奥数:排列组合的基本理论及公式.docx
排列组合公式(全)

排列组合公式排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。
排列的全体组成的集合用 P(n,r)表示.排列的个数用P(n,r)表示。
当r=n时称为全排列。
一般不说可重即无重。
可重排列的相应记号为 P(n,r),P(n,r)。
组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合.组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r).一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。
把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。
显然各子集没有共同元素。
每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。
排列组合基础知识打印版

排列组合基础知识一、两大原理1.加法原理(1)定义:做一件事,完成它有n 类方法,在第一类方法中有1m 中不同的方法,第二类方法中有2m 种不同的方法......第n 类方法中n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法。
(2)本质:每一类方法均能独立完成该任务。
(3)特点:分成几类,就有几项相加。
2.乘法原理(1)定义做一件事,完成它需要n 个步骤,做第一个步骤有1m 中不同的方法,做第二个步骤有2m 种不同的方法......做第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m N ...21=种不同的方法。
(2)本质:缺少任何一步均无法完成任务,每一步是不可缺少的环节。
(3)特点:分成几步,就有几项相乘。
二、排列组合1.排列(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素,按照一定的顺序排成一列,叫做从n 个不同的元素中,选取m 个元素的一个排列,排列数记为m n P ,或记为m n A 。
(2)使用排列的三条件①n 个不同元素;③讲究顺序。
(3)计算公式)!(!)1)....(2)(1(m n n m n n n n A m n -=+---= (4)关于P!r n n !r n n n P r n )()1()1(-=+-⨯⨯-⨯=Λ (r n A ) 若n r =,责称为全排列,记为n P ,全排列n !P n = (r n A n !A n n =) 尤其:!,,110n P n P P n n n n === 例如:121234)124(424⨯⨯⨯⨯=+-⨯=A 123444⨯⨯⨯=A例:把4个不同的球放入4个不同的盒子中,每个盒子放一个球,有多少种放法?2.组合(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素并为一组,叫做从n 个不同的元素中,选取m 个元素的一个组合,组合数记为m n C 。
小学奥数之排列组合问题

题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。
(完整word版)排列组合公式(全)(word文档良心出品)

排列组合公式排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。
排列的全体组成的集合用 P(n,r)表示。
排列的个数用P(n,r)表示。
当r=n时称为全排列。
一般不说可重即无重。
可重排列的相应记号为 P(n,r),P(n,r)。
组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。
组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。
一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。
把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。
显然各子集没有共同元素。
每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。
排列与组合的计算方法公式

排列与组合的计算方法公式“哎呀,这排列组合可真是个让人头疼的问题啊!”排列组合是数学中的一个重要概念,它们有着特定的计算方法和公式。
排列是指从给定个数的元素中取出指定个数的元素进行排序。
排列的计算公式为:A(n,m)=n(n-1)(n-2)…(n-m+1)。
比如说,从 5 个不同的数字中选取 3 个进行排列,那么排列数就是A(5,3)=5×4×3=60。
比如在体育比赛中,前三名的颁奖顺序就是一种排列情况。
组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
组合的计算公式为:C(n,m)=A(n,m)/m!。
例如,从 5 个不同的数字中选取 3 个组成一组,不考虑顺序,那么组合数就是C(5,3)=A(5,3)/3!=60/6=10。
就像从一堆水果中选取几个水果,不考虑选取的先后顺序,这就是组合。
再举个例子,假设有 5 个人,要选出 3 个人去参加一个活动。
那么用排列的方法计算,这 3 个人的顺序不同就算是不同的情况,比如 ABC 和 CBA 是不同的排列;而用组合的方法计算,只要是这 3 个人就可以,不考虑他们的顺序,ABC 和 CBA 就只算一种组合。
排列组合在生活中有很多实际的应用。
比如抽奖活动,从众多参与者中抽取几个获奖者,这就是组合问题;而如果还要考虑获奖者的先后顺序,比如一等奖、二等奖、三等奖的颁发顺序,那就是排列问题了。
在解决排列组合问题时,关键是要明确是排列还是组合,以及元素是否可以重复。
如果元素可以重复,那么计算方法又会有所不同。
总之,排列组合虽然有点复杂,但只要理解了基本概念和公式,通过多做一些实际的例子,就能很好地掌握和运用它们。
排列组合

排列组合排列组合是组合学最基本的概念。
所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。
组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
排列组合与古典概率论关系密切。
目录(P是旧用法,现在教材上多用A,即Arrangement)组合公式C是组合公式,从N个元素取R个,不进行排列(即不排序)。
符号常见的一道题目C-组合数A-排列数(旧在教材为P)N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5×4×3×2×1=120C-Combination 组合P-Permutation排列 (现在教材为A-Arrangement)一些组合恒等式组合恒等式排列组合常见公式kCn/k=nCn-1/k-1(a/b,a在下,b在上)Cn/rCr/m=Cn/mCn-m/r-m排列组合常见公式历史1772年,旺德蒙德以[n]p表示由n个不同的元素中每次取p个的排列数。
而欧拉则于1771年以及于1778年以表示由n个不同元素中每次取出p个元素的组合数。
至1872年,埃汀肖森引入了以表相同之意,这组合符号(Signs of Combinations)一直沿用至今。
1830年,皮科克引入符号Cr以表示由n个元素中每次取出r个元素的组合数;1869年或稍早些,剑桥的古德文以符号nPr 表示由n个元素中每次取r个元素的排列数,这用法亦延用至今。
按此法,nPn便相当於现在的n!。
1880年,鲍茨以nCr及nPr分别表示由n个元素取出r个的组合数与排列数;六年后,惠特渥斯以及表示相同之意,而且,他还以表示可重复的组合数。
至1899年,克里斯托尔以nPr及nCr分别表示由n个不同元素中每次取出r个不重复之元素的排列数与组合数,并以nHr表示相同意义下之可重复的排列数,这三种符号也通用至今。
1904年,内托为一本百科辞典所写的辞条中,以表示上述nPr之意,以表示上述nCr之意,后者亦同时采用了。
排列组合基础知识讲解

