2010年北京市高考数学试卷(理科)
2010年北京高考试题数学理解析版
2010年普通高等学校招生全国统一考试数学(理)(北京卷)解析本试卷分第I卷和第n卷两部分。
第I卷1至2页、第n卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。
第I卷(选择题共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)集合P={x^Z 0Exc3}, M ={x w Rx2兰9},则PI M =(A) {1,2} (B) {0,1,2} (C){x|0 w x<3} (D) {x|0 < x < 3}1, B •解析:P Jo,1,2〉, M = I-3 4,3】,因此P^M hb,1,2"(2)在等比数列taj中,印=1 ,公比q H1 .右a m = 8182838485,则m=解析:很容易看出这是一个面向我们的左上角缺了一小块长方体的图形,不难选出答案。
(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为3—个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该4A .解析:基本的插空法解决的排列组合问题,几何体的俯视图为(A ) 9(B) 10(C) 11(D) 122, C.8m二內比比印比=q qm =11(B ) A8C9 AX (D ) A8C7将所有学生先排列,有A种排法,然后将两位老师插入9个空解析:2 3 4 10 10q q =q = ,因正(主)視图此有中,共有A 9种排法,因此一共有 A 8A 9种排法。
(5) 极坐标方程(;?-1 )^-7:) =0 ( T _0)表示的图形是(B )两条直线解析:原方程等价于 '二1或-二,前者是半径为1的圆,后者是一条射线。
(6)若a , b 是非零向量,“ a 丄b ”是“函数f (x)二(xa - b)・(xb - a)为一次函数”的(A )两个圆(C ) 一个圆和一条射线(D ) —条直线和一条射线(A )充分而不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件6, B .解析:f (x) =(xa b)L(xb2—a) =(a b)x +(b— a )x —a ,b ,如a 丄b ,则有a ,b=0,如果同时有 b = a ,则函数恒为0,不是一次函数,因此不充分,而如果 f(x)为一次函数,则a ^0,因此可得a _b ,故该条件必要。
【数学】2010年高考真题北京卷(理)解析版
2010年普通高等学校招生全国统一考试数 学(理)(北京卷)解析本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。
第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1) 集合2{03},{9}P x Z x M x R x =∈≤<=∈≤,则P M I =(A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x ≤3} 1,B . 解析:{}0,1,2P =,[]3,3M =-,因此P M = {}0,1,2(2)在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )122,C .解析:2341010123451m a a a a a a q q q q q a q ==⋅⋅⋅==,因此有11m =(3)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为3,C .解析:很容易看出这是一个面向我们的左上角缺了一小块长方体的图形,不难选出答案。
(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A )8289A A (B )8289A C (C ) 8287A A (D )8287A C4,A .解析:基本的插空法解决的排列组合问题,将所有学生先排列,有88A 种排法,然后将两位老师插入9个空中,共有29A 种排法,因此一共有8289A A 种排法。
(5)极坐标方程(ρ-1)(θπ-)=0(ρ≥0)表示的图形是(A )两个圆 (B )两条直线(C )一个圆和一条射线 (D )一条直线和一条射线 5,C .解析:原方程等价于1ρ=或θπ=,前者是半径为1的圆,后者是一条射线。
2010年全国统一高考数学试卷(理科)(新课标)(答案解析版)
2010年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=( )A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题.2.(5分)已知复数,是z的共轭复数,则=( )A.B.C.1D.2【考点】A5:复数的运算.【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选:A.【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算.3.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为( )A.y=2x+1B.y=2x﹣1C.y=﹣2x﹣3D.y=﹣2x﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R 为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是( )A.q1,q3B.q2,q3C.q1,q4D.q2,q4【考点】2E:复合命题及其真假;4Q:指数函数与对数函数的关系.【专题】5L:简易逻辑.【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选:C.【点评】只有p1与P2都是真命题时,p1∧p2才是真命题.只要p1与p2中至少有一个真命题,p1∨p2就是真命题.6.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为( )A.100B.200C.300D.400【考点】CH:离散型随机变量的期望与方差;CN:二项分布与n次独立重复试验的模型.【专题】11:计算题;12:应用题.【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选:B.【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础性题目.7.(5分)如果执行如图的框图,输入N=5,则输出的数等于( )A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=( )A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.9.(5分)若,α是第三象限的角,则=( )A.B.C.2D.﹣2【考点】GF:三角函数的恒等变换及化简求值;GW:半角的三角函数.【专题】11:计算题.【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.【点评】本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力.10.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为( )A.πa2B.C.D.5πa2【考点】LR:球内接多面体.【专题】11:计算题.【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选:B.【点评】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.11.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为( )A.B.C.D.【考点】KB:双曲线的标准方程;KH:直线与圆锥曲线的综合.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而k==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选:B.【点评】本题主要考查了双曲线的标准方程.考查了学生综合分析问题和解决问题的能力.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为 .【考点】69:定积分的应用;CE:模拟方法估计概率;CF:几何概型.【专题】11:计算题.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.【点评】本题考查几何概型模拟估计定积分值,以及定积分在面积中的简单应用,属于基础题.14.(5分)正视图为一个三角形的几何体可以是 三棱锥、三棱柱、圆锥(其他正确答案同样给分) (写出三种)【考点】L7:简单空间图形的三视图.【专题】21:阅读型.【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.【点评】本题主要考查三视图以及常见的空间几何体的三视图,考查空间想象能力.15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C 的方程为 (x﹣3)2+y2=2 .【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【专题】16:压轴题.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则(4﹣a)2+(1﹣b)2=r2,(2﹣a)2+(1﹣b)2=r2,=﹣1,解得a=3,b=0,r=,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.【点评】命题意图:本题主要考查利用题意条件求解圆的方程,通常借助待定系数法求解.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC= 60° .【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.【点评】本题主要考查解三角形中的边角关系及其面积等基础知识与技能,分析问题解决问题的能力以及相应的运算能力.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题.【分析】(Ⅰ)由题意得a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.【点评】本题主要考查数列累加法(叠加法)求数列通项、错位相减法求数列和等知识以及相应运算能力.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD ,垂足为H,PH是四棱锥的高,E为AD中点(Ⅰ)证明:PE⊥BC(Ⅱ)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【考点】MA:向量的数量积判断向量的共线与垂直;MI:直线与平面所成的角.【专题】11:计算题;13:作图题;14:证明题;35:转化思想.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.【点评】本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力. 19.(12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要 40 30 不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由. P (K 2≥k )0.050 0.010 0.0013.8416.63510.828附:K 2=.【考点】BL :独立性检验.【专题】11:计算题;5I :概率与统计.【分析】(1)由样本的频率率估计总体的概率, (2)求K 2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【考点】83:等差数列的性质;K3:椭圆的标准方程;K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.【点评】本题主要考查圆锥曲线中的椭圆性质以及直线与椭圆的位置关系,涉及等差数列知识,考查利用方程思想解决几何问题的能力及运算能力21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】32:分类讨论.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.【点评】本题主要考查利用导数研究函数性质、不等式恒成立问题以及参数取值范围问题,考查分类讨论、转化与划归解题思想及其相应的运算能力.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
2010年高考《数学(理科)》试题及参考答案(北京卷)
第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式 )]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.若集合=-====-P M x y y P y y M x 则},1|{},2|{( )A .}1|{>y yB .}1|{≥y yC .}0|{>y yD .}0|{≥y y2.若xx x f 1)(-=,则方程x x f =)4(的根是( )A .21 B .-21 C .2 D .-23.设复数=+=+-=2121arg ,2321,1z z i z i z 则( )A .π1213B .π127 C .π125 D .-π1254.函数)1(11)(x x x f --=的最大值是( ) A .54 B .45 C .43 D .345.在同一坐标系中,方程)0(0122222>>=+>+b a byax y b x a 与的曲线大致是( )正棱台、圆台的侧面积公式l c c S )(21+'=台侧其中c '、c 分别表示上、下底面周长 l 表示斜高或母线长 球体的体积公式334R V π=球其中R 表示球的半径xyxy xyxyOOOOABCD6.若A ,B ,C 是△ABC 的三个内角,且)2(π≠<<C C B A ,则下列结论中正确的是( )A .C A sin sin <B .C A cos cos <C .tgC tgA <D .ctgC ctgA <7.椭圆ϕϕϕ(sin 3,cos 54⎩⎨⎧=+=y x 为参数)的焦点坐标为( ) A .(0,0),(0,-8) B .(0,0),(-8,0)C .(0,0),(0,8)D .(0,0),(8,0)8.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点, G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点.将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度 数为( )A .90°B .60°C .45°D .0°9.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )A .42B .30C .20D .1210.已知直线1)0(022=+≠=++y x abc c by ax 与圆相切,则三条边长分别为|a |,|b|,|c|的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在11.若不等式6|2|<+ax 的解集为(-1,2),则实数a 等于( )A .8B .2C .-4D .-812.在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为3032,0,0=+==y x y x ,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是( ) A .95B .91C .88D .752003年普通高等学校春季招生考试A B CDEFG H JL数 学(理工农医类)(北京卷)第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚. 题 号 二 三总 分 17 18 19 20 21 22 分 数二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.如图,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水 面高度恰好升高r ,则=rR14.在某报《自测健康状况》的报道中,自测血压 结果与相应年龄的统计数据如下表. 观察表中数据 的特点,用适当的数填入表中空白( )内年龄(岁) 30 35 40 45 50 55 60 65收缩压(水银柱 毫米) 110 115 120 125 130 135 ( )145 舒张压(水银柱 毫米) 70 73 75 78 80 83 ( )8815.如图,F 1,F 2分别为椭圆12222=+by ax 的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是16.若存在常数0>p ,使得函数 =)()(px f x f 满足)(),)(2(x f R x p px f 则∈-的一个正周期为三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)解不等式:.1)1(log)2(log 21221-->--x x x18.(本小题满分12分)rr↑↓(1)(2)xyOPF 1F已知函数)(,2cos 4sin 5cos6)(24x f xx x x f 求-+=的定义域,判断它的奇偶性,并求其值域.19.(本小题满分12分)如图,正四棱柱ABCD —A 1B 1C 1D 1中,底面边长为22,侧棱长为4.E ,F 分别为棱AB ,BC 的中点, EF ∩BD=G .(Ⅰ)求证:平面B 1EF ⊥平面BDD 1B 1; (Ⅱ)求点D 1到平面B 1EF 的距离d ; (Ⅲ)求三棱锥B 1—EFD 1的体积V .ABCD EFGB 1C 1D 1A 120.(本小题满分12分)某租赁公司拥有汽车100辆. 当每辆车的月租金为3000元时,可全部租出. 当每辆车的月租金每增加50元时,未租出的车将会增加一辆. 租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?21.(本小题满分13分)如图,在边长为l 的等边△ABC 中,圆O 1为△ABC 的内切圆,圆O 2与圆O 1外切,且与AB ,BC 相切,…,圆O n+1与圆O n 外切,且与AB ,BC 相切,如此无限继续下去. 记圆O n 的面积为)(N n a n ∈. (Ⅰ)证明}{n a 是等比数列; (Ⅱ)求)(lim 21n n a a a +++∞→ 的值.ABCO 1O 222.(本小题满分13分)已知动圆过定点P(1,0),且与定直线1l相切,点C在l上.x:-=(Ⅰ)求动圆圆心的轨迹M的方程;(Ⅱ)设过点P,且斜率为-3的直线与曲线M相交于A,B两点.(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.2003年普通高等学校春季招生考试数学试题(理工农医类)(北京卷)参考答案一、选择题:本题主要考查基本知识和基本运算. 每小题5分,满分60分.1.C2.A3.C4.D5.D6.A7.D8.B9.A 10.B 11.C 12.B 二、填空题:本题主要考查基本知识和基本运算.每小题4分,满分16分.13.332 14.(140)(85) 15.32 16.2p 注:填2p 的正整数倍中的任何一个都正确.三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查不等式的解法、对数函数的性质等基本知识,考查运算能力和逻辑思维能力. 满分12分.解:原不等式变形为)22(log)2(log21221->--x x x .所以,原不等式3230,203,01,0)1)(2(22201,02222<<⇔⎩⎨⎧<<>⇔⎪⎩⎪⎨⎧<->->+-⇔⎪⎩⎪⎨⎧-<-->->--⇔x x x x x x x x x x x x x x .故原不等式的解集为}32|{<<x x .18.本小题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力. 满分12分.解:由Z k k x k x x ∈+≠+≠≠,42,2202cos ππππ解得得.所以)(x f 的定义域为}.,42|{Z k k x R x x ∈+≠∈ππ且因为)(x f 的定义域关于原点对称,且)2cos(4)(sin 5)(cos 6)(24x x x x f ---+-=-)(),(2cos 4sin 5cos624x f x f xx x 所以=-+=是偶函数.当xx x x f Z k k x 2cos 4sin 5cos6)(,,4224-+=∈+≠时ππ1c o s 32c o s )1c o s 3)(1cos 2(222-=--=x xx x ,所以)(x f 的值域为}221211|{≤<<≤-y y y 或19.本小题主要考查正四棱柱的基本知识,考查空间想象能力、逻辑思维能力和运算能力. 满分12分.(Ⅰ)证法一: 连结AC.∵正四棱柱ABCD —A 1B 1C 1D 1的底面是正方形,∴AC ⊥BD ,又AC ⊥D 1D ,故AC ⊥平面BDD 1B 1. ∵E ,F 分别为AB ,BC 的中点,故EF ∥AC , ∴EF ⊥平面BDD 1B 1, ∴平面B 1EF ⊥平面BDD 1B 1. 证法二:∵BE=BF ,∠EBD=∠FBD=45°,∴EF ⊥BD. 又 EF ⊥D 1D∴EF ⊥平面BDD 1B 1, ∴平面B 1EF ⊥平面BDD 1B 1. (Ⅱ)在对角面BDD 1B 1中,作D 1H ⊥B 1G ,垂足为H.∵平面B 1EF ⊥平面BDD 1B 1,且平面B 1EF ∩平面BDD 1B 1=B 1G , ∴D 1H ⊥平面B 1EF ,且垂足为H ,∴点D 1到平面B 1EF 的距离d=D 1H.解法一:在Rt △D 1HB 1中,D 1H=D 1B 1·sin ∠D 1B 1H. ∵422221111=⋅==B A B D ,,174144sin sin 2211111=+==∠=∠GB B B GB B H B D∴.17171617441=⋅==H D d 解法二:∵△D 1HB 1~△B 1BG , ∴GB B D BB H D 11111=,∴.1717161442221211=+===GB B B H D d解法三:连结D 1G ,则三角形D 1GB 1的面积等于正方形DBB 1D 1面积的一半, 即21112121B B H D G B =⋅⋅, .1717161211===∴GB BB H D d(Ⅲ)EF B EF B D EFD B S d V V V 1111131∆--⋅⋅===.31617221171631=⋅⋅⋅⋅=20.