小学奥数-排列组合练习
奥数题排列组合问题附答案
奥数题排列组合问题附答案
奥数题排列组合问题附答案
小学生想要学好数学,做题是最好的办法,但想要奏效,还得靠自己的积累。
多做些典型题,并记住一些题的解题方法。
以下是小学频道为大家提供的二年级奥数题排列组合问题附答案,供大家复习时使用!
1、有10把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,最多要试多少次?
2、上体育课时,同学们站好了队,1、2报数,然后让报1的学生退出队列;再1、2报数,让报1的学生退出队列;从第三次开始每次报数后,一律让报2的学生退出队列,直到最后一个人为止,问剩下的一个人最初在队列的第几位?
1、解析:
第1把锁,试9次可以确定所配的`钥匙;第2把锁,试8次可以确定所配的钥匙;第3把锁,试7次可以确定所配的钥匙……第9把锁,试1次可以确定所配的钥匙;第10把锁不用试。
9+8+7+6+5+4+3+2+1=45次。
2、解析:
1、2、3、4、5、6、7、8、9、10、11、12、13、14……
第1次:留下的是2、4、6、8、10、12……
第2次:留下的是4、8、12、16……
第3次:留下的是4、12、20、28……
第4次:留下的是4、20、……
第5次:留下的是4……
从第3次开始,报2的退出,那么最后一个人总是第4位。
小学数学五年级奥数3--排列组合(一)
排列组合(一)例1:探究“排列”从1、2、3、4、5中挑两个数字组成一个两位数,共可组成多少个不同的两位数?乘法原理:排列原理:例2:探究“组合”从1、2、3、4、5中挑选两个数字,有多少种选法?乘法原理:组合原理:例3:排队问题有6个年龄互不相同的人,3人一排,站成两排。
(1)如果可以随便站,那么一共有多少种排法?(2)如果第一排的每一个人都比第二排的小,那么一共有多少种排法?例4:圆圈连线如图,在一个圆周上有9个点,以这些点为顶点或端点,一共可以画出()条线段;()个三角形;()个四边形。
练习1:从5、6、7、8、9这五个数字中选出四个数字(不能重复)组成四位数,共能组成多少个不同的四位数?练习2:甲、乙、丙、丁四个人站成一排照相,一共有多少种不同的排法?练习3:学生会召集各班正、副班长,学习委员开会。
五(2)班参加会议的班干部到会堂后,发现还有11个空座位,那么他们一共有多少种不同的坐法?练习4:从1、2、3、4、5中任意取三个数字,从6、7、8、9中任取两个数字,一共可以组成多少个没有重复数字的五位数?练习5:在一个圆周上有7个点,那么以这些点为顶点或者端点,一共可以画出多少条线段?多少个三角形?多少个四边形?练习6:一个圆周上有10个点,任意两点用线段连接,那么这些线段在圆内最多有多少个交点?练习7:学校举行四、五、六年级的足球比赛,其中四年级共有8个班,五年级共有7个班,六年级共有6个班。
比赛按年级分成3个小组,先各小组都进行单循环赛,然后再由各组的前两名共6个班进行单循环赛,决出冠亚军。
一共需要比赛多少场?练习8:学校体操队有18名同学,从中选出2名同学,(1)分别担任正副队长,有多少种不同的选法?(2)去参加全市的体操比赛,有多少种不同的选法?练习9:新学期的班会上,大家要从9名候选人中选出4名同学组成班委会,那么一共有多少种选法?如果贝贝一定要当选,有多少种不同的选法?练习10:7本不同的故事书,任选4本分给4名同学,每人一本,有多少种不同的分法?练习11:一本书有400页,数字1在这本书里出现了多少次?第十二届中环杯决赛题选如图,半圆连同直径上共有10个点,以这些点为顶点,可以构成()个三角形。
小学奥数思维训练排列组合专项练习
小学数学专项训练排列组合(经典透析)学校:___________姓名:___________班级:___________考号:___________一、解答题1.小明和小王从北京出发先到天津看海,然后再到上海东方明珠塔参观.从北京到天津可以坐火车或者坐公共汽车,坐火车有4种车次,坐公共汽车有3种车次;而从天津到上海可以坐火车,公共汽车,轮船或者飞机,火车有3种,汽车有5种,轮船有4种,飞机有2种.问小明和小王从北京到上海旅游一共有多少种走法?2.某公园有两个园门,一个东门,一个西门.若从东门入园,有两条道路通向龙凤亭,从龙凤亭有一条道路通向园中园,从园中园又有两条道路通向西门.另外,从东门有一条道路通向游乐场.从游乐场有两条道路通向水上世界,另有一条道路通向园中园.从水上世界有一条道路通向西门,另有一条道路通向小山亭,从小山亭有一条道路通向西门.问若从东门入园,从西门出园一共有多少种不同的走法(不走重复路线)?3.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?①可组成多少个没有重复数字的三位数?4.如下图,A、B、C、D、E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?5.4名同学到照相馆照相。
他们要排成一排,问:共有多少种不同的排法?6.从分别写有1、3、5、7、8五张卡片中任取两张,作成一道两个一位数的乘法题,问:①有多少个不同的乘积?①有多少个不同的乘法算式?7.如下图,问:①下左图中,共有多少条线段?①下右图中,共有多少个角?8.从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?9.国家举行足球赛,共15个队参加.比赛时,先分成两个组,第一组8个队,第二组7个队.各组都进行单循环赛(即每个队要同本组的其他各队比赛一场).然后再由各组的前两名共4个队进行单循环赛,决出冠亚军.问:①共需比赛多少场?①如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?参考答案:1.98种【解析】【分析】首先看他们完成整个过程需要几个步骤,这是判断利用加法原理和乘法原理的依据.很明显整个过程要分两步完成,先从北京到天津,再从天津到上海,应该用乘法原理.我们再分开来看,先看从北京到天津,无论是坐火车还是汽车都是一步完成,所以要用加法原理,同样的道理,从天津到上海的走法计算也应该用加法原理.【详解】解:从北京到天津走法有:4+3=7种,从天津到上海走法有:3+5+4+2=14(种).从北京到上海的走法有:7×14=98(种).答:小明和小王从北京到上海旅游一共有98种走法.2.10种【解析】【详解】解法一:这个题的已知条件比较复杂.我们可将已知条件稍加“梳理”:1.从东门入园,从西门出园;2.从东门入园后,可以通向两个游览区,龙凤亭与游乐场;3.从龙凤亭经园中园可达到西门;4.从游乐场经水上世界可达到西门,或从游乐场经园中园可达到西门;5.从水上世界经小山亭可达到西门;根据以上五条可知,从东门入园经龙凤亭经园中园达到西门为一主干线.而东门到龙凤亭有两条不同路线;龙凤亭到园中园只有一条路线;园中园到西门又有两条不同的路线.由乘法原理,这条主干线共有2×1×2=4种不同的走法.再看从东门入园后到游乐场的路线.从东门到游乐场只有一条路,由游乐场分成两种路线,一是经园中园到西门,这条路线由乘法原理可知有1×1×2=2种不同走法;二是经水上世界到西门,从水上世界到西门共有两条路线(由水上世界直接到西门和经小山亭到西门),再由乘法原理可知这条路线有1×2×2=4种不同路线.最后由加法原理计算.从东门入园从西门出园且不走重复路线的走法共有2×1×2+1×1×2+1×2×2=10种.解法二:“枚举法”解题.如图,图中A 表示东门,B 表示西门,C 表示龙凤亭,D 表示园中园,E 表示游乐场,F 表示水上世界,G 表示小山亭,线表示道路.不同的走法有10种.1121111A C D BA C DB A E D BA E F G BA E F GB →→→→→→→→→→→→→→→→→ 1222222A C D BA C DB ACD B AEFG BA E F GB →→→→→→→→→→→→→→→→→答:不走重复路线,共有10种不同走法.【点睛】本题主要考察加法乘法原理.先分类利用加法原理,再对每一类进行分步利用乘法原理.建议可以利用加法与乘法原理的题型就没必要用枚举法,因为枚举法比较容易重复和遗漏.3.①48个①18个【解析】【分析】在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定。
小升初奥数—排列组合问题
小升初奥数—排列组合问题一、排列组合的应用【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。
【解析】 (1)775040P =(种)。
(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。
【例 2】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种。
第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312⨯=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次.【例 3】 一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?【解析】 设A :BC DE 是满足题意的时刻,有A 为8,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有26P 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有27P 种选法,所以共有26P ×27P =1260种选法。
20181213小学奥数练习卷(知识点:排列组合)含答案解析
