小学奥数排列和组合试题及答案修订稿
小学奥数排列组合[整理版]
奥数解排列组合应用题排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种 解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A = 共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A = ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I = 分成四个不相交的子集,能被4整除的数集{}4,8,12,100A = ;能被4除余1的数集{}1,5,9,97B = ,能被4除余2的数集{}2,6,,98C = ,能被4除余3的数集{}3,7,11,99D = ,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+- .例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
小学奥数之排列组合问题
题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。
四年级下册数学试题-奥数专题练习:第五讲 排列与组合(含答案)全国通用
第五讲:排列、组合基础班1.有6名同学参加象棋决赛,得冠军和亚军的名单有几种可能的情况?2.一个口袋装有6个小球,另一个口袋装有5个小球,所有小球的颜色都不相同。
(1)从两个口袋中任取一个小球,有多少种不同的取法?(2)从两个口袋中各取一个小球,有多少种不同的取法?3.某市电话号码是五位数,每一数位上的数码可以是0,l,2,…8,9中的任意一个(数字可以重复出现,如00000也算一个电话号码)那么这个城市最多有多少个电话号码?4.在“希望杯”足球赛中,共有27支小足球队参赛。
(l)如果这27个队进行单循环赛(两队间只比赛一次,称作一场),需要比赛多少场?(2)如果这27个队进行淘汰赛,最后决出冠军,共需比赛多少场?5.如上图,从A地到B地有两条路;从B地到D地有两条路;从A地到C地只有一条路;从C地到D地有3条路。
那么从A地到D地有多少种不同走法?6.5件不同的商品陈列在橱窗内,排成一排。
(1)如果某件商品不放在中间,有几种不同排法?(2)如果某件商品不能放在两端,有几种不同排法?7.有四封不同的信,随意投入三个信筒里,有多少种不同投法?8.下图中共有4×4=16个小方格,要把A,B,C,D四个不同的棋子放在方格里,每行和每列只能出现一个棋子,共有多少种放法?9.由数字0、1、2、3、4可以组成多少个①三位数?②没有重复数字的三位数?③没有重复数字的三位偶数?④小于1000的自然数?答案1.由乘法原理,有6×5种不同情况。
2.(1)11;(2)30。
3.100000。
5.7。
6.(1)5×4×3×2×1-4×3×2×1=96;(2)3×4×3×2×1=72。
7.34=81(种)8.16×9×4×1=576(种)或4!×4!=576(种)9.①100;②48;③30;④124.提高班1.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种?①某两人必须入选;②某两人中至少有一人入选;③某三人中恰入选一人;④某三人不能同时都入选.答案1. ①C313=286;②C515-C513=1716;③C13·C412=1485;④C515-C212=2937.。
排列与组合一(带答案)
排列与组合(一)一、排列:一般地说,从 n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,这就叫做从几个不同元素中取m个元素的一个排列。
排列数:____________________________________;阶乘:_______________________________________;二、组合:一般地说,从 n个不同元素中,任取m(m ≤ n)个元素出来拼成一组,就叫做从n个不同元素中取出m个元素的一个组合。
组合数:_____________________________________;性质:________________________________________;排列题型一、含有特殊元素、特殊位置的题——采用特殊优先安排的策略例1:用0,2,3,4,5这五个数字,组成没有重复数字的三位数,共有()A.24个 B.30个 C.48个 D.60个若含有两个或两个以上的特殊位置或特殊元素,则应使用集合的思想来考虑.这里仅举以下几例.(1)无关型(两个特殊位置上分别可取的元素所组成的集合的交是空集)例2:用0,1,2,3,4,5六个数字可组成多少个被10整除且数字不同的六位数?解:由题意可知,两个特殊位置在首位和末位,特殊元素是“0,首位可取元素的集合A={1,2,3,4,5},末位可取元素的集合B={0},A∩B=.如图1所示.末位上有种排法,首位上有种不同排法,其余位置有种不同排法.所以,组成的符合题意的六位数是=120(个).说明:这个类型的题目,两个特殊位置上所取的元素是无关的.先分别求出两个特殊位置上的排列数(不需考虑顺序),再求出其余位置上的排列数,最后利用乘法原理,问题即可得到解决.(2)包合型(两个特殊位置上分别可取的元素所组成集合具有包合关系)例3:用0,1,2,3,4,5六个数字可组成多少个被5整除且数字不同的六位奇数?解:由题意可知,首位、末位是两个特殊位置,“0”是特殊元素,首位可取元素的集合A={1,2,3,4,5},末位可取元素的集合B={5},B A,用图2表示。