本小题主要考查二次函数的性质等基本知识,考查分析和解决问题的能力. 满分12分.解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为125030003600=-,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x 元,则租赁公司的月收益为50503000)150)(503000100()(⨯-----=x x x x f ,整理得307050)4050(5012100016250)(22+--=-+-=x x xx f BO n-1O nACABCDEFG B 1C 1D 1A 1B 1BG DD 1HB 1BG DD 1H所以,当x =4050时,)(x f 最大,最大值为307050)4050(=f ,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.21.本小题主要考查数列、数列极限、三角函数等基本知识,考查逻辑思维能力. 满分13分. (Ⅰ)证明:记r n 为圆O n 的半径,则,633021l tg l r =︒=.2130sin 11=︒=+---nn n n r r r r所以,12),2(3122111lra n r r n n ππ==≥=-于是91)(211==--n n n n r r a a 故}{n a 成等比数列.(Ⅱ)解:因为),()91(11N n a a n n ∈=-所以.323911)(lim 2121l a a a a nn π=-=+++∞→22.本小题主要考查直线、圆与抛物线的基本概念及位置关系,考查运用解析几何的方法解决数学问题的能力. 满分13分.解:(Ⅰ)依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为x y 42=.(Ⅱ)(i )由题意得,直线AB 的方程为⎪⎩⎪⎨⎧=--=--=xy x y x y 4)1(3)1(32由消y 得.3,31,03103212===+-x x x x 解得所以A 点坐标为)332,31(,B 点坐标为(3,32-),.3162||21=++=x x AB假设存在点C (-1,y ),使△ABC 为正三角形,则|BC|=|AB|且|AC|=|AB|,即⎪⎪⎩⎪⎪⎨⎧=-++=+++222222)316()32()131(,)316()32()13(y y 由①-②得,)332()34()32(42222-+=++y y.9314-=y 解得但9314-=y 不符合①,所以由①,②组成的方程组无解.① ② )332,31()32,3(-xy 42=l32-332xyA OB P(1,0)-1因此,直线l 上不存在点C ,使得△ABC 是正三角形. (ii )解法一:设C (-1,y )使△ABC 成钝角三角形, 由321)1(3=⎩⎨⎧-=--=y x x y 得, 即当点C 的坐标为(-1,32)时,A ,B ,C 三点共线,故32≠y . 又2222334928)332()311(||y y y AC +-=-+--=,22223428)32()13(||y y y BC ++=+++=, 9256)316(||22==AB .当222||||||AB AC BC +>,即9256334928342822++->++y y y y ,即CAB y ∠>,392时为钝角.当222||||||AB BC AC +>,即9256342833492822+++>+-y y y y ,即CBA y ∠-<时3310为钝角.又222||||||BC AC AB +>,即2234283349289256y y y y ++++->,即0)32(,03433422<+<++y y y . 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或.解法二:以AB 为直径的圆的方程为222)38()332()35(=++-y x . 圆心)332,35(-到直线1:-=x l 的距离为38,所以,以AB 为直径的圆与直线l 相切于点G )332,1(--.当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G点不重合,且A ,B ,C 三点不共线时, ∠ACB 为锐角,即△ABC 中∠ACB 不可能是钝角. 因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角. 过点A 且与AB 垂直的直线方程为9321).31(33332=-=-=-y x x y 得令.过点B 且与AB 垂直的直线方程为)3(3332-=+x y . 令33101-=-=y x 得.又由321)1(3=⎩⎨⎧-=--=y x x y 解得,所以,当点C 的坐标为(-1,32)时,A ,B ,C 三点共线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是).32(9323310≠>-<y y y 或。
2010年全国统一高考数学试卷(理科)(大纲版ⅰ)(含解析版)
2010 年全国统一高考数学试卷(理科)(大纲版Ⅰ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)复数=()A.i B.﹣i C.12﹣13i D.12+13i2.(5分)记cos(﹣80°)=k,那么tan100°=()A.B.﹣C.D.﹣3.(5 分)若变量x,y 满足约束条件,则z=x﹣2y 的最大值为()A.4 B.3 C.2 D.14.(5 分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.5.(5分)(1+2)3(1﹣)5的展开式中x 的系数是()A.﹣4 B.﹣2 C.2 D.46.(5分)某校开设A 类选修课3 门,B 类选择课4 门,一位同学从中共选3 门,若要求两类课程中各至少选一门,则不同的选法共有()A.30 种B.35 种C.42 种D.48 种7.(5分)正方体ABCD﹣A1B1C1D1 中,BB1 与平面ACD1 所成角的余弦值为()A.B.C.D.8.(5分)设a=log32,b=ln2,c= ,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a 9.(5 分)已知F1、F2 为双曲线C:x2﹣y2=1 的左、右焦点,点P 在C 上,∠F1PF2=60°,则P 到x 轴的距离为()A.B.C.D.10.(5 分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是()A.B.C.(3,+∞)D.[3,+∞)11.(5 分)已知圆O 的半径为1,PA、PB 为该圆的两条切线,A、B 为两切点,那么的最小值为()A.B.C.D.12.(5 分)已知在半径为2 的球面上有A、B、C、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为()A.B.C.D.二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)不等式的解集是.14.(5 分)已知α为第三象限的角,,则=.15.(5分)直线y=1 与曲线y=x2﹣|x|+a 有四个交点,则a 的取值范围是.16.(5 分)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D,且,则C 的离心率为.三、解答题(共6 小题,满分70 分)17.(10 分)已知△ABC 的内角A,B 及其对边a,b 满足a+b=acotA+bcotB,求内角C.18.(12 分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1 篇稿件被录用的概率;(II)求投到该杂志的4 篇稿件中,至少有2 篇被录用的概率.19.(12 分)如图,四棱锥S﹣ABCD 中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC⊥平面SBC.(I)证明:SE=2EB;(II)求二面角A﹣DE﹣C 的大小.20.(12 分)已知函数f(x)=(x+1)lnx﹣x+1.(I)若xf′(x)≤x2+ax+1,求a 的取值范围;(II)证明:(x﹣1)f(x)≥0.21.(12 分)已知抛物线C:y2=4x 的焦点为F,过点K(﹣1,0)的直线l 与C 相交于A、B 两点,点A 关于x 轴的对称点为D.(I)证明:点F 在直线BD 上;(II)设,求△BDK 的内切圆M 的方程.22.(12 分)已知数列{a n}中,a1=1,a n+1=c﹣.(I)设c=,b n=,求数列{b n}的通项公式;(II)求使不等式a n<a n+1<3 成立的c 的取值范围.2010 年全国统一高考数学试卷(理科)(大纲版Ⅰ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)复数=()A.i B.﹣i C.12﹣13i D.12+13i【考点】A5:复数的运算.【专题】11:计算题.【分析】复数的分子中利用﹣i2=1 代入3,然后化简即可.【解答】解:故选:A.【点评】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.2.(5 分)记cos(﹣80°)=k,那么tan100°=()A.B.﹣C.D.﹣【考点】GF:三角函数的恒等变换及化简求值;GG:同角三角函数间的基本关系;GO:运用诱导公式化简求值.【专题】11:计算题.【分析】法一:先求sin80°,然后化切为弦,求解即可.法二:先利用诱导公式化切为弦,求出求出结果.【解答】解:法一,所以tan100°=﹣tan80°= .:法二cos (﹣80°)=k ⇒cos (80°)=k ,=【点评】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.3.(5 分)若变量x,y 满足约束条件,则z=x﹣2y 的最大值为()A.4 B.3 C.2 D.1【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y 表示直线在y 轴上的截距,只需求出可行域直线在y 轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l 经过点A(1,﹣1)时,z 最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.4.(5 分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=8 8 ( ) A .B .7C .6D .【考点】87:等比数列的性质.【分析】由数列{a n }是等比数列,则有 a 1a 2a 3=5⇒a 23=5;a 7a 8a 9=10⇒a 3=10.【解答】解:a 1a 2a 3=5⇒a 23=5;a 7a 8a 9=10⇒a 3=10,a 52=a 2a 8, ∴ ,∴,故选:A .【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.5.(5 分)(1+2)3(1﹣ )5 的展开式中 x 的系数是() A .﹣4B .﹣2C .2D .4【考点】DA :二项式定理. 【专题】11:计算题.【分析】利用完全平方公式展开,利用二项展开式的通项公式求出 x 的系数. 【解答】解:(1+2)3(1﹣)5=(1+6+12x +8x)(1﹣)5 故(1+2)3(1﹣)5 的展开式中含 x 的项为 1×C 53()3+12x=﹣10x +12xC 50=2x , 所以 x 的系数为 2.故选:C .【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力6.(5 分)某校开设A 类选修课3 门,B 类选择课4 门,一位同学从中共选3 门,若要求两类课程中各至少选一门,则不同的选法共有()A.30 种B.35 种C.42 种D.48 种【考点】D1:分类加法计数原理.【专题】11:计算题.【分析】两类课程中各至少选一门,包含两种情况:A 类选修课选1 门,B 类选修课选2 门;A 类选修课选2 门,B 类选修课选1 门,写出组合数,根据分类计数原理得到结果.【解答】解:可分以下2 种情况:①A 类选修课选1 门,B 类选修课选2 门,有C31C42 种不同的选法;②A 类选修课选2 门,B 类选修课选1 门,有C32C41 种不同的选法.∴根据分类计数原理知不同的选法共有C31C42+C32C41=18+12=30种.故选:A.【点评】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.本题也可以从排列的对立面来考虑,写出所有的减去不合题意的,可以这样解:C73﹣C33﹣C43=30.7.(5分)正方体ABCD﹣A1B1C1D1 中,BB1 与平面ACD1 所成角的余弦值为()A.B.C.D.【考点】MI:直线与平面所成的角;MK:点、线、面间的距离计算.【专题】5G:空间角.【分析】正方体上下底面中心的连线平行于BB1,上下底面中心的连线与平面ACD1 所成角,即为BB1 与平面ACD1 所成角,直角三角形中,利用边角关系求出此角的余弦值.【解答】解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O 与平面ACD1 所成角就是BB1 与平面ACD1 所成角,即∠O1OD1,直角三角形OO1D1 中,cos∠O1OD1= ==,故选:D.【点评】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面ACD1 的距离是解决本题的关键所在,这也是转化思想的具体体现,属于中档题.8.(5 分)设a=log32,b=ln2,c= ,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【考点】4M:对数值大小的比较.【专题】11:计算题;35:转化思想.【分析】根据a 的真数与b 的真数相等可取倒数,使底数相同,找中间量1 与之比较大小,便值a、b、c 的大小关系.【解答】解:a=log32=,b=ln2=,而log23>log2e>1,所以a<b,c= = ,而,所以c<a,综上c<a<b,故选:C.【点评】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.9.(5 分)已知F1、F2 为双曲线C:x2﹣y2=1 的左、右焦点,点P 在C 上,∠F1PF2=60°,则P 到x 轴的距离为()A.B.C.D.【考点】HR:余弦定理;KA:双曲线的定义;KC:双曲线的性质.【专题】11:计算题.【分析】设点P (x0 ,y0 )在双曲线的右支,由双曲线的第二定义得,.由余弦定理得cos ∠F1PF2=,由此可求出P 到x 轴的距离.【解答】解:不妨设点P(x0,y0)在双曲线的右支,由双曲线的第二定义得,.由余弦定理得cos ∠F1PF2= ,即cos60°= ,解得,所以,故P 到x 轴的距离为故选:B.【点评】本题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.10.(5 分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是()A.B.C.(3,+∞)D.[3,+∞)【考点】34:函数的值域;3D:函数的单调性及单调区间;4H:对数的运算性质;7F:基本不等式及其应用.【专题】11:计算题;16:压轴题;35:转化思想.【分析】由题意f(a)=f(b),求出ab 的关系,然后利用“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,确定a+2b 的取值范围.【解答】解:因为f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或,所以a+2b=又0<a<b,所以0<a<1<b,令,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+=3,即a+2b 的取值范围是(3,+∞).故选:C.【点评】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b= ,从而错选A,这也是命题者的用心良苦之处.11.(5 分)已知圆O 的半径为1,PA、PB 为该圆的两条切线,A、B 为两切点,那么的最小值为()A.B.C.D.【考点】9O:平面向量数量积的性质及其运算;JF:圆方程的综合应用.【专题】5C:向量与圆锥曲线.【分析】要求的最小值,我们可以根据已知中,圆O 的半径为1,PA、PB 为该圆的两条切线,A、B 为两切点,结合切线长定理,设出PA,PB 的长度和夹角,并将表示成一个关于x 的函数,然后根据求函数最值的办法,进行解答.【解答】解:如图所示:设OP=x(x>0),则PA=PB=,∠APO=α,则∠APB=2α,sinα=,==×(1﹣2sin2α)=(x2﹣1)(1﹣)==x2+﹣3≥2 ﹣3,∴当且仅当x2=时取“=”,故的最小值为2﹣3.故选:D.【点评】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法﹣﹣判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.12.(5 分)已知在半径为2 的球面上有A、B、C、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为()A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积;ND:球的性质.【专题】11:计算题;15:综合题;16:压轴题.【分析】四面体ABCD 的体积的最大值,AB 与CD 是对棱,必须垂直,确定球心的位置,即可求出体积的最大值.【解答】解:过CD 作平面PCD,使AB⊥平面PCD,交AB 于P,设点P 到CD 的距离为h,则有,当直径通过AB 与CD 的中点时,,故.故选:B.【点评】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)不等式的解集是[0,2] .【考点】7E:其他不等式的解法.【专题】11:计算题;16:压轴题;35:转化思想.【分析】法一是移项后平方,注意等价转化为不等式组,化简求交集即可;法二是化简为等价不等式组的形式,求不等式组的解集.【解答】解:法一:原不等式等价于解得0≤x≤2.法二:故答案为:[0,2]【点评】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化与化归的数学思想体现得淋漓尽致.14.(5 分)已知α为第三象限的角,,则=.【考点】G3:象限角、轴线角;GG:同角三角函数间的基本关系;GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11:计算题.【分析】方法一:由α为第三象限的角,判断出2α可能的范围,再结合又<0 确定出2α在第二象限,利用同角三角函数关系求出其正弦,再由两角和的正切公式展开代入求值.方法二:判断2α可能的范围时用的条件组合方式是推出式,其它比同.【解答】解:方法一:因为α为第三象限的角,所以2α∈(2(2k+1)π,π+2 (2k+1)π)(k∈Z),又<0,所以,于是有,,所以=.方法二:α为第三象限的角,,⇒4kπ+2π<2α<4kπ+3π⇒2α在二象限,【点评】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.15.(5 分)直线y=1 与曲线y=x2﹣|x|+a 有四个交点,则a 的取值范围是(1,).【考点】3V:二次函数的性质与图象.【专题】13:作图题;16:压轴题;31:数形结合.【分析】在同一直角坐标系内画出直线y=1 与曲线y=x2﹣|x|+a 的图象,观察求解.【解答】解:如图,在同一直角坐标系内画出直线y=1 与曲线y=x2﹣|x|+a,观图可知,a 的取值必须满足,解得.故答案为:(1,)【点评】本小题主要考查函数的图象与性质、不等式的解法,着重考查了数形结合的数学思想.16.(5 分)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D,且,则C 的离心率为.【考点】K4:椭圆的性质.【专题】16:压轴题;31:数形结合.【分析】由椭圆的性质求出|BF|的值,利用已知的向量间的关系、三角形相似求出D 的横坐标,再由椭圆的第二定义求出|FD|的值,又由|BF|=2|FD|建立关于a、c 的方程,解方程求出的值.【解答】解:如图,,作DD1 ⊥y 轴于点D1 ,则由,得,所以,,即,由椭圆的第二定义得又由|BF|=2|FD|,得,a2=3c2,解得e==,故答案为:.【点评】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.三、解答题(共6 小题,满分70 分)17.(10 分)已知△ABC 的内角A,B 及其对边a,b 满足a+b=acotA+bcotB,求内角C.【考点】GF:三角函数的恒等变换及化简求值;HP:正弦定理.【专题】11:计算题.【分析】先利用正弦定理题设等式中的边转化角的正弦,化简整理求得sin(A -)=sin(B+),进而根据A,B 的范围,求得A﹣和B+的关系,进而求得A+B=,则C 的值可求.【解答】解:由已知及正弦定理,有sinA+sinB=sinA•+sinB•=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB∴sin(A﹣)=sin(B+),∵0<A<π,0<B<π∴﹣<A﹣<<B+<∴A﹣+B+=π,∴A+B=,C=π﹣(A+B)=【点评】本题主要考查了正弦定理的应用.解题过程中关键是利用了正弦定理把边的问题转化为角的问题.18.(12 分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1 篇稿件被录用的概率;(II)求投到该杂志的4 篇稿件中,至少有2 篇被录用的概率.【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概率乘法公式;CA:n 次独立重复试验中恰好发生k 次的概率.【分析】(1)投到该杂志的1 篇稿件被录用包括稿件能通过两位初审专家的评审或稿件恰能通过一位初审专家的评审又能通过复审专家的评审两种情况,这两种情况是互斥的,且每种情况中包含的事情有时相互独立的,列出算式.(2)投到该杂志的4 篇稿件中,至少有2 篇被录用的对立事件是0 篇被录用,1篇被录用两种结果,从对立事件来考虑比较简单.【解答】解:(Ⅰ)记A 表示事件:稿件能通过两位初审专家的评审;B 表示事件:稿件恰能通过一位初审专家的评审;C 表示事件:稿件能通过复审专家的评审;D 表示事件:稿件被录用.则D=A+B•C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B•C)=P(A)+P(B•C)=P(A)+P(B)P(C)=0.25+0.5×0.3=0.40.