小学奥数练习卷(知识点:排列组合)题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共3小题)1.红、黄、蓝、白颜色的四面小旗,每次升起一面、二面、三面、四面所表示的信号不同,并且旗的上下顺序不同所代表的信号也不同.一共可以组成()种不同的信号.A.24B.36C.48D.642.将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有()种不同的排法.A.1152B.864C.576D.2883.如图所示,韩梅家的左右两侧各摆了2盆花.每次,韩梅按照以下规则往家中搬一盆花:先选择左侧还是右侧,然后搬该侧离家最近的.要把所有的花搬到家里,共有()种不同的搬花顺序.A.4B.6C.8D.10第Ⅰ卷(非选择题)评卷人得分二.填空题(共38小题)4.由数字0,1,2,8(既可全用也可不全用,但不重复用)组成的所有非零自然数,按照从小到大排列,2018排在第个.5.用3颗红色的珠子,2颗蓝色的珠子,1颗绿色的珠子串成圆形手链,一共可以串成种不同的手链.6.有3角的邮票4张,5角的邮票3张,用它们可以支付种不同的邮资.7.某五号码牌由英文字母和数字组成,前四位有且只有两位为英文字母(字母I、O不可用),最后一位必须为数字.小李喜欢18这个数,希望自己的号码牌中存在相邻两位为1和8,且1在8的前面,那么小李的号码牌有种不同的选择方式.(英文共有26个字母)8.一只蚂蚁从正方体某个面的中心出发,每次都走到相邻面的中心,每个中心恰好经过一次,最终回到出发点.所有经过的中心排出的序列共有种.(两条序列不同指沿着行走方向经过的中心点顺序不一样)9.周老师一天要上3个班级的课,每班上1节.如果一天共有9节课,上午5节,下午4节,并且周老师不能连上3节课(第5节和第6节不算连上),那么,周老师一天上课的所有排课法共有种.10.小明计划在8天中去健身馆3次,但为了防止运动过量,他不能连续2天都去.那祥的话,他一共有种满足条件的时间安排方法.11.用1、2、3、4组成五位数,要求1、2、3、4至少各出现一次,则这样的五位数共有个.12.如图,8×8的方格表中,左上方4×4部分是黑色小方格,剩下的部分为白色小方格,将整个方格表分为若干块(每块都必须包含整数块小方格,不能把单个的小方格切开),要求每块中白色小方格的数量是黑色小方格数量的3倍.最多可以分成块.13.小青蛙在A、B、C三片荷叶之间跳动.它从A叶开始跳起,每次跳跃必须跳到另外两片荷叶上,不可以落在原来的叶片上.如果想要一共跳4次后要回到A叶,这只小青蛙共有种不同的跳法.14.亚瑟王在王宫中召见6名骑士,这些骑士中每个骑士恰好有2个朋友.他们围着一张圆桌坐下(骑士姓名与座位如图),结果发现这种坐法,任意相邻的两名骑士恰好都是朋友.亚瑟王想重新安排座位,那么亚瑟王有种不同方法安排座位,使得每一个骑士都不与他的朋友相邻(旋转以后相同的,算同一种方法).15.昊宇写好了五封信和五个不同地址的信封,要将每封信放入相应的信封中,一个信封只放入一封信.只有一封信装对,其余全部被错装的情形有种.16.一场橄榄球比赛中,一次成功的进攻可能得1、2、3、6分,其中1分只能出现在6分后面(1分必须与6分相邻,比如6、1、3就是一个可能的得分序列,6、3、1则不可能出现),但是6分后面不是一定要跟着1分.最后,上海队一共得到了10分,那么不同的得分序列有个.17.A、B两个纸片都被分成了4个区域,用黄、蓝、红三种颜色分别给它们涂色,要求相邻的区域涂色不能相同,A,B两个纸片中的涂法较多,有种不同的涂法.18.在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).19.如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.20.一个五边形的五个内角度数都是正整数且互不相等.已知其中有一个内角为76°,剩下的四个内角度数都是三位数,并且这四个三位数正好可以写在下面3×3的方格内(分别为abc、adf、fgh、ceh,不同的字母也可以表示相同的数字),那么,满足条件的方格有种不同的填法.21.图中由20个方格组成,其中含有A的正方形有个.22.将2015,2016,2017,2018,2019这五个数字分别填入如图中写有“D,O,G,C,W”的五个方格内,使得D+O+G=C+O+W,则共有种不同的填法.23.如图是兰兰家到学校的街道示意图.兰兰沿街道从家到学校共有种不同的最短路线.24.图中由12个面积为1的方格组成,则图中和阴影梯形面积相同的长方形有个.25.用3、5、7这三个数字,能组成个不同的三位数(在每个三位数中,每个数字只能用一次).26.现在有N(N+1)÷2张多米诺骨牌,每张骨牌上都写有两个数字,这两个数字都是1~N中的数(这两个数可以相同),任意两张骨牌上的两组数字不能都相同.现在,将这些多米诺骨牌排成若干列“火车”,每列“火车”中间的任意两张相邻骨牌上的相邻数字相同,如图给出了N=3时的一列“火车”当N=2016时,至少需要列“火车”才能将2016×(2016+1)÷2张骨牌全部用完.27.如图,在8×8的正方形网格中,A、B两点处各有一只臭虫(A点处的臭虫我们称其为a臭虫,B点处的臭虫我们称其为b臭虫).臭虫每次走1格(向上、向下、向左、向右这四个方向中选一个方向走).若b臭虫走两格,a臭虫走三格,最后b臭虫与A点的距离小于等于a臭虫与A点距离的走法有种.28.如图,一只蜜蜂从A处出发,回到蜂巢B处,每次只能从一个蜂房爬向右侧临近的蜂房而不准逆行,这只蜜蜂共有种回家的方法.29.小明希望1﹣12这12个数字排在一个圆周上,使得任意相邻的两个数字之差(大减小)为2或3,那么不同的排法有种(旋转后相同的排法算同一种).30.A、B、C、D四个城市分别派出2个足球队参加一次足球锦标赛,要求任何两个球队之间比赛一场,并且同一个城市的两个代表队之间不比赛.那么一共需要安排场比赛.31.从1、2、3、4、5、6、7这七个自然数中选出两个数,使得其和为偶数,共有种不同的选法.32.如图1所示,小明从A→B,毎次都是往一个方向走三格,然后转90度后再走一格,例如图2中,从点C出发可以走到八个位置.那么小明至少走次才能从点A到达点B.33.如图,一个大正方形被分割成六个小正方形,如果两个小正方形之间有多于一个的公共点,那么称它们为相邻的.将1、2、3、4、5、6填人如图,每个小正方形内填一个数字,使得相邻的小正方形内数之差永远不是3.不同的填法有种.34.小明在如图中的黑色小方格内,每次走动,小明都进入相邻的小方格(如果两个小方格有公共边,就称它们是相邻的),每个小方格都可以重复进入多次,经过四次走动后,小明所在的不同小方格有种.35.如图,从左下角A走到右上角B,每次只能向右或者向上走一格,要求行走路径正好穿过AB一次(如图的路径穿过AB三次,仅仅接触到AB上的点不算穿过),不同的行走路径有多少种?36.如图所示,两条直线与两个圆交于9个点.从这9个点中选出4个点,要求这4个点中的任意3个点既不在一条直线上,也不在一个圆周上.不同的选法有种.37.12个边长为1厘米的等边三角形拼成如图所示,从点A出发,到点B,不允许走重复路线,最多能走厘米.38.一个五位数从五个数码中任意取出两个数码,构成一个两位数(保持数码在原先五位数中的前后顺序),这样的两位数有10个:33、37、37、37、38、73、77、78、83、87.则=.39.如图的每个方格中填入1~6中的一个数字,使每行、每列及每个粗线宫内的六个数字都恰好是1~6.格线上的提示数5表示两侧格内数字之和是5,提示数6表示两侧格内数字之和是6.相邻两格间没有提示数的,这两格内数字之和不能是5也不能是6.那么,四位数等于.40.用1、2、3、4这四个数字构成一个四位数,要求:(1)a、b、c、d互不相同;(2)b比a、d都大,c比a、d都大,这样的四位数有个.41.从图a的正六边形网格中选出图b的形状,有种不同的选法(注意:图b可以旋转).评卷人得分三.解答题(共9小题)42.某城市的电话号码是六位数,但首位不能是0,其余各位可以是0、1、2、3、4、5、6、7、8、9中任何一个数字,而且不同数位上的数字可以重复(如:222222),那么这个城市最多可以容纳多少部电话?43.用1,9,9,8四个数字可以组成若干个不同的四位数,所有这些四位数的平均值是多少?44.有2克、5克、20克的砝码各1个,只用砝码和一架已经调节平衡了的天平,能称出多少种不同的质量.45.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有种不同的走法.46.用2,0,1,7这四个数字可以组成多少个没有重复数字的四位偶数?47.盒子里有4枚白色棋子和2枚黑色棋子,菲菲分若干次拿走所有棋子,每次至少拿走一枚,共有多少种不同拿法?48.一个机关锁如图所示,锁上共有八卦和太极共九个按键,依次按下其中四个按键后(按键按下便不可再按),若与正确按法一致则开锁,若不一致则机关重置至初始状态.已知在太极按下之前不可连续按下正对的两个卦象键(例如图中的乾、坤或兑、艮),且正确按法只有一种,那么打开这个机关锁至多需要试多少次?49.如图是某社区的街道示意图,一辆洒水车从A点出发不重复地经过所有街道又回到A点.那么洒水车有多少种不同的路线?50.冬冬有10块大白兔奶糖,他从今天起,每天至少吃一块,直到吃完.请问一共有多少种不同的吃法?参考答案与试题解析一.选择题(共3小题)1.红、黄、蓝、白颜色的四面小旗,每次升起一面、二面、三面、四面所表示的信号不同,并且旗的上下顺序不同所代表的信号也不同.一共可以组成()种不同的信号.A.24B.36C.48D.64【分析】可以分4种方法把小旗挂在旗杆上作信号,即①选择1面,②选择其中的2面,③选择其中的3面,④4面全挂.分别计算出再相加.【解答】解:①选择1面,4×1=4(种);②选择2面,4×3=12(种);③选择3面,4×3×2=24(种);④选择4面(全挂),4×3×2×1=24(种);4+12+24+24=64(种).答:共有64种不同的信号.故选:D.【点评】此题分情况讨论,先根据乘法原理求出每种情况的可能,再根据加法原理进行求解.2.将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有()种不同的排法.A.1152B.864C.576D.288【分析】首先求出1,2,3,4,5,6,7的和是28,判断出8的两边各数之和都是14;然后分4种情况:(1)8的一边是1,6,7,另一边是2,3,4,5时;(2)8的一边是2,5,7,另一边是1,3,4,6时;(3)8的一边是3,4,7,另一边是1,2,5,6时;(4)8的一边是1,2,4,7,另一边是3,5,6时;求出每种情况下各有多少种不同的排法,即可求出共有多少种不同的排法.【解答】解:1+2+3+4+5+6+7=288的两边各数之和是:28÷2=14(1)8的一边是1,6,7,另一边是2,3,4,5时,不同的排法一共有:(3×2×1)×(4×3×2×1)×2=6×24×2=288(种)(2)8的一边是2,5,7,另一边是1,3,4,6时,不同的排法一共有288种.(3)8的一边是3,4,7,另一边是1,2,5,6时,不同的排法一共有288种.(4)8的一边是1,2,4,7,另一边是3,5,6时,不同的排法一共有288种.因为288×4=1152(种),所以共有1152种不同的排法.答:共有1152种不同的排法.故选:A.【点评】此题主要考查了排列组合问题,考查了乘法原理的应用,要熟练掌握,注意不能多数、漏数.3.如图所示,韩梅家的左右两侧各摆了2盆花.每次,韩梅按照以下规则往家中搬一盆花:先选择左侧还是右侧,然后搬该侧离家最近的.要把所有的花搬到家里,共有()种不同的搬花顺序.A.4B.6C.8D.10【分析】分两种情况讨论:①先取的两盆在同侧有=2种搬法;②在异侧有×=4种搬法,所以共有2+4=6种,据此解答即可.【解答】解:根据分析可得,+×=2+4=6(种)答:共有6种不同的搬花顺序.故选:B.【点评】本题考查了排列组合知识的灵活应用,关键是先分类再计数.二.填空题(共38小题)4.由数字0,1,2,8(既可全用也可不全用,但不重复用)组成的所有非零自然数,按照从小到大排列,2018排在第37个.