四年级奥数排列组合题及答案
四年级奥数排列组合题及答案四年级奥数排列组合题及答案1.排列、组合等问题从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?解答:6×4=24种6×2=12种4×2=8种24+12+8=44种【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。
当从国画、油画各选一幅有多少种选法时,利用的乘法原理。
由此可知这是一道利用两个原理的综合题。
关键是正确把握原理。
符合要求的选法可分三类:设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。
由乘法原理有6×4=24种选法。
第二类为:国画、水彩画各一幅,由乘法原理有6×2=12种选法。
第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。
这三类是各自独立发生互不相干进行的。
因此,依加法原理,选取两幅不同类型的画布置教室的选法有24+12+8=44种。
2.排列组合从1到100的所有自然数中,不含有数字4的.自然数有多少个?解答:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有8+8×9+1=81个不含4的自然数.。
(完整版)排列组合练习试题和答案解析
一、排列与组合
1.从9人中选派2人参加某一活动,有多少种不同选法?
2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?
3.现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是
4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有
A.9种B.12种C.15种D.18种
5.将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种?
6.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种?
由分类计数原理得,不同的三角形共有5+20+10=35个.
12.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有种不同的放映方法(用数字作答)。
五、元素与位置——位置分析
1.7人争夺5项冠军,结果有多少种情况?
2. 75600有多少个正约数?有多少个奇约数?
(2)甲乙必须站两端,丙站中间,有多少种不同排法?
2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?
3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是
A.3761 B.4175 C.5132 D.6157
4.设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有
(完整版)排列组合练习题及答案
(完整版)排列组合练习题及答案《排列组合》一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?二、注意附加条件1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?(2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有 A.30种 B.31种 C.32种 D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是 A.230种 B.236种 C.455种 D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有 A.240种 B.180种 C.120种 D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是。
小学奥数之排列组合问题.(完整资料).doc
【最新整理,下载后即可编辑】计数问题教学目标1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。
5.根据不同题目灵活运用计数方法进行计数。
知识点拨:例题精讲:一、排列组合的应用【例 1】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。
【解析】(1)775040P=(种)。
(2)只需排其余6个人站剩下的6个位置.66720P=(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P=1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。
