橡胶配方与各种物性之间的关系

合集下载

橡胶与各指标的关系

橡胶与各指标的关系

浅谈橡胶的各种物性与密度的关系前言:在橡胶制品过程中,一般必须测试的物性实验不外乎有:拉伸强度 2、撕裂强度 3、定伸应力与硬度 4、耐磨性 5、疲劳与疲劳破坏6、弹性7、扯断伸长率。

各种橡胶制品都有它特定的使用性能与工艺配方要求。

为了满足它的物性要求需选择最适合的聚合物与配合剂进行合理的配方设计。

首先要了解配方设计与硫化橡胶物理性能的关系。

硫化橡胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异。

1、拉伸强度:就是制品能够抵抗拉伸破坏的根限能力。

它就是橡胶制品一个重要指标之一。

许多橡胶制品的寿命都直接与拉伸强度有关。

如输送带的盖胶、橡胶减震器的持久性都就是随着拉伸强度的增加而提高的。

A:拉伸强度与橡胶的结构有关:分了量较小时,分子间相互作用的次价健就较小。

所以在外力大于分子间作用时、就会产生分子间的滑动而使材料破坏。

反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。

凡影响分子间作用力的其它因素均对拉伸强度有影响。

如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。

也就就是这些橡胶自补强性能好的主要原因之一。

一般橡胶随着结晶度提高,拉伸强度增大。

B:拉伸强度还跟温度有关:高温下拉伸强度远远低于室温下的拉伸强度。

C:拉伸强度跟交联密度有关:随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。

硫化橡胶的拉伸强度随着交联键能增加而减小。

能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。

通过硫化体系,采用硫黄硫化,选择并用促进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用)。

D:拉伸强度与填充剂的关系:补强剂就是影响拉伸强度的重要因素之一,填料的料径越小,比表面积越大、表面活性越大补强性能越好。

通用橡胶基本性能及配方汇总

通用橡胶基本性能及配方汇总

1、天然橡胶(NR)以橡胶烃(聚异戊二烯)为主,含少量蛋白质、水分、树脂酸、糖类和无机盐等。

弹性大,定伸强度高,抗撕裂性和电绝缘性优良,耐磨性和耐旱性良好,加工性佳,易于其它材料粘合,在综合性能方面优于多数合成橡胶。

缺点是耐氧和耐臭氧性差,容易老化变质;耐油和耐溶剂性不好,第抗酸碱的腐蚀能力低;耐热性不高。

使用温度范围:约-60℃~+80℃。

制作轮胎、胶鞋、胶管、胶带、电线电缆的绝缘层和护套以及其他通用制品。

特别适用于制造扭振消除器、发动机减震器、机器支座、橡胶-金属悬挂元件、膜片、模压制品。

2、丁苯橡胶(SBR)丁二烯和苯乙烯的共聚体。

性能接近天然橡胶,是目前产量最大的通用合成橡胶,其特点是耐磨性、耐老化和耐热性超过天然橡胶,质地也较天然橡胶均匀。

缺点是:弹性较低,抗屈挠、抗撕裂性能较差;加工性能差,特别是自粘性差、生胶强度低。

使用温度范围:约-50℃~+100℃。

主要用以代替天然橡胶制作轮胎、胶板、胶管、胶鞋及其他通用制品。

3、顺丁橡胶(BR)是由丁二烯聚合而成的顺式结构橡胶。

优点是:弹性与耐磨性优良,耐老化性好,耐低温性优异,在动态负荷下发热量小,易于金属粘合。

缺点是强度较低,抗撕裂性差,加工性能与自粘性差。

使用温度范围:约-60℃~+100℃。

一般多和天然橡胶或丁苯橡胶并用,主要制作轮胎胎面、运输带和特殊耐寒制品。

4、异戊橡胶(IR)是由异戊二烯单体聚合而成的一种顺式结构橡胶。

化学组成、立体结构与天然橡胶相似,性能也非常接近天然橡胶,故有合成天然橡胶之称。

它具有天然橡胶的大部分优点,耐老化由于天然橡胶,弹性和强力比天然橡胶稍低,加工性能差,成本较高。

使用温度范围:约-50℃~+100℃可代替天然橡胶制作轮胎、胶鞋、胶管、胶带以及其他通用制品。

5、氯丁橡胶(CR)是由氯丁二烯做单体乳液聚合而成的聚合体。

这种橡胶分子中含有氯原子,所以与其他通用橡胶相比:它具有优良的抗氧、抗臭氧性,不易燃,着火后能自熄,耐油、耐溶剂、耐酸碱以及耐老化、气密性好等优点;其物理机械性能也比天然橡胶好,故可用作通用橡胶,也可用作特种橡胶。