【分析】分一位数、两位数、三位数和四位数分步计数,然后找到以“2”开头的四位数中2018 排在第几即可.【解答】解:非零一位数有3个,两位数有:3×3=9个,三位数有:3×3×2=18个,四位数中“1”在千位上的有:1×3×2×1=6个:“2”在千位上的第一个数就是2018;所以,按照从小到大排列,2018排在第3+9+18+6+1=37个;故答案为:37.【点评】本题考查了分类计数和分步计数问题的综合应用,注意0不能放在最高位.5.用3颗红色的珠子,2颗蓝色的珠子,1颗绿色的珠子串成圆形手链,一共可以串成5种不同的手链.【分析】因为是圆形手链,所以旋转和翻转相同的只能算一种,因为红色的珠子有3颗,所以可以让3颗红色的珠子相邻,也可以让2个红色的珠子相邻,也可以让红色的珠子不相邻这三种情况考虑,据此解答即可.【解答】解:①3颗红色的珠子相邻,则只有2种;②只有2颗红色的珠子相邻,有2种;③3颗红色的珠子都不相邻,有1种;2+2+1=5(种)答:一共可以串成5种不同的手链.【点评】本题考查的排列组合问题.6.有3角的邮票4张,5角的邮票3张,用它们可以支付19种不同的邮资.【分析】①单取3角的邮票共有4种方法,②同理,单取5角的邮票共有3种方法,③根据乘法原理,两种都取共有4×3=12种方法,然后相加即可.【解答】解:4+3+4×3=7+12=19(种)答:用它们可以支付19种不同的邮资.故答案为:19.【点评】解答本题要注意,先分类,再分步计数.7.某五号码牌由英文字母和数字组成,前四位有且只有两位为英文字母(字母I、O不可用),最后一位必须为数字.小李喜欢18这个数,希望自己的号码牌中存在相邻两位为1和8,且1在8的前面,那么小李的号码牌有34560种不同的选择方式.(英文共有26个字母)【分析】本题考察排列组合.【解答】解:除掉18剩余的三个位置有10×24×24=5760(种),所以18在一二位有5760种;18在二三位有5760种;18在三四位有5760种;18在四五位有5760×3=17280种;综上,共有5760×6=34560(种),故填34560.【点评】本题关键在于根据18在哪相邻的两位进行分类计数.8.一只蚂蚁从正方体某个面的中心出发,每次都走到相邻面的中心,每个中心恰好经过一次,最终回到出发点.所有经过的中心排出的序列共有32种.(两条序列不同指沿着行走方向经过的中心点顺序不一样)【分析】本题考察排列组合.【解答】解:从一个面出发,第一次有4个不同的方向选择,这四个方向的情况数目是相同的,所以考虑一种即可,我们考虑从正面出发的情况,正→上→背→右→下→左→正正→上→背→左→下→右→正正→上→左→下→背→右→正正→上→左→背→右→下→正正→上→左→背→下→右→正正→上→右→下→背→左→正正→上→右→背→左→下→正正→上→右→背→下→左→正所以总共有4×8=32(种)故填:32.【点评】本题关键在于考虑一种情况后利用乘法原理进行计数.9.周老师一天要上3个班级的课,每班上1节.如果一天共有9节课,上午5节,下午4节,并且周老师不能连上3节课(第5节和第6节不算连上),那么,周老师一天上课的所有排课法共有474种.【分析】利用排除法即可解决问题.【解答】解:9节课全排列=504种排法,排除不满足条件的123,234,345,678,789,可得﹣5=504﹣30=474,故答案为474.【点评】本题考查排列组合,解题的关键是学会利用排除法解决问题.10.小明计划在8天中去健身馆3次,但为了防止运动过量,他不能连续2天都去.那祥的话,他一共有20种满足条件的时间安排方法.【分析】他不能连续2天都去意味着3天均不相邻,可以采用插空法解答,不去健身房有5天,5天形成了6个空,在6个空里选择三个空去健身房,共有种方法,据此解答即可.【解答】解:==20(种)答:他一共有20种满足条件的时间安排方法.故答案为:20.【点评】像这种不相邻的排列组合问题,往往采用“插空法”解答比较简洁.11.用1、2、3、4组成五位数,要求1、2、3、4至少各出现一次,则这样的五位数共有240个.【分析】由1、2、3、4至少各出现一次知第5个数有4种选法,从而知需要对AABCD型这5个数字排列,根据排列公式可得答案.【解答】解:因为1、2、3、4至少各出现一次,所以第5个数有4种选法,对于第5个数字的每一种可能,则需要对AABCD型这5个数字排列,共有=60种,综上,共有60×4=240个不同的五位数,故答案为:240.【点评】本题主要考查数字的排列组合,解题的关键是明确用排列解决问题,且理解其加法原理、乘法原理.12.如图,8×8的方格表中,左上方4×4部分是黑色小方格,剩下的部分为白色小方格,将整个方格表分为若干块(每块都必须包含整数块小方格,不能把单个的小方格切开),要求每块中白色小方格的数量是黑色小方格数量的3倍.最多可以分成7块.【分析】根据题意,考虑左上方4×4部分,根据要求每块中白色小方格的数量是黑色小方格数量的3倍,利用填数的方法,可得图中的分割方法,即可得出结论.【解答】解:根据题意,考虑左上方4×4部分,根据要求每块中白色小方格的数量是黑色小方格数量的3倍,利用填数的方法,可得图中的分割方法,其中四个1表示一块,四个2表示一块,四个3表示一块,四个4表示一块,四个5表示一块,四个6表示一块,所有7表示一块,故最多可以分成7块.故答案为7.【点评】本题给出图形,求最多分割的方法,考查学生对图形的认识,正确填格是关键.13.小青蛙在A、B、C三片荷叶之间跳动.它从A叶开始跳起,每次跳跃必须跳到另外两片荷叶上,不可以落在原来的叶片上.如果想要一共跳4次后要回到A叶,这只小青蛙共有6种不同的跳法.【分析】画出树状图,即可解决提问.【解答】解:观察树状图,可知一共有6种本题的方法.故答案为6.【点评】本题考查排组合等知识,利用树状图是解决问题的关键.14.亚瑟王在王宫中召见6名骑士,这些骑士中每个骑士恰好有2个朋友.他们围着一张圆桌坐下(骑士姓名与座位如图),结果发现这种坐法,任意相邻的两名骑士恰好都是朋友.亚瑟王想重新安排座位,那么亚瑟王有6种不同方法安排座位,使得每一个骑士都不与他的朋友相邻(旋转以后相同的,算同一种方法).【分析】首先根据题目要求旋转相同的算同一种方法,因此可只考虑其中一个人排在第一位的情况,然后根据题目条件进行后续排序即可.【解答】解:为方便起见,分别用数字1、2、3、4、5、6代表6个人,则1的朋友为2和6,即和1相邻的只能是3,4,5.由于旋转相同的算同一种方法,可以只考虑以1开始的排序方法,由于是一个圆圈,则第二位和最后一位只能从3,4,5中选,那么以1为基准可排的座位顺序为:(1)若第二位选3,则第三位选5或6,①若第三位选5,则第四位只能选2,还剩下4和6,由于最后一位只能是3,4,5,则第五位选6,第六位选4,即1,3,5,2,6,4;②若第三位选6,还剩下2,4,5,若第四位选2,则剩下4和5,相邻,不符合题意,且6和5相邻,因此第四位选4,则第五位选2,第六位选5,即1,3,5,2,6,4;(2)若第二位选4,可同样推理,得到两种排序,即1,4,6,2,5,3和1,4,2,6,3,5,(3)若第二位选5,可同样推理,得到两种排序,即1,5,2,4,6,3,和1,5,3,6,2,4.共计6种.故答案为:6.【点评】本题的突破口在于将圆圈问题直线化,在排序过程中注意不重不漏即可.15.昊宇写好了五封信和五个不同地址的信封,要将每封信放入相应的信封中,一个信封只放入一封信.只有一封信装对,其余全部被错装的情形有45种.【分析】为了方便说明,可以设五封信编号分别为1,2,3,4,5,五个信封的编号分别为A,B,C,D,E,只有一封信装对,则首先选一封装对的信,有种情况,其他四封信都装错的情况可分类列举,据此解答.【解答】解:首先选一封装对的信,为,可以以第5封信为例,即第5封信装在信封E,其他四封信全部装错.可能的情况:①1﹣B,2﹣A,3﹣D,4﹣C;1﹣B,2﹣C,3﹣D,4﹣C;1﹣B,2﹣D,3﹣A,4﹣C;②1﹣C,2﹣A,3﹣D,4﹣B;1﹣C,2﹣D,3﹣A,4﹣B;1﹣C,2﹣D,3﹣B,4﹣A;③1﹣D,2﹣A,3﹣B,4﹣C,1﹣D,2﹣C,3﹣A,4﹣B,1﹣D,2﹣C,3﹣B,4﹣A.共计9种,因此只有一封信装对,其余全部被装错的情形有×9=45种.故答案为:45.【点评】本题的突破口在于能把其中四封信全部被装错的情况找到,做到不重不漏.16.一场橄榄球比赛中,一次成功的进攻可能得1、2、3、6分,其中1分只能出现在6分后面(1分必须与6分相邻,比如6、1、3就是一个可能的得分序列,6、3、1则不可能出现),但是6分后面不是一定要跟着1分.最后,上海队一共得到了10分,那么不同的得分序列有12个.【分析】首先分析符合条件的数字可以是3,6,1组合,也可以是3,3,2,2组合.【解答】解:依题意可知:6,1,3分组合满足题意,满足题意的有3,6,1组合.那么满足条件的还有(6,2,2)组合共3种;还有22222的组合共1种.还有出现2个2分和2个3分的组合共=6(种).故答案为:12【点评】本题考查对排列组合的理解和运用,关键问题是找到数字和为10的组合数,问题解决.17.A、B两个纸片都被分成了4个区域,用黄、蓝、红三种颜色分别给它们涂色,要求相邻的区域涂色不能相同,A,B两个纸片中B的涂法较多,有12种不同的涂法.【分析】A的涂色区域只能是最上方区域和左下方区域图同色,其排列数为;图B的涂色区域中涂同色的区域有2类,一是最上方区域和左下方区域;二是最上方区域和右下角区域,涂色种类数为+.【解答】解:图A的涂色方法有=3×2×1=6(种)图B的涂色方法有+=6+6=12(种)故:B的涂法多,有12种不同涂法.【点评】此题的解题关键是能否想到合并能涂同色的区域,而且要把这种情况找全.18.在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE、BE;②当两颗棋子都不在正中间E处时,而其中有一颗在顶点处时,有4种不同摆法,即AB、AF、AH、AD;③当两颗棋子都在顶点处时,有2种不同摆法,即AC、AI;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD、BH.综上,共有:2+4+2+2=10种不同摆放方法.【点评】本题考查了排列组合,突破点是:分情况讨论,根据不同的位置求出总的不同摆放方法.19.如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有4种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法.【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1+1+2=4种不同摆放方法.故答案是:4.。
小学奥数 排列组合
32强
A组 C组 E组 G组
B组 D组 F组 H组
组别
一档
二档
三档
四档
典型例题1
简单组合 • 某班的8名毕业同学见面,他们之间每两名同学都 要握手一次,这次聚会大家一共要握多少次手?