(精心整理)排列组合练习题与答案
排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是()A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有()A.12个B.13个C.14个D.15个2221322选C.二、相邻问题:1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A=(2) 选B 3253251440A A A=三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是()A.28种B.84种C.180种D.360种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A 6828C =四、定序问题:1. 有4名男生,3名女生。
小学奥数思维训练-排列组合(经典透析)(通用,含答案)
保密★启用前小学奥数思维训练排列组合(经典透析)学校:___________姓名:___________班级:___________考号:___________一、解答题1.小明和小王从北京出发先到天津看海,然后再到上海东方明珠塔参观.从北京到天津可以坐火车或者坐公共汽车,坐火车有4种车次,坐公共汽车有3种车次;而从天津到上海可以坐火车,公共汽车,轮船或者飞机,火车有3种,汽车有5种,轮船有4种,飞机有2种.问小明和小王从北京到上海旅游一共有多少种走法?2.某公园有两个园门,一个东门,一个西门.若从东门入园,有两条道路通向龙凤亭,从龙凤亭有一条道路通向园中园,从园中园又有两条道路通向西门.另外,从东门有一条道路通向游乐场.从游乐场有两条道路通向水上世界,另有一条道路通向园中园.从水上世界有一条道路通向西门,另有一条道路通向小山亭,从小山亭有一条道路通向西门.问若从东门入园,从西门出园一共有多少种不同的走法(不走重复路线)?3.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?①可组成多少个没有重复数字的三位数?4.如下图,A、B、C、D、E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?5.4名同学到照相馆照相。
他们要排成一排,问:共有多少种不同的排法?6.从分别写有1、3、5、7、8五张卡片中任取两张,作成一道两个一位数的乘法题,问:①有多少个不同的乘积?①有多少个不同的乘法算式?7.如下图,问:①下左图中,共有多少条线段?①下右图中,共有多少个角?8.从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?9.国家举行足球赛,共15个队参加.比赛时,先分成两个组,第一组8个队,第二组7个队.各组都进行单循环赛(即每个队要同本组的其他各队比赛一场).然后再由各组的前两名共4个队进行单循环赛,决出冠亚军.问:①共需比赛多少场?①如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?参考答案:1.98种【解析】【分析】首先看他们完成整个过程需要几个步骤,这是判断利用加法原理和乘法原理的依据.很明显整个过程要分两步完成,先从北京到天津,再从天津到上海,应该用乘法原理.我们再分开来看,先看从北京到天津,无论是坐火车还是汽车都是一步完成,所以要用加法原理,同样的道理,从天津到上海的走法计算也应该用加法原理.【详解】解:从北京到天津走法有:4+3=7种,从天津到上海走法有:3+5+4+2=14(种).从北京到上海的走法有:7×14=98(种).答:小明和小王从北京到上海旅游一共有98种走法.2.10种【解析】【详解】解法一:这个题的已知条件比较复杂.我们可将已知条件稍加“梳理”:1.从东门入园,从西门出园;2.从东门入园后,可以通向两个游览区,龙凤亭与游乐场;3.从龙凤亭经园中园可达到西门;4.从游乐场经水上世界可达到西门,或从游乐场经园中园可达到西门;5.从水上世界经小山亭可达到西门;根据以上五条可知,从东门入园经龙凤亭经园中园达到西门为一主干线.而东门到龙凤亭有两条不同路线;龙凤亭到园中园只有一条路线;园中园到西门又有两条不同的路线.由乘法原理,这条主干线共有2×1×2=4种不同的走法.再看从东门入园后到游乐场的路线.从东门到游乐场只有一条路,由游乐场分成两种路线,一是经园中园到西门,这条路线由乘法原理可知有1×1×2=2种不同走法;二是经水上世界到西门,从水上世界到西门共有两条路线(由水上世界直接到西门和经小山亭到西门),再由乘法原理可知这条路线有1×2×2=4种不同路线.最后由加法原理计算.从东门入园从西门出园且不走重复路线的走法共有2×1×2+1×1×2+1×2×2=10种.解法二:“枚举法”解题.如图,图中A 表示东门,B 表示西门,C 表示龙凤亭,D 表示园中园,E 表示游乐场,F 表示水上世界,G 表示小山亭,线表示道路.不同的走法有10种.1121111A C D BA C DB A E D BA E F G BA E F GB →→→→→→→→→→→→→→→→→ 1222222A C D BA C DB ACD B AEFG BA E F GB →→→→→→→→→→→→→→→→→答:不走重复路线,共有10种不同走法.【点睛】本题主要考察加法乘法原理.先分类利用加法原理,再对每一类进行分步利用乘法原理.建议可以利用加法与乘法原理的题型就没必要用枚举法,因为枚举法比较容易重复和遗漏.3.①48个①18个【解析】【分析】在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定。