橡胶制品的配方设计原理、配方设计与硫化物性的关系

橡胶制品的配方设计原理、配方设计与硫化物性的关系

橡胶制品的配方设计原理、配方设计与硫化物性的关系橡胶制品的配方设计原理 -一、橡胶的并用。

无论是什么橡胶不可能具有十全十美的性能,使用部门往往对产品提出多方面的性能要求,为了满足此目的,而采用橡胶并用的方法。

如,为提高二烯烃类橡胶耐热、耐光老化性能,可加入氯磺化聚乙烯。

丁睛橡胶的耐粙性很好,但耐寒性不好,若并用10%的天然胶,便可改善它的耐寒性。

在橡胶中并用高苯乙烯、改性酚醛树脂、三聚氰胺树脂等都可改善橡胶的补强性能。

合成橡胶的工艺性能一般都不够好,特别是饱和较高的合成橡胶,无论是炼胶、压延、贴合、硫化等性能都比较差,所以常加入天然橡胶或树脂。

以改善其未硫化胶的加工性能。

如,丁苯橡胶加入5-20份低压聚乙烯,可减少丁苯橡胶的收缩率。

乙丙橡胶中加入酚醛树脂可提高粘性。

加入天然胶对一般合成橡胶的工艺性能都会有所改善。

为了改进工艺加工性能,并用天然胶或树脂的比例一般都在20%以下。

有些合成橡胶性能优良,但价格昂贵,在不损害原物性的前提下,并用其它橡胶或树脂是完全可行的,如,丁睛胶中并用聚氯乙烯或丁苯胶中掺入天然橡胶,都能起到这一作用。

1. 橡胶并用必须具有一定的相溶性,对橡胶来说天然、顺丁、异戊橡胶等能以任何比例均一地混合,最终达到相溶状态。

而天然胶与丁基橡胶就不能均一地混合。

若硬性机械地混合,所得硫化胶的实际使用性能会显着地下降,这是因为它们的相溶性很差。

并用体系最重要的因素是相溶性,从应用的观点来看,如果混合不均,非但达不到并用的目的,反而影响工艺加工,特别是硫化。

因此,并用问题的焦点是两种橡胶能否相互混合,以及混合后达到什么样的相容程度。

固体橡胶并用时,因橡胶本身粘度很大,高分子的布朗运动不像液体那么容易,扩散速度较慢,对大分子的位移造成很大的阻力,严重影响橡胶间的互容作用。

为此在工业生产中都采用机械力强化分子运动,用提高温度和加入软化剂的方法来降低粘度,以促进两种橡胶的混合,所以产物从宏观上来看虽没有相分离,但真正达到溶解状态也不是很多的,其原因包括下来有以下几点,橡胶的极性、内聚能密度、橡胶的结晶、橡胶的分子量等。

橡胶成型技术-配方设计

橡胶成型技术-配方设计

五、配方设计的内容、原则与程 序
基础配方(标准配方)仅包括最基本的组分,采用传统的配合量,以生胶和配合剂鉴定为 目的,反映胶料基本工艺性能及硫化胶基本物理机械性能的配方。
基础配方的获得:
(1)ASTM美国材料实验协会((American Society of Testing Materials )标准
一、橡胶配方设计的概念
所谓橡胶配方设计,就是根据橡胶产品的性能要求和工 艺条件合理选用原材料,确定各种原材料的用量配比关系, 使得胶料的物性、工艺性和成本三者取得最佳平衡。
橡胶配方:生胶和多种配合剂按照一定比例的一种组合。
配方设计的意义
(1)决定产品成本及质量 (2)保证加工过程的顺利进行
例:设计胶管的内层胶
五、配方设计的内容、原则与程 序
(一)配方设计的内容
1、确定硫化胶的主要性能及性能指标范围
(1)已有成品:解剖成品,测试性能 (2)无成品:借鉴同类或相似产品或计算机模拟分析提出
2、确定合适的工艺条件及指标值的范围(实验确定) 3、确定主体材料和配合剂的品种与用量 4、确定原材料的指标范围
实验研究确定,参考原材料出厂检测指标,以满足制品 性能要求为准。
ZnO
St S 促M 防DPPD 重钙
合计
单价pi /(元/kg)
18 8 6.5 14 6 1.8 16 32 0.35
——
密度ρi /(g/cm3)
0.94 1.8 1 5.57 0.85 2 1.52 1.28 2.8
——
体积 /cm3
106.38 27.78 5.00 0.90 1.18 0.75 0.66 0.78 17.86
原材料 名称
NR S 促M

橡胶配方设计与性能的关系

橡胶配方设计与性能的关系

橡胶配方设计与性能的关系
概述
橡胶制品在工业和日常生活中具有广泛的应用,其性能表现与配方设计密切相关。

本文将探讨橡胶配方设计对其性能的影响。

橡胶的主要性能指标
橡胶制品的主要性能指标包括强度、弹性、耐磨性、耐腐蚀性等。

这些指标受到橡胶材料本身性质和配方设计的影响。

橡胶配方设计的基本原则
橡胶配方设计应考虑到橡胶的种类、填料、增塑剂、硬化剂等因素。

合理选择配方成分可以优化橡胶制品的性能表现。

不同配方对性能的影响
•填料种类和含量: 合适的填料种类和含量可以改善橡胶的强度和耐磨性。

•增塑剂的选择: 增塑剂的选择会影响橡胶的柔软度和弹性。

•硬化剂的配比: 硬化剂的配比直接影响橡胶的硬度和耐用性。

橡胶配方设计案例分析
以下是一个橡胶配方设计的案例分析:
•橡胶种类: 选择天然橡胶和丁腈橡胶混合使用。

•填料: 添加二氧化硅填料提高硬度和耐磨性。

•增塑剂: 选择环氧树脂作为增塑剂,提高橡胶的弹性。

•硬化剂: 使用过氧乙酸硬化剂,提高橡胶的耐用性。

总结
橡胶配方设计对橡胶制品的性能有着重要影响,合理设计配方可以改善橡胶制品的性能表现,提高其在各个领域的应用价值。

以上是橡胶配方设计与性能的关系的基本信息及探讨,希望对读者有所帮助。

橡胶与各指标的关系

橡胶与各指标的关系

浅谈橡胶的各种物性与密度的关系前言:在橡胶制品过程中,一般必须测试的物性实验不外乎有:拉伸强度 2、撕裂强度 3、定伸应力与硬度 4、耐磨性 5、疲劳与疲劳破坏6、弹性7、扯断伸长率。