• 从7名男生和5名女生中,选出2人,选法共有多 少种?
从小丽、小军 、小杰 、小 阳4名同学中,选出2人代表 学校参加“少儿戏曲大赛”, 有多少种不同的组队方案?
要从甲乙丙3名工人中选出2名分别上白班和晚班,有多 少种不同的排法?
典型例题3
乘法原理与排列—— 例3、有5个同学一起去郊游,照相时,大家坐一排, 问: 1、共有多少种不同的坐法? 2、如果某人不坐在两端共有多少种排法?
典型例题4
乘法原理与实际——
例2、一列火车从上海到南京,中途要经过6 个站,这列火车要准备多少种不同的车票? • 某铁路线共有14个车站,这条铁路共需要 多少种不同的车票?
从小丽、小军、小杰、小阳、小美 5名同学中,选出2人代表学校参加 “少儿戏曲大赛”,有哪几种不同 的组队方案?
人数
示意图
组合方案
5
4 +3+2+1=10
5
5
4 +3 +2 +1=10
小军 小杰 小阳 小丽 小杰 小军 小阳 小杰 小阳 小美 小阳 小美 小美 小美
典型例题2
乘法原理——分步计数排列 例2、 4人站成一排照相,有多少种排法?
小学奥数~排列组合
奥数解排列组合应用题排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
四年级奥数-排列组合(1)
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种. 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种. 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
小学数学《排列组合》练习题(含答案)
小学数学《排列组合》练习题(含答案)小学数学《排列组合》练习题(含答案)加乘原理,排列组合是四年级一个重要的学习内容,在之前的学习中,我们已经对它们有所了解,对于加乘原理我们只需要记住:加法分类,类类独立;乘法分步,步步相关!排列组合的应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.可利用图示法,可使问题简化便于正确理解与把握.本讲主要巩固加强此部分知识,注重排列组合的综合应用.排列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n个不同的元素中任取出m个(m≤n)元素,按照一定的顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n个不同元素中取出m个(m≤n)元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,我们把它记做mnp(m≤n),m(1)(2) (1)mnp n n n n m=---+共个数.其中!(1) (1)nnP n n n==?-??.【例1】4名男生和2名女生去照相,要求两各女生必须紧挨着站在正中间,有几种排法?分析:分两步进行,先安排两个女生有22P 种方法,4个男生站的位置有44P 种方法,共有2424P P ?=2×1×4×3×2×1=48(种),故有48种排法.【巩固】停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案? 分析:把4个空车位看成一个整体,(4个空车位看成一样的)与8辆车一块儿进行排列.99362880P =.【前铺】讲解此部分例题之前,请根据本班情况,将排列公式的计算练习一下!计算:(1)321414P P - ;(2)53633P P - 分析:(1)321414P P -=14×13×12-14×13=2002 ;(2)53633P P -=3×(6×5×4×3×2)-3×2×1=2154 .【例2】书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果同类书可以分开,一共有多少种排法?(只写出表达式,不用计算)分析:每种书内部任意排序,分别有44P ,55P ,33P 种排法,然后再排三种类型的顺序,有33P 种排法,整个过程分4步完成.44P ×55P ×33P ×33P =103680(种).如果同类书可以分开,就相当于4+5+3=12本书随意排,有1212P 种排法.【例3】用0,1,2,3,4可以组成多少个没重复数字的三位数?分析:(法1)在本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1,2,3,4这四个数字中选择1个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有2 4P 种方法.由分步计数原理得,三位数的个数是:4×24P =48(个).(法2):从0,1,2,3,4中任选三个数字进行排列,再减去其中不合要求的,即首位是0.从0,1,2,3,4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:35P -24P =5×4×3-4×3=60-12=48(个).不是简单的全排列,有一些其它的限制,这样要么全排列再剔出不合题意的情况,要么直接在排列的时候考虑这些限制因素.【前铺】(1)用1,2,3,4,5可以组成多少个没有重复数字的三位数? (2)用1,2,3,4,5可以组成多少个三位数?分析:(1)要组成三位数,自然与三个数字的排列顺序有关,所以这是一个从五个元素中取出三个进行排列的问题,可以组成35P =5×4×3=60种没有重复数字的三位数.(2)没有要求数字不能重复,所以不能直接用35P 来计算,分步考虑,用乘法原理可得:5×5×5=125(个).注意“重复”和“没有重复”的区别!【巩固】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数? 分析:小于1000的自然数包括一位数、两位数、三位数,可以分类计算.注意“0”是自然数,且不能作两位数、三位数的首项.11124444569P P P P +?+?=(个).很自然的知道需要根据位数分类考虑,而且首位非零的限制也需要考虑.【例4】由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?分析:先排独唱节目,四个节目随意排,有44P =24种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,对应23P =6种排法;再在独唱节目之问的3个位置中排一个合唱节目,有3种排法,由乘法原理,一共有24×6×3=432种不同的编排方法.【例5】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排.分析:(1)775040P =(种).(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列.【例6】某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜,至少要试多少次?分析:四个数字之和为9的情况有:l+1+1+6=9;1+1+2+5=9;1+1+3+4=9;1+2+2+4=9;1+2+3+3=9;2+2+2+3=9,分别计算这6种情况.对于“l+1+1+6”这种情况,我们只需考虑6,其它1放那都一样;对于“1+1+2+5”这种情况,只需考虑2和5,其它同理,可得答案:12222144444456()P P P P P P +++++=次【巩固】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?分析:可以分三种情况来考虑:(1)3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有33P =6种不同的排列,此时有6×2=12种订法.(2)3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.(3)3所学校订的报纸数量都相同,只有100,100,100一种订法.由加法原理,不同的订法一共有12+6+l=19种.组合一般地,从n 个不同元素中取出m 个(m≤n )元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n 个不同元素中取出m 个元素(m ≤n )的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作(1) (1)!m mn n n n m C m ?-??-+=个数这就是组合数公式.【例7】以右图中的8个点中的3个为顶点,共可以画出多少个不同的三角形?分析:从8个点中选3个点,一共有56种不同的选法.但是因为在一条直线上的3个点不能组成三角形,所以应去掉两条直线上不合要求的选法.5个点选3个的选法有10种.4个点选3个的选法有4种.所以一共可以画出56-(10+4)=42不同的三角形.【前铺】右图共有11条射线,那么图中有多少个锐角?分析:如图,最大的为锐角,它内部的各个角一定也是锐角,图中共有11条射线,任取两条作为角的两边便可确定一个锐角.因为角的两边不存在顺序关系,所以应该用组合.211C =55.几何题中的数个数问题往往可以采用这样的组合方法来解题.【前铺】讲解例题之前请根据本班情况先将组合公式计算练习一下!计算:(1)241655,,C C C ,(2)352777,,C C C分析:(1)26651521C ?==?,45543254321C ==,15551C == ;(2)3776535321C ??==?? ,57765432154321C == ,57765432154321C ==注意:从上发现规律m n mn n C C -=.【巩固】从3、5、7、11这四个质数中任取两个相乘,可以得到多少个不同的乘积?分析:由于3,5,7,11都是质数,因此所得乘积各不相同,因此只要求出不同的质数对的个数就可以了.24C =6.【巩固】一个口袋中有4个球,另一个口袋中有6个球,这些球颜色各不相同.从两个口袋中各取2个球,共有多少种不同结果?分析:分步考虑,224661590C C ?=?=(种).【例8】有13个队参加篮球比赛,比赛分两个组,第一组七个队,第二组六个队,各组先进行单循环赛(即每队都要与其它各队比赛一场),然后由各组的前两名共四个队再进行单循环赛决定冠亚军.问:共需比赛多少场?分析:分三部分考虑,第一组预赛、第二组顶赛和最后的决赛.第一组要赛:27C =21(场),第二组要赛:26C =15(场),决赛阶段要赛:24C =6(场),总场数:21+15+6=42(场).【拓展】一个盒子装有10个编号依次为1,2,3,…,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?分析:10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:(1)5奇1偶,对奇数只有1种选择,对偶数有5种选择.由乘法原理,有1×5=5种选择; (2)3奇3偶,对奇数有35C =10种选择,对偶数也有35C =10种选择.