,250,500,750这4种.综上,积的末尾3位有000,500,250,750这4种可能.二、解答下列各题(每题10分,共40分,要求写出简要过程) 9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.【难度】★★★★【考点】数论:完全平方数【答案】不能【解析】原数的数字和为1?2?3??9?1?0?1?1?48,为3的倍数,而交换数字位置不会改变数字和,所以无论怎么调整得到的数一定为3的倍数;而一个平方数如果为3的倍数,则一定为9的倍数,而48不是9的倍数,所以无法通过交换数字位置得到一个完全平方数.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为y,5,x的长方体(x,y为整数),余下部分的体积为120,求x和y.x4y15【难度】★★★【考点】几何:长方体正方体【答案】x?3,y?12。

小学奥数华杯赛试题五常见汇总

小学奥数华杯赛试题五常见汇总

华杯试题精选一数字迷数字迷类型的题目每年必考这种题型不但能够增加题目的趣味性,还能联系时事,与时俱进。

据统计,在近三年的试卷中出现了六道数字迷的题目,其所占比例高达8.7%。

其中,在四则运算中,数字迷的题型更加倾向与乘法数字迷。

真题分析【第13届"华罗庚金杯"少年数学邀请赛决赛】设六位数abcdef满足fabcde=f×abcdef,请写出所有这样的六位数。

解:分析:其实数字迷的题目看上去虽然千变万化,但其本质却没有改变,这种题的解决方法往往是首先将横式转化竖式,然后寻找到突破口。

解决数字迷常用的分析方法有:1、个位数字分析法(加法个位数规律、剑法个位数规律和乘法个位数规律)2、高位分析法(主要在乘法中运用)3、数字估算分析法(最大值与最小值得考量,经常要结合数位考虑)4、加减乘法中的进位与借位分析5、分解质因数分析法6、奇偶性分析(加减乘法)个位分析、高位分析和进位借位分析都是常用的突破顺序,然后依次进行递推,同事要求学生熟悉数字的运算结果和特征,通过结合数位、奇偶分析和分解质因数等估算技巧,进行结果的取舍判断。

真题训练1、【第14届华罗庚金杯少年数学邀请赛初赛】下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字。

团团×圆圆=大熊猫则"大熊猫"代表的三位数是()。

2、【第14届"华罗庚金杯"少年数学邀请赛决赛B卷】在如图所示的乘法算式中,汉字代表1至9这9个数字,不同汉字代表不同的数字。

若"祝"字和"贺"字分别代表数字"4"和"8",求出"华杯赛"所代表的整数。

3、【第13届"华罗庚金杯"少年数学邀请赛决赛】右图是一个分数等式:等式中的汉字代表数字1、2、3、4、5、6、7、8和9,不同的汉字代表不同的数字。

最新小学华杯赛试题及答案

最新小学华杯赛试题及答案

最新小学华杯赛试题及答案以下是最新小学华杯赛的试题及答案。

请同学们认真阅读题目并选择最合适的答案。

答案将在试题结束后公布。

第一节:选择题1. 下面哪个是地球的大洲?A. 北极洲B. 夏威夷C. 亚马逊河D. 太阳系2. 以下哪个国家是世界上最大的国家?A. 美国B. 中国C. 加拿大D. 日本3. 铁是哪种物质?A. 液体B. 气体C. 固体D. 火星4. 西瓜属于以下哪个类别?A. 水果B. 蔬菜C. 肉类D. 饮料5. 恒星是由什么组成的?A. 水B. 空气C. 树木D. 氢和氦气体第二节:填空题1. 太阳是一个恒星,它处于太阳系的_________。