各种橡胶制品都有它特定的使用性能和工艺配方要求。

为了满足它的物性要求需选择最适合的聚合物和配合剂进行合理的配方设计。

首先要了解配方设计与硫化橡胶物理性能的关系。

硫化橡胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异。

1、拉伸强度:是制品能够抵抗拉伸破坏的根限能力。

它是橡胶制品一个重要指标之一。

许多橡胶制品的寿命都直接与拉伸强度有关。

如输送带的盖胶、橡胶减震器的持久性都是随着拉伸强度的增加而提高的。

A:拉伸强度与橡胶的结构有关:分了量较小时,分子间相互作用的次价健就较小。

所以在外力大于分子间作用时、就会产生分子间的滑动而使材料破坏。

反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。

凡影响分子间作用力的其它因素均对拉伸强度有影响。

如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。

也就是这些橡胶自补强性能好的主要原因之一。

一般橡胶随着结晶度提高,拉伸强度增大。

B:拉伸强度还跟温度有关:高温下拉伸强度远远低于室温下的拉伸强度。

C:拉伸强度跟交联密度有关:随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。

硫化橡胶的拉伸强度随着交联键能增加而减小。

能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。

通过硫化体系,采用硫黄硫化,选择并用促进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用)。

D:拉伸强度与填充剂的关系:补强剂是影响拉伸强度的重要因素之一,填料的料径越小,比表面积越大、表面活性越大补强性能越好。

结晶橡胶的硫化胶,出现单调下降因为是自补强性非结晶橡胶如丁苯随着用量增加补强性能增加、过度使用会有下降趣向。

浅谈想胶密度与性能的关系

浅谈想胶密度与性能的关系

浅谈橡胶的各种物性与密度的关系前言:在橡胶制品过程中,一般必须测试的物性实验不外乎有:1、拉伸强度2、撕裂强度3、定伸应力与硬度4、耐磨性5、疲劳与疲劳破坏6、弹性7、扯断伸长率。

各种橡胶制品都有它特定的使用性能和工艺配方要求。

为了满足它的物性要求需选择最适合的聚合物和配合剂进行合理的配方设计。

首先要了解配方设计与硫化橡胶物理性能的关系。

硫化橡胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异。

1、拉伸强度:是制品能够抵抗拉伸破坏的根限能力。

它是橡胶制品一个重要指标之一。

许多橡胶制品的寿命都直接与拉伸强度有关。

如输送带的盖胶、橡胶减震器的持久性都是随着拉伸强度的增加而提高的。

A:拉伸强度与橡胶的结构有关:分了量较小时,分子间相互作用的次价健就较小。

所以在外力大于分子间作用时、就会产生分子间的滑动而使材料破坏。

反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。

凡影响分子间作用力的其它因素均对拉伸强度有影响。

如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。

也就是这些橡胶自补强性能好的主要原因之一。

一般橡胶随着结晶度提高,拉伸强度增大。

B:拉伸强度还跟温度有关:高温下拉伸强度远远低于室温下的拉伸强度。

C:拉伸强度跟交联密度有关:随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。

硫化橡胶的拉伸强度随着交联键能增加而减小。

能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。

通过硫化体系,采用硫黄硫化,选择并用促进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用)。

D:拉伸强度与填充剂的关系:补强剂是影响拉伸强度的重要因素之一,填料的料径越小,比表面积越大、表面活性越大补强性能越好。

结晶橡胶的硫化胶,出现单调下降因为是自补强性非结晶橡胶如丁苯随着用量增加补强性能增加、过度使用会有下降趣向。

橡胶配方与各种物性之间的关系!

橡胶配方与各种物性之间的关系!

橡胶配方与各种物性之间的关系!橡胶配方与各种物性之间的关系各种橡胶制品都有它特定的使有用性能和工艺要求。

为了满足它的物性要求需选择最适合的聚合物和配合剂进行合理的配方设计。

首先要了解配方设计与硫化橡胶物理性能的关系。

硫化橡胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异。

一、拉伸强度拉伸强度是制品能够抵抗拉伸破坏的根限能力。

它是橡胶制品一个重要指标之一。

许多橡胶制品的寿命都直接与拉伸强度有关。

如输送带的盖胶、橡胶减震器的持久性都是随着拉伸强度的增加而提高的。

拉伸强度与橡胶的结构有关,分了量较小时,分子间相互作用的次价健就较小。

所以在外力大于分子间作用时、就会产生分子间的滑动而使材料破坏。

反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。

凡影响分子间作用力的其它因素均对拉伸强度有影响。

如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。

也就是这些橡胶自补强性能好的主要原因之一。

一般橡胶随着结晶度提高,拉伸强度增大。

拉伸强度还根温度有关,高温下拉伸强度远远低于室温下的拉伸强度。

拉伸强度根交联密度有关,随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。

硫化橡胶的拉伸强度随着交联键能增加而减小。

能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。

通过硫化体系,采用硫黄硫化,选择并用促进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用),1、拉伸强度与填充剂的关系补强剂是影响拉伸强度的重要因素之一,填料的料径越小,比表面积越大、表面活性越大补强性能越好。