由乘法原理,有10×10=100种选择;(3)1奇5偶,对奇数有5种选择,对偶数只有1种选择.由乘法原理,有5×1=5种选择.由加法原理,不同的摸法有:5+100+5=110种.【例9】某年级6个班的数学课,分配给甲、乙、丙三名数学老师任教,每人教两个班,分派的方法有多少种?分析:分三步进行:第一步,取两个班分配给甲,与先后顺序无关,是组合问题,有15种选法;第二步,从余下的4个班中选取两个班给6种选法;第三步,剩余的两个班给丙,有1种选法.根据乘法原理,一共有15×6×l=90种不同的分配方法.【拓展】从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?分析:先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36C =20种选法.由乘法原理,共有8×7×20=1120种不同的选法.【例10】工厂从100件产中任意抽出三件进行检查,问: (1)一共有多少种不同的抽法?(2)如果100件产品有2件次品,抽出的3件中恰好有一件是次品的抽法有多少种?(3)如果100件产品中有2件次品,抽出的3件中至少有一件是次品的抽法有多少种? 、分析:从100件产品中抽出3件检查,与抽出3件产品的顺序无关,是一个组合问题. (1)不同的抽法数就是从100个元素中取3个元素的组合数.3100C =161700(种). (2)可分两步考虑,第一步:从2件次品中抽出一件次品的抽法有12C 种;第二步:从98件合格品中抽出2件合格品的抽法有298C 种.再用分步计数原理求出总的抽法数,122989506C C ?=.(3)可以从反面考虑,从抽法总数3100C 中减去抽出的三件都是合格品的情况,便得到抽出的三件产品中至少有一件是次品的抽法总数.33100981617001520969604C C -=-=.【例11】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?(1)恰有3名女生入选;(2)至少有两名女生入选;(3)某两名女生,某两名男生必须入选;(4)某两名女生,某两名男生不能同时入选;(5)某两名女生,某两名男生最多入选两人.分析:(1)恰有3名女生入选,说明男生有5人入选,应为:35 81014112C C ?=;(2)要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871181010842753C C C C --?=.(3)4人必须入选,则从剩下的14人中再选出另外4人. 4141001C =.(4)从所有的选法818C 中减去这4个人同时入选的414C 种可能:818C -414C =42757.(5)分三类情况:4人无人入选,4人仅有1人入选,4人中有2人入选,共:8172614414414C C C C C +?+?=34749.【例12】用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?分析:先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题有26C =15种选法;再从剩下的4个数位上选2个放2,有24C =6种选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有15×6×l=90个.在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数90—30=60个.【例13】从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?分析:整个过程可以分三步完成:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法;第二步,从2,4,6,8中任取两个数字,也是一个组合问题,有24C 种方法;第三步,用取出的5个数字组成没有重复数字的五位数,有55P 种方法.再由分步计数原理求总的个数:35C ×24C ×55P =7200(个).附加题目【附1】小明的书架上原来有6本书,不重新排列,再放上3本书,可以有多少种不同的放法?分析:放第一本书时,有原来的6本书之间和两端的书的外侧共7个位置可以选择;放第二本书时,有已有的7本书之间和两端的书的外侧共8个位置可以选择.同样道理,放第三本书时,有9个位置可以选择.由乘法原理,一共可以有7×8×9=504种不同的放法.【附2】一栋12层楼房备有电梯,第二层至第六层电梯不停.在一楼有3人进了电梯,其中至少有一个要上12楼,则他们到各层的可能情况共有多少种?分析:每个人都可以在第7层至第12层中任何一层下,有6种情况,那么三个人一共有6×6×6=216种情况,其中,都不到12楼的情况有5×5×5=125种.因此,至少有一人要上12楼的情况有216-125=91种.【附3】某校组织进行的一次知识竞赛共有三道题,每道题满分为7分,给分时只能给出自然数l,2,3,…,7分.已知参加竞赛者每人三道题的得分的乘积都是36,而且任意二人各题得分不完全相同,那么请问参加竞赛的最多有多少人?分析:将36分解为不大于7的三个数的乘积,有1×6×6;3×3×4;2×3×6三种情况.考虑到因数的先后顺序,第一种情况,考虑1有三个位置可选择,其余位置放6,有3种顺序;第二种情况与第一种情况相似,有3种顺序;最后一种情况,有3×2×l=6种顺序.由加法原理,一共有12种顺序,所以参赛的最多有12人.【附4】某市的电视台有八个节目准备分两天播出,每天播出四个,其中某动画片和某新闻播报必须在第一天播出一场,体育比赛必须在第二天播出,那么一共有多少种不同的播放节目方案?分析:某动画片和某新闻播报在第一天播放,对于动画片而言,可以选择当天四个节目时段的任何一个时段,一共有4种选择,对于新闻播报可以选择动画片之外的三个时段中的任何一个时段,一共有3种选择,体育比赛可以在第二天的四个节目时段中任选一个,一共有4种选择.剩下的5个节目随意安排顺序,有55P=120种选择.由乘法原理,一共有4×3×4×120=5760种不同的播放节目方案.【附5】某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?分析:此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:(1)只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有36C=20种,由乘法原理,有4×20=80种选择.(2)只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有24C=6种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有3 5C=10种选择.由乘法原理,有2×6×10=120种选择.(3)只会日语的人不出场,需从多面手中选3人做日语导游,有34C=4种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有34C=4种选择.由乘法原理,有4×4=16种选择.根据加法原理,不同的选择方法一共有80+120+16=216种.【附6】五个瓶子都贴了标签,其中恰好贴错了三个,贴错的可能情况共有多少个?分析:首先考虑哪三个瓶子贴错了,有35C 种可能,3个瓶子贴错后互相贴错标签又分成两种不同情况.所以共有35C ×2=20(种).此题容易出错的是三个出错的瓶子确定后,他们之间错误的可能情况数目,有的同学很容易忽略这一环节,而有的会不假思索的把它当作一个全排列,这都是不正确的.【附7】马路上有编号为1,2,3,…,l0的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?分析:l0只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之问的六个空档中插入三只熄灭的灯,有36C =20种插法.练习十二1.给出1,2,3,4四个数字,试求:(1)可组成多少个数字不重复的四位数? (2)可组成多少个数字不重复的自然数? (3)可组成多少个不超过四位的自然数?分析:(1)44P =4×3×2×1=24个数字不重复的四位数.(2)利用1,2,3,4可组成数字不重复的一位、两位、三位、四位自然数,分类考虑:12344444P P P P +++=64个.(3)此题数位上的数字允许重复,利用1,2,3,4可组成一位、两位、三位、四位自然数.进一步考虑,一位数有4个,两位数有4×4=16个,三位数有4×4×4=64个,四位数有4×4×4×4=256个.故共有4+16+64+256=340个.2.由四个不同的非0数字组成的所有四位数中,数字和等于12的共有多少个?分析:四个数字都不同而数字和为12的数字有1,2,3,6和1,2,4,5两种情况,对于每种情况,可以组成44P =24个不同的四位数.对于所以,共可以组成24+24=48个不同的四位数.3.桌子上有3张红卡片,2张黄卡片,和1张蓝卡片,如果将它们横着排成一排,同种颜色的卡片不分开,一共有多少种排法?分析:32133213P P P P =72种.4.在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?分析:两个数的和是偶数,这两个数必然同是奇数或同是偶数,而取出的两个数与顺序无关,所以是组合问题;从50个偶数中取出2个,有250C =1225种取法;从50个奇数中取出2个,也有250C =l225种取法.根据加法原理,一共有1225+1225=2450种不同的取法.5.在一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法?分析:(1)从口袋内的8个球中取出3个球,与顺序无关,是组合问题,其取法种数是56种.(2)从口袋内取出的3个球中有1个是黑球,于是还要从7个白球中再取出2个,其取法种数是21种.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,其取法种数是35种.6.在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法?分析:男女同学分别考虑,再整体排列.437657C C P ?? =756000(种).。
小学奥数排列和组合试题及答案