2. 中国的首都是_________。

3. 北京是哪个省的首府?4. 学生应该_______勤奋学习才能取得好成绩。

5. 跑步是一项很好的_______。

第三节:问答题1. 简述地球自转和公转的概念。

2. 什么是环保?为什么我们应该保护环境?第四节:阅读理解阅读下面的短文,然后回答问题。

学唱歌有很多好处。

首先,唱歌可以让人快乐。

当我们唱歌的时候,我们的身体会释放出一种叫做“快乐激素”的化学物质,这会使我们更加开心。

其次,唱歌还可以训练我们的声音和听觉。

唱歌可以让我们更敏感地听到声音的变化,并且提高我们的音准。

最后,在唱歌的过程中,我们还可以锻炼我们的肺活量和呼吸能力。

问题:1. 唱歌对人有哪些好处?2. 唱歌可以训练哪些技能?答案:第一节:选择题1. A2. C3. C4. A5. D第二节:填空题1. 中心2. 北京3. 北京市4. 努力5. 锻炼第三节:问答题1. 地球自转是指地球绕着自己的轴心旋转,并且在24小时内完成一次旋转。

公转是指地球绕太阳运动,一年绕行一周。

2. 环保是指保护环境并且减少对环境的污染。

我们应该保护环境,因为一个健康的环境对人类的生存和发展至关重要,而且保护环境也是我们应尽的责任。

第四节:阅读理解问题:1. 唱歌可以让人快乐,并且释放出快乐激素。

五年级华杯赛试题

五年级华杯赛试题

五年级华杯赛试题华杯赛是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动,下面小编为大家带来五年级华杯赛试题,希望对大家有帮助!五年级华杯赛试题一一、选择题(每小题10分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.1、在1至300的全部自然数中,是3的倍数或5的倍数的数共有( )个。

A、139B、140C、141D、1422、甲每分钟走55米,乙每分钟走75米,丙每分钟走80米。

甲、乙两人同时从A地,丙一人从B地同时相向出发,丙遇到乙后4分钟又遇到甲,则A地与B地间的距离是()。

A、4000米B、4200米C、4185米D、4100米3、对所有的数a,b,把运算a*b定义为a*b=ab-a+b,则方程5*x=17的.解是( )。

A、523B、2C、3D、34、植树节到了,某市举行大型植树活动,共有1430人参加植树,要把人数分成相等的若干队,且每队人数在100至200之间,则有分法()。

A、3种B、7种C、11种D、13种5、如图,已知正方形ABCD的边长是12厘米,E是CD边上的中点,连接对角线AC,交BE于点O,则三角形AOB的面积是()平方厘米。

A、24B、36C、48D、606、下图有九个空格,要求每个格中填入互不相同的数,使得每行、每列、每条对角线上的三个数之和都相等,则图中左上角的数是()。

A、9B、16C、21D、23二、填空题(每小题10分).7、有一种饮料的瓶身如下图所示,容积是3升。

现在它里面装了一些饮料,正放时饮料高度为20厘米,倒放时空于部分的高度为5厘米。

那么瓶内现有饮料升。

8、在一次“人与自然”知识竞赛中,竞赛试题共有25道题。

每道题都给出4个答案,其中只有一个答案正确,要求学生把正确答案选出来。

每道题选对得4分,不选或选错倒扣2分。

如果一个学生在本次竞赛中的得分要不低于60分,那么,他至少要选对__________道题。

华杯赛的试题及解答

华杯赛的试题及解答

华杯赛的试题及解答试题:1.计算:2.00×2.0结果用最简分数表示2.水池装有一个水管和若干每小时注水量相同的注水管,注水管注水时,排水管同时排水.若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池.现在用8个注水管注水,那么需要多少小时注满水池?3.在操场上做游戏,上午8:00从A地出发,匀速地行走,每走5分钟就折转90o。

问:1上午9:20能否恰好回到原处?2上午9:10能否恰好回到原处?如果能,请说明理由,并设计一条路线.如果不能,请说明理由。

4.1到100所有自然数中与100互质各数之和是多少?5.老王和老张各有5角和8角的邮票若干张,没有其它面值的邮票,但是他们邮票的总张数一样多.老王的5角邮票的张数与8角邮票张数相同,老张的5角邮票的金额等于8角邮票的金额.用他们的邮票共同支付110元的邮资足够有余,但不够支付160元的邮资.问他们各有8角邮票多少张?6.在下面一列数中,从第二个数开始,每个数都比它前面相邻的数大7,8,15,22,29,36,43,……。