结晶橡胶的硫化胶,出现单调下降因为是自补强性非结晶橡胶如丁苯随着用量增加补强性能增加、过度使用会有下降趣向。

低不和橡胶随着用量的增加达到最在值可保持不变。

橡胶与各指标的关系

橡胶与各指标的关系

浅谈橡胶的各种物性与密度的关系前言:在橡胶制品过程中,一般必须测试的物性实验不外乎有:拉伸强度 2、撕裂强度 3、定伸应力与硬度 4、耐磨性 5、疲劳与疲劳破坏6、弹性7、扯断伸长率。

各种橡胶制品都有它特定的使用性能与工艺配方要求。

为了满足它的物性要求需选择最适合的聚合物与配合剂进行合理的配方设计。

首先要了解配方设计与硫化橡胶物理性能的关系。

硫化橡胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异。

1、拉伸强度:就是制品能够抵抗拉伸破坏的根限能力。

它就是橡胶制品一个重要指标之一。

许多橡胶制品的寿命都直接与拉伸强度有关。

如输送带的盖胶、橡胶减震器的持久性都就是随着拉伸强度的增加而提高的。

A:拉伸强度与橡胶的结构有关:分了量较小时,分子间相互作用的次价健就较小。

所以在外力大于分子间作用时、就会产生分子间的滑动而使材料破坏。

反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。

凡影响分子间作用力的其它因素均对拉伸强度有影响。

如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。

也就就是这些橡胶自补强性能好的主要原因之一。

一般橡胶随着结晶度提高,拉伸强度增大。

B:拉伸强度还跟温度有关:高温下拉伸强度远远低于室温下的拉伸强度。

C:拉伸强度跟交联密度有关:随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。

硫化橡胶的拉伸强度随着交联键能增加而减小。

能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。

通过硫化体系,采用硫黄硫化,选择并用促进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用)。

D:拉伸强度与填充剂的关系:补强剂就是影响拉伸强度的重要因素之一,填料的料径越小,比表面积越大、表面活性越大补强性能越好。

橡胶制品配方设计与胶料工艺性能的关系

橡胶制品配方设计与胶料工艺性能的关系

橡胶制品配方设计与胶料工艺性能的关系
橡胶制品配方设计是指根据特定的应用要求和物料特性,合理选择不同的胶料和其他
助剂,并确定它们的比例,从而达到理想的性能要求的过程。