排列组合基础知识讲解介绍排列组合是一种数学领域中的基础概念,涉及到集合中元素的不同排列和组合方式。
在许多领域中都有广泛的应用,例如组合数学、概率论、统计学等。
本文将对排列组合的基础知识进行讲解,包括排列和组合的定义、计算公式、性质等内容。
排列的概念排列是从给定元素中按照一定顺序抽取一部分元素,形成一个序列的过程。
在排列中,元素的顺序是重要的。
如果从n个元素中选取r个元素进行排列,记作P(n, r),表示排列的种类数目。
排列的计算公式为:$$P(n, r) = \\frac{n!}{(n-r)!}$$其中,n! 表示n的阶乘,即n(n-1)(n-2)…2*1。
例如,从1、2、3三个元素中选取2个元素进行排列,可以得到以下6种排列:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2)。
组合的概念组合是从给定元素中选择一部分元素,不考虑元素的顺序,形成一个集合的过程。
在组合中,元素的顺序不重要。
如果从n个元素中选取r个元素进行组合,记作C(n, r),表示组合的种类数目。
组合的计算公式为:$$C(n, r) = \\frac{n!}{r!(n-r)!}$$例如,从1、2、3三个元素中选取2个元素进行组合,可以得到以下3种组合:{1,2}、{1,3}、{2,3}。
排列组合的性质1.排列和组合的区别:–排列考虑元素的顺序,组合不考虑元素的顺序。
–排列中的元素不重复,组合中的元素可重复。
2.排列和组合的计算公式:–排列的计算公式中分子为n!,组合的计算公式中分子也为n!。
–排列的计算公式中分母为(n-r)!,组合的计算公式中分母为r!(n-r)!。
3.特殊情况下的排列和组合:–当r=0时,任意元素的组合为1种,排列为0种。
–当r=n时,任意取n个元素的组合为1种,排列为n!种。
应用实例排列组合在实际中有许多应用,下面以几个例子说明其应用:1.密码学:在密码学中,排列和组合可用于生成密码、破解密码等。
排列组合的基本理论和公式

排列组合的基本理论和公式排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.(一)两个基本原理是排列和组合的基础(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn 种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.(二)排列和排列数(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n!(三)组合和组合数(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合.从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.一、排列组合部分是中学数学中的难点之一原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、排列合的基本理和公式,排列与元素的序有关,合与序无关。
如 231 与 213 是两个排列, 2+ 3+ 1 的和与 2+ 1+3 的和是一个合。
(一 )两个基本原理是排列和合的基:
(1)加法原理:做一件事,完成它可以有 n 法,在第一法中有 m1种不同的方法,在第二法中有 m2种不同的方法,⋯⋯,在第n 法中有 m n种不同的方法,那么完成件事共有 N= m1+ m2+m3+⋯+ m n种不同方法。
(2)乘法原理:做一件事,完成它需要分成n 个步,做第一步有m1种不同的方法,做第二步有m2种不同的方法,⋯⋯,做第 n 步有 m n种不同的方法,那么完成件事共
有N=m1×m2×m3×⋯×m n种不同的方法。
里要注意区分两个原理,要做一件事,完成它若是有
n法,是分,第一中的方法都是独立的,因此
用加法原理;做一件事,需要分n 个步,步与步之是
的,只有将分成的若干个互相系的步,依次相完成,
件事才算完成,因此用乘法原理。
完成一件事的分“ ”和“步”是有本区的,因此
也将两个原理区分开来。
C53表示从5 个元素中取出 3 个,共有多少种不同的取
法。
这是组合的运算。
例如:从 5 个人中任选三个人去参加
比赛,共有几种选法这就是从 5 个元素中取出 3 个的组合运算。
可表示为C53。
其计算过程是C53=5!/[3!× (5-3)!]叹号代表阶乘, 5!=5 ×4×3×2×1=120,3!=3 ×2×1=6,( 5-3)!
=2!
=2
×,所以 C53=5!/[3! × (5-3)!]=120/(6
×针2)=10对上
面
1=2
例子,就是从 5 个人中任选三个人去参加比赛,共有10 几种选法。
排列组合公式:
公式 P 是指排列,从N 个元素取 R 个进行排列。
公式 C 是指组合,从N 个元素取 R 个,不进行排列。
n—元素的总个数;r—参与选择的元素个数。
!—阶乘,如9!= 9×8×7×6×5×4×3。
×2×1
举例:
Q1:有从1到9共计9个号码球,请问,可以组成多
少个三位数
A1: 123 和 213 是两个不同的排列数。
即对排列顺序
有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现
988,997之类的组合,我们可以这么看,百位数有9 种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9×8×7个三位数。
计算公式=P93=9×8×7。
Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”
A2: 213 组合和312 组合,代表同一个组合,只要有
三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复
的个数即为最终组合数 C 39= 9! /3!×6! =9× 8×7/3 2×1。