(2)记4 篇稿件有1 篇或0 篇被录用为事件E,则P(E)=(1﹣0.4)4+C41×0.4×(1﹣0.4)3=0.1296+0.3456=0.4752,∴=1﹣0.4752=0.5248,即投到该杂志的4 篇稿件中,至少有2 篇被录用的概率是0.5248.【点评】本题关键是要理解题意,实际上能否理解题意是一种能力,培养学生的数学思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度.19.(12 分)如图,四棱锥S﹣ABCD 中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC⊥平面SBC.(I)证明:SE=2EB;(II)求二面角A﹣DE﹣C 的大小.【考点】LY :平面与平面垂直;MJ :二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)连接 BD ,取 DC 的中点 G ,连接 BG ,作 BK ⊥EC ,K 为垂足,根据线面垂直的判定定理可知 DE ⊥平面 SBC ,然后分别求出 SE 与 EB 的长,从而得到结论;(Ⅱ)根据边长的关系可知△ADE 为等腰三角形,取 ED 中点 F ,连接 AF ,连接FG ,根据二面角平面角的定义可知∠A【解答】解:(Ⅰ)连接 BD ,取 DC 的中点 G ,连接 BG ,由此知DG=GC=BG=1,即△DBC 为直角三角形,故 BC ⊥BD .又 SD ⊥平面 ABCD ,故 BC ⊥SD ,所以,BC ⊥平面 BDS ,BC ⊥DE . 作 BK⊥EC ,K 为垂足,因平面 EDC ⊥平面 SBC , 故 BK⊥平面 EDC ,BK ⊥DE ,DE 与平面 SBC 内的两条相交直线 BK 、BC 都垂直, DE ⊥平面 SBC ,DE ⊥EC ,DE ⊥SB . SB=, DE=EB= 所以 SE=2EB(Ⅱ)由 SA=,AB=1,SE=2EB ,AB ⊥SA ,知AE= =1,又 AD=1.故△ADE 为等腰三角形.取ED 中点F,连接AF,则AF⊥DE,AF=.连接FG,则FG∥EC,FG⊥DE.所以,∠AFG 是二面角A﹣DE﹣C 的平面角.连接AG,AG= ,FG=,cos∠AFG=,所以,二面角A﹣DE﹣C 的大小为120°.【点评】本题主要考查了与二面角有关的立体几何综合题,考查学生空间想象能力,逻辑思维能力,是中档题.20.(12分)已知函数f(x)=(x+1)lnx﹣x+1.(I)若xf′(x)≤x2+ax+1,求a 的取值范围;(II)证明:(x﹣1)f(x)≥0.【考点】63:导数的运算.【专题】11:计算题.【分析】(Ⅰ)先根据导数公式求出导函数f′(x),代入xf′(x)≤x2+ax+1,将a 分离出来,然后利用导数研究不等式另一侧的最值,从而求出参数 a 的取值范围;(Ⅱ)【解答】解:(Ⅰ),根xf′(x)=xlnx+1,题设xf′(x)≤x2+ax+1 等价于lnx﹣x≤a.令g(x)=lnx﹣x,则当0<x<1,g′(x)>0;当x≥1 时,g′(x)≤0,x=1 是g(x)的最大值点,g(x)≤g(1)=﹣1综上,a 的取值范围是[﹣1,+∞).(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=﹣1 即lnx﹣x+1≤0.当0<x<1 时,f(x)=(x+1)lnx﹣x+1=xlnx+(lnx﹣x+1)<0;当x≥1 时,f(x)=lnx+(xlnx﹣x+1)= =≥0所以(x﹣1)f(x)≥0.【点评】本题主要考查了利用导数研究函数的最值,以及利用参数分离法求参数的取值范围,同时考查了运算求解的能力,属于中档题.21.(12 分)已知抛物线C:y2=4x 的焦点为F,过点K(﹣1,0)的直线l 与C 相交于A、B 两点,点A 关于x 轴的对称点为D.(I)证明:点F 在直线BD 上;(II)设,求△BDK 的内切圆M 的方程.【考点】9S:数量积表示两个向量的夹角;IP:恒过定点的直线;J1:圆的标准方程;K8:抛物线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题;14:证明题;16:压轴题.【分析】(Ⅰ)先根据抛物线方程求得焦点坐标,设出过点K 的直线L 方程代入抛物线方程消去x,设L 与C 的交点A(x1,y1),B(x2,y2),根据韦达定理求得y1+y2 和y1y2 的表达式,进而根据点A 求得点D 的坐标,进而表示出直线BD 和BF 的斜率,进而问题转化两斜率相等,进而转化为4x2=y22,依题意可知等式成立进而推断出k1=k2 原式得证.) (Ⅱ)首先表示出 结果为求得 m ,进而求得 y 2﹣y 1 的值,推知 BD 的斜率,则 B D方程可知,设M 为(a,0),M到 x=y﹣1和【解答】解:(Ⅰ)抛物线 C :y 2=4x ①的焦点为 F (1,0),设过点K (﹣1,0)的直线 L :x=my ﹣1, 代入①,整理得y 2﹣4my +4=0, 设 L 与 C 的交点 A (x 1,y 1),B (x 2,y 2),则 y 1+y 2=4m ,y 1y 2=4, 点 A 关于 X 轴的对称点 D 为(x 1,﹣y 1). BD 的斜率 k 1===,BF 的斜率 k 2=.要使点 F 在直线 BD 上需 k 1=k 2 需 4(x 2﹣1)=y 2(y 2﹣y 1),需 4x 2=y22, 上式成立,∴k 1=k 2, ∴点 F 在直线 BD 上. (Ⅱ =(x 1﹣1,y 1)(x 2﹣1,y 2)=(x 1﹣1)(x 2﹣1)+y 1y 2=(my 1﹣2)(my 2 ﹣2)+y 1y 2=4(m 2+1)﹣8m 2+4=8﹣4m 2=, ∴m 2=,m=±.y 2﹣y 1= =4 =,∴k 1=,BD :y=(x ﹣1).易知圆心 M 在 x 轴上,设为(a ,0),M 到 x= y ﹣1 和到 BD 的距离相等,即|a +1|×=|((a ﹣1)|×,∴4|a +1|=5|a ﹣1|,﹣1<a <1,解得 a=.∴半径 r=,∴△BDK 的内切圆 M 的方程为(x ﹣)2+y 2=.【点评】本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求思想.22.(12 分)已知数列{a n }中,a 1=1,a n +1=c ﹣. (I ) 设 c=,b n =,求数列{b n }的通项公式;(II ) 求使不等式 a n <a n +1<3 成立的 c 的取值范围.【考点】8H :数列递推式;RG :数学归纳法.【专题】15:综合题;16:压轴题.【分析】(1)令c=代入到(2)先求出 n=1,2 时的 c 的范围,然后用数学归纳法分 3 步进行证明当 c >2 时 a n < a n +1 , 然 后 当 c > 2 时 , 令 α= , 根 据 由 可发现 c >时不能满足条件,进而可确定 c 的范围.【解答】解:(1),,即b n=4b n+2+1,a1=1,故所以{ }是首项为﹣,公比为4 的等比数列,,(Ⅱ)a1=1,a2=c﹣1,由a2>a1 得c>2.用数学归纳法证明:当c>2 时a n<a n+1.(i)当n=1 时,a2=c﹣>a1,命题成立;(ii)设当n=k 时,a k<a k+1,则当n=k+1 时,故由(i)(ii)知当c>2 时,a n<a n+1当c>2 时,令α=,由当2<c≤时,a n<α≤3当c>时,α>3 且1≤a n<α于是α﹣a n+1≤(α﹣1),当n>因此c>不符合要求.所以c 的取值范围是(2,].【点评】本小题主要考查数列的通项公式、等比数列的定义、递推数列、不等式等基础知识和基本技能,同时考查分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考查.。
2010北京高考理科数学试题及答案
。
( 12 ) 如 图 , e O 的 弦 ED , CB 的 延 长 线 交 于 点 A 。 若 BD ⊥ AE,AB=4, BC=2, AD=3,则 DE= ( 13 ) 已 知 双 曲 线 ;CE= 。
x2 y 2 − = 1的 离 心 率 为 2 , 焦 点 与 椭 圆 a 2 b2
χ2 γ2 + = 1 的 焦 点相同, 那么双曲 线的 焦 点坐标为 25 9
3eud 教育网 百万教学资源,完全免费,无须注册,天天更新!
(C)一个圆和一条射线
(D)一条直线和一条射线
( xb − a ) 为一次函数”的 (6)a、b 为非零向量。“ a ⊥ b ”是“函数 f ( x ) = ( xa + b )g
(A)充分而不必要条件 (C)充分必要条件 (B)必要不充分条件 (D)既不充分也不必要条件
所以 CF g BE = 0 − 1 + 1 = 0 , CF gDE = − 1 + 0 + 1 = 0 所以 CF ⊥ BE , CF ⊥ DE . 所以 CF ⊥ BDE. (III) 由(II)知, CF = (
uuu r uuu r
uuu r
2 2 , ,1) 是平面 BDE 的一个法向量. 2 2 uuu r uuu r
三、 解答题:本大题共 6 小题,共 80 分。 解答应写出文字说明,演算步骤或证明 过程。
(15)(本小题共 13 分) 已知函数 f (x) = 2 cos 2 x + sin 2 x − 4 cos x 。 (Ⅰ)求 f = ( ) 的值; (Ⅱ)求 f (x) 的最大值和最小值。
π 3
3eud 教育网 教学资源集散地。可能是最大的免费教育资源网!
年高考数学北京卷理科试题及答案
学习改变命运,思考成就未来!
高考网 联系电话:62164116、82618899
在 [120,130),[130,140),[140,150) 三组内的学生中,用分层抽样的方法选取 18 人参加一 项活动,则从身高在 [140,150] 内的学生中选取的人数应为________.
(I) ( II)
(III)
证明: A, B,C Sn ,有 A B Sn ,且 d ( A C, B C) d ( A, B) ;
证 明 : A, B,C Sn , d ( A, B), d ( A,C), d (B,C) 三 个 数 中 至 少 有 一 个 是 偶
数;
设 P Sn , P 中有 m(m 2) 个元素,记 P 中所有两元素间距离的平均值为
与 BP 的斜率之积等于 1 . 3
(I)
求动点 P 的轨迹方程;
(II)
设直线 AP 和 BP 分别与直线 x 3 交于点 M , N ,问:是否存在点 P 使得 PAB
与 PMN 的面积相等?若存在,求出点 P 的坐标;若不存在,说明理由.
20,(本小题共 13 分)
已 知 集 合 Sn X | X x1, x2 ,..., xn , xi 0,1,i 1, 2,..., n (n 2) .对 于
13, 4,0 , y 3x
解 析 : 双 曲 线 焦 点 即 为 椭 圆 焦 点 , 不 难 算 出 为 4, 0 , 又 双 曲 线 离 心 率 为 2, 即
c a
2, c
4
,故
a
2, b
2
3
,渐近线为
y
b a
x
3x
2010年全国统一高考真题数学试卷(理科)(大纲版ⅱ)(含答案及解析)
2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i2.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.44.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.355.(5分)不等式>0的解集为()A.{x|x<﹣2,或x>3}B.{x|x<﹣2,或1<x<3}C.{x|﹣2<x<1,或x>3}D.{x|﹣2<x<1,或1<x<3} 6.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种7.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位8.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+9.(5分)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.310.(5分)若曲线y=在点(a,)处的切线与两个坐标围成的三角形的面积为18,则a=()A.64B.32C.16D.811.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a是第二象限的角,tan(π+2α)=﹣,则tanα=.14.(5分)若(x﹣)9的展开式中x3的系数是﹣84,则a=.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.18.(12分)已知数列{a n}的前n项和S n=(n2+n)•3n.(Ⅰ)求;(Ⅱ)证明:++…+>3n.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.21.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.22.(12分)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.【解答】解:()2=[]2=(1﹣2i)2=﹣3﹣4i.故选:A.【点评】本题主要考查复数的除法和乘方运算,是一个基础题,解题时没有规律和技巧可寻,只要认真完成,则一定会得分.2.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)【考点】4H:对数的运算性质;4R:反函数.【专题】11:计算题;16:压轴题.【分析】从条件中中反解出x,再将x,y互换即得.解答本题首先熟悉反函数的概念,然后根据反函数求解三步骤:1、换:x、y换位,2、解:解出y,3、标:标出定义域,据此即可求得反函数.【解答】解:由原函数解得x=e 2y﹣1+1,∴f﹣1(x)=e 2x﹣1+1,又x>1,∴x﹣1>0;∴ln(x﹣1)∈R∴在反函数中x∈R,故选:D.【点评】求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.4【考点】7C:简单线性规划.【专题】31:数形结合.【分析】先根据约束条件画出可行域,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y过可行域内的点B时,从而得到m值即可.【解答】解:作出可行域,作出目标函数线,可得直线与y=x与3x+2y=5的交点为最优解点,∴即为B(1,1),当x=1,y=1时z max=3.故选:C.【点评】本题考查了线性规划的知识,以及利用几何意义求最值,属于基础题.4.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.35【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由等差数列的性质求解.【解答】解:a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7==7a4=28故选:C.【点评】本题主要考查等差数列的性质.5.(5分)不等式>0的解集为()A.{x|x<﹣2,或x>3}B.{x|x<﹣2,或1<x<3}C.{x|﹣2<x<1,或x>3}D.{x|﹣2<x<1,或1<x<3}【考点】73:一元二次不等式及其应用.【专题】11:计算题.【分析】解,可转化成f(x)•g(x)>0,再利用根轴法进行求解.【解答】解:⇔⇔(x﹣3)(x+2)(x﹣1)>0利用数轴穿根法解得﹣2<x<1或x>3,故选:C.【点评】本试题主要考查分式不等式与高次不等式的解法,属于不等式的基础题.6.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】本题是一个分步计数问题,首先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有C42,余下放入最后一个信封,根据分步计数原理得到结果.【解答】解:由题意知,本题是一个分步计数问题,∵先从3个信封中选一个放1,2,有=3种不同的选法;根据分组公式,其他四封信放入两个信封,每个信封两个有=6种放法,∴共有3×6×1=18.故选:B.【点评】本题考查分步计数原理,考查平均分组问题,是一个易错题,解题的关键是注意到第二步从剩下的4个数中选两个放到一个信封中,这里包含两个步骤,先平均分组,再排列.7.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】1:常规题型.【分析】先将2提出来,再由左加右减的原则进行平移即可.【解答】解:y=sin(2x+)=sin2(x+),y=sin(2x﹣)=sin2(x﹣),所以将y=sin(2x+)的图象向右平移个长度单位得到y=sin(2x﹣)的图象,故选:B.【点评】本试题主要考查三角函数图象的平移.平移都是对单个的x来说的.8.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+【考点】9B:向量加减混合运算.【分析】由△ABC中,点D在边AB上,CD平分∠ACB,根据三角形内角平分线定理,我们易得到,我们将后,将各向量用,表示,即可得到答案.【解答】解:∵CD为角平分线,∴,∵,∴,∴故选:B.【点评】本题考查了平面向量的基础知识,解答的核心是三角形内角平分线定理,即若AD为三角形ABC的内角A的角平分线,则AB:AC=BD:CD9.(5分)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.3【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;16:压轴题.【分析】设出底面边长,求出正四棱锥的高,写出体积表达式,利用求导求得最大值时,高的值.【解答】解:设底面边长为a,则高h==,所以体积V=a2h=,设y=12a4﹣a6,则y′=48a3﹣3a5,当y取最值时,y′=48a3﹣3a5=0,解得a=0或a=4时,当a=4时,体积最大,此时h==2,故选:C.【点评】本试题主要考查椎体的体积,考查高次函数的最值问题的求法.是中档题.10.(5分)若曲线y=在点(a,)处的切线与两个坐标围成的三角形的面积为18,则a=()A.64B.32C.16D.8【考点】6H:利用导数研究曲线上某点切线方程.【专题】31:数形结合.【分析】欲求参数a值,必须求出在点(a,)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=a处的导函数值,再结合导数的几何意义即可求出切线的斜率得到切线的方程,最后求出与坐标轴的交点坐标结合三角形的面积公式.从而问题解决.【解答】解:y′=﹣,∴k=﹣,切线方程是y﹣=﹣(x﹣a),令x=0,y=,令y=0,x=3a,∴三角形的面积是s=•3a•=18,解得a=64.故选:A.【点评】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.11.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【考点】LO:空间中直线与直线之间的位置关系.【专题】16:压轴题.【分析】由于点D、B1显然满足要求,猜想B1D上任一点都满足要求,然后想办法证明结论.【解答】解:在正方体ABCD﹣A1B1C1D1上建立如图所示空间直角坐标系,并设该正方体的棱长为1,连接B1D,并在B1D上任取一点P,因为=(1,1,1),所以设P(a,a,a),其中0≤a≤1.作PE⊥平面A1D,垂足为E,再作EF⊥A1D1,垂足为F,则PF是点P到直线A1D1的距离.所以PF=;同理点P到直线AB、CC1的距离也是.所以B1D上任一点与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离都相等,所以与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点有无数个.故选:D.【点评】本题主要考查合情推理的能力及空间中点到线的距离的求法.12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2【考点】KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设A(x1,y1),B(x2,y2),根据求得y1和y2关系根据离心率设,b=t,代入椭圆方程与直线方程联立,消去x,根据韦达定理表示出y1+y2和y1y2,进而根据y1和y2关系求得k.【解答】解:A(x1,y1),B(x2,y2),∵,∴y1=﹣3y2,∵,设,b=t,∴x2+4y2﹣4t2=0①,设直线AB方程为,代入①中消去x,可得,∴,,解得,故选:B.【点评】本题主要考查了直线与圆锥曲线的综合问题.此类题问题综合性强,要求考生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a是第二象限的角,tan(π+2α)=﹣,则tanα=.【考点】GO:运用诱导公式化简求值;GS:二倍角的三角函数.【专题】11:计算题.【分析】根据诱导公式tan(π+α)=tanα得到tan2α,然后利用公式tan(α+β)=求出tanα,因为α为第二象限的角,判断取值即可.【解答】解:由tan(π+2a)=﹣得tan2a=﹣,又tan2a==﹣,解得tana=﹣或tana=2,又a是第二象限的角,所以tana=﹣.故答案为:.【点评】本试题主要考查三角函数的诱导公式、正切的二倍角公式和解方程,考查考生的计算能力.14.(5分)若(x﹣)9的展开式中x3的系数是﹣84,则a=1.【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3得展开式中x3的系数,列出方程解得.【解答】解:展开式的通项为=(﹣a)r C9r x9﹣2r令9﹣2r=3得r=3∴展开式中x3的系数是C93(﹣a)3=﹣84a3=﹣84,∴a=1.故答案为1【点评】本试题主要考查二项展开式的通项公式和求指定项系数的方法.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=2.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】设直线AB的方程与抛物线方程联立消去y得3x2+(﹣6﹣2p)x+3=0,进而根据,可知M为A、B的中点,可得p的关系式,解方程即可求得p.【解答】解:设直线AB:,代入y2=2px得3x2+(﹣6﹣2p)x+3=0,又∵,即M为A、B的中点,∴x B+(﹣)=2,即x B=2+,得p2+4P﹣12=0,解得p=2,p=﹣6(舍去)故答案为:2【点评】本题考查了抛物线的几何性质.属基础题.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=3.【考点】JE:直线和圆的方程的应用;ND:球的性质.【专题】11:计算题;16:压轴题.【分析】根据题意画出图形,欲求两圆圆心的距离,将它放在与球心组成的三角形MNO中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得.