胶料工艺性能则是指橡胶制
品在加工过程中的可塑性、流动性、黏合性、热稳定性以及最终制品的耐磨性、耐老化性
等性能。

橡胶制品配方设计与胶料工艺性能之间存在着密切关系。

橡胶制品配方设计直接影响着胶料的工艺性能。

配方中的各种胶料之间存在相互作用,它们的相对比例以及添加顺序的不同都会对橡胶的可塑性和流动性产生影响。

合理的配方
设计可以提高橡胶的可加工性,使其更易于塑料化和润湿,有利于加工过程中胶料的填充
和流动,从而降低生产成本,提高生产效率。

橡胶制品的工艺性能还与工艺参数的选择息息相关。

温度、压力和时间等工艺参数对
胶料的流动性和黏合性有着重要的影响。

选择合适的工艺参数可以提高橡胶制品的成型效果,同时也会影响最终制品的物理性能。

橡胶制品的材质选择也会对胶料的工艺性能产生影响。

不同类型的橡胶具有不同的物
理和化学性质,如硬度、弹性、耐磨性、耐老化性等。

对于不同的应用领域,需要选择具
有相应性能的橡胶材料。

在橡胶制品配方设计中,选择合适的胶料材质对于提高胶料的工
艺性能至关重要。

橡胶配方设计和性能的关系

橡胶配方设计和性能的关系

橡胶配方设计和性能的关系橡胶配方设计是指利用橡胶材料及其各类辅料,按一定比例、方法的程序组成一种可满足特定要求和使用条件下所需要的性能的胶料配方。

橡胶材料具有一定的可塑性、韧性、耐腐蚀性等特点,广泛应用于工业、医疗、交通等领域,其性能的好坏直接关系到产品的质量和使用效果。

因此,橡胶配方设计和性能之间的关系显得尤为重要。

首先,橡胶配方设计与性能之间的关系是密切相关的。

正确的配方能够使橡胶材料在不同的使用条件下,具备特定的性能,如高弹性、高耐磨、高耐温等。

而如果配方设计不合理,就会导致橡胶材料的性能不足。

例如,过多的填料会影响弹性和可塑性,过多的硫化剂会降低弹性,而过多的油会降低化学稳定性,从而导致产品的质量下降。

其次,橡胶配方设计中的各种辅料也会对性能产生影响。

例如,硫化剂是橡胶材料的重要辅料,能够决定硫化效果和耐老化性能。

同时,填料的粒度、形状和类型都会影响橡胶材料的性能。

根据不同类型和形状的填料,可以调整橡胶材料的力学性能、电气性能、导热性能等。

添加剂也是配方设计的重要因素,如促进剂、防老剂、消光剂等都能调整橡胶材料的性能。

最后,橡胶配方设计也需要考虑产品的使用条件。

橡胶制品在不同的使用环境和条件下,需要不同的性能。

例如,在高温下使用的产品需要具备高耐热性和防老化性能;在低温下使用的产品需要具备低温柔性和耐寒性。

不同的使用条件对橡胶材料和其配方设计都有很高的要求。

在应用时,需要针对不同的使用条件设计不同的配方,以满足产品的性能要求。

综上所述,橡胶配方设计与性能之间的关系是密不可分的。

正确的配方设计能够使橡胶材料具备所需的性能,并满足特定的使用条件。

因此,在橡胶制品的生产过程中,配方设计的重要性得到了越来越多的重视。

唯有具备正确的配方,才能生产出优质、高性能的橡胶制品。

橡胶与各指标的关系

橡胶与各指标的关系

橡胶与各指标的关系
橡胶是一种多功能的聚合物材料,具有良好的重组性和抗疲劳性能,
因此在许多工业领域中得到广泛应用,例如汽车制造、空气压缩机制造等。

橡胶在使用过程中需要考虑的各项指标可以分为3类:力学性能指标、物理性能指标和热性能指标。

1、力学性能指标
其中最重要的指标是橡胶材料的弹性模量,即橡胶材料在应力的作用
下的变形量,表现为橡胶的弹性变形程度。

此外,橡胶材料还具有良好的
抗拉强度、抗压强度、耐磨性等性能。

2、物理性能指标
橡胶的物理性能指标主要包括抗拉应力、泊松比、抗压应力、抗粘性、耐普通溶剂的抗拆分性和耐特殊溶剂的抗拆分性。

这些指标表示了橡胶的
受力变形能力以及对苛刻环境条件的适应性。

3、热性能指标
橡胶的热性能指标主要包括热变形温度、耐热强度、耐热变形温度、
热膨胀系数等。

这些指标反映了橡胶材料在高温下的变形性能,以及其对
高温环境的抵抗能力。

以上是橡胶与各指标的关系。

橡胶是一种重要的工程材料,其力学、
物理、热性能的指标必须满足一定的要求,以保证其在高温和高压下的正
常使用,有效地应用到工业领域中去。

橡胶配方与各种物性之间的关系【范本模板】

橡胶配方与各种物性之间的关系【范本模板】

“炼胶工人”胶友对《橡胶配方与各种物性之间的关系》进行了针对性的分享,非常感谢他的指点!不同的橡胶产品对胶料的物性都有不同的要求,同时对生产这些产品时胶料的工艺性能(加工性能)也需要不同的要求.所谓的工艺性也就是生产这些橡胶产品的过程不能达到理想的状态,做出来的橡胶产品也就很难做到性能理想化、经济效益最大化。

一句话,无论你要求橡胶产品有什么样的物性要求,也不管你的要求是高还是低,如果工艺性能无法满足要求(实现要求的过程无法满足),那么你就很难顺利的去生产。

不多赘述,该贴将和大家一起谈论各橡胶工艺性能受配方的影响及关系。

一、混炼性能1.各种成分对混炼效果的影响主要分析配方中各种填料、化学药品、操作油等配合成分混入橡胶中的难易性、分散性。

它主要由这些配合成分与橡胶之间的互溶性的高低、浸润性的大小来决定.胶料混炼工艺设计的好坏评价方法之一就是各种成分是否可以在橡胶中能够迅速的分散;混炼效果的好坏,则可以通过各种成分在橡胶中能否均匀分散其中来衡量。

这两个指标都主要取决于配合成分与橡胶之间的互溶性、浸润性。

“互溶性”这个词大家可能会认为橡胶那么大的分子怎么可能溶解在各种配合成分里很多配方里,应该是配合成分溶解在橡胶里才对。

其实,所谓的溶质、溶剂也是相对的,量少的惯称为溶质,量多的则为溶剂,习惯性的认为溶质溶解在溶剂中,如果“溶质"的量比“溶剂”的量大很多的话,那就是“溶剂”溶解在“溶质"中。

所以,也就可以理解为互溶性了。

为了能让胶料达到多种综合性能都很优异的效果,很多配方用到的橡胶都不止一种,可能2、3、4、5种橡胶并用,这就涉及到这些橡胶之间的互溶性(也许橡胶之间的互溶性大家更好理解一些)。

混炼后的胶料如果电镜图片里显示各相之间没有明显的分离、橡胶之间、橡胶与各配合成分之间分散的非常均匀那就表明互溶性好,否则互溶性就差。

互溶性差的配方体系所对应的胶料的各种物性也就不能得到好的体现。

其实,橡胶配合体系是不能像盐溶于水那样做到分子级的互溶性,一是因为橡胶是由不同分子量的高分子复杂体系组成,二是各种配合成分也不是简单的小分子化合物,三它们是固相之间的溶解性。

橡胶配方设计与性能的关系

橡胶配方设计与性能的关系

橡胶配方设计与性能的关系橡胶配方设计是橡胶制品生产中的一项重要任务,它是指将橡胶材料与各种添加剂按一定比例混合,在特定条件下加工成所需的橡胶制品。

橡胶配方设计的好坏直接影响着橡胶制品的性能,包括力学性能、物理性能、耐热性、耐寒性、耐油性、耐腐蚀性等指标,因此橡胶配方设计与性能的关系是非常密切的。

一、橡胶配方设计对力学性能影响橡胶制品的力学性能主要包括抗张强度、伸长率、硬度、耐磨性等指标。

橡胶配方中的填料和活性剂的种类和用量会直接影响橡胶制品的力学性能。

例如,碳黑是一种高性能填料,可以提高橡胶制品的硬度和耐磨性,但其加入量过多会导致制品拉力强度下降;而硅酸盐填料具有良好的增强作用,但是其与橡胶材料的界面相互作用弱,易剥离,导致其加入量也要控制在一定范围之内。