它们前n-1个数相乘的积的末尾0的个数比前n个数相乘的积的末尾0的个数少3个,求n的最小值.解答:1.答:2.00×2.0原式=2.解:设单开水管需x小时将满池水排完,单开一个注水管需要y小时,则可知排水管每小时排整池水的,注水管每小时注水,可知有即为……………………………①同时由2小时用9个注水管注满水知即为……………………………②将①-②得可知代入①中得所以用8个注水管注水每小时注水故需用时小时答:用8个注水管注水,需要72小时注满水池.3.答:1上午9:20分恰好回到原地.我们可以设计如下的.路线:我们若没定每走5分钟都按顺时针方向或逆时针方向折转90°,则可知每过20分钟回到原处,而到9:20恰好过了80分钟,故可知9:20恰好第4次回原处.2上午9:10不能回到原地.因为到上午9:10共走了70分钟,而我们可以验证不管每一步为逆时针折转90°,还是顺时针折转90°都不能在70分钟内回原地.4.解:我们可以先去考虑到100的所有自然数中与100不可质的数,因为100=2×2×5×5,故1到100中所有含因子2或5的数都与100不互质.其中含因子2的有2,4,6,8…,100即为50个数,含因子5的有5,10,15,20…,100但其中10,20,30,…100已经包括在上面内,故与100不互质的1到100之内的数为:2,4,6,…100,5,15,25,…95。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华杯试题精选一数字迷数字迷类型的题目每年必考这种题型不但能够增加题目的趣味性,还能联系时事,与时俱进。

据统计,在近三年的试卷中出现了六道数字迷的题目,其所占比例高达8.7%。

其中,在四则运算中,数字迷的题型更加倾向与乘法数字迷。

真题分析【第13届"华罗庚金杯"少年数学邀请赛决赛】设六位数abcdef满足fabcde=f×abcdef,请写出所有这样的六位数。

解:分析:其实数字迷的题目看上去虽然千变万化,但其本质却没有改变,这种题的解决方法往往是首先将横式转化竖式,然后寻找到突破口。

解决数字迷常用的分析方法有:1、个位数字分析法(加法个位数规律、剑法个位数规律和乘法个位数规律)2、高位分析法(主要在乘法中运用)3、数字估算分析法(最大值与最小值得考量,经常要结合数位考虑)4、加减乘法中的进位与借位分析5、分解质因数分析法6、奇偶性分析(加减乘法)个位分析、高位分析和进位借位分析都是常用的突破顺序,然后依次进行递推,同事要求学生熟悉数字的运算结果和特征,通过结合数位、奇偶分析和分解质因数等估算技巧,进行结果的取舍判断。

真题训练1、【第14届华罗庚金杯少年数学邀请赛初赛】下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字。

团团×圆圆=大熊猫则"大熊猫"代表的三位数是()。

2、【第14届"华罗庚金杯"少年数学邀请赛决赛B卷】在如图所示的乘法算式中,汉字代表1至9这9个数字,不同汉字代表不同的数字。

若"祝"字和"贺"字分别代表数字"4"和"8",求出"华杯赛"所代表的整数。

3、【第13届"华罗庚金杯"少年数学邀请赛决赛】右图是一个分数等式:等式中的汉字代表数字1、2、3、4、5、6、7、8和9,不同的汉字代表不同的数字。

如果"北"和"京"分别代表1和9.请写出"奥运会"所代表的所有的三位整数,并且说明理由。

4、【第13届"华罗庚金杯"少年数学邀请赛初赛】华杯赛网址是,将其中的字母组成如下算式:如果每个字母分别代表0~9这十个数字中的一个,相同的字母代表相同的数字,不同的字母代表不同的数字,并且w=8,h=6,a=9,c=7,这三位数的最小值是.5、【第13届"华罗庚金杯"少年数学邀请赛决赛】请将四个4用四则运算符号、括号组成五个算式,使它们的结果分别等于5、6、7、8、9.华杯试题精选二排列组合真题分析【第14届华罗庚金杯少年数学邀请赛初赛】按照中国篮球职业联赛组委会的规定,各队队员的号码可以选择的范围是0~55号,但选择两位数的号码时,每位数字均不能超过5。