小学奥数排列和组合试题及答案第一篇:小学奥数排列和组合试题及答案小学四年级奥数排列组合练习1.由数字0、1、2、3、4可以组成多少个①三位数?②没有重复数字的三位数?③没有重复数字的三位偶数?④小于1000的自然数?2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种?①某两人必须入选;②某两人中至少有一人入选;③某三人中恰入选一人;④某三人不能同时都入选.3.如右图,两条相交直线上共有9个点,问:一共可以组成多少个不同的三角形?-------------------4.如下图,计算①下左图中有多少个梯形?②下右图中有多少个长方体?5.七个同学照相,分别求出在下列条件下有多少种站法?①七个人排成一排;②七个人排成一排,某两人必须有一人站在中间;③七个人排成一排,某两人必须站在两头;④七个人排成一排,某两人不能站在两头;⑤七个人排成两排,前排三人,后排四人,某两人不在同一排.-------------------答案:1.①100;②48;③30;④124.2.①C313=286;②C515-C513=1716;③C13·C412=1485;④C515-C212=2937.3.C15·C23+C26·C13=60;或C39-C36-C34=60.4.①C26×C26=225;②C25×C26×C25=1500.5.①P77=5040;②2P66=1440;③2P55=240;④5×4×P55=2400;⑤2×3×4×P55=2880.-------------------第二篇:小学奥数经典专题点拨:排列与组合排列与组合【有条件排列组合】例1 用0、1、2、3、4、5、6、7、8、9这十个数字能够组成______个没有重复数字的三位数。
(哈尔滨市第七届小学数学竞赛试题)讲析:用这十个数字排列成一个不重复数字的三位数时,百位上不能为0,故共有9种不同的取法。
小学四年级奥数竞赛班作业第47讲:排列组合综合应用(一)
排列组合综合应用练习题一.夯实基础:1.由0,2,5,6,7,8组成无重复数字的数.⑴四位偶数有多少个?⑵四位奇数有多少个?⑶四位偶数有多少个?2.由0,2,5,6,7,8组成无重复数字的数.⑴整数有多少个?⑵是5的倍数的三位数有多少个?3.由0,2,5,6,7,8组成无重复数字的数.⑴是25的倍数的四位数有多少个?⑵大于5860的四位数有多少个?4.一个小组共10名学生,其中4女生,6男生.现从中选出3名代表,其中至少有一名女生共有多少种选法?二.拓展提高:5.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个?6.从10件产品中有4件次品,现抽取3件检查,(1)恰好有一件次品的取法有___________种;(2)既有正品又有次品的取法有_______________种.7.圆周上有十个点,任两点之间连一条弦,这些弦在圆内共有多少个交点?8.用2,4,6三个数字来构造六位数,但是不允许有两个连着的2出现在六位数中(例如626442是允许的,但226426就不允许),问这样的六位数有多少个?三. 超常挑战9.有5个标签分别对应着5个药瓶,恰好贴错3个标签的可能情况有多少种?10.由1447,1005,1231这三个数字有许多相同之处:它们都是四位数,最高位都是1,都恰有两个相同数字,一共有多少个这样的数?11.某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?12.在10名学生中,有5人会装电脑,有3人会安装音响设备,其余2人既会安装电脑,又会安装音响设备,今选派由6人组成的安装小组,组内安装电脑要3人,安装音响设备要3人,共有多少种不同的选人方案?13.在四位数中,各位数字之和是4的四位数有多少?四.杯赛演练:14.(迎春杯初赛)6个人传球,每两人之间至多传1次,那么至多共进行几次传球?15.(华杯赛冬令营培训题)如图,A、B、C、D为海上的四个小岛,要建三座桥,将这四个岛连接起来,则不同的建桥方案共有几种?DACB答案:1. (1)注意0不能做首位,355300A =个.(2)个位为特殊位置,只能从5,7中选一个;0是特殊元素,它不能放在千位;综上,四位奇数有11224496C C A =个.(3)位只能在0,2,6,8中选择,进一步分成两种情况:若个位为0,则共有3560A =种;若个位不是0,则个位从2,6,8中选一个,有3种方法,然后选择千位,有4种方法,最后再选剩余的两位,有2412A =种,所以四位偶数有603412204+⨯⨯=个.2. ⑴包括一位数、二位数、三位数、…、六位数,共有111121313141565555555555551631A A A A A A A A A A A A A ++++++=个.⑵5的倍数,则个位为0或5,分两种情况:若个位为0,则有2520A =个;若个位为5,则有114416A A =个,所以共有36个是5的倍数的三位数.3. ⑴25的倍数,在本题的条件下,末两位只可能是25,50或75.若末两位为25,则这样的四位数有11339A A =个;若末两位为50,则这样的四位数有2412A =个;若末两位为75,则这样的四位数有11339A A =个,因此能被25整除的四位数共有30个. ⑵千位如果为5,则前三位为586,第四位有2或7两种选择;前三位若为587,则四位有0,2,6三种选择,所以,千位为5总共有5个数;千位如果为6、7、8,则均有3560A =个数,因此,大于5860的四位数有5360185+⨯= 个.4. “至少有一名女生”意味着存在女生,也就是说不能都是男生.所以,理解这句话的意思至关重要!我们可以从直接与间接两种方法解这道题,同学们可以比较一下.方法一:直接法.由于共有4个候选女生,因此至少有一名女生,包括如下几种情况:⑴1名女生,2名男生:124660C C =种选法; ⑵2名女生,1名男生:214636C C =种选法; ⑶3名女生,344C =种选法. 所以,共有60364100++=种选法. 方法二:间接法.先从10名学生中任意选出3名学生,有310C 种选法;然后从中扣除没有女生的情况(即全是男生的情况),有36C 种选法.所以,至少有一名女生的选法数有3310612020100C C -=-=.5. 7个点中选出3个点的方法为3735C =种,其中三条对角线上的3点组合是共线的,不合要求.35332-=种.6. ⑴124660C C =种; ⑵既有正品又有次品分为:1件次品,2件正品;2件次品,1件正品两类,即:12214646603696C C C C +=+=种.7. 两条弦的交点与四边形的个数一一对应,因而有410210C =个交点.8. (1)若六位数中没有2,则每一位只能从4或6中选一个,这时有6264=个.(2)若六位数中只有1个2,则2有166C =种位置选择,其余5个位置从4或6中选取,则有562192⨯=个.(3)若六位数中有2个2,这时有4252160C ⋅=个(插空法).(4)若六位数中有3个2,这时有334232C ⋅=个; 由题意,不可能在六位数中出现4个4个以上的2.于是共有6419216032448+++=个.9. 将瓶子命名为1,2,3,4,5号,如果是1,2号瓶贴对,则其余3个瓶子都贴错的,简单枚举可发现有2种贴错的情况;而另选两个瓶子贴对,则剩余3个瓶子都贴错也是2种情况,因此共有25220C ⨯=种.10. 由于首位是1,因此那两个相同数字应该以是否是1而分类:⑴若相同数字是1:另一个1有3种位置可以选择,另两位数字不能是1且不能相同,故有29A 种不同排法,因而有2193216m A ==个.⑵若相同数字不是1:这时相同数字有9种不同选法,这两个相同数字在后3位只有3种不同排法,另一位数字既不是1,又不能与相同数字相同,因此有8种不同取法.因而有2938216m =⨯⨯=个.综上,满足条件的四位数共有216216432+=个.11. 此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:⑴只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有3665420321C ⨯⨯==⨯⨯种选择.由乘法原理,有42080⨯=种选择.⑵只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有2443621C ⨯==⨯种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有3554310321C ⨯⨯==⨯⨯种选择.由乘法原理,有2610120⨯⨯=种选择.⑶只会日语的人不出场,需从多面手中选3人做日语导游,有31444C C ==种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有31444C C ==种选择.由乘法原理,有4416⨯=种选择.根据加法原理,不同的选择方法一共有8012016216++=种.12. 按具有双项技术的学生分类:⑴两人都不选派,有3510C =种选派方法;⑵两人中选派1人,有2种选法.而针对此人的任务又分两类:若此人要安装电脑,有2510C =种选法,而另外会安装音响设备的3人全选派上,只有1种选法.由乘法原理,有10110⨯=种选法;若此人安装音响设备,有233C =种选法,需从5人中选3人安装电脑,有3510C =种选法.由乘法原理,有31030⨯=种选法.根据加法原理,有103040+=种选法;综上所述一共有24080⨯=种选派方法.⑶两人全派,针对两人的任务可分类讨论如下:①两人全安装电脑,有515⨯=种选派方案;②两人一个安装电脑,一个安装音响设备,有225360C C ⨯=种选派方案;③两人全安装音响设备,有35330C ⨯=种选派方案.根据加法原理,共有5603095++=种选派方案.综合以上所述,符合条件的方案一共有108095185++=种.13. 设原四位数为ABCD ,按照题意,我们有4A B C D +++=,但是对A 、B 、C 、D 要求不同,因为这是一个四位数,所以应当有0A ≠,而其他三个字母都可以等于0,这样就不能使用我们之前的插板法了,因此我们考虑将B 、C 、D 都加上1,这样B 、C 、D 都至少是1,而且这个时候它们的和为437+=,即问题变成如下表达:一个各位数字不为0的四位数,它的各位数字之和为7,这样的四位数有多少个?采用插板法,共有6个间隔,要插入3个板,可知这样的四位数有个,对应着原四位数也应该有20个.14. 6个点间进行连线,共可以连成15条,但是由题意知这是个一笔画问题,若把这些线全连上,则图形中有6个奇点,不能一笔画,因此至少要去掉2条线(以去掉4个奇点),所以至多共进行15213-=次传球.15. 本题考察对应与转化思想.可以这样考虑:先把四个点间所有能连的线都连起来,共有246C =种方法,然后从这6条线中选择3条将其去掉,有3620C =种选法,但是连在同一个点上的三条线不能同时去掉,所以必须再去掉4种情况,所以共有16种.3620C =。
小学四年级奥数竞赛班作业第47讲:排列组合综合应用(一)