小学奥数排列和组合试题及答案
小学奥数排列和组合试题及答案第一篇:小学奥数排列和组合试题及答案小学四年级奥数排列组合练习1.由数字0、1、2、3、4可以组成多少个①三位数?②没有重复数字的三位数?③没有重复数字的三位偶数?④小于1000的自然数?2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种?①某两人必须入选;②某两人中至少有一人入选;③某三人中恰入选一人;④某三人不能同时都入选.3.如右图,两条相交直线上共有9个点,问:一共可以组成多少个不同的三角形?-------------------4.如下图,计算①下左图中有多少个梯形?②下右图中有多少个长方体?5.七个同学照相,分别求出在下列条件下有多少种站法?①七个人排成一排;②七个人排成一排,某两人必须有一人站在中间;③七个人排成一排,某两人必须站在两头;④七个人排成一排,某两人不能站在两头;⑤七个人排成两排,前排三人,后排四人,某两人不在同一排.-------------------答案:1.①100;②48;③30;④124.2.①C313=286;②C515-C513=1716;③C13·C412=1485;④C515-C212=2937.3.C15·C23+C26·C13=60;或C39-C36-C34=60.4.①C26×C26=225;②C25×C26×C25=1500.5.①P77=5040;②2P66=1440;③2P55=240;④5×4×P55=2400;⑤2×3×4×P55=2880.-------------------第二篇:小学奥数经典专题点拨:排列与组合排列与组合【有条件排列组合】例1 用0、1、2、3、4、5、6、7、8、9这十个数字能够组成______个没有重复数字的三位数。
(哈尔滨市第七届小学数学竞赛试题)讲析:用这十个数字排列成一个不重复数字的三位数时,百位上不能为0,故共有9种不同的取法。
排列与组合(含答案)
排列与组合一、选择题 1.C 65-C 44=C 42x +C 42x-1,则x 的值为( )A.3B.2C.21D.2或21 2.C 51+C 52+C 53+C 54的值等于( )A.30B.31C.32D.333.某市的电话号码由六位升至七位,则可多装电话的门数是( )A.A 107-A 106B.C 107-C 106C.710-610D.107-1064.满足A ∪B={0,1}的集合A 、B 的组数是( )A.6B.7C.8D.95.某小组共有13人,其中女生6人,要选正副组长各1人,且组长是男生,副组长是女生,那么选法共有( )A.42种B.84种C.114种D.126种6.已知集合A={1,2,3,4,5};集合A 的至多有一个偶数的三个元素子集个数为( )A.C 32·C 31B.C 32·C 21C.C 33D.C 53-C 317.由正方体上的8个顶点可以能确定不同的平面个数是( )A.20B.C 83C.C 38-6C 34+6D.C 83-8C 43+8 8.设x i ∈N*(i=1,2,3,4),满足x 1<x 2<x 3<x 4<10的有序数组(x 1,x 2,x 3,x 4)的个数为( )A.126B.3024C.210D.50409.9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件是一等品的抽查方法的种数是( )A.C 52C 42B.C 42C 52+C 43C 51+C 44C 50 C.C 52+C 42 D.C 42+C 43+C 4410.某人射击8枪,4枪恰好命中,有3枪连在一起的情形的不同种数为:( ) A.720 B.480 C.224 D.20 11.从4台甲型和5台乙型电视机中任取3台,其中至少要有甲型与乙型电视机各一台,则不同 的取法共有( )A.140种B.84C.70种D.35种12.若a ∈{1,2,3,4,5}、b ∈{1,2,3,4,5,6,7},则方程22a x +22b y =1表示不同椭圆的个数为( )A.50个B.40个C.35个D.30个13.(2001年全国文、理,16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为 .14.(2000年春季北京、安徽,8)从单词“equation ”中选取5个不同的字母排成一排,含有“ qu ”(其中“qu ”相连且顺序不变)的不同排列共有( )A.120个B.480个 C720个 D.840个15.(1994全国文,10、理,10),有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担 ,从10人中选派4人承担这三项任务,不同的选择共有( )A.1260种B.2025种C.2520种D.5040种二、填空题16.计算:C1008 -C1018+C1007= .17.