那么,可供每支球队选择的号码共有(C)个。

(A)34(B)35(C)40(D)56分析:可以看出,试题的导向是要求学生将一件事情学会分情况讨论,逐段分析。

虽然上面一个题目比较简单,但是此类题的过程其实往往较长,粗心的学生容易遗漏某些可能性。

那么在处理此类问题的时候,我们通常遵循一下思路来逐步分析:1、列举出满足题意的所有情况2、对于每种情况判断是否还有子情况3、当不能再细分的时候,我们利用加法原理或乘法原理将每一种最细的情况中的数目算出4、写出所有情况的数量后,相加求出总和。

真题训练1、【第13届"华罗庚金杯"少年数学邀请赛初赛】将一个长和宽分别是1833厘米和423厘米的长方形分割成若干个正方形,则正方形最少是( )个.(A)8(B)7(C)5(D)62、【第12届华罗庚金杯少年数学邀请赛决赛】将1分、2分、5分和1角的硬币投入19个盒子中,使每个盒子里都有硬币,且任何两个盒子里的硬币的钱数都不相同。

问:至少需要投入多少硬币?这时,所有的盒子里的硬币的总钱数至少是多少?3、【第12届华罗庚金杯少年数学邀请赛决赛】若干支球队分成4组,每组至少两队,各组进行循环赛(组内每两队都要比赛一场),共比赛了66场。

问:共有多少支球队?(写出所有可能的参赛队数)4、【第12届华罗庚金杯少年数学邀请赛决赛】从下面每组数中各取一个数,将它们相乘,则所有这样的乘积的总和是5、【第12届华罗庚金杯少年数学邀请赛决赛】如图所示,已知APBCD是以直线l为对称轴的图形,且∠APD=116°,∠DPC=40°,DC>AB,那么,以A、P、B、C和D五个点为顶点的所有三角形中有个钝角三角形,有个锐角三角形.真题答案:1、【B】这些分割的正方形不需要相同,可以有大有小,如果要至少,只要让一长方形尽可能大的分割。

1833÷423=4 (141)423÷141=34+3=72、【41(枚)、194(分)】解:只取一枚有1分、2分、5分、10分(1角)4种;取二枚有1+1=2(分),2+2=4(分),5+5=10(分),10+10=20(分)(2角),1+2=3(分),1+5=6(分),1+10=11(分)(1角1分),2+5=7(分),2+10=12(分)(1角2分),5+10=15(分)(1角5分),共10种,其中重复2种(2分、10分),加上只取一枚的共12种不同币值;取三枚时,可将以上取两枚的10种情况,分别加1分、2分、5分、10分,共有40种情况。

从小到大取出7种不重复的币值为:8分、9分、13分、14分、16分、17分、21分,加上上述12种共19种。

公用硬币的枚数为:1×4+2×8+3×7=41(枚)总钱数为:1+2+3+…+17+20+21=194(分)3、【共有21、22、23、24、25五种情况】解:列出一个组内参赛队数与比赛场数之间的关系,如下表:因为,55加上3个表中所列的场数不能得到66,所以11个队的组不可能存在;最多为10个队的组:45+10+10+1=66,45+15+3+3=66,有两种情况;最多为9个队的组:36+28+1+1=66,36+21+6+3,36+10+10+10=66,有三种情况;最多为8个队的组不可能存在;最多为7个队的组:21+21+21+3=66,21+15+15+15=66有两种情况;最多为6个或6个以下队的组不可能存在。

以上可能的情况,总队数分别为:10+5+5+2=22,10+6+3+3=22;9+8+2+2=21,9+7+4+3=23,9+5+5+5=24;7+7+7+3=24,7+6+6+6=25即可能的球队数共有21、22、23、24、25五种情况。

4、【7.56】解:设总和为S,则=0.9×(2.4+4.8+0.4+0.8)=0.9×8.4=7.565、【6个钝角三角形,4个锐角三角形】解:=10,以A、P、B、C、D五个点可以形成10个三角形,这10个三角形的内角中,∠APD=∠BPC=116°>90°,∠APC=∠BPD=116°+40=156>90°∵DC>AB,故∠ADC与∠BCD为锐角,∠BAD与∠ABC为钝角,∠APB=360°-116°×2-40°=88°<90°,其余均为锐角。