【解答】解法一:∵ON=3,球半径为4,∴小圆N的半径为,∵小圆N中弦长AB=4,作NE垂直于AB,∴NE=,同理可得,在直角三角形ONE中,∵NE=,ON=3,∴,∴,∴MN=3.故填:3.解法二:如下图:设AB的中点为C,则OC与MN必相交于MN中点为E,因为OM=ON=3,故小圆半径NB为C为AB中点,故CB=2;所以NC=,∵△ONC为直角三角形,NE为△ONC斜边上的高,OC=∴MN=2EN=2•CN•=2××=3故填:3.【点评】本题主要考查了点、线、面间的距离计算,还考查球、直线与圆的基础知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【分析】先由cos∠ADC=确定角ADC的范围,因为∠BAD=∠ADC﹣B所以可求其正弦值,最后由正弦定理可得答案.【解答】解:由cos∠ADC=>0,则∠ADC<,又由知B<∠ADC可得B<,由sinB=,可得cosB=,又由cos∠ADC=,可得sin∠ADC=.从而sin∠BAD=sin(∠ADC﹣B)=sin∠ADCcosB﹣cos∠ADCsinB==.由正弦定理得,所以AD==.【点评】三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现.这类题型难度比较低,一般出现在17或18题,属于送分题,估计以后这类题型仍会保留,不会有太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.18.(12分)已知数列{a n}的前n项和S n=(n2+n)•3n.(Ⅰ)求;(Ⅱ)证明:++…+>3n.【考点】6F:极限及其运算;R6:不等式的证明.【专题】11:计算题;14:证明题.【分析】(1)由题意知,由此可知答案.(2)由题意知,==,由此可知,当n≥1时,.【解答】解:(1),所以=;(2)当n=1时,;当n>1时,===所以,n≥1时,.【点评】本题考查数列的极限问题,解题时要注意公式的灵活运用.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.【考点】LM:异面直线及其所成的角;LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)欲证DE为异面直线AB1与CD的公垂线,即证DE与异面直线AB1与CD垂直相交即可;(2)将AB1平移到DG,故∠CDG为异面直线AB1与CD的夹角,作HK⊥AC1,K 为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1﹣AC1﹣B1的平面角,在三角形B1KH中求出此角即可.【解答】解:(1)连接A1B,记A1B与AB1的交点为F.因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D为BB1的中点,故DE∥BF,DE⊥AB1.作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.所以DE为异面直线AB1与CD的公垂线.(2)因为DG∥AB1,故∠CDG为异面直线AB1与CD的夹角,∠CDG=45°设AB=2,则AB1=,DG=,CG=,AC=.作B1H⊥A1C1,H为垂足,因为底面A1B1C1⊥面AA1CC1,故B1H⊥面AA1C1C.又作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH 为二面角A1﹣AC1﹣B1的平面角.B1H=,C1H=,AC1=,HK=tan∠B1KH=,∴二面角A1﹣AC1﹣B1的大小为arctan.【点评】本试题主要考查空间的线面关系与空间角的求解,考查考生的空间想象与推理计算的能力.三垂线定理是立体几何的最重要定理之一,是高考的热点,它是处理线线垂直问题的有效方法,同时它也是确定二面角的平面角的主要手段.通过引入空间向量,用向量代数形式来处理立体几何问题,淡化了传统几何中的“形”到“形”的推理方法,从而降低了思维难度,使解题变得程序化,这是用向量解立体几何问题的独到之处.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题.【分析】(1)设出基本事件,将要求事件用基本事件的来表示,将T1,T2,T3至少有一个能通过电流用基本事件表示并求出概率即可求得p.(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,根据电路图,可得B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,由互斥事件的概率公式,代入数据计算可得答案.【解答】解:(Ⅰ)根据题意,记电流能通过T i为事件A i,i=1、2、3、4,A表示事件:T1,T2,T3,中至少有一个能通过电流,易得A1,A2,A3相互独立,且,P()=(1﹣p)3=1﹣0.999=0.001,计算可得,p=0.9;(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,有B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,则P(B)=P(A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3)=0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9=0.9891.【点评】本题考查了概率中的互斥事件、对立事件及独立事件的概率,注意先明确事件之间的关系,进而选择对应的公式来计算.21.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.【考点】J9:直线与圆的位置关系;KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题;14:证明题;16:压轴题.【分析】(Ⅰ)由直线过点(1,3)及斜率可得直线方程,直线与双曲线交于BD 两点的中点为(1,3),可利用直线与双曲线消元后根据中点坐标公式找出a,b的关系式即求得离心率.(Ⅱ)利用离心率将条件|FA||FB|=17,用含a的代数式表示,即可求得a,则A点坐标可得(1,0),由于A在x轴上所以,只要证明2AM=BD即证得.【解答】解:(Ⅰ)由题设知,l的方程为:y=x+2,代入C的方程,并化简,得(b2﹣a2)x2﹣4a2x﹣a2b2﹣4a2=0,设B(x1,y1),D(x2,y2),则,,①由M(1,3)为BD的中点知.故,即b2=3a2,②故,∴C的离心率.(Ⅱ)由①②知,C的方程为:3x2﹣y2=3a2,A(a,0),F(2a,0),.故不妨设x1≤﹣a,x2≥a,,,|BF|•|FD|=(a﹣2x1)(2x2﹣a)=﹣4x1x2+2a(x1+x2)﹣a2=5a2+4a+8.又|BF|•|FD|=17,故5a2+4a+8=17.解得a=1,或(舍去),故=6,连接MA,则由A(1,0),M(1,3)知|MA|=3,从而MA=MB=MD,且MA⊥x轴,因此以M为圆心,MA为半径的圆经过A、B、D三点,且在点A处与x轴相切,所以过A、B、D三点的圆与x轴相切.【点评】本题考查了圆锥曲线、直线与圆的知识,考查学生运用所学知识解决问题的能力.22.(12分)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.【考点】6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题.【分析】(1)将函数f(x)的解析式代入f(x)≥整理成e x≥1+x,组成新函数g(x)=e x﹣x﹣1,然后根据其导函数判断单调性进而可求出函数g(x)的最小值g(0),进而g(x)≥g(0)可得证.(2)先确定函数f(x)的取值范围,然后对a分a<0和a≥0两种情况进行讨论.当a<0时根据x的范围可直接得到f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,然后对函数h(x)进行求导,根据导函数判断单调性并求出最值,求a的范围.【解答】解:(1)当x>﹣1时,f(x)≥当且仅当e x≥1+x令g(x)=e x﹣x﹣1,则g'(x)=e x﹣1当x≥0时g'(x)≥0,g(x)在[0,+∞)是增函数当x≤0时g'(x)≤0,g(x)在(﹣∞,0]是减函数于是g(x)在x=0处达到最小值,因而当x∈R时,g(x)≥g(0)时,即e x≥1+x所以当x>﹣1时,f(x)≥(2)由题意x≥0,此时f(x)≥0当a<0时,若x>﹣,则<0,f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,则f(x)≤当且仅当h(x)≤0因为f(x)=1﹣e﹣x,所以h'(x)=af(x)+axf'(x)+f'(x)﹣1=af(x)﹣axf (x)+ax﹣f(x)(i)当0≤a≤时,由(1)知x≤(x+1)f(x)h'(x)≤af(x)﹣axf(x)+a(x+1)f(x)﹣f(x)=(2a﹣1)f(x)≤0,h(x)在[0,+∞)是减函数,h(x)≤h(0)=0,即f(x)≤;(ii)当a>时,由y=x﹣f(x)=x﹣1+e﹣x,y′=1﹣e﹣x,x>0时,函数y递增;x<0,函数y递减.可得x=0处函数y取得最小值0,即有x≥f(x).h'(x)=af(x)﹣axf(x)+ax﹣f(x)≥af(x)﹣axf(x)+af(x)﹣f(x)=(2a ﹣1﹣ax)f(x)当0<x<时,h'(x)>0,所以h'(x)>0,所以h(x)>h(0)=0,即f(x)>综上,a的取值范围是[0,]【点评】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力;导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.。
2010北京高考数学真题(理科)及答案
(A )(B ) (C ) (D ) 2010北京高考数学真题(理科) 第I 卷 选择题(共40分)一、 本大题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1, 集合{}{}2|03,|9P x Z x M x R x =∈≤<=∈≤,则P M =(A ){}1,2(B ){}0,1,2(C ){}|03x x ≤<(D ){}|03x x ≤≤2,在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m = (A )9 (B )10 (C )11 (D )12 3,一个长方体去掉一个小长方体,所得集合体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为4,8名学生和2位老师站成一排合影,2位老师不相邻的排法总数为(A )8289A A (B )8289A C (C )8287A A(D )8289A C 5,极坐标方程(1)()0(0)ρθπρ--=≥表示的图形是(A )两个圆 (B )两条直线(C )一个圆和一条射线(D )一条直线和一条射线6,,a b 为非零向量,“a b ⊥”是“函数()()()f x xa b xb a =+∙-为一次函数”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件7,设不等式组1103305390x y x y x y +-≥⎧⎪-+≥⎨⎪-+≤⎩表示的平面区域为D ,若指数函数x y a =的图象上存在区域D 上的点,则a 的取值范围是(A )(1,3](B )[]2,3(C )(1,2](D )[3,)+∞正(主)视图 侧(左)视图8,如图,正方体1111ABCD A B C D -的棱长为2,动点E ,F 在棱11A B 上,动点P ,Q 分别在棱,AD CD 上,若11,,,E F A E x D Q y D P z ====(,,x y z 大于零),则四面体PEFQ 的体积 (A ) 与,,x y z 都有关(B ) 与x 有关,与,y z 无关 (C ) 与y 有关,与,x z 无关 (D ) 与z 有关,与,x y 无关第II 卷 (共110分)二、填空题:本大题共6小题,每题5分,共30分。
2010年高考试题——理数北京卷分析与详解
2010年高考数学北京卷(理)答案及详细解析学而思高考研究中心邓杨从7号下午考完数学开始,就不停有同学给我打电话,告诉我今年北京卷的数学变化如何如何,而只有当真正拿到这张试卷的时候,才感慨新课改的刺激作用的确不小,在经历了09年的一场四平八稳的送别大纲课程考试之后,北京真正地迎来了新课改后的第一届高考。
下面就这张理科数学试卷作一个评析。
从整体风格上来看,北京卷仍然继承一向的传统,注重考查学生的基本数学素养和能力,不侧重复杂的计算和极高的解题技巧,但是在此基础之上,突破了今年北京一模二模的保守,不仅仅是简单地将新课改的知识点加入到考试卷中,更重要的是从题目的设置上体现了新课改的精神,注重学习能力和创新能力的挖掘,从这个意义上来讲,今年的这张北京卷是成功的,消除了许多老师之前的担心——担心北京卷过于求稳或者过于求新所带来的弊端。
其实试卷的难度并不是评价一张试卷好或者坏的标准,当然,试卷过于简单或者过于难以至于失去了区分度自然会遭人诟病,而笔者认为如何在一些平凡的知识点考察当中命题命出新意,命出思想,才是一张试卷的亮点所在,今年的这张北京卷,无疑还是有不少让人眼睛一亮的题目,未必是难题,却值得琢磨。
下面就一些具体问题来阐述一下解题思路,希望可以指点今后高三学生的一些复习方向。
选择题,第5题,考察知识点:极坐标系,在这个问题的设置上,命题人很巧妙地加入了一个乘积为0的现象,这违背了不少考生在之前的模拟考试中对于极坐标题的认识,认为就是简简单单的坐标转化,这一设置虽未增加多少难度,但构思仍然值得称赞。
选择题,第6题,考察知识点:常用逻辑,向量。
借助函数的背景,把几个小知识点灵活地放在一起,若略有粗心便可能失分。
选择题,第7题,考察知识点:线性规划,指数函数。
同样是求参数范围,这道题却能突破常规,最大值是3容易想,所有的a大于1却需要学生敏锐的观察力。
选择题,第8题,考察知识点:立体几何。
四个运动的点会让考生感觉不太舒服,而几何的美妙之处很大程度上就在于如何从运动中寻找不变,这也是一向北京市命题风格,09年的选择题最后一题也体现了这个风格。
2010年普通高考学校招生全国统一考试(北京卷)
1.集合P={x∈z|0idq=xidq3},M={x∈R|x^2idq=9},则P∩M=()A.{1,2}B.{0,1,2}C.{x|0idq=x idq 3}D.{x|0 idq =x idq =3}【答案】B【解析】P={0,1,2},M={x∈R|-3 idq =x idq =3}.∴P∩M={0,1,2},故选B.2.在等比数列{a_n}中,a_1=1,公比|q| ≠ 1.若a_m=a_1a_2a_3a_4a_5 ,则m=()(A)9 (B)10 (C)11 (D)12【答案】C【解析】a_m=a_1·a_2·a_3·a_4·a_5=a_3^5=a_1^5·q^10,又∵a_1=1.a_m=a_11, ∴m=11,故选C.3.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )A.B.C.D.【答案】C【解析】由正视图和左视图可知,去掉的部分位于左下方,故选C.4. 8 名学生和2 位第师站成一排合影,2 位老师不相邻的排法种数为( )A.A_8^8A_9^2B. A_8^8C_9^2C. A_8^8A_7^2D. A_8^8C_7^2【答案】A【解析】分两步,第一排先排8名学生有A_8^8种插法.再把两位老师插进9个空中,有A_9^2种插法,∴有A_8^8A_9^2种排法5. 极坐标方程(ρ-1)(θ −π )=(ρ≥0)表示的图形是( )A.两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线【答案】C【解析】ρ=1表示圆,θ=π表示一条射线,故选C.6. a、b为非零向量.“a ⊥b”是“函数f (x) = (xa +b) ·(xb −a)为一次函数”的( )A. 充分而不必要条件B. 必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】f(x)=a·bx^2+(b^2-a^2)x-a·b, a ⊥b <=>a·b=0.f(x)为一次函数=>a·b=0时f(x)有可能是常数函数∴选B.7.设不等式组{(x+y-11adq=0),(3x-y+3adq=0),(5x-3y+9idq=0)},表示的平面区域为D,若指数函数y= ax 的图像上存在区域D 上的点,则a 的取值范围是( )A. (1,3]B. [2,3]C . (1,2]D .[ 3, +∞ )【答案】A解析:画出可行域,当y=a^x过(2,9) 时,a^2=9 ,可得a=3,由指数函数图像性质可得当1diq a idq=3 时,y=a^x 图像与可行域有交点.8 .如图2,正方体ABCD- A_1 B_1 C _1D_1 的棱长为2,动点E、F 在棱A_1 B_1 上,动点P,Q 分别在棱AD,CD 上,若EF=1,A_1 E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积( )A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关【答案】D解析:∵DQ∥EF.∴DQ∥面PEF.当E、P 固定时,以△EPF 为底,Q点到面PEF的距离为定值.当P 、Q固定时,以△EFQ为底,S_(△EFQ)为定值,所以V_(PEFQ)与Q点和E点位置无关,既与x、y无关,与z有关,故选D.9.在复平面内,复数(2i/(1-i))对应的点的坐标为______【答案】(-1,1).解析:2i/(1-i)=(2i(1+i))/(1-i^2)=i-1=-1+i.∴对应点(-1,1)10.在△ABC 中,若b = 1,c = sqrt3 ,∠C=2π/3,则a =________答案:1解析:由正弦定理可得b/(sinB)=c/(sinC), ∴sinB=1/2又∵b idq c ∴B idq C, ∴∠B=π/6.∴∠A=π-(2π) /3-π/6=π/6 ∴∠A=∠B,∴a=b=1.11. 从某小学随机抽取100 名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
2010年高考《数学(理科)》试题及参考答案(北京卷)
2010年普通高等学校招生全国统一考试(北京卷)数学(理科)考试说明:本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
(1)答题前,考生先将自己的姓名、准考证号码填写清楚。
(2)请按照题号顺序在各题目的答题区内作答,在草稿纸和试卷上答题视为无效。
(3)保持卡面清洁,不得折叠、不要弄皱,不准使用涂改液和刮纸刀等用具。
第Ⅰ卷(选择题共60分)一.选择题(每题5分,共12小题,满分60分,每小题只有一个选项正确。
)1. 若集合,则A. B. C. D.2. 复数的共轭复数是A. B. C. D.3.已知,则的值是A. B. C. D.4. 抛物线的准线与双曲线的两条渐近线所围成的三角形面积是A. B. C. D.5. A、B两名同学在4次数学考试中的成绩统计如下面的茎叶图所示,若A、B的平均成绩分别是、,则下列结论正确的是A.>,B比A的成绩稳定B.<,B比A的成绩稳定C.>,A比B的成绩稳定D.<, A比B的成绩稳定6. 双曲线的左、右焦点分别为、,离心率为,过的直线与双曲线的右支交与A、B两点,若是以A为直角顶点的等腰直角三角形,则A. B. C. D.7. 函数在定义域内可导,其图像如图所示,记的导函数为,则不等式的解集为A.B.C.D.8.执行下面的程序框图,若,则输出的A.B.C.D.9. 已知某个几何体的三视图如图(正视图中的弧线是半圆),根据图中标出的尺寸,可得这个几何体的表面积是(单位:)A.B.C.D.10.现将一个边不等的凸五边形的各边进行染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则共有()种染色方法A.30 B.36 C.48 D.5011.下列命题中正确的一项是A.“”是“直线与直线相互平行”的充分不必要条件B.“直线垂直平面内无数条直线”是“直线垂直于平面”的充分条件C.已知a,b,c为非零向量,则“a•b=a•c”是“b=c”的充要条件D.,。
北京卷,高考数学理科卷