二、橡胶配方设计对物理性能影响橡胶制品的物理性能主要包括硬度、韧性、耐裂、耐寒性等,这些性能也和橡胶配方设计有着密切的关系。

其中,增塑剂和软化剂的种类和用量会直接影响橡胶制品的膨胀率、可变形率、疲劳性能等,不同的配方会导致橡胶制品在压缩、拉伸等状态下具有不同的变形量和变形后恢复速度。

此外,橡胶配方中加入的抗氧剂、防老剂、抗紫外线剂等助剂也会对橡胶制品的物理性能产生直接影响。

三、橡胶配方设计对耐热性、耐寒性等特殊性能影响橡胶配方设计也会对橡胶制品的耐热性、耐寒性等特殊性能产生影响。

对于具有耐热性要求的橡胶制品,要采用具有耐高温性的材料和助剂,例如草酸钙、氧化锆等高温助剂。

对于具有耐寒性要求的橡胶制品,要采取附加的配方设计,增加含量和分子量、活性剂的种类和数量,以提高它的软化点和耐低温能力。

四、橡胶配方设计对钢丝绳等强度材料影响钢丝绳等强度材料所要用到的橡胶胶既要满足橡胶自身的力学性能,也要满足钢丝绳的强度要求。

此时在橡胶配方中还要添加一些增强剂而不影响橡胶的可加工性,这些增强剂通常是聚酰胺纤维、芳纶纤维等高强度纤维制品,在和橡胶混合后具有良好的增强作用。

橡胶制品与橡胶配方性能的关系

橡胶制品与橡胶配方性能的关系

橡胶制品与橡胶配方性能的关系各种橡胶制品都有它特定的使有用性能和工艺要求。

为了满足它的物性要求需选择最适合的聚合物和配合剂进行合理的配方设计。

首先要了解配方设计与硫化橡胶物理性能的关系。

硫化橡胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异。

一、拉伸强度拉伸强度是制品能够抵抗拉伸破坏的根限能力。

它是橡胶制品一个重要指标之一。

许多橡胶制品的寿命都直接与拉伸强度有关。

如输送带的盖胶、橡胶减震器的持久性都是随着拉伸强度的增加而提高的。

拉伸强度与橡胶的结构有关,分了量较小时,分子间相互作用的次价健就较小。

所以在外力大于分子间作用时、就会产生分子间的滑动而使材料破坏。

反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。

凡影响分子间作用力的其它因素均对拉伸强度有影响。

如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。

也就是这些橡胶自补强性能好的主要原因之一。

一般橡胶随着结晶度提高,拉伸强度增大。

拉伸强度还根温度有关,高温下拉伸强度远远低于室温下的拉伸强度。

拉伸强度根交联密度有关,随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。

硫化橡胶的拉伸强度随着交联键能增加而减小。

能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。

通过硫化体系,采用硫黄硫化,选择并用促进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用)拉伸强度与填充剂的关系补强剂是影响拉伸强度的重要因素之一,填料的料径越小,比表面积越大、表面活性越大补强性能越好。

结晶橡胶的硫化胶,出现单调下降因为是自补强性非结晶橡胶如丁苯随着用量增加补强性能增加、过度使用会有下降趣向。

低不和橡胶随着用量的增加达到最在值可保持不变。

拉伸强度与软化剂的关系加入软化剂会降低拉伸强度,但少量加入,一般在开练机 7份以下,密练机在5份以下会改善分散,有利于提高拉伸强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“炼胶工人”胶友对《橡胶配方与各种物性之间的关系》进行了针对性的分享,非常感谢他的指点!不同的橡胶产品对胶料的物性都有不同的要求,同时对生产这些产品时胶料的工艺性能(加工性能)也需要不同的要求。

所谓的工艺性也就是生产这些橡胶产品的过程不能达到理想的状态,做出来的橡胶产品也就很难做到性能理想化、经济效益最大化。

一句话,无论你要求橡胶产品有什么样的物性要求,也不管你的要求是高还是低,如果工艺性能无法满足要求(实现要求的过程无法满足),那么你就很难顺利的去生产。

不多赘述,该贴将和大家一起谈论各橡胶工艺性能受配方的影响及关系。

一、混炼性能1.各种成分对混炼效果的影响主要分析配方中各种填料、化学药品、操作油等配合成分混入橡胶中的难易性、分散性。

它主要由这些配合成分与橡胶之间的互溶性的高低、浸润性的大小来决定。

胶料混炼工艺设计的好坏评价方法之一就是各种成分是否可以在橡胶中能够迅速的分散;混炼效果的好坏,则可以通过各种成分在橡胶中能否均匀分散其中来衡量。

这两个指标都主要取决于配合成分与橡胶之间的互溶性、浸润性。

“互溶性”这个词大家可能会认为橡胶那么大的分子怎么可能溶解在各种配合成分里很多配方里,应该是配合成分溶解在橡胶里才对。

其实,所谓的溶质、溶剂也是相对的,量少的惯称为溶质,量多的则为溶剂,习惯性的认为溶质溶解在溶剂中,如果“溶质”的量比“溶剂”的量大很多的话,那就是“溶剂”溶解在“溶质”中。

所以,也就可以理解为互溶性了。

为了能让胶料达到多种综合性能都很优异的效果,很多配方用到的橡胶都不止一种,可能2、3、4、5种橡胶并用,这就涉及到这些橡胶之间的互溶性(也许橡胶之间的互溶性大家更好理解一些)。