排列组合综合应用练习题一.夯实基础:1.由0,2,5,6,7,8组成无重复数字的数.⑴四位偶数有多少个?⑵四位奇数有多少个?⑶四位偶数有多少个?2.由0,2,5,6,7,8组成无重复数字的数.⑴整数有多少个?⑵是5的倍数的三位数有多少个?3.由0,2,5,6,7,8组成无重复数字的数.⑴是25的倍数的四位数有多少个?⑵大于5860的四位数有多少个?4.一个小组共10名学生,其中4女生,6男生.现从中选出3名代表,其中至少有一名女生共有多少种选法?二.拓展提高:5.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个?6.从10件产品中有4件次品,现抽取3件检查,(1)恰好有一件次品的取法有___________种;(2)既有正品又有次品的取法有_______________种.7.圆周上有十个点,任两点之间连一条弦,这些弦在圆内共有多少个交点?8.用2,4,6三个数字来构造六位数,但是不允许有两个连着的2出现在六位数中(例如626442是允许的,但226426就不允许),问这样的六位数有多少个?三. 超常挑战9.有5个标签分别对应着5个药瓶,恰好贴错3个标签的可能情况有多少种?10.由1447,1005,1231这三个数字有许多相同之处:它们都是四位数,最高位都是1,都恰有两个相同数字,一共有多少个这样的数?11.某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?12.在10名学生中,有5人会装电脑,有3人会安装音响设备,其余2人既会安装电脑,又会安装音响设备,今选派由6人组成的安装小组,组内安装电脑要3人,安装音响设备要3人,共有多少种不同的选人方案?13.在四位数中,各位数字之和是4的四位数有多少?四.杯赛演练:14.(迎春杯初赛)6个人传球,每两人之间至多传1次,那么至多共进行几次传球?15.(华杯赛冬令营培训题)如图,A、B、C、D为海上的四个小岛,要建三座桥,将这四个岛连接起来,则不同的建桥方案共有几种?DACB答案:1. (1)注意0不能做首位,355300A =个.(2)个位为特殊位置,只能从5,7中选一个;0是特殊元素,它不能放在千位;综上,四位奇数有11224496C C A =个.(3)位只能在0,2,6,8中选择,进一步分成两种情况:若个位为0,则共有3560A =种;若个位不是0,则个位从2,6,8中选一个,有3种方法,然后选择千位,有4种方法,最后再选剩余的两位,有2412A =种,所以四位偶数有603412204+⨯⨯=个.2. ⑴包括一位数、二位数、三位数、…、六位数,共有111121313141565555555555551631A A A A A A A A A A A A A ++++++=个.⑵5的倍数,则个位为0或5,分两种情况:若个位为0,则有2520A =个;若个位为5,则有114416A A =个,所以共有36个是5的倍数的三位数.3. ⑴25的倍数,在本题的条件下,末两位只可能是25,50或75.若末两位为25,则这样的四位数有11339A A =个;若末两位为50,则这样的四位数有2412A =个;若末两位为75,则这样的四位数有11339A A =个,因此能被25整除的四位数共有30个. ⑵千位如果为5,则前三位为586,第四位有2或7两种选择;前三位若为587,则四位有0,2,6三种选择,所以,千位为5总共有5个数;千位如果为6、7、8,则均有3560A =个数,因此,大于5860的四位数有5360185+⨯= 个.4. “至少有一名女生”意味着存在女生,也就是说不能都是男生.所以,理解这句话的意思至关重要!我们可以从直接与间接两种方法解这道题,同学们可以比较一下.方法一:直接法.由于共有4个候选女生,因此至少有一名女生,包括如下几种情况:⑴1名女生,2名男生:124660C C =种选法; ⑵2名女生,1名男生:214636C C =种选法; ⑶3名女生,344C =种选法. 所以,共有60364100++=种选法. 方法二:间接法.先从10名学生中任意选出3名学生,有310C 种选法;然后从中扣除没有女生的情况(即全是男生的情况),有36C 种选法.所以,至少有一名女生的选法数有3310612020100C C -=-=.5. 7个点中选出3个点的方法为3735C =种,其中三条对角线上的3点组合是共线的,不合要求.35332-=种.6. ⑴124660C C =种; ⑵既有正品又有次品分为:1件次品,2件正品;2件次品,1件正品两类,即:12214646603696C C C C +=+=种.7. 两条弦的交点与四边形的个数一一对应,因而有410210C =个交点.8. (1)若六位数中没有2,则每一位只能从4或6中选一个,这时有6264=个.(2)若六位数中只有1个2,则2有166C =种位置选择,其余5个位置从4或6中选取,则有562192⨯=个.(3)若六位数中有2个2,这时有4252160C ⋅=个(插空法).(4)若六位数中有3个2,这时有334232C ⋅=个; 由题意,不可能在六位数中出现4个4个以上的2.于是共有6419216032448+++=个.9. 将瓶子命名为1,2,3,4,5号,如果是1,2号瓶贴对,则其余3个瓶子都贴错的,简单枚举可发现有2种贴错的情况;而另选两个瓶子贴对,则剩余3个瓶子都贴错也是2种情况,因此共有25220C ⨯=种.10. 由于首位是1,因此那两个相同数字应该以是否是1而分类:⑴若相同数字是1:另一个1有3种位置可以选择,另两位数字不能是1且不能相同,故有29A 种不同排法,因而有2193216m A ==个.⑵若相同数字不是1:这时相同数字有9种不同选法,这两个相同数字在后3位只有3种不同排法,另一位数字既不是1,又不能与相同数字相同,因此有8种不同取法.因而有2938216m =⨯⨯=个.综上,满足条件的四位数共有216216432+=个.11. 此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:⑴只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有3665420321C ⨯⨯==⨯⨯种选择.由乘法原理,有42080⨯=种选择.⑵只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有2443621C ⨯==⨯种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有3554310321C ⨯⨯==⨯⨯种选择.由乘法原理,有2610120⨯⨯=种选择.⑶只会日语的人不出场,需从多面手中选3人做日语导游,有31444C C ==种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有31444C C ==种选择.由乘法原理,有4416⨯=种选择.根据加法原理,不同的选择方法一共有8012016216++=种.12. 按具有双项技术的学生分类:⑴两人都不选派,有3510C =种选派方法;⑵两人中选派1人,有2种选法.而针对此人的任务又分两类:若此人要安装电脑,有2510C =种选法,而另外会安装音响设备的3人全选派上,只有1种选法.由乘法原理,有10110⨯=种选法;若此人安装音响设备,有233C =种选法,需从5人中选3人安装电脑,有3510C =种选法.由乘法原理,有31030⨯=种选法.根据加法原理,有103040+=种选法;综上所述一共有24080⨯=种选派方法.⑶两人全派,针对两人的任务可分类讨论如下:①两人全安装电脑,有515⨯=种选派方案;②两人一个安装电脑,一个安装音响设备,有225360C C ⨯=种选派方案;③两人全安装音响设备,有35330C ⨯=种选派方案.根据加法原理,共有5603095++=种选派方案.综合以上所述,符合条件的方案一共有108095185++=种.13. 设原四位数为ABCD ,按照题意,我们有4A B C D +++=,但是对A 、B 、C 、D 要求不同,因为这是一个四位数,所以应当有0A ≠,而其他三个字母都可以等于0,这样就不能使用我们之前的插板法了,因此我们考虑将B 、C 、D 都加上1,这样B 、C 、D 都至少是1,而且这个时候它们的和为437+=,即问题变成如下表达:一个各位数字不为0的四位数,它的各位数字之和为7,这样的四位数有多少个?采用插板法,共有6个间隔,要插入3个板,可知这样的四位数有个,对应着原四位数也应该有20个.14. 6个点间进行连线,共可以连成15条,但是由题意知这是个一笔画问题,若把这些线全连上,则图形中有6个奇点,不能一笔画,因此至少要去掉2条线(以去掉4个奇点),所以至多共进行15213-=次传球.15. 本题考察对应与转化思想.可以这样考虑:先把四个点间所有能连的线都连起来,共有246C =种方法,然后从这6条线中选择3条将其去掉,有3620C =种选法,但是连在同一个点上的三条线不能同时去掉,所以必须再去掉4种情况,所以共有16种.3620C =。
小学奥数 排列组合
一.计数专题:④排列组合一. 进门考1.有四张数字卡片, 用这四张数字卡片组成三位数,可以组成多少个?2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?3.甲组有6人,乙组有8人,丙组有9人。
从三个组中各选一人参加会议,共有多少种不同选法?4.从1到500的所有自然数中,不含有数字4的自然数有多少个?5.学校的一块活动场地呈梯形,如图所示.(1)这块活动场地的面积是多少平方米?(2)学校计划给这块地铺上草皮,如果每平方米的草皮20元,学校一共要为这块活动场地花费多少元钱?6*.按1,2,3,4的顺序连线,有多少种不同的连法?二.授新课5 87 6①奥数专题:乘法原理专题简析在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.解决排列组合问题,离不开加法原理和乘法原理,合理分类、合理分组,求出组合数和排列数。
排列公式:由乘法原理,从个不同元素中取出个元素的排列数是,即,这里,,且等号右边从开始,后面每个因数比前一个因数小,共有个因数相乘.组合公式: 从个不同元素中取出个元素()的所有组合的个数,叫做从个不同元素中取出个不同元素的组合数.记作..例1:排列数:1. 三个人排成一排照相,有多少种不同的排法?2. 有3名男生和2名女生排成一排照相,有多少种不同的排法?如果要求两名女生必须相邻,有多少种排法?3.有从1到9共计9个号码球,请问,可以组成多少个三位数?n m 121n n n n m ⋅-⋅-⋅⋅-+()()()121m n P n n n n m =---+()()()m n ≤n 1m n m m n ≤n mm n C 12)112321m m n nm m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()()121m n P n n n n m =---+()()()4.5人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 多少?例2:组合数:1. 从有3名男生和2名女生中选出2名同学参加数学竞赛,有多少种选法?2.在“星星杯”,“排球比赛中,共有10个小球队参加比赛。
小学奥数排列组合专项训练