2010年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试··理科数学(北京卷)第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2010北京,理1)集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},则P ∩M 等于A.{1,2} B.{0,1,2} C.{x |0≤x <3} D.{x |0≤x ≤3}答案:B2.(2010北京,理2)在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于A.9B.10C.11D.12答案:C3.(2010北京,理3)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为正(主)视图 侧(左)视图A BC D答案:C4.(2010北京,理4)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为A.2988A A B.2988C A C.2788A A D.2788C A 答案:A5.(2010北京,理5)极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是A.两个圆 B.两条直线 C.一个圆和一条射线 D.一条直线和一条射线答案:C6.(2010北京,理6)a ,b 为非零向量.“a ⊥b ”是“函数f (x )=(x a +b )·(x b -a )为一次函数”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:B7.(2010北京,理7)设不等式组⎪⎩⎪⎨⎧≤+−≥+−≥−+0935,033,011y x y x y x 表示的平面区域为D .若指数函数y =a x的图象上存在区域D 上的点,则a 的取值范围是A.(1,3]B.[2,3]C.(1,2]D.[3,+∞)答案:A8.(2010北京,理8)如图,正方体ABCD —A 1B 1C 1D 1的棱长为2,动点E ,F 在棱A 1B 1上,动点P ,Q 分别在棱AD ,CD 上.若EF =1,A 1E =x ,DQ =y ,DP =z (x ,y ,z 大于零),则四面体PEFQ的体积1A.与x ,y ,z 都有关B.与x 有关,与y ,z 无关C.与y 有关,与x ,z 无关D.与z 有关,与x ,y 无关答案:D第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡的相应位置.9.(2010北京,理9)在复平面内,复数i-1i2对应的点的坐标为________.答案:(-1,1)10.(2010北京,理10)在△ABC 中,若b =1,c =3,∠C =3π2,则a =________.答案:111.(2010北京,理11)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130],[130,140],[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.0.0.0.0.答案:0.030312.(2010北京,理12)如图,⊙O 的弦ED ,CB 的延长线交于点A .若BD ⊥AE ,AB =4,BC =2,AD =3,则DE =________;CE =________.答案:52713.(2010北京,理13)已知双曲线2222b y a x −=1的离心率为2,焦点与椭圆92522y x +=1的焦点相同,那么双曲线的焦点坐标为________;渐近线方程为________.答案:(±4,0)3x ±y =014.(2010北京,理14)如图放置的边长为1的正方形PABC 沿x 轴滚动.设顶点P (x ,y )的轨迹方程是y =f (x ),则函数f (x )的最小正周期为________;y =f (x )在其两个相邻零点间的图象与x 轴所围区域的面积为________.说明:“正方形PABC 沿x 轴滚动”包括沿x 轴正方向和沿x 轴负方向滚动.沿x 轴正方向滚动指的是先以顶点A 为中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为中心顺时针旋转,如此继续.类似地,正方形PABC 可以沿x 轴负方向滚动.答案:4π+1三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.15.(2010北京,理15)已知函数f (x )=2cos2x +sin 2x -4cos x .(1)求f (3π)的值;(2)求f (x )的最大值和最小值.解:(1)f (3π)=2cos 3π2+sin 23π-4cos 3π=-1+43-2=-49.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3(cos x -32)2-37,x ∈R .因为cos x ∈[-1,1],所以,当cos x =-1时,f (x )取最大值6;当cos x =32时,f (x )取最小值-37.16.(2010北京,理16)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,CE ⊥AC ,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE ;(3)求二面角A -BE -D 的大小.(1)证明:设AC 与BD 交于点G .因为EF ∥AG ,且EF =1,AG =21AC =1,所以四边形AGEF 为平行四边形.所以AF ∥EG .因为EG ⊂平面BDE ,AF 平面BDE ,所以AF ∥平面BDE .(2)证明:因为正方形ABCD 和四边形ACEF 所在的平面互相垂直,且CE ⊥AC ,所以CE ⊥平面ABCD .如图,以C 为原点,建立空间直角坐标系C —xyz .则C (0,0,0),A (2,2,0),B (0,2,0),D (2,0,0),E (0,0,1),F (22,22,1).所以CF =(22,22,1),BE =(0,-2,1),DE =(-2,0,1).所以CF ·=0-1+1=0,CF ·=-1+0+1=0.所以CF ⊥BE ,CF ⊥DE .所以CF ⊥平面BDE .(3)解:由(2)知,CF =(22,22,1)是平面BDE 的一个法向量.设平面ABE 的法向量n =(x ,y ,z ),则n ·=0,n ·BE =0,即⎪⎩⎪⎨⎧=−⋅=⋅.0)1,2,0(),,(,0)0,0,2(),,(z y x z y x 所以x =0,且z =2y .令y =1,则z =2.所以n =(0,1,2).从而cos 〈n ,〉23=|CF |||n .因为二面角A -BE -D 为锐角,所以二面角A -BE -D 的大小为6π.17.(2010北京,理17)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为54,第二、第三门课程取得优秀成绩的概率分别为p 、q (p >q ),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为ξ0123P1256a b12524(1)求该生至少有1门课程取得优秀成绩的概率;(2)求p ,q 的值;(3)求数学期望E ξ.解:事件A i 表示“该生第i 门课程取得优秀成绩”,i =1,2,3.由题意知P (A 1)=54,P (A 2)=p ,P (A 3)=q .(1)由于事件“该生至少有1门课程取得优秀成绩”与事件“ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1-P (ξ=0)=1-1256=125119.(2)由题意知P (ξ=0)=P (1A 2A 3A )=511-p )(1-q )=1256,P (ξ=3)=P (A 1A 2A 3)=54pq =12524.整理得pq =256,p +q =1.由p >q ,可得p =53,q =52.(3)由题意知a =P (ξ=1)=P (A 12A 3A )+P (1A A 23A )+P (1A 2A A 3)=54(1-p )(1-q )+51p (1-q )+51(1-p )q =12537.b =P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=12558.E ξ=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=59.18.(2010北京,理18)已知函数f (x )=ln (1+x )-x +2k x 2(k ≥0).(1)当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间.解:(1)当k =2时,f (x )=ln (1+x )-x +x 2,f '(x )=x+11-1+2x .由于f (1)=ln2,f '(1)=23,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln2=23(x -1),即3x -2y +2ln2-3=0.(2)f '(x )=xk kx x +−+1)1(,x ∈(-1,+∞).当k =0时,f '(x )=-xx+1.所以,在区间(-1,0)上,f '(x )>0;在区间(0,+∞)上,f '(x )<0.故f (x )的单调递增区间是(-1,0),单调递减区间是(0,+∞).当0<k <1时,由f '(x )=x k kx x +−+1)1(=0,得x 1=0,x 2=k k−1>0.所以,在区间(-1,0)和(k k −1,+∞)上,f '(x )>0;在区间(0,kk−1)上,f '(x )<0.故f (x )的单调递增区间是(-1,0)和(k k −1,+∞),单调递减区间是(0,kk−1).当k =1时,f '(x )=xx +12.故f (x )的单调递增区间是(-1,+∞).当k >1时,由f '(x )=x k kx x +−+1)1(=0,得x 1=kk−1∈(-1,0),x 2=0.所以,在区间(-1,k k −1)和(0,+∞)上,f '(x )>0;在区间(kk−1,0)上,f '(x )<0.故f (x )的单调递增区间是(-1,k k −1)和(0,+∞),单调递减区间是(kk−1,0).19.(2010北京,理19)在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-31.(1)求动点P 的轨迹方程.(2)设直线AP 和BP 分别与直线x =3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.解:(1)因为点B 与点A (-1,1)关于原点O 对称,所以点B 的坐标为(1,-1).设点P 的坐标为(x ,y ).由题意得11+−x y ·11−+x y =-31,化简得x 2+3y 2=4(x ≠±1).故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1).(2)解法一:设点P 的坐标为(x 0,y 0),点M 、N 的坐标分别为(3,y M )、(3,y N ),则直线AP 的方程为y -1=1100+−x y (x +1),直线BP 的方程为y +1=1100−+x y (x -1).令x =3得y M =134000+−+x x y ,y N =132000−+−x x y .于是△PMN 的面积S △PMN =21|y M -y N |(3-x 0)=|x |)x (|y x |21320000−−+.又直线AB 的方程为x +y =0,|AB |=22,点P 到直线AB 的距离d =2||00y x +,于是△PAB 的面积S △PAB =21|AB |·d =|x 0+y 0|.当S △PAB =S △PMN 时,得|x 0+y 0|=|x |)y (|y x |o 2132000−−+.又|x 0+y 0|≠0,所以(3-x 0)2=|x 02-1|,解得x 0=35.因为20203y x +=4,所以y 0=±933.故存在点P 使得△PAB 与△PMN 的面积相等,此时点P 的坐标为(35,±933).解法二:若存在点P 使得△PAB 与△PMN 的面积相等,设点P 的坐标为(x 0,y 0).则21|PA |·|PB |sin ∠APB =21|PM |·|PN |sin ∠MPN .因为sin ∠APB =sin ∠MPN ,所以||||||||PB PN PM PA =.所以|1||3||3||1|0000−−=−+x x x x ,即(3-x 0)2=|2x -1|,解得x 0=35.因为20203y x +=4,所以y 0=±933.故存在点P 使得△PAB 与△PMN 的面积相等,此时点P 的坐标为(35,±933).20.(2010北京,理20)已知集合S n ={X |X =(x 1,x 2,…,x n ),x i ∈{0,1},i =1,2,…,n }(n ≥2).对于A =(a 1,a 2,…,a n ),B =(b 1,b 2,…,b n )∈S n ,定义A 与B 的差为A -B =(|a 1-b 1|,|a 2-b 2|,…,|a n -b n |);A 与B 之间的距离为d (A ,B )=∑=−ni i ib a1||..(1)证明:A ,B ,C ∈S n ,有A -B ∈S n ,且d (A -C ,B -C )=d (A ,B );(2)证明:A ,B ,C ∈S n ,d (A ,B ),d (A ,C ),d (B ,C )三个数中至少有一个是偶数;(3)设P ⊆S n ,P 中有m (m ≥2)个元素,记P 中所有两元素间距离的平均值为d (P ),证明:d (P )≤)1(2−m mn.证明:(1)设A =(a 1,a 2,…,a n ),B =(b 1,b 2,…,b n ),C =(c 1,c 2,…,c n )∈S n .因为a i ,b i ∈{0,1},所以|a i -b i |∈{0,1}(i =1,2,…,n ).从而A -B =(|a 1-b 1|,|a 2-b 2|,…,|a n -b n |)∈S n .又d (A-C ,B-C )=∑=ni 1||a i -c i |-|b i -c i ||,由题意知a i ,b i ,c i ∈{0,1}(i =1,2,…,n ).当c i =0时,||a i -c i |-|b i -c i ||=|a i -b i |;当c i =1时,||a i -c i |-|b i -c i ||=|(1-a i )-(1-b i )|=|a i -b i |.所以d (A-C ,B-C )=∑=−ni i ib a1||=d (A ,B ).(2)设A =(a 1,a 2,…,a n ),B =(b 1,b 2,…,b n ),C =(c 1,c 2,…,c n )∈S n ,d (A ,B )=k ,d (A ,C )=l ,d (B ,C )=h .记O =(0,0,…,0)∈S n ,由(1)可知d (A ,B )=d (A-A ,B-A )=d (O ,B-A )=k ,d (A ,C )=d (A-A ,C-A )=d (O ,C-A )=l ,d (B ,C )=d (B-A ,C-A )=h .所以|b i -a i |(i =1,2,…,n )中1的个数为k ,|c i -a i |(i =1,2,…,n )中1的个数为l .设t 是使|b i -a i |=|c i -a i |=1成立的i 的个数,则h =l +k -2t ,由此可知,k ,l ,h 三个数不可能都是奇数,即d (A,B ),d (A ,C ),d (B ,C )三个数中至少有一个是偶数.(3)∑∈=PB ,A m,B ,A d P d )(C 1)(2其中∑∈PB ,A B ,A d )(表示P 中所有两个元素间距离的总和.设P 中所有元素的第i 个位置的数字中共有t i 个1,m -t i 个0,则∑∈PB ,A B ,A d )(=∑=−ni iit m t 1)(.由于t i (m -t i )≤42m (i =1,2,…,n ),所以∑∈P B ,A B ,A d )(≤42nm .从而d (P )=∑∈P B ,A mB ,A d )(C 12≤22C 4mnm =.m mn)1(2−。
2010年全国统一高考数学试卷(理科)(新课标)(含解析版)
2010 年全国统一高考数学试卷(理科)(新课标)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2} 2.(5分)已知复数,是z 的共轭复数,则=()A.B.C.1 D.23.(5 分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2 4.(5分)如图,质点P 在半径为2 的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为()A.B.C.D.5.(5分)已知命题p1:函数y=2x﹣2﹣x 在R 为增函数,p2:函数y=2x+2﹣x 在R 为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2 和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q46.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000 粒,对于没有发芽的种子,每粒需再补种2 粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.4007.(5 分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2 或x>4} B.{x|x<0 或x>4}C.{x|x<0 或x>6} D.{x|x<﹣2 或x>2}9.(5 分)若,α是第三象限的角,则=()A.B.C.2D.﹣210.(5 分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa211.(5 分)已知函数,若a,b,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是()1 n +1 n A .(1,10) B .(5,6) C .(10,12) D .(20,24)12.(5 分)已知双曲线 E 的中心为原点,P (3,0)是 E 的焦点,过 P 的直线 l 与 E 相交于 A ,B 两点,且 AB 的中点为 N (﹣12,﹣15),则 E 的方程式为 ()A .B .C .D .二、填空题(共 4 小题,每小题 5 分,满分 20 分)13.(5 分)设 y=f (x )为区间[0,1]上的连续函数,且恒有 0≤f (x )≤1,可以用随机模拟方法近似计算积分,先产生两组(每组 N 个)区间[0,1]上的均匀随机数 x 1,x 2,…x N 和 y 1,y 2,…y N ,由此得到 N 个点(x i , y i )(i=1,2,…,N ),再数出其中满足 y i ≤f (x i )(i=1,2,…,N )的点数 N 1,那么由随机模拟方案可得积分的近似值为. 14.(5 分)正视图为一个三角形的几何体可以是(写出三种)15.(5 分)过点 A (4,1)的圆 C 与直线 x ﹣y=1 相切于点 B (2,1),则圆 C 的方程为.16.(5 分)在△ABC 中,D 为边 BC 上一点,BD=DC ,∠ADB=120°,AD=2,若 △ADC 的面积为,则∠BAC= .三、解答题(共 8 小题,满分 90 分)17.(12 分)设数列满足 a =2,a ﹣a =3•22n ﹣1 (1) 求数列{a n }的通项公式;(2) 令 b n =na n ,求数列{b n }的前 n 项和 S n .18.(12 分)如图,已知四棱锥 P ﹣ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为 H ,PH 是四棱锥的高,E 为 AD 中点(I ) 证明:PE ⊥BC(II ) 若∠APB=∠ADB=60°,求直线 PA 与平面 PEH 所成角的正弦值.19.(12 分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方 法从该地区调查了 500 位老年人,结果如表:性别 是否需要志愿者男 女需要 40 30 不需要160270(1) 估计该地区老年人中,需要志愿者提供帮助的比例;(2) 能否有 99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3) 根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.附:K 2=.20.(12 分)设 F 1,F 2 分别是椭圆的左、右焦点,过 F 1P (K 2≥k )0.050 0.010 0.0013.8416.63510.828斜率为1 的直线ℓ 与E 相交于A,B 两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E 的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E 的方程.21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0 时f(x)≥0,求a 的取值范围.22.(10 分)如图:已知圆上的弧,过C 点的圆的切线与BA 的延长线交于E 点,证明:(I)∠ACE=∠BCD.(II)BC2=BE•CD.23.(10 分)已知直线C1(t 为参数),C2(θ为参数),(I)当α=时,求C1 与C2 的交点坐标;(II)过坐标原点O 做C1 的垂线,垂足为A,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.24.(10 分)设函数f(x)=|2x﹣4|+1.(I)画出函数y=f(x)的图象:(II)若不等式f(x)≤ax 的解集非空,求a 的取值范围.2010 年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】先化简集合A 和B,注意集合B 中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题.2.(5分)已知复数,是z 的共轭复数,则=()A.B.C.1 D.2【考点】A5:复数的运算.【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选:A.【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算.3.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1B.y=2x﹣1C.y=﹣2x﹣3D.y=﹣2x﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1 处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x==2,得切线的斜率为2,所以k=2;﹣1所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4.(5分)如图,质点P 在半径为2 的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P 的位置到到x 轴距离来确定答案.【解答】解:通过分析可知当t=0 时,点P 到x 轴距离d 为,于是可以排除答案A,D,再根据当时,可知点P 在x 轴上此时点P 到x 轴距离d 为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.5.(5分)已知命题p1:函数y=2x﹣2﹣x 在R 为增函数,p2:函数y=2x+2﹣x 在R 为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2 和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【考点】2E:复合命题及其真假;4Q:指数函数与对数函数的关系.【专题】5L:简易逻辑.【分析】先判断命题p1 是真命题,P2 是假命题,故p1∨p2 为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1 是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2 是假命题.由此可知,q1 真,q2 假,q3 假,q4真.故选:C.【点评】只有p1 与P2 都是真命题时,p1∧p2 才是真命题.只要p1 与p2 中至少有一个真命题,p1∨p2 就是真命题.6.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000 粒,对于没有发芽的种子,每粒需再补种2 粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.400【考点】CH:离散型随机变量的期望与方差;CN:二项分布与n 次独立重复试验的模型.【专题】11:计算题;12:应用题.【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2 个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000 粒,没有发芽的种子数ξ 服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2 粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选:B.【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础性题目.7.(5 分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5 分)设偶函数 f (x )满足 f (x )=2x ﹣4(x ≥0),则{x |f (x ﹣2)>0}=( ) A .