混炼后的胶料如果电镜图片里显示各相之间没有明显的分离、橡胶之间、橡胶与各配合成分之间分散的非常均匀那就表明互溶性好,否则互溶性就差。

互溶性差的配方体系所对应的胶料的各种物性也就不能得到好的体现。

其实,橡胶配合体系是不能像盐溶于水那样做到分子级的互溶性,一是因为橡胶是由不同分子量的高分子复杂体系组成,二是各种配合成分也不是简单的小分子化合物,三它们是固相之间的溶解性。

橡胶对配合剂的浸润性也许更能清楚的解释混炼工艺及效果的好坏。

橡胶对配合成分的浸润性高低主要决定于配合成分自身的特性,当然与橡胶的性质也有关系。

有机的、非极性的大多数化学样品(塑解剂、分散剂、操作油等软化剂、防老剂、硫化体系等)都易溶解在橡胶里,被橡胶浸润。

无机的氧化物、盐类、各种土等则不易被橡胶浸润。

相似相容原理也解释了这些现象。

各种有机化学药品,塑解剂、分散剂、塑分、防老剂、促进剂、SA包括各种硫化都易混入橡胶中,而且加入的量比较少,这里就不对它们多加分析。

填料一般可以分为亲水性的和疏水性的两种。

氧化锌、氧化镁等无机氧化物及硫酸钡、硫酸镁、轻钙、重钙等盐类由于是极性的、亲水性的,在混炼时容易产生负电荷,而橡胶也存在同样的情况,所以二者便会相互排斥,所以难以分散橡胶之中。

陶土、云母、滑石粉、高岭土等虽然也是无机的、极性的,与橡胶之间的形成的界面亲和力小,虽不易被橡胶浸润,但是由于这些材料的粒径比较大且结构性比较低,混入橡胶的速度还是比较快的,分散的效果也可以接收,但补强性都比较差。

白炭黑虽然是亲水性的,但它的粒径非常小、结构性高、视密度小、易飞扬,且容易产生静电,使得它很难混入橡胶中。

炭黑是最典型的疏水性填料,容易被橡胶浸润,非常容易混入橡胶中并均匀分散其中。

另外,由于炭黑的粒径小、结构度高,混炼时生热性强,高填充量下混入橡胶就比较困难,所以炭黑不适合高填充量。

选用结构性低、粒径大的炭黑可以减小生热高、吃粉慢等缺点,填充量可以增大些。

为了能让这些亲水性填料也能容易混入橡胶中并能有好的分散性且还可以发挥更好的补强性,需要对这些填料进行表面改性来提高它们与橡胶间的亲和力。

配方中,我们常见到的加入的硅烷偶联剂、SA等都有这方面的作用。

最有效的方法还是在生产这些填料的时候直接对其进行表面处理。

烷烃油、环烷油、芳烃油、DOP、DBP等软化剂的加入可以改善混炼效果。

油的加入能加快这些填料混入胶料里,但是分散的效果会打折扣。

橡胶吸油的速度会直接影响混炼时间和混炼效果。

油品的粘度比重常数越高、芳香烃含量越高、分子量越小,则越容易被橡胶吸收。

2.配合体系对开炼时的包辊性的影响橡胶的包辊性对胶料的分散效果也有很重要的影响。

包辊性是橡胶具有流变特性的一个典型的表现。

要想让胶料有良好的包辊性,最重要的是设置合理的温度和橡胶的配合体系。

当橡胶能紧紧地、均匀地、平整地、包裹在辊筒上,而不是出现脱辊、破边、掉渣、粘辊等,配合成分才能容易混入橡胶、分散效果才会好。

一般地,具有自补强性、可结晶、强度高的原材料橡胶的包辊性会比较好些,如NR等。

相反,如果原材料橡胶的自身强度如果很差,则包辊性就会比较差,如BR等。

配方体系中的滑石粉、云母、SA、防护蜡会使胶料有托辊的倾向;操作油及粘合树脂等可以提高其包辊性。

一般地,软化剂的用量太大则易造成托辊,增粘剂的用量过大则会造成粘辊。

3.配合体系对焦烧的影响焦烧的发生是胶料操作过程中及停放时非常忌讳的一个危害极大的现象,为了后续工段的操作安全及硫化后的产品不会发生不良影响,必须防止焦烧的发生。

发生焦烧的最主要原因还是硫化体系选择不当或用量过多造成的。

所以在选择促进剂时尽量选择焦烧时间长的次磺酰胺类及噻唑类促进剂为宜,并尽量控制使用份数。

另外,填料的酸碱性、结构度对焦烧也有一定的影响,酸性的、结构性低的填料能抑制焦烧。

操作油等软化剂对焦烧也有一定的抑制作用。

最有效的方法还是在配方里加入少量的防焦剂来防止焦烧的发生。

顾名思义,防焦剂是防止焦烧用的,所以用多了肯定会影响硫化速度的,而且对硫化胶的弹性、老化性等也不利!4.配合体系对喷霜的影响有的也叫出霜、喷粉、喷油等,是指软化剂、防老剂、SA、促进剂、硫化等小分子配合成分从胶里内部迁移到胶里表面的现象。