小学奥数排列组合专项训练内容概述了解排列、组合公式的来由及含义,掌握具体的计算方法;辨析排列、组合之间酌区别与联系,并能够合理应用.典型问题兴趣篇1. 计算:24(1)P 410(2)P 3336(3)3P P ⨯+2.费叔叔、小悦、冬冬和阿奇四个人站成一排照相,一共有多少种不同的排列方法?3.体育课上,老师从10名男生中挑出4人站成一排,—共有多少种不同的排列方法?4.费叔叔、小悦、冬冬、阿奇四个人一块乘公共汽车去公园,上车后发现有8个空座位,他们一共有多少种不同的坐法?5.用1至7这7个数字一共能组成多少个没有重复数字的三位数?如果把这些三位数从小到大排起来,312是其中第几个?6.计算:25(1)C47(2)C 3366(2)P C ⨯7.图21-1中有六个点,任意三个点都不在一条直线上.请问:(1)以这些点为端点,一共可以连出多少条线段?(2)以这些点为顶点,一共可以连出多少个三角形?8.费叔叔把10张不同的游戏卡片分给冬冬和阿奇,并且决定给冬冬8张,给阿奇2张.一共有多少种不同的分法?9.小悦要从八门课程中选学三门,一共有多少种选法?如果数学课与钢琴课时间冲突,不能同时学,她一共有多少种选法?10.象棋兴趣小组一共有9名同学,请问:(1)如果从中选3名同学在第二天的早上、中午、晚上分别做值日,共有多少种选法?(2)如果从中选3名同学去参加一次全市比赛,共有多少种选法?拓展篇1. 计算:25(1)P37(2)P 4266(3)P P -2.如图21-2所示,有5面不同颜色的小旗,任取3面排成一行表示一种信号,用这5面小旗一共可以表示出多少种不同的信号?3.3名同学一块去图书馆借科幻小说,发现书架上只剩下9本,且各不相同.如果每人只借1本,那么共有多少种不同的借法?4.用1、2、3、4、5这五个数码可以组成多少个没有重复数字的四位数?将这些四位数从小到大排列起来,4125是第几个?5. 计算:39(1)C 321010(2)2C C -⨯ 45(3)C ,15C 710(4)C ,310C6.如图21-3所示,从端点O出发的射线共有7条,图中一共有多少个锐角?7.如图21-4所示,在一个圆周上有8个点,以这些点为顶点或端点,一共可以画出多少条线段?多少个三角形?多少个四边形?8.9支球队进行足球比赛,实行单循环制,即每两队之间只比赛一场.每场比赛后胜方得3分,平局双方各得1分,负方不得分.请问:一共要举行多少场比赛?9支队伍的得分总和最多为多少?9.学校十佳歌手大赛的10名获奖选手中,每3人都要照一张合影.问:需要拍多少张照片?10.在新学期的班会上,大家要从11名候选人中选出班干部.请问:(1)选出三人组成班委会,那一共有多少种选法?(2)从剩下的候选人中,选出三人分别担任语文、数学、英语的课代表,一共有多少种选法?11.费叔叔带着小悦、冬冬、阿奇去参加一次聚会,主持人要求每个人从12个颜色不同的彩球中领取一个.请问:(1)小悦是第一个取球的人,她一共选出了4个球,准备回头分给大家,那一共有多少种选法?(2)小悦回到座位后,把这4个球分给大家,一共有多少种分法?(3)最后他们四人手中拿到的球一共有多少种可能?12.周末大扫除,老师要从第一组的10名男生和10名女生中选出5人留下打扫卫生.请问:(1)如果老师随意选择,一共有多少种选择方法?(2)如果老师决定选出2名男生和3名女生,一共有多少种选择方法?超越篇1.有一些四位数,它们由4个互不相同且不为零的数字组成,并且这4个数字的和等于11.将所有这样的四位数从小到大依次排列,第20个是多少?2.在身高互不相同的6个人中,选出3个人站成第一排,另外3个人站成第二排.请问:(1)如果可以随便站,那么一共有多少种排法?(2)如果要求第二排最矮的人也比第一排最高的人高,那么一共有多少种不同的排法?3.小口袋中有4个球,大口袋中有6个球,这些球颜色各不相同.请问:(1)任意取4个球出来,那么共有多少种不同的结果?(2)取出4个球,而且恰好从每个口袋中各取2个球,共有多少种不同结果?4. 在1至30这30个自然数中任意挑选出两个不同的数,使得它们的和是偶数,一共有多少种不同的挑选方法?5. 如图21-5所示,两条直线上分别有6个点和4个点.以这些点为顶点,可以连出多少个三角形?6. 从15名同学中选出5人,上场参加篮球比赛.请问:(1)如果甲、乙两人必须人选,共有多少种选法?(2)如果甲、乙两人中至少有一人人选,共有多少种选法?(3)如果甲、乙、丙三人中恰好入选一人,共有多少种选法?(4)如果甲、乙、丙不能同时都人选,共有多少种选法?7.一体育课上,老师将冬冬、阿奇和另7名同学分成3组做游戏,每组3人.一共有多少种分组方法?如果要求冬冬和阿奇分到同一组,有多少种分组方法?8. 大、小两个口袋中,装有一些同样的小球.大口袋里装有9个小球,分别编号为l,2,3,…,9;小口袋里装有6 个小球,分别编号为1,2,3,…,6.从这两个口袋中分别摸出3 个小球,这6个小球的编号一共有多少种可能情况?。
排列组合小学奥数
排列与组合(一)排列例1、张华、李明等七个同学照相,分别求出在下列条件下有多少种站法。
(1)、七个人排成一排;(2)、七个人排成一排,张华必须站在中间;(3)、七个人站成一排,张华,李明必须有一人站在中间;(4)、七个人站成一排,张华,李明必须站在两边;(5)、七个人站成一排,张华,李明都没有站在边上;(6)、七个人排成两排,前排三人,后排四人;(7)、七个人排成两排,前排三人,后排四人,张华,李明不在同一排。
例2、用0,1,2,3四个数码可以组成()个没有重复数字的四位偶数。
例3、某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0的数字组成,且四个数字之和是9,为确保打开保险柜,至少要试()次。
例4、从1,3,5中任选两个数字,从0,2,4中任选两个数字,共可组成()个没有重复数字的四位数,其中偶数有()个。
例5、在前10000个自然数中,不含数码“1”的数有()个。
练习:1、甲、乙、丙、丁四人各有一个作业本混放在一起,四人每人随便拿了一本。
(1)、甲拿到自己作业本的拿法有()种;(2)、恰有一人拿到自己作业本的拿法有()种;(3)、至少有一人没拿到自己作业本的拿法有()种;(4)、谁也没拿到自己作业本的拿法有()种。
2、用0,1,2,3,4,可以组成()个小于1000的没有重复数字的自然数。
3、自然数8336,8545,8782有一些共同特征,每个数都是以8开头的四位数,且每个数中恰好有两个数字相同,这样的数有()个。
4、由1000到1999这1000个自然数中,有()个千位,百位,十位,个位数字中恰有两个相同的数。
5、从1,3,5中任选两个数字,从2,4,6中任选两个数字,共可组成()个没有重复数字的四位数。
6、用1,2,3,4,5这五个数字可以组成120个没有重复数字的四位数,将它们从小到大排列起来,4125是第()个。
7、在所有的三位自然数中,组成数的三个数码既有大于5的数码,又有小于5的数码的自然数共有()个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. 8人排在前后两排,每排四人, 8人排在前后两排,每排四人, 其中甲、乙两人要排在前排,丙要 排在后排,有多少种不同排法?
6. 六人排成一行,甲不排在第一位, 乙不排在最后一位,共有多少种不 同的排法
• 解法一:六人排成一行,共有 种不同排法,甲 解法一:六人排成一行, 种不同排法, 种排法, 在第一位的有 种排法,乙在最后一位的有 种 排法,甲在第一位, 种排法。 排法,甲在第一位,乙在最后一位的有 种排法。 所以符合要求的排法有 • (种) • 解法二: 种排法, 解法二:乙排第一位有 种排法,甲、乙之外 种排法, 的四个人之一排第一位有 种排法,故有 • + =504(种) ( •
11. 已知集合A={1,2,3}, 已知集合A={1,2,3}, B={1,4,5,6} 。从这两个集合中各取 一个元素,作为平面直角坐标系中 的坐标,能确定的不同的点的个数 是多少?
12. 3封信投入四个信箱,有几种 不同的投法?
13. 有11名工人,其中5人会钳工, 11名工人,其中5 4人会车工,2人既会钳工又会车工, 人会车工,2 从中选出4名钳工和4 从中选出4名钳工和4名车工,有多 少种选法?
排列、组合
复习课
1. 在所有的两位数中,个位数字小 于十位数字的两位数有多少个?
2. 用0到9这十个数字,能组成 多少个只含有两个相同数字的 三位数。
3. 由1到5这五个数字可以组成多 少个首位是偶数,没有重复数字的 五位奇数。
4. 如图1-66,用五种不同的颜色 如图1 66,用五种不同的颜色 着色,相邻部分不能用同一种颜色, 但同一种颜色可以反复使用,求所 有不同的着色方法的种数。
9. 五人排队,甲不在首位的排法有 几种;甲不在首位,乙不在末位的 排法有几种;甲不在首位,乙不在 末位,丙不在中间的排法有几种; 甲不在首位,乙不在末位,丙不在 中间,丁不在第二位的排法有几种; 甲不在首位,乙不在末位,丙不在 中间,丁不在第二位,戊不在第四 位的排法有几种。
10. n人坐n个座位。但限定第一人不 n人坐n 坐第一位,第二人不坐第二位,…, 坐第一位,第二人不坐第二位,… 第n人不坐第n位,有多少种不同的 人不坐第n 坐法。
18. f是集合 A={a,b,c,d},B={0,1,2} f是集合 ={a,b,c,d},B={0,1,2} 的映射,如果B中的元素在A 的映射,如果B中的元素在A中都有 原象,求这样的映射的个数。若不 要求都有原象呢?
19. 6本不同的书分给甲、乙、丙三 6本不同的书分给甲、乙、丙三 人。 (1)甲得2本,乙得2本,丙得2 )甲得2本,乙得2本,丙得2 本有几种不同的分配方法; (2)甲得3本,乙得2本,丙得1 )甲得3本,乙得2本,丙得1 本有几种不同的分配方法; (3)一人得3本,一人得2本,一 )一人得3本,一人得2 人得1 人得1本有几种不同的分配方法。
16. 某班选出的7名班委进行分工, 某班选出的7 每人只担任一个职务,且每个职务 都不相同,其中 A 不当班长, B 不当文娱委员,这样的分配方案有成一列, 7名学生中每次选出5 其中A不能排在第一位,B 其中A不能排在第一位,B不能排在 末位,共有多少种不同的排列方法?
7. 从七名运动员中选出四人参加 4×100米接力。如果甲、乙两人都 100米接力。如果甲、乙两人都 不跑中间两棒,问有多少种不同的 安排方法?
8. 用0、1、2、3、4、5、6这七个 数字,可以组成多少个没有重复数 字的六位奇数?
• 解法一:所求六位数的个位只能是1、3、5,当 解法一:所求六位数的个位只能是 、 、 , 个位是1、 、 之一时 之一时, 个位是 、3、5之一时,首位数字有零以外的余 下的五个数字可取。取定之后, 下的五个数字可取。取定之后,中间的四个数可 以从余下的包括零在内的五个数字中取, 以从余下的包括零在内的五个数字中取,所以共 有 (个) • 解法二: 解法二:共有六位数 个(包含首位是零的假 六位数), ),其中是奇数的占 个奇数。 六位数),其中是奇数的占 ,故有 个奇数。 再减去首位是零的奇数 个,所以共有 (个) •
14. 平面上有相异的20个点,共确定 平面上有相异的20个点,共确定 178条直线,问是否有3个或3 178条直线,问是否有3个或3个以上 的点共线?
15. 圆周上有10个点,每两点间连一 圆周上有10个点,每两点间连一 弦,如果其中任意三条弦在圆内都 不共点,求由这些弦在圆内的交点 为顶点的三角形的个数。
20. 在连结凸五边形的三个顶点构成 的三角形中,求与原凸五边形没有 公共边的三边形的个数。凸六边形 呢?凸n 呢?凸n边形呢?