{x |x <﹣2 或 x >4} B .{x |x <0 或 x >4} C .{x |x <0 或x >6}D .{x |x <﹣2 或 x >2}【考点】3K :函数奇偶性的性质与判断. 【专题】11:计算题.【分析】由偶函数 f (x )满足 f (x )=2x ﹣4(x ≥0),可得 f (x )=f (|x |)=2|x |﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案. 【解答】解:由偶函数 f (x )满足 f (x )=2x ﹣4(x ≥0),可得 f (x )=f (|x |)=2|x |﹣4,则f (x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使|x ﹣2|>2 解得 x >4,或 x <0.应选:B .【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.9.(5 分)若,α 是第三象限的角,则 =( )A .B .C .2D .﹣2【考点】GF :三角函数的恒等变换及化简求值;GW :半角的三角函数.【专题】11:计算题.【分析】将欲求式 中的正切化成正余弦,还要注意条件中的角 α 与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.【点评】本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力.10.(5 分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa2【考点】LR:球内接多面体.【专题】11:计算题.【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a 的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选:B.【点评】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.11.(5 分)已知函数,若a,b,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.12.(5 分)已知双曲线E 的中心为原点,P(3,0)是E 的焦点,过P 的直线l 与E 相交于A,B 两点,且AB 的中点为N(﹣12,﹣15),则E 的方程式为()A.B.C.D.【考点】KB :双曲线的标准方程;KH :直线与圆锥曲线的综合. 【专题】11:计算题;5D :圆锥曲线的定义、性质与方程.【分析】已知条件易得直线 l 的斜率为 1,设双曲线方程,及 A ,B 点坐标代入方程联立相减得x 1+x2=﹣24,根据=,可求得 a 和【解答】解:由已知条件易得直线 l 的斜率为 k=k PN =1, 设双曲线方程为,A (x 1,y 1),B (x 2,y 2),则有 ,两式相减并结合 x 1+x 2=﹣24,y 1+y 2=﹣30 得 =,从而 k==1即 4b 2=5a 2,又 a 2+b 2=9, 解得 a 2=4,b 2=5,故选:B . 【点评】本题主要考查了双曲线的标准方程.考查了学生综合分析问题和解决问题的能力.二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)设 y=f (x )为区间[0,1]上的连续函数,且恒有 0≤f (x )≤1,可以用随机模拟方法近似计算积分 ,先产生两组(每组 N 个)区间[0,1]上的均匀随机数x1,x2,…x N 和y1,y2,…y N,由此得到N 个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【考点】69:定积分的应用;CE:模拟方法估计概率;CF:几何概型.【专题】11:计算题.【分析】要求∫f(x)dx 的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.【点评】本题考查几何概型模拟估计定积分值,以及定积分在面积中的简单应用,属于基础题.14.(5 分)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【考点】L7:简单空间图形的三视图.【专题】21:阅读型.【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.【点评】本题主要考查三视图以及常见的空间几何体的三视图,考查空间想象能力.15.(5 分)过点A(4,1)的圆C 与直线x﹣y=1 相切于点B(2,1),则圆C 的方程为(x﹣3)2+y2=2.【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【专题】16:压轴题.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则(4﹣a)2+(1﹣b)2=r2,(2﹣a)2+(1﹣b)2=r2,=﹣1,解得a=3,b=0,r=,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.【点评】命题意图:本题主要考查利用题意条件求解圆的方程,通常借助待定系数法求解.16.(5 分)在△ABC 中,D 为边BC 上一点,BD=DC,∠ADB=120°,AD=2,若△ADC 的面积为,则∠BAC= 60°.【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先根据三角形的面积公式利用△ADC 的面积求得DC,进而根据三角形ABC 的面积求得BD 和BC,进而根据余弦定理求得AB.最后在三角形ABC 中利用余弦定理求得cos∠BAC,求得∠BAC 的值.【解答】解:由△ADC 的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,1 n +1 n n n n n n,则=.故∠BAC=60°.【点评】本题主要考查解三角形中的边角关系及其面积等基础知识与技能,分析问题解决问题的能力以及相应的运算能力.三、解答题(共 8 小题,满分 90 分)17.(12 分)设数列满足 a =2,a ﹣a =3•22n ﹣1 (1) 求数列{a n }的通项公式;(2) 令 b n =na n ,求数列{b n }的前 n 项和 S n .【考点】8E :数列的求和;8H :数列递推式. 【专题】11:计算题.【分析】(Ⅰ)由题意得 a n +1=[(a n +1﹣a n )+(a n ﹣a n ﹣1)+…+(a 2﹣a 1)]+a 1=3(22n﹣1+22n ﹣3+…+2)+2=22(n +1)﹣1.由此可知数列{a}的通项公式为 a =22n ﹣1.(Ⅱ)由 b =na =n•22n ﹣1 知 S =1•2+2•23+3•25++n•22n ﹣1,由此入手可知答案. 【解答】解:(Ⅰ)由已知,当 n ≥1 时,a n +1=[(a n +1﹣a n )+(a n ﹣a n ﹣1)+…+(a 2﹣a 1)]+a 1=3(22n ﹣1+22n ﹣3+…+2)+2=3×+2=22(n +1)﹣1.而 a 1=2,所以数列{a n }的通项公式为 a n =22n ﹣1.(Ⅱ)由 b n =na n =n•22n ﹣1 知 S n =1•2+2•23+3•25+…+n•22n ﹣1①n n 从而 22S =1•23+2•25+…+n•22n +1② ①﹣②得(1﹣22)•S =2+23+25+…+22n ﹣1﹣n•22n +1. 即.【点评】本题主要考查数列累加法(叠加法)求数列通项、错位相减法求数列和等知识以及相应运算能力.18.(12 分)如图,已知四棱锥 P ﹣ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为 H ,PH 是四棱锥的高,E 为 AD 中点(I ) 证明:PE ⊥BC(II ) 若∠APB=∠ADB=60°,求直线 PA 与平面 PEH 所成角的正弦值.【考点】MA :向量的数量积判断向量的共线与垂直;MI :直线与平面所成的角.【专题】11:计算题;13:作图题;14:证明题;35:转化思想.【分析】以 H 为原点,HA ,HB ,HP 分别为 x ,y ,z 轴,线段 HA 的长为单位长,建立空间直角坐标系.(1) 表示,,计算,就证明 PE ⊥BC .(2) ∠APB=∠ADB=60°,求出 C ,P 的坐标,再求平面 PEH 的法向量,求向量,然后求与面 PEH 的法向量的数量积,可求直线 PA 与平面 PEH 所成角的正弦值.【解答】解:以 H 为原点,HA ,HB ,HP 分别为 x ,y ,z 轴,线段 HA 的长为单 位长,建立空间直角坐标系如图,则 A (1,0,0),B (0,1,0) (Ⅰ)设 C (m ,0,0),P (0,0,n )(m <0,n >0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m= ,n=1 ,故 C (﹣),设=(x,y,z)为平面PEH 的法向量则即因此可以取,由,可得所以直线PA 与平面PEH 所成角的正弦值为.【点评】本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.19.(12 分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500 位老年人,结果如表:性别男女是否需要志愿者需要40 30不需要160 270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.050 0.010 0.0013.841 6.635 10.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500 位老年人中有70 位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(12 分)设F1,F2 分别是椭圆的左、右焦点,过F1斜率为1 的直线ℓ 与E 相交于A,B 两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E 的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E 的方程.【考点】83:等差数列的性质;K3:椭圆的标准方程;K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l 的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2 和x1x2进而根据,求得a 和b 的关系,进而求得a 和c 的关系,离心率可得.(II)设AB 的中点为N(x0,y0),根据(1)则可分别表示出x0 和y0,根据|PA|=|PB|,推知直线PN 的斜率,根据求得c,进而求得a 和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l 的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B 两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则, 因为直线 AB 斜率为 1,|AB |=|x 1﹣x 2|=,得,故 a 2=2b 2 所以 E 的离心率(I ) 设 AB 的中点为 N (x 0,y 0),由(I )知. 由|PA |=|PB |,得 k PN =﹣1,即得 c=3,从而故椭圆 E 的方程为. 【点评】本题主要考查圆锥曲线中的椭圆性质以及直线与椭圆的位置关系,涉及等差数列知识,考查利用方程思想解决几何问题的能力及运算能力21.(12 分)设函数f (x )=e x ﹣1﹣x ﹣ax 2.(1) 若 a=0,求 f (x )的单调区间;(2) 若当 x ≥0 时 f (x )≥0,求 a 的取值范围.【考点】6B :利用导数研究函数的单调性.【专题】32:分类讨论.【分析】(1)先对函数 f (x )求导,导函数大于 0 时原函数单调递增,导函数小于 0 时原函数单调递减.(2)根据 e x ≥1+x 可得不等式 f′(x )≥x ﹣2ax=(1﹣2a )x ,从而可知当 1﹣2a ≥0,即时,f′(x )≥0 判断出函数 f (x )的单调性,得到答案.【解答】解:(1)a=0 时,f (x )=e x ﹣1﹣x ,f′(x )=e x ﹣1.当 x ∈(﹣∞,0)时,f'(x )<0;当 x ∈(0,+∞)时,f'(x )>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0 时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0 时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f (x)<0.综合得a 的取值范围为.【点评】本题主要考查利用导数研究函数性质、不等式恒成立问题以及参数取值范围问题,考查分类讨论、转化与划归解题思想及其相应的运算能力.22.(10 分)如图:已知圆上的弧,过C 点的圆的切线与BA 的延长线交于E 点,证明:(I)∠ACE=∠BCD.(II)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC 是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB 即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC 与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5 分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10 分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10 分)已知直线C1(t 为参数),C2(θ为参数),(I)当α=时,求C1 与C2 的交点坐标;(II)过坐标原点O 做C1 的垂线,垂足为A,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1 与C2 的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P 点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1 的普通方程为,C2 的普通方程为x2+y2=1.联立方程组,解得C1 与C2 的交点为(1,0).(Ⅱ)C1 的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA 的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A 点坐标为(sin2α,﹣cosαsinα),故当α变化时,P 点轨迹的参数方程为:,P 点轨迹的普通方程.故P 点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10 分)设函数f(x)=|2x﹣4|+1.(I)画出函数y=f(x)的图象:(II)若不等式f(x)≤ax 的解集非空,求a 的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x 的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax 的图象可知先寻找满足f(x)≤ax 的零界情况,从而求出a 的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax 的图象可知,极小值在点(2,1)当且仅当a<﹣2 或a≥ 时,函数y=f(x)与函数y=ax 的图象有交点.故不等式f(x)≤ax 的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
2010年北京市高考数学试卷(理科)(含解析版)
绝密★启用前2010年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题(共8小题,每小题5分,满分40分)1.(5分)(北京卷理1)集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=()A.{1,2}B.{0,1,2}C.{x|0≤x<3}D.{x|0≤x≤3} 2.(5分)在等比数列{a n}中,a1=1,公比q≠1.若a m=a1a2a3a4a5,则m=()A.9B.10C.11D.123.(5分)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A.B.C.D.4.(5分)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A92B.A88C92C.A88A72D.A88C72 5.(5分)极坐标方程(ρ﹣1)(θ﹣π)=0(ρ≥0)表示的图形是()A.两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线6.(5分)若,是非零向量,“⊥”是“函数为一次函数”的()A.充分而不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)设不等式组表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是()A.(1,3]B.[2,3]C.(1,2]D.[3,+∞] 8.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关二、填空题(共6小题,每小题5分,满分30分)9.(5分)在复平面内,复数对应的点的坐标为.10.(5分)在△ABC中,若b=1,c=,∠C=,则a=.11.(5分)从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=.若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.12.(5分)如图,⊙O的弦ED,CB的延长线交于点A.若BD⊥AE,AB=4,BC=2,AD=3,则DE=;CE=.13.(5分)已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为;渐近线方程为.14.(5分)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=2cos2x+sin2x﹣4cosx.(Ⅰ)求的值;(Ⅱ)求f(x)的最大值和最小值.16.(14分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE;(Ⅲ)求二面角A﹣BE﹣D的大小.17.(13分)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为ξ0123p a d(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;(Ⅱ)求数学期望Eξ.18.(13分)已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.19.(14分)在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.20.(13分)已知集合S n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…a n,),B=(b1,b2,…b n,)∈S n,定义A与B 的差为A﹣B=(|a1﹣b1|,|a2﹣b2|,…|a n﹣b n|);A与B之间的距离为(Ⅰ)证明:∀A,B,C∈S n,有A﹣B∈S n,且d(A﹣C,B﹣C)=d(A,B);(Ⅱ)证明:∀A,B,C∈S n,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数(Ⅲ)设P⊆S n,P中有m(m≥2)个元素,记P中所有两元素间距离的平均值为.证明:≤.2010年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(北京卷理1)集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=()A.{1,2}B.{0,1,2}C.{x|0≤x<3}D.{x|0≤x≤3}【考点】1E:交集及其运算.【专题】5J:集合.【分析】由题意集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},分别解出集合P,M,从而求出P∩M.【解答】解:∵集合P={x∈Z|0≤x<3},∴P={0,1,2},∵M={x∈Z|x2<9},∴M={﹣2,﹣1,0,1,2},∴P∩M={0,1,2},故选:B.【点评】此题考查简单的集合的运算,集合在高考的考查是以基础题为主,题目比较容易,复习中我们应从基础出发.2.(5分)在等比数列{a n}中,a1=1,公比q≠1.若a m=a1a2a3a4a5,则m=()A.9B.10C.11D.12【考点】87:等比数列的性质.【专题】54:等差数列与等比数列.【分析】把a1和q代入a m=a1a2a3a4a5,求得a m=a1q10,根据等比数列通项公式可得m.【解答】解:a m=a1a2a3a4a5=a1qq2q3q4=a1q10,因此有m=11【点评】本题主要考查了等比数列的性质.属基础题.3.(5分)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A.B.C.D.【考点】L7:简单空间图形的三视图.【专题】5Q:立体几何.【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形.【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.4.(5分)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A92B.A88C92C.A88A72D.A88C72【考点】D9:排列、组合及简单计数问题.【专题】5O:排列组合.【分析】本题要求两个教师不相邻,用插空法来解决问题,将所有学生先排列,有A88种排法,再将两位老师插入9个空中,共有A92种排法,根据分步计数原理得到结果.【解答】解:用插空法解决的排列组合问题,将所有学生先排列,有A88种排法,然后将两位老师插入9个空中,共有A92种排法,∴一共有A88A92种排法.故选:A.【点评】本题考查排列组合的实际应用,考查分步计数原理,是一个典型的排列组合问题,对于不相邻的问题,一般采用插空法来解.5.(5分)极坐标方程(ρ﹣1)(θ﹣π)=0(ρ≥0)表示的图形是()A.两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线【考点】Q4:简单曲线的极坐标方程.