故有6个钝角三角形,4个锐角三角形.华杯试题精选三规律问题真题分析【第14届华罗庚金杯少年数学邀请赛初赛中】A、B、C、D、E五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A→C,B→E,C→A,D→B,E→D,开始时A、B拿着福娃,C、D、E拿着福牛,传递完5轮时,拿着福娃的小朋友是(A)。

(A)C与D(B)A与D(C)C与E(D)A与B分析:由于这种题型往往是文字叙述题,所以学生在读题的时候往往会感觉比较晕,甚至有时候在分析的时候会弄混淆。

其实这类题我们的处理方法往往如下:1、在读题的时候画出步骤的流程图2、观察流程图,找到循环规律3、用总数对循环数做除法求出余数,将多次循环的问题转化为只进行一次试验的问题4、如果是方格表中对于三角形、四边形的计数问题,我们往往写出前面几个图形所对应需要求出的数字,然后观察前面几个数的特征,利用等差数列、等比数列、斐波那契数列等等的性质得出最后结论。

真题训练1、【第14届"华罗庚金杯"少年数学邀请赛决赛B卷】A,B,C,D,E,F六个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A→F,B→D,C→E,D →B,E→A,F→C。

开始时,A,B,C,D,E,F拿着各自的玩具,传递完2002轮时,有个小朋友又拿到了自己的玩具。

2、【第14届"华罗庚金杯"少年数学邀请赛决赛B卷】将七位数"2468135"重复写287次组成一个2009位数"24681352468135…"。

删去这个数中所有位于奇数位(从左往右数)上的数字后组成一个新数;再删去新数中所有位于奇数位上的数字;按上述方法一直删除下去直到剩下一个数字为止,则最后剩下的数字是()。

3、【第12届华罗庚金杯少年数学邀请赛决赛】下图的圆周上放置有3000枚棋子,按顺时针依次编号为1,2,3,…,2999,3000。

首先取走3号棋子,然后按顺时针方向,每隔2枚棋子就取走1枚棋子,…,直到1号棋子被取走为止。

问:此时,(1)圆周上还有多少枚棋子?(2)在圆周上剩下的棋子中,从编号最小一枚棋子开始数,第181枚棋子的编号是多少?4、【第14届"华罗庚金杯"少年数学邀请赛决赛B卷】如图所示,在边长为1的小正方形组成的4×4方格图中,共有25个格点.在以格点为顶点的直角三角形中,两条直角边长分别是l和3的直角三角形共有个。

5、【第12届"华罗庚金杯"少年数学邀请赛初赛】如图,有一个边长为1的正三角形,第一次去掉三边中点连线围成的那个正三角形;第二次对留下的三个正三角形,再分别去掉它们中点连线围成的三角形;…做到第四次后,一共去掉了个三角形.去掉的所有三角形的边长之和是()。

6、【第12届华罗庚金杯少年数学邀请赛决赛】下图中的三角形都是等边三角形,红色三角形的边长是24.7,蓝色三角形的边长是26。

问:绿色三角形的边长是多少?真题答案:1、【 2 】解:我们先画出示意图.观察发现:B,D两个小朋友每经过2轮;玩具又回到自己手里,A,C,E,F四个小朋友需经过4轮,玩具才能回到各自手里.即B,D的玩具回到自己手里的周期是2轮,A,C,E,F的玩具回到自己手里的周期是4轮.所以:2002÷2=1001是满周期,即B,D两位小朋友经过2002轮后,玩具回到自己手里了.2002÷4=500……2不是满周期,即A,C,E,F四位小朋友经过2002轮后,玩具不在自己手里2、【 4 】(操作题)通过实验归纳,留下的最后一个数是2的幂次方数,210最靠近2009,即第210=1024个数码剩下,1024÷7=146(周期)……2,所以余数2对应的这个数为4.3、【 407 】解:第一圈刚好把能被3整除的取走,即第一圈最后取走编号为3000的,共取走1000枚,剩下2000枚,此时1号仍为第一个。

相关文档
最新文档