喷霜会严重影响胶料的表面粘性、混炼后胶料的均匀性、硫化胶的性能,总之(除了石蜡迁移到胶料表面其物理防护作用外的任何)尽量降低喷霜的发生。

最容易喷霜的就是硫磺,经常看到的胶料表面一层薄薄的黄色粉末就是硫磺从胶料内部迁移到表面的现象。

为防止硫磺的喷霜,配方里大量使用硫磺时可使用不溶性硫磺并且做到正硫化来加强对硫单质含量的控制。

一般情况下,SA、防老剂的用量不宜过大,在2phr一下喷霜会好些。

胶料里加入适量的操作油等软化剂也可以降低喷霜的发生。

5.配合体系对粘性的影响像轮胎等由多种半成品贴合在一起的橡胶产品在生产的过程中对胶料的表面粘性有一定的要求,不能不粘,也不能太粘。

各半成品所用的主体胶料可能不一样,比如有的可能用NR为主,有的可能用SBR为主,还有的可能用BR为主等等,这就要求胶料之间不但要有很好的自粘性,还要有很好的互粘性。

如果要贴合在一起的两种胶料粘合性不这么好的话,在同一配方里添加一些第三种与这两种橡胶粘合性都比较好的橡胶是一个办法,也可以在这两种胶料的配方里都加入一些另一种胶料也是一个办法。

不管怎样,要想提高或有个良好的粘性,以下几点是基本原则:①选择粘性高的橡胶为上通常情况下,橡胶的分子链越柔顺、活动性高、生胶强度大,粘性就会高些。

所以,通用胶里,NR\CR 的粘性比较好,尤其是自粘性更好。

②选择高补强性的填料基于①中所说生胶强度大粘性会好的说法,如果填料的补强性好,那么就能提高未硫化胶的格林强度,从而提高粘性。

如果填料过多的话,会是胶料变“干”,粘性反而会下降。

③使用增粘树脂很明显,增粘树脂的主要作用就是增粘。

萜烯树脂、石油类树脂、酚醛树脂、古马隆等都可以有效提高未硫化胶料的粘合性。

④操作油等软化剂可以提高粘合性主要是因为软化剂的加入可以扩充橡胶大分子间的空隙,使得橡胶分子链的活动性提高,粘合性自然提高。

另外,也能防止填料的过量加入而造成的胶料发“干”。

⑤控制容易喷霜的化学品的配合量喷霜后,胶料的光洁的表面被损,会大大降低胶料的粘合性。

6.配合体系对胶料的门尼粘度影响胶料的门尼粘度(原材料橡胶和混炼胶)对密炼、开炼、压延、压出、挤出、成型等都有很重要的作用。

生胶的粘度过高,密炼、开炼困难,能耗高;混炼胶粘度过高,则压延、压出、挤出都比较困难;混炼胶粘度过低,半成品及硫化后的成品容易出现质量缺陷。

①一般生胶的门尼粘度在60以上的建议对其先塑炼,所以烟片、皱片、风干胶片、标胶最好进行塑炼后再使用。

②适量的塑解剂有助于塑炼的时间缩短、能耗降低、并且可以提高塑炼的效果。

常用的A-86、AP 等,另外,一些促进剂也有塑解作用,如DM。

③软化剂的加入可以有效降低门尼粘度,配方中加入的DOP、DBP、P#2等都可以有效降低门尼粘度。

④填料的加入会增加胶料的粘度,其中炭黑和白炭黑对胶料的增粘最为厉害。

炭黑的结构性越高,增粘程度就越大。

其他的一些无机填料则增粘效果要小一些。

根据这个现象,如果要求半成品的挺性好就可以适当增加填料的用量。

二、挤出(压出)性能混炼胶的含胶率、门尼粘度、格林强度、弹性、膨胀率、收缩率等对胶料的挤出性能有着直接的影响。

含胶率高,弹性形变就大,故而挤出后的膨胀性强,高速挤出时半成品的变形就大,影响生产效率;格林强度高,进胶容易、进胶速度快,挤出效率提高;混炼胶的弹性好,挤出时容易出现熔体分裂,造成挤出的半成品表面变的粗糙。

为了提高挤出性能,尽量考虑一下几个配合体系方面:①胶种及含胶率。

不同的生胶由于分子链不同,弹性等也不同,挤出性能差别很大,NR、BR、CR 等由于分子链上的侧基比较小,挤出容易;SBR、IIR等侧基大,挤出比较困难。

含胶率不能太高也不能太低,太高则弹性大,挤出后的半成品在挤出方向就会出现大的收缩率,影响尺寸稳定性和外观质量;太低则胶料变的“干”,塑性变差,挤出困难且半成品表面粗糙。

②加入再生胶可以增加在高温下的流动能力,挤出能力提高。

③不同的填料对挤出性能的影响不同。

总体而言,填料的加入可以降低含胶率,降低弹性,可以提高挤出性能。

如果用量过高,出现含胶率极低现象,则是胶料变“干”,对挤出反而不利。

④加入软化剂可以降低胶料的收缩率、且有提高胶料与挤出机桶间的润滑作用而提高胶料的挤出性能。

三、压延性能压延和挤出对胶料的很多性能要求大体相同,不同的压延类型对胶料的配合体系要求也不尽相同。

压延大体分三种类型:胶片的压延、纤维帘线(布)的压延、钢丝帘线(布)的压延。

但大体对胶料的要求总体相同,比如混炼胶要控制适当的含胶率、门尼粘度、格林强度、可塑性、弹性、膨胀率、收缩率等。

含胶率高,弹性形变就大,压延后的收缩率大,影响压延物的表面质量;门尼粘度高、可塑度低时,流动性差,压延物收缩率也高,表面质量就差;格林强度高,进胶容易、进胶速度快、出胶时胶料不容易被拉断,压延效率提高;膨胀率或收缩率较大,则压延过程的尺寸控制就比较困难,且压延物的表面将会变的粗糙、不光滑。

相关文档
最新文档