【专题】5S:坐标系和参数方程.【分析】由题中条件:“(ρ﹣1)(θ﹣π)=0”得到两个因式分别等于零,结合极坐标的意义即可得到.【解答】解:方程(ρ﹣1)(θ﹣π)=0⇒ρ=1或θ=π,ρ=1是半径为1的圆,θ=π是一条射线.故选:C.【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.6.(5分)若,是非零向量,“⊥”是“函数为一次函数”的()A.充分而不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件;9T:数量积判断两个平面向量的垂直关系.【专题】5L:简易逻辑.【分析】先判别必要性是否成立,根据一次函数的定义,得到,则成立,再判断充分性是否成立,由,不能推出函数为一次函数,因为时,函数是常数,而不是一次函数.【解答】解:,如,则有,如果同时有,则函数f(x)恒为0,不是一次函数,因此不充分,而如果f(x)为一次函数,则,因此可得,故该条件必要.故选:B.【点评】此题考查必要条件、充分条件与充要条件的判别,同时考查平面向量的数量积的相关运算.7.(5分)设不等式组表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是()A.(1,3]B.[2,3]C.(1,2]D.[3,+∞]【考点】49:指数函数的图象与性质;7B:二元一次不等式(组)与平面区域.【专题】59:不等式的解法及应用.【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用指数函数y=a x的图象特征,结合区域的角上的点即可解决问题.【解答】解:作出区域D的图象,联系指数函数y=a x的图象,由得到点C(2,9),当图象经过区域的边界点C(2,9)时,a可以取到最大值3,而显然只要a大于1,图象必然经过区域内的点.故选:A.【点评】这是一道略微灵活的线性规划问题,本题主要考查了用平面区域二元一次不等式组、指数函数的图象与性质,以及简单的转化思想和数形结合的思想,属中档题.8.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关【考点】LF:棱柱、棱锥、棱台的体积.【专题】5Q:立体几何.【分析】四面体PEFQ的体积,找出三角形△EFQ面积是不变量,P到平面的距离是变化的,从而确定选项.【解答】解:从图中可以分析出,△EFQ的面积永远不变,为面A1B1CD面积的,而当P点变化时,它到面A1B1CD的距离是变化的,因此会导致四面体体积的变化.故选:D.【点评】本题考查棱锥的体积,在变化中寻找不变量,是中档题.二、填空题(共6小题,每小题5分,满分30分)9.(5分)在复平面内,复数对应的点的坐标为(﹣1,1).【考点】A4:复数的代数表示法及其几何意义.【专题】5N:数系的扩充和复数.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行复数的乘法运算,得到最简形式即复数的代数形式,写出复数对应的点的坐标.【解答】解:∵,∴复数在复平面上对应的点的坐标是(﹣1,1)故答案为:(﹣1,1)【点评】本题考查复数的代数形式的乘除运算,考查复数在复平面上对应的点的坐标,要写点的坐标,需要把复数写成代数形式的标准形式,实部做横标,虚部做纵标,得到点的坐标.10.(5分)在△ABC中,若b=1,c=,∠C=,则a=1.【考点】HT:三角形中的几何计算.【专题】58:解三角形.【分析】先根据b,c,∠c,由正弦定理可得sinB,进而求得B,再根据正弦定理求得a.【解答】解:在△ABC中由正弦定理得,∴sinB=,∵b<c,故B=,则A=由正弦定理得∴a==1故答案为:1【点评】本题考查了应用正弦定理求解三角形问题.属基础题.11.(5分)从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=0.03.若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为3.【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】欲求a,可根据直方图中各个矩形的面积之和为1,列得一元一次方程,解出a,欲求选取的人数,可先由直方图找出三个区域内的学生总数,及其中身高在[140,150]内的学生人数,再根据分层抽样的特点,代入其公式求解.【解答】解:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为×10=3人.故答案为:0.03,3.【点评】本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1.同时也考查了分层抽样的特点,即每个层次中抽取的个体的概率都是相等的,都等于.12.(5分)如图,⊙O的弦ED,CB的延长线交于点A.若BD⊥AE,AB=4,BC=2,AD=3,则DE=5;CE=.【考点】N8:圆內接多边形的性质与判定.【专题】5Q:立体几何.【分析】首先根据题中圆的切线条件再依据割线定理求得一个线段AE的长,再根据勾股定理的线段的关系可求得CE的长度即可.【解答】解:首先由割线定理不难知道AB•AC=AD•AE,于是AE=8,DE=5,又BD⊥AE,故BE为直径,因此∠C=90°,由勾股定理可知CE2=AE2﹣AC2=28,故CE=.故填:5;.【点评】本题考查与圆有关的比例线段、平面几何的切割线定理,属容易题.13.(5分)已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为(4,0),(﹣4,0);渐近线方程为y=x.【考点】K4:椭圆的性质;KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】先根据椭圆的方程求出焦点坐标,得到双曲线的c值,再由离心率求出a的值,最后根据b=得到b的值,可得到渐近线的方程.【解答】解:∵椭圆的焦点为(4,0)(﹣4,0),故双曲线中的c=4,且满足=2,故a=2,b=,所以双曲线的渐近线方程为y=±=±x故答案为:(4,0),(﹣4,0);y=x【点评】本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.14.(5分)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为4;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为π+1.【考点】3A:函数的图象与图象的变换.【专题】51:函数的性质及应用.【分析】正方形PABC沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.【解答】解:从某一个顶点(比如A)落在x轴上的时候开始计算,到下一次A 点落在x轴上,这个过程中四个顶点依次落在了x轴上,而每两个顶点间距离为正方形的边长1,因此该函数的周期为4.下面考察P点的运动轨迹,不妨考察正方形向右滚动,P点从x轴上开始运动的时候,首先是围绕A点运动个圆,该圆半径为1,然后以B点为中心,滚动到C点落地,其间是以BP为半径,旋转90°,然后以C为圆心,再旋转90°,这时候以CP为半径,因此最终构成图象如下:故其与x轴所围成的图形面积为.故答案为:4,π+1【点评】本题考查的知识点是函数图象的变化,其中根据已知画出正方形转动过程中的一个周期内的图象,利用数形结合的思想对本题进行分析是解答本题的关键.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=2cos2x+sin2x﹣4cosx.(Ⅰ)求的值;(Ⅱ)求f(x)的最大值和最小值.【考点】GS:二倍角的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】(Ⅰ)把x=代入到f(x)中,利用特殊角的三角函数值求出即可;(Ⅱ)利用同角三角函数间的基本关系把sin2x变为1﹣cos2x,然后利用二倍角的余弦函数公式把cos2x变为2cos2x﹣1,得到f(x)是关于cosx的二次函数,利用配方法把f(x)变成二次函数的顶点式,根据cosx的值域,利用二次函数求最值的方法求出f(x)的最大值和最小值即可.【解答】解:(Ⅰ)=;(Ⅱ)f(x)=2(2cos2x﹣1)+(1﹣cos2x)﹣4cosx=3cos2x﹣4cosx﹣1=,因为cosx∈[﹣1,1],所以当cosx=﹣1时,f(x)取最大值6;当时,取最小值﹣.【点评】考查学生灵活运用同角三角函数间的基本关系及二倍角的余弦函数公式化间求值,此题以三角函数为平台,考查二次函数求最值的方法.16.(14分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE;(Ⅲ)求二面角A﹣BE﹣D的大小.【考点】LP:空间中直线与平面之间的位置关系;LS:直线与平面平行;LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)设AC与BD交于点G,则在平面BDE中,可以先证明四边形AGEF 为平行四边形⇒EG∥AF,就可证:AF∥平面BDE;(Ⅱ)先以C为原点,建立空间直角坐标系C﹣xyz.把对应各点坐标求出来,可以推出•=0和•=0,就可以得到CF⊥平面BDE(Ⅲ)先利用(Ⅱ)找到=(,,1),是平面BDE的一个法向量,再利用平面ABE的法向量•=0和•=0,求出平面ABE的法向量,就可以求出二面角A﹣BE﹣D的大小.【解答】解:证明:(I)设AC与BD交于点G,因为EF∥AG,且EF=1,AG=AC=1,所以四边形AGEF为平行四边形.所以AF∥EG.因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(II)因为正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,所以CE⊥平面ABCD.如图,以C为原点,建立空间直角坐标系C﹣xyz.则C(0,0,0),A(,,0),D(,0,0),E(0,0,1),F(,,1).所以=(,,1),=(0,﹣,1),=(﹣,0,1).所以•=0﹣1+1=0,•=﹣1+0+1=0.所以CF⊥BE,CF⊥DE,所以CF⊥平面BDE(III)由(II)知,=(,,1),是平面BDE的一个法向量,设平面ABE的法向量=(x,y,z),则•=0,•=0.即所以x=0,且z=y.令y=1,则z=.所以n=(),从而cos(,)=因为二面角A﹣BE﹣D为锐角,所以二面角A﹣BE﹣D为.【点评】本题综合考查直线和平面垂直的判定和性质和线面平行的推导以及二面角的求法.在证明线面平行时,其常用方法是在平面内找已知直线平行的直线.当然也可以用面面平行来推导线面平行.17.(13分)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为ξ0123p a d(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;(Ⅱ)求数学期望Eξ.【考点】C4:互斥事件与对立事件;C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(I)由题意知事件该生至少有一门课程取得优异成绩与事件“ξ=0”是对立的,要求该生至少有一门课程取得优秀成绩的概率,需要先知道该生没有一门课程优秀,根据对立事件的概率求出结果.(II)由题意可知,需要先求出分布列中的概率a和b的值,根据互斥事件的概率和相互独立事件同时发生的概率,得到这两个值,求出概率之后,问题就变为求期望.【解答】解:事件A表示“该生第i门课程取得优异成绩”,i=1,2,3.由题意可知(I)由于事件“该生至少有一门课程取得优异成绩”与事件“ξ=0”是对立的,∴该生至少有一门课程取得优秀成绩的概率是1﹣P(ξ=0)=1﹣(II)由题意可知,P(ξ=0)=,P(ξ=3)=整理得p=.∵a=P(ξ=1)===d=P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)﹣P(ξ=3)=∴Eξ=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)=【点评】本题课程互斥事件的概率,相互独立事件同时发生的概率,离散型随机变量的分布列和期望,是一道综合题,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题.18.(13分)已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】(I)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,然后求出切点坐标,再用点斜式写出直线方程,最后化简成一般式即可;(II)先求出导函数f'(x),讨论k=0,0<k<1,k=1,k>1四种情形,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0即可.【解答】解:(I)当k=2时,由于所以曲线y=f(x)在点(1,f(1))处的切线方程为.即3x﹣2y+2ln2﹣3=0(II)f'(x)=﹣1+kx(x>﹣1)当k=0时,因此在区间(﹣1,0)上,f'(x)>0;在区间(0,+∞)上,f'(x)<0;所以f(x)的单调递增区间为(﹣1,0),单调递减区间为(0,+∞);当0<k<1时,,得;因此,在区间(﹣1,0)和上,f'(x)>0;在区间上,f'(x)<0;即函数f(x)的单调递增区间为(﹣1,0)和,单调递减区间为(0,);当k=1时,.f(x)的递增区间为(﹣1,+∞)当k>1时,由,得;因此,在区间和(0,+∞)上,f'(x)>0,在区间上,f'(x)<0;即函数f(x)的单调递增区间为和(0,+∞),单调递减区间为.【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及函数的单调性等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想、分类讨论的数学思想,属于基础题.19.(14分)在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.【考点】HT:三角形中的几何计算;IT:点到直线的距离公式;J3:轨迹方程.【专题】5D:圆锥曲线的定义、性质与方程;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点P的坐标为(x,y),先分别求出直线AP与BP的斜率,再利用直线AP与BP的斜率之间的关系即可得到关系式,化简后即为动点P的轨迹方程;(Ⅱ)对于存在性问题可先假设存在,由面积公式得:.根据角相等消去三角函数得比例式,最后得到关于点P的纵坐标的方程,解之即得.【解答】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).设点P的坐标为(x,y)化简得x2+3y2=4(x≠±1).故动点P轨迹方程为x2+3y2=4(x≠±1)(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)则.因为sin∠APB=sin∠MPN,所以所以=即(3﹣x0)2=|x02﹣1|,解得因为x02+3y02=4,所以故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为().【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.20.(13分)已知集合S n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…a n,),B=(b1,b2,…b n,)∈S n,定义A与B 的差为A﹣B=(|a1﹣b1|,|a2﹣b2|,…|a n﹣b n|);A与B之间的距离为(Ⅰ)证明:∀A,B,C∈S n,有A﹣B∈S n,且d(A﹣C,B﹣C)=d(A,B);(Ⅱ)证明:∀A,B,C∈S n,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数(Ⅲ)设P⊆S n,P中有m(m≥2)个元素,记P中所有两元素间距离的平均值为.证明:≤.【考点】F4:进行简单的合情推理.【专题】16:压轴题;5M:推理和证明.【分析】(Ⅰ)因为每个数位上都是0或者1,取差的绝对值仍然是0或者1,符合S n的要求.然后是减去C的数位,不管减去的是0还是1,每一个a和每一个b都是同时减去的,因此不影响他们原先的差.(Ⅱ)先比较A和B有几个不同(因为距离就是不同的有几个),然后比较A和C有几个不同,这两者重复的(就是某一位上A和B不同,A和C不同,那么这一位上B和C 就相同)去掉两次(因为在前两次比较中各计算了一次),剩下的就是B和C的不同数目,很容易得到这样的关系式:h=k+l﹣2i,从而三者不可能同为奇数.(Ⅲ)首先理解P中会出现C m2个距离,所以平均距离就是距离总和再除以C m2,而距离的总和仍然可以分解到每个数位上,第一位一共产生了多少个不同,第二位一共产生了多少个不同,如此下去,直到第n位.然后思考,第一位一共m个数,只有0和1会产生一个单位距离,因此只要分开0和1的数目即可,等算出来,一切就水到渠成了.此外,这个问题需要注意一下数学语言的书写规范.【解答】解:(1)设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n因a i,b i∈0,1,故|a i﹣b i|∈0,1,(i=1,2,…,n)a1b1∈0,1,即A﹣B=(|a1﹣b1|,|a2﹣b2|,…,|a n﹣b n|)∈S n又a i,b i,c i∈(0,1),i=1,2,…,n当c i=0时,有||a i﹣c i|﹣|b i﹣c i||=|a i﹣b i|;当c i=1时,有||a i﹣c i|﹣|b i﹣c i||=|(1﹣a i)﹣(1﹣b i)=|a i﹣b i|故(2)设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n记d(A,B)=k,d(A,C)=l,d(B,C)=h记O=(0,0,…,0)∈S n,由第一问可知:d(A,B)=d(A﹣A,B﹣A),d=(O,B﹣A)=kd(A,C)=d(A﹣A,C﹣A)=d(O,C﹣A)=ld(B,C)=d(B﹣A,C﹣A)=h即|b i﹣a i|中1的个数为k,|c i﹣a i|中1的个数为l,(i=1,2,…,n)设t是使|b i﹣a i|=|c i﹣a i|=1成立的i的个数,则有h=k+l﹣2t,由此可知,k,l,h不可能全为奇数,即d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.(3)显然P中会产生C m2个距离,也就是说,其中表示P中每两个元素距离的总和.分别考察第i个位置,不妨设P中第i个位置一共出现了t i个1,那么自然有m ﹣t i个0,因此在这个位置上所产生的距离总和为,(i=1,2,…,n),那么n个位置的总和即【点评】本题是综合考查集合、数列与推理综合的应用,这道题目的难点主要出现在读题上,需要仔细分析,以找出解题的突破点.题目所给的条件其实包含两个定义,第一个是关于S n的,其实S n中的元素就是一个n维的坐标,其中每个坐标值都是0或者1,也可以这样理解,就是一个n位数字的数组,每个数字都只能是0和1,第二个定义叫距离,距离定义在两者之间,如果直观理解就是看两个数组有多少位不同,因为只有0和1才能产生一个单位的距离,因此这个大题最核心的就是处理数组上的每一位数,然后将处理的结果综合起来,就能看到整体的性质了.。
2010年高考《数学(理科)》试题及参考答案(北京卷)
建设幸福中国河北省承德市宽城县育才中学七年四班袁佳惠为了推翻帝国主义,封建主义和官僚资本主义这压在中国人民头上多年的“三座大山”,无数仁人志士抛头颅洒热血无数革命先烈为了打倒国民党反动派,为了建立新中国,不怕牺牲,前仆后继。
今天的幸福生活是多么来之不易啊!1949年,中华人民共和国成立开启了中国历史的新纪元。
新中国的诞生,标志着中华民族复兴的第一项历史任务,即民族独立和人民解放的胜利完成。
同时,又把中华民族复兴的第二项任务,即实现国家富强和人民幸福,提到了中国共产党人的面前。
中国共产党团结带领全国各族人民,自力更生,艰苦奋斗,克服各种艰难险阻逐步把一个一穷二白、积贫积弱的旧中国,变成一个生机勃勃、奋发前进的社会主义国家。
祖国的繁荣昌盛来之不易,所以我们应该更加努力学习、工作,创设幸福中国!然而,幸福不会从天上掉下来,建设“幸福中国”是靠我们没一个人的努力奋斗才能实现的。
幸福是个人幸福与国家强盛的统一,也是自我实现与无私奉献的统一。
每一个社会成员,都有责任和义务为他人、为社会的幸福做贡献。
艰辛的事业、艰巨的任务、艰难的环境、艰险的条件,需要发扬艰苦奋斗的革命精神。
大庆石油工人王进喜“宁可少活二十年,拼命也要拿下大庆油田”的铁人气概“两弹一星”元勋“献身国防科技,甘当无名英雄的思想境界,”援藏干布孔繁森“鞠躬尽瘁为人民,雪域高原显忠魂”的赤诚之心;给水利工程团团长李国安“草原沙漠寻甘泉,人民心中树丰碑的高尚情操;下水管道工人徐虎“脏了我一个,干净千万家”的宽广胸怀;售票员李素丽“全心全意为乘客,热情服务送爱心”的工作态度;海空卫士王伟“勇斗霸权不畏死,捍卫主权献青春”的革命英雄主义;党的好干部郑培民“做官先做人,万事民为先,”埋头苦干、扎实工作的实为准则,这些都是在改革开放和现在化建设新时期,坚持和发扬艰苦奋斗的充分体现。
中华人民在党的领导下,经过90多年的艰苦奋斗,谱写了中华民族发展史上最壮丽的篇章。
2010年北京市高考理科数学试卷与答案
2010 年普通高等学校招生全国统一考试数学(理) 第 I 卷选择题(共40 分) 一、 本大题共 8 小题,每小题5 分,共 40 分。
在每小题列出的4 个选项中,选出符合题目要求的一项。