不等式C21n-4<C21n-2<C21n-1的解集为 .18.从10本不同的科技书、3本不同的外语书中选5本,至少有2本外语书不同选法种数为 .19.10人分成两队进行篮球比赛,每队5人的不同分法有种.20.5名男生和5名女生站成一排,如果男生必须相邻,有种站法;如果男生都不相邻,有种站法.三、解答题21.平面上有9个点,其中4个点在同一条直线上,此外任三点不共线.(1)过每两点连线,可得几条直线?(2)以每三点顶点作三角形可作几个?(3)以一点为端点作过另一点的射线,这样的射线可作出几条?(4)分别以其中两点为起点和终点,最多可作出几个向量?22.有7本不同的书,分给5位同学,每人只能得一本,但学生甲不能得数学书,学生乙不能得语文书,这样的分书方法共有多少种?23.6个人进两间屋子,(1)每屋都边3人;(2)每屋内至少进1人,问各有多少种分配方法?答案:D,A,D,D,A,D,A,A,B,DCD,n(2n-2)BC,0,{4,5,6,7,8,9,10,11},405,126,86400,86400,(1)31,(2)80,(3) 66,(4)72;1860;(1)20,(2)62。
组合数学竞赛试题及答案
组合数学竞赛试题及答案1. 排列问题给定一个包含n个不同元素的集合,求这个集合的所有排列的数量。
2. 组合问题从n个不同元素的集合中选取k个元素(k≤n),求所有可能的组合数量。
3. 二项式系数计算二项式系数C(n, k),即从n个元素中选取k个元素的组合数。
4. 鸽巢原理如果有m个鸽巢和n个鸽子(n > m),至少有一个鸽巢至少有几只鸽子?5. 包含与排除原理在一个有30个元素的集合中,有A和B两个子集,A有15个元素,B有20个元素。
求同时属于A和B的元素数量。
6. 组合恒等式证明:\( \sum_{k=0}^{n} C(n, k) = 2^n \)。
7. 组合优化问题给定一个由n个元素组成的集合,要求找到一个子集,使得子集中任意两个元素的和都不是2的倍数,求这个子集的最大可能大小。
8. 组合图论问题在一个无向图中,有n个顶点和m条边。
如果图中的每个顶点至少有一个邻接点,求证图是连通的。
9. 组合几何问题在一个平面上,有n个点,没有任何三个点共线。
求这些点可以形成多少条直线段。
10. 组合设计问题给定一个有限集合,设计一个方案,使得对于任意两个不同的元素,它们要么完全相同,要么互不相交。
答案1. 排列的数量是n!(n的阶乘)。
2. 组合的数量是C(n, k) = n! / [k! * (n - k)!]。
3. 二项式系数C(n, k)可以通过组合公式计算。
4. 根据鸽巢原理,至少有一个鸽巢有 \( \lceil \frac{n}{m}\rceil \) 只鸽子,其中 \( \lceil x \rceil \) 表示向上取整。
5. 同时属于A和B的元素数量可以通过公式|A ∩ B| = |A| + |B| - |A ∪ B| 来计算。
6. 组合恒等式可以通过二项式定理证明。
7. 这个问题可以通过构造性地选择元素来解决,最大可能大小是\( \lfloor \frac{n}{2} \rfloor \)。
小学奥数排列组合专题训练
小学奥数排列组合专题训练概述本文档旨在提供给小学生们一些关于排列组合的专题训练题目,帮助他们提升奥数能力。
通过解决这些题目,孩子们可以加深对排列组合概念的理解,并提高解决问题的能力。
题目一:选购水果某个小摊位上有5个不同种类的水果:苹果、香蕉、橙子、草莓和葡萄。
小明想要选购其中3种水果,问他有多少种不同的选择方式?> 解答:根据排列组合的原理,选择3种水果的方式共有$${5\choose 3}$$种。
计算结果为10种。
题目二:站队小学班级有20名学生,他们需要排成一队。
其中有4个女生和16个男生。
问有多少种不同的排队方式?如果要保证女生们都站在一起,有多少种不同的排队方式?> 解答:对于第一个问题,可以使用排列组合的原理计算。
共有20个学生,因此不同的排队方式为$${20 \choose 4}$$种,计算结果为4845种。
>> 对于第二个问题,首先需要将4个女生看作一组。
将这一组看作一个人,那么问题就变成了有17个人需要排队的情况。
因此,不同的排队方式为$${17 \choose 1}$$种,计算结果为17种。
题目三:组队竞赛一支小学班级共有10名学生,他们要组成3人一组进行游戏。
问组队的方式有多少种?> 解答:对于每个小组,需要选择3名学生。
首先选择一名学生,有10种选择;然后选择另外两名学生,有9种选择。
由于小组内部的学生顺序不重要,所以需要将结果除以3!(3的阶乘,即6)。
因此,不同的组队方式为$${10 \times 9 \over 3!}$$种,计算结果为60种。
题目四:颜色排列小学班级有5个同学,他们要在一行上排成一队。
其中有2个红色衣服的同学、1个黄色衣服的同学和2个蓝色衣服的同学。
问他们有多少种不同的排列方式?> 解答:根据排列组合的原理,不同的排列方式为$${5 \choose 2, 1, 2}$$种。
计算结果为30种。
结论通过以上的训练题目,小学生们可以巩固排列组合的概念,并学会运用排列组合的原理解决问题。