1, 集合 P x Z | 0 x 3 , M x R | x29 ,则 P M( A ) 1,2 ( B ) 0,1,2 ( C ) x | 0 x 3 ( D ) x |0x 32,在等比数列 a n中, a1 1,公比 q 1.若 a m a1a2 a3 a4 a5 ,则m(A )9 ( B )10 ( C ) 11 3,一个长方体去掉一个小长方体,所得集( D ) 12 合体的正(主)视图与侧(左)视图分别如 右图所示,则该几何体的俯视图为正(主)视图侧(左)视图( A )(B )( C ) (D )4,8 名学生和 2 位老师站成一排合影, 2 位老师不相邻的排法总数为(A ) A 88 A 92 ( B ) A 88C 92 ( C ) A 88A 72 ( D ) A 88 C 925,极坐标方程(1)( ) 0(0) 表示的图形是 (A )两个圆 ( B )两条直线(C )一个圆和一条射线 ( D )一条直线和一条射线6, a, b 为非零向量,“ a b ”是“函数 f( x) ( xa b) ( xb a) 为一次函数”的(A )充分而不必要条件 ( B )必要而不充分条件(C )充分必要条件 ( D )既不充分也不必要条件x y 11 0a x 的图象上7,设不等式组3x y 3 0 表示的平面区域为D,若指数函数y存在5x 3y9 0区域 D 上的点,则 a 的取值范围是(A) (1,3] ( B) 2,3 ( C) (1,2] ( D) [3, )8,如图,正方体ABCD A1 B1C1 D1的棱长D1C1为 2 ,动点 E, F 在棱 A1 B1上,动点P,Q E FB1分别在棱AD ,CD 上,若A1E F1 1, A E , x D ,(Qx, y, zy大 DP zQ CD于零),则四面体P EFQ 的体积(A)与 x, y, z 都有关(B)与 x 有关,与y, z 无关(C)与 y 有关,与x, z 无关(D)与 z 有关,与x, y 无关PA B第II 卷(共 110 分)二、填空题:本大题共6 小题,每题5 分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年北京市高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)(北京卷理1)集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=()A.{1,2}B.{0,1,2}C.{x|0≤x<3}D.{x|0≤x≤3}2.(5分)在等比数列{a n}中,a1=1,公比q≠1.若a m=a1a2a3a4a5,则m=()A.9 B.10 C.11 D.123.(5分)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A. B. C. D.4.(5分)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A92B.A88C92C.A88A72D.A88C725.(5分)极坐标方程(ρ﹣1)(θ﹣π)=0(ρ≥0)表示的图形是()A.两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线6.(5分)若,是非零向量,“⊥”是“函数为一次函数”的()A.充分而不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)设不等式组表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是()A.(1,3]B.[2,3]C.(1,2]D.[3,+∞]8.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关二、填空题(共6小题,每小题5分,满分30分)9.(5分)在复平面内,复数对应的点的坐标为.10.(5分)在△ABC中,若b=1,c=,∠C=,则a=.11.(5分)从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=.若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.12.(5分)如图,⊙O的弦ED,CB的延长线交于点A.若BD⊥AE,AB=4,BC=2,AD=3,则DE=;CE=.13.(5分)已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为;渐近线方程为.14.(5分)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=2cos2x+sin2x﹣4cosx.(Ⅰ)求的值;(Ⅱ)求f(x)的最大值和最小值.16.(14分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE;(Ⅲ)求二面角A﹣BE﹣D的大小.17.(13分)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为ξ0123p a d(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;(Ⅱ)求数学期望Eξ.18.(13分)已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.19.(14分)在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.20.(13分)已知集合S n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…a n,),B=(b1,b2,…b n,)∈S n,定义A与B的差为A﹣B=(|a1﹣b1|,|a2﹣b2|,…|a n﹣b n|);A与B之间的距离为(Ⅰ)证明:∀A,B,C∈S n,有A﹣B∈S n,且d(A﹣C,B﹣C)=d(A,B);(Ⅱ)证明:∀A,B,C∈S n,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数(Ⅲ)设P⊆S n,P中有m(m≥2)个元素,记P中所有两元素间距离的平均值为.证明:≤.2010年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2010•北京)(北京卷理1)集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=()A.{1,2}B.{0,1,2}C.{x|0≤x<3}D.{x|0≤x≤3}【分析】由题意集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},分别解出集合P,M,从而求出P∩M.【解答】解:∵集合P={x∈Z|0≤x<3},∴P={0,1,2},∵M={x∈Z|x2<9},∴M={﹣2,﹣1,0,1,2},∴P∩M={0,1,2},故选B.2.(5分)(2010•北京)在等比数列{a n}中,a1=1,公比q≠1.若a m=a1a2a3a4a5,则m=()A.9 B.10 C.11 D.12【分析】把a1和q代入a m=a1a2a3a4a5,求得a m=a1q10,根据等比数列通项公式可得m.【解答】解:a m=a1a2a3a4a5=a1qq2q3q4=a1q10,因此有m=113.(5分)(2010•北京)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A. B. C. D.【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形.【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.4.(5分)(2010•北京)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A92B.A88C92C.A88A72D.A88C72【分析】本题要求两个教师不相邻,用插空法来解决问题,将所有学生先排列,有A88种排法,再将两位老师插入9个空中,共有A92种排法,根据分步计数原理得到结果.【解答】解:用插空法解决的排列组合问题,将所有学生先排列,有A88种排法,然后将两位老师插入9个空中,共有A92种排法,∴一共有A88A92种排法.故选A.5.(5分)(2010•北京)极坐标方程(ρ﹣1)(θ﹣π)=0(ρ≥0)表示的图形是()A.两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线【分析】由题中条件:“(ρ﹣1)(θ﹣π)=0”得到两个因式分别等于零,结合极坐标的意义即可得到.【解答】解:方程(ρ﹣1)(θ﹣π)=0⇒ρ=1或θ=π,ρ=1是半径为1的圆,θ=π是一条射线.故选C.6.(5分)(2010•北京)若,是非零向量,“⊥”是“函数为一次函数”的()A.充分而不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】先判别必要性是否成立,根据一次函数的定义,得到,则成立,再判断充分性是否成立,由,不能推出函数为一次函数,因为时,函数是常数,而不是一次函数.【解答】解:,如,则有,如果同时有,则函数f(x)恒为0,不是一次函数,因此不充分,而如果f(x)为一次函数,则,因此可得,故该条件必要.故答案为B.7.(5分)(2010•北京)设不等式组表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是()A.(1,3]B.[2,3]C.(1,2]D.[3,+∞]【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用指数函数y=a x的图象特征,结合区域的角上的点即可解决问题.【解答】解:作出区域D的图象,联系指数函数y=a x的图象,由得到点C(2,9),当图象经过区域的边界点C(2,9)时,a可以取到最大值3,而显然只要a大于1,图象必然经过区域内的点.故选:A.8.(5分)(2010•北京)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F 在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关【分析】四面体PEFQ的体积,找出三角形△EFQ面积是不变量,P到平面的距离是变化的,从而确定选项.【解答】解:从图中可以分析出,△EFQ的面积永远不变,为面A1B1CD面积的,而当P点变化时,它到面A1B1CD的距离是变化的,因此会导致四面体体积的变化.故选D.二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2010•北京)在复平面内,复数对应的点的坐标为(﹣1,1).【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行复数的乘法运算,得到最简形式即复数的代数形式,写出复数对应的点的坐标.【解答】解:∵,∴复数在复平面上对应的点的坐标是(﹣1,1)故答案为:(﹣1,1)10.(5分)(2010•北京)在△ABC中,若b=1,c=,∠C=,则a=1.【分析】先根据b,c,∠c,由正弦定理可得sinB,进而求得B,再根据正弦定理求得a.【解答】解:在△ABC中由正弦定理得,∴sinB=,∵b<c,故B=,则A=由正弦定理得∴a==1故答案为:111.(5分)(2010•北京)从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=0.03.若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为3.【分析】欲求a,可根据直方图中各个矩形的面积之和为1,列得一元一次方程,解出a,欲求选取的人数,可先由直方图找出三个区域内的学生总数,及其中身高在[140,150]内的学生人数,再根据分层抽样的特点,代入其公式求解.【解答】解:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为×10=3人.故答案为:0.03,3.12.(5分)(2010•北京)如图,⊙O的弦ED,CB的延长线交于点A.若BD⊥AE,AB=4,BC=2,AD=3,则DE=5;CE=.【分析】首先根据题中圆的切线条件再依据割线定理求得一个线段AE的长,再根据勾股定理的线段的关系可求得CE的长度即可.【解答】解:首先由割线定理不难知道AB•AC=AD•AE,于是AE=8,DE=5,又BD⊥AE,故BE为直径,因此∠C=90°,由勾股定理可知CE2=AE2﹣AC2=28,故CE=.故填:5;.13.(5分)(2010•北京)已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为(4,0),(﹣4,0);渐近线方程为y=x.【分析】先根据椭圆的方程求出焦点坐标,得到双曲线的c值,再由离心率求出a的值,最后根据b=得到b的值,可得到渐近线的方程.【解答】解:∵椭圆的焦点为(4,0)(﹣4,0),故双曲线中的c=4,且满足=2,故a=2,b=,所以双曲线的渐近线方程为y=±=±x故答案为:(4,0),(﹣4,0);y=x14.(5分)(2010•北京)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为4;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为π+1.【分析】正方形PABC沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x 轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.【解答】解:从某一个顶点(比如A)落在x轴上的时候开始计算,到下一次A 点落在x轴上,这个过程中四个顶点依次落在了x轴上,而每两个顶点间距离为正方形的边长1,因此该函数的周期为4.下面考察P点的运动轨迹,不妨考察正方形向右滚动,P点从x轴上开始运动的时候,首先是围绕A点运动个圆,该圆半径为1,然后以B点为中心,滚动到C点落地,其间是以BP为半径,旋转90°,然后以C为圆心,再旋转90°,这时候以CP为半径,因此最终构成图象如下:故其与x轴所围成的图形面积为.故答案为:4,π+1三、解答题(共6小题,满分80分)15.(13分)(2010•北京)已知函数f(x)=2cos2x+sin2x﹣4cosx.(Ⅰ)求的值;(Ⅱ)求f(x)的最大值和最小值.【分析】(Ⅰ)把x=代入到f(x)中,利用特殊角的三角函数值求出即可;(Ⅱ)利用同角三角函数间的基本关系把sin2x变为1﹣cos2x,然后利用二倍角的余弦函数公式把cos2x变为2cos2x﹣1,得到f(x)是关于cosx的二次函数,利用配方法把f(x)变成二次函数的顶点式,根据cosx的值域,利用二次函数求最值的方法求出f(x)的最大值和最小值即可.【解答】解:(Ⅰ)=;(Ⅱ)f(x)=2(2cos2x﹣1)+(1﹣cos2x)﹣4cosx=3cos2x﹣4cosx﹣1=,因为cosx∈[﹣1,1],所以当cosx=﹣1时,f(x)取最大值6;当时,取最小值﹣.16.(14分)(2010•北京)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE;(Ⅲ)求二面角A﹣BE﹣D的大小.【分析】(Ⅰ)设AC与BD交于点G,则在平面BDE中,可以先证明四边形AGEF 为平行四边形⇒EG∥AF,就可证:AF∥平面BDE;(Ⅱ)先以C为原点,建立空间直角坐标系C﹣xyz.把对应各点坐标求出来,可以推出•=0和•=0,就可以得到CF⊥平面BDE(Ⅲ)先利用(Ⅱ)找到=(,,1),是平面BDE的一个法向量,再利用平面ABE的法向量•=0和•=0,求出平面ABE的法向量,就可以求出二面角A﹣BE﹣D的大小.【解答】解:证明:(I)设AC与BD交于点G,因为EF∥AG,且EF=1,AG=AC=1,所以四边形AGEF为平行四边形.所以AF∥EG.因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(II)因为正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,所以CE⊥平面ABCD.如图,以C为原点,建立空间直角坐标系C﹣xyz.则C(0,0,0),A(,,0),D(,0,0),E(0,0,1),F(,,1).所以=(,,1),=(0,﹣,1),=(﹣,0,1).所以•=0﹣1+1=0,•=﹣1+0+1=0.所以CF⊥BE,CF⊥DE,所以CF⊥平面BDE(III)由(II)知,=(,,1),是平面BDE的一个法向量,设平面ABE的法向量=(x,y,z),则•=0,•=0.即所以x=0,且z=y.令y=1,则z=.所以n=(),从而cos(,)=因为二面角A﹣BE﹣D为锐角,所以二面角A﹣BE﹣D为.17.(13分)(2010•北京)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为p,q (p>q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为ξ0123p a d(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;(Ⅱ)求数学期望Eξ.【分析】(I)由题意知事件该生至少有一门课程取得优异成绩与事件“ξ=0”是对立的,要求该生至少有一门课程取得优秀成绩的概率,需要先知道该生没有一门课程优秀,根据对立事件的概率求出结果.(II)由题意可知,需要先求出分布列中的概率a和b的值,根据互斥事件的概率和相互独立事件同时发生的概率,得到这两个值,求出概率之后,问题就变为求期望.【解答】解:事件A表示“该生第i门课程取得优异成绩”,i=1,2,3.由题意可知(I)由于事件“该生至少有一门课程取得优异成绩”与事件“ξ=0”是对立的,∴该生至少有一门课程取得优秀成绩的概率是1﹣P(ξ=0)=1﹣(II)由题意可知,P(ξ=0)=,P(ξ=3)=整理得p=.∵a=P(ξ=1)===d=P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)﹣P(ξ=3)=∴Eξ=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)=18.(13分)(2010•北京)已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.【分析】(I)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,然后求出切点坐标,再用点斜式写出直线方程,最后化简成一般式即可;(II)先求出导函数f'(x),讨论k=0,0<k<1,k=1,k>1四种情形,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0即可.【解答】解:(I)当K=2时,由于所以曲线y=f(x)在点(1,f(1))处的切线方程为.即3x﹣2y+2ln2﹣3=0(II)f'(x)=﹣1+kx(x>﹣1)当k=0时,因此在区间(﹣1,0)上,f'(x)>0;在区间(0,+∞)上,f'(x)<0;所以f(x)的单调递增区间为(﹣1,0),单调递减区间为(0,+∞);当0<k<1时,,得;因此,在区间(﹣1,0)和上,f'(x)>0;在区间上,f'(x)<0;即函数f(x)的单调递增区间为(﹣1,0)和,单调递减区间为(0,);当k=1时,.f(x)的递增区间为(﹣1,+∞)当k>1时,由,得;因此,在区间和(0,+∞)上,f'(x)>0,在区间上,f'(x)<0;即函数f(x)的单调递增区间为和(0,+∞),单调递减区间为.19.(14分)(2010•北京)在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.【分析】(Ⅰ)设点P的坐标为(x,y),先分别求出直线AP与BP的斜率,再利用直线AP与BP的斜率之间的关系即可得到关系式,化简后即为动点P的轨迹方程;(Ⅱ)对于存在性问题可先假设存在,由面积公式得:.根据角相等消去三角函数得比例式,最后得到关于点P的纵坐标的方程,解之即得.【解答】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).设点P的坐标为(x,y)化简得x2+3y2=4(x≠±1).故动点P轨迹方程为x2+3y2=4(x≠±1)(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)则.因为sin∠APB=sin∠MPN,所以所以=即(3﹣x0)2=|x02﹣1|,解得因为x02+3y02=4,所以故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为().20.(13分)(2010•北京)已知集合S n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…a n,),B=(b1,b2,…b n,)∈S n,定义A 与B的差为A﹣B=(|a1﹣b1|,|a2﹣b2|,…|a n﹣b n|);A与B之间的距离为(Ⅰ)证明:∀A,B,C∈S n,有A﹣B∈S n,且d(A﹣C,B﹣C)=d(A,B);(Ⅱ)证明:∀A,B,C∈S n,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数(Ⅲ)设P⊆S n,P中有m(m≥2)个元素,记P中所有两元素间距离的平均值为.证明:≤.【分析】(Ⅰ)因为每个数位上都是0或者1,取差的绝对值仍然是0或者1,符合S n的要求.然后是减去C的数位,不管减去的是0还是1,每一个a和每一个b都是同时减去的,因此不影响他们原先的差.(Ⅱ)先比较A和B有几个不同(因为距离就是不同的有几个),然后比较A和C有几个不同,这两者重复的(就是某一位上A和B不同,A和C不同,那么这一位上B和C 就相同)去掉两次(因为在前两次比较中各计算了一次),剩下的就是B和C的不同数目,很容易得到这样的关系式:h=k+l﹣2i,从而三者不可能同为奇数.(Ⅲ)首先理解P中会出现C m2个距离,所以平均距离就是距离总和再除以C m2,而距离的总和仍然可以分解到每个数位上,第一位一共产生了多少个不同,第二位一共产生了多少个不同,如此下去,直到第n位.然后思考,第一位一共m个数,只有0和1会产生一个单位距离,因此只要分开0和1的数目即可,等算出来,一切就水到渠成了.此外,这个问题需要注意一下数学语言的书写规范.【解答】解:(1)设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n因a i,b i∈0,1,故|a i﹣b i|∈0,1,(i=1,2,…,n)a1b1∈0,1,即A﹣B=(|a1﹣b1|,|a2﹣b2|,…,|a n﹣b n|)∈S n又a i,b i,c i∈(0,1),i=1,2,…,n当c i=0时,有||a i﹣c i|﹣|b i﹣c i||=|a i﹣b i|;当c i=1时,有||a i﹣c i|﹣|b i﹣c i||=|(1﹣a i)﹣(1﹣b i)=|a i﹣b i|故(2)设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n 记d(A,B)=k,d(A,C)=l,d(B,C)=h记O=(0,0,…,0)∈S n,由第一问可知:d(A,B)=d(A﹣A,B﹣A),d=(O,B﹣A)=kd(A,C)=d(A﹣A,C﹣A)=d(O,C﹣A)=ld(B,C)=d(B﹣A,C﹣A)=h即|b i﹣a i|中1的个数为k,|c i﹣a i|中1的个数为l,(i=1,2,…,n)设t是使|b i﹣a i|=|c i﹣a i|=1成立的i的个数,则有h=k+l﹣2t,由此可知,k,l,h不可能全为奇数,即d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.(3)显然P中会产生C m2个距离,也就是说,其中表示P中每两个元素距离的总和.分别考察第i个位置,不妨设P中第i个位置一共出现了t i个1,那么自然有m ﹣t i个0,因此在这个位置上所产生的距离总和为,(i=1,2,…,n),那么n个位置的总和即参与本试卷答题和审题的老师有:zhiyuan;zhwsd;qiss;涨停;yhx01248;xuanlv;wsj1012;geyanli;sllwyn;庞会丽;minqi5;Linaliu(排名不分先后)菁优网2017年2月3日。