【优质文档】小学奥数排列、组合练习题练习题及答案-范文模板 (11页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==小学奥数排列、组合练习题练习题及答案篇一:小学奥数排列和组合试题及答案小学四年级奥数排列组合练习1.由数字0、1、2、3、4可以组成多少个①三位数?②没有重复数字的三位数?③没有重复数字的三位偶数?④小于1000的自然数?2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种?①某两人必须入选;②某两人中至少有一人入选;③某三人中恰入选一人;④某三人不能同时都入选.3.如右图,两条相交直线上共有9个点,问:一共可以组成多少个不同的三角形?-----------------------------------------------------------------------------------------------------------------------------------------------4.如下图,计算①下左图中有多少个梯形?②下右图中有多少个长方体?5.七个同学照相,分别求出在下列条件下有多少种站法?①七个人排成一排;②七个人排成一排,某两人必须有一人站在中间;③七个人排成一排,某两人必须站在两头;④七个人排成一排,某两人不能站在两头;⑤七个人排成两排,前排三人,后排四人,某两人不在同一排.-----------------------------------------------------------------------------------------------------------------------------------------------答案:1.①100;②48;③30;④124. 2.①C313=286;②C515-C513=1716;③C13·C412=1485;④C515-C212=2937. 3.C15·C23+C26·C13=60;或C39-C36-C34=60.4.①C26×C26=225;②C25×C26×C25=1500.5.①P77=5040;②2P66=1440;③2P55=240;④5×4×P55=2400;⑤2×3×4×P55=2880.-----------------------------------------------------------------------------------------------------------------------------------------------篇二:小学数学奥数测试题-排列组合-201X人教版201X年小学奥数计数专题——排列组合1.四个不同的小球放入编号为1、2、3、4的四个盒子中,则恰有一个空盒的放法有________种.2.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个 B.9个 C.18个 D.36个3.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种 B.36种 C.38种D.108种4.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A.72B.96 C.108D.1445.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A.50种 B.60种C.120种D.210种6.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).7.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有A.12种B.18种C.36种D.54种8.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数排列和组合试
题及答案
文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
小学四年级奥数排列组合练习
1.由数字0、1、2、3、4可以组成多少个
①三位数②没有重复数字的三位数
③没有重复数字的三位偶数④小于1000的自然数
2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种
①某两人必须入选;
②某两人中至少有一人入选;
③某三人中恰入选一人;
④某三人不能同时都入选.
3.如右图,两条相交直线上共有9个点,问:
一共可以组成多少个不同的三角形
4.如下图,计算
①下左图中有多少个梯形
②下右图中有多少个长方体
5.七个同学照相,分别求出在下列条件下有多少种站法①七个人排成一排;②七个人排成一排,某两人必须有一人站在中间;③七个人排成一排,某两人必须站在两头;④七个人排成一排,某两人不能站在两头;⑤七个人排成两排,前排三人,后排四人,某两人不在同一排.
答案:
1.①100;②48;③30;④124.
2.①C313=286;②C515-C513=1716;
③C13·C412=1485;④C515-C212=2937.
·C23+C26·C13=60;或C39-C36-C34=60.
4.①C26×C26=225;②C25×C26×C25=1500.
5.①P77=5040;②2P66=1440;
③2P55=240;④5×4×P55=2400;
⑤2×3×4×P55=2880.。