苏教版初一数学(上册)知识点汇总

合集下载

苏教版七年级数学上册基本知识点

苏教版七年级数学上册基本知识点

苏教版七年级数学上册基本知识点苏教版七年级数学知识点一、有理数1、正数:比0大的数是正数;2、负数:比0小的数是负数;3、0既不是正数也不是负数。

4、有理数包括整数和分数;整数包括正整数、0和负整数;分数包括正分数和负分数。

5、数轴:规定了原点、正方向和单位长度的直线叫做数轴,它包括三个方面:1)数轴的三要素:原点、正方向和单位长度,缺一不可。

2)数轴是一条直线,可以向两边无限延伸。

3)原点的选定、正方向的取向、单位长度大小的确定都是根据需要“规定”的。

6、数轴的画法1)画:画一条水平直线。

2)取:在直线上选取一点为原点,并在原点的下面标上“0”。

3)定:确定正方向,画上箭头(向右为正)。

4)选:根据需要选取适当的长度作为单位长度。

根据需要从原点右向左选取各点。

7、数轴上的点与有理数的关系1)任何一个有理数都可以数轴的一个点来表示。

2)正数可以用原点右边的点表示,负数可以用原点左边的点表示,0用原点表示。

3)数轴上的点右边的点总比左边的点表示的数大(右边为数轴正方向)。

8、最小的正整数是“1”;最大的负正数是“-1”;没有最大的正整数,也没有最小的负整数。

9、绝对值的概念1)绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离,数a的绝对值记作“│a│”。

2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.也就是说:如果a>0那么│a│=a;如果a< 0那么│a│=-a;如果a=0那么│a│=03) 绝对值的非负性:任何一个有理数的绝对值都不可能是一个负数,即非负数。

│a│≥04)要求一个数(或一个代数式)的绝对值,首先应判断这个数(或这个代数式的值)是正数、0,还是负数。

再根据绝对值的意义确定去掉绝对值符号后的形式。

如:是正数,就等于它的本身;是负数,就等于它的相反数。

是0,就等于0。

5)0是绝对值最小的有理数;绝对值等于同一正数的有理数有两个,它们互为相反数。

(完整版)苏教版七年级数学上册知识点(详细全面精华),推荐文档

(完整版)苏教版七年级数学上册知识点(详细全面精华),推荐文档

苏教版七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

(3)0表示一个确切的量。

如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

苏教版七年级上册数学知识点总结

苏教版七年级上册数学知识点总结

七年级数学(上)知识点总结第一章数学与我们同行知识点1 数字与生活生活中我们所遇到的很多数字都蕴含着很多的数学问题,数学已成为人们表达与交流的工具。

例如,身份证号码、学生的学籍号、火车的列次等。

知识点2 图形与生活生活中充满了图形,多姿多彩的图形不仅美化了我们的生活,还包含着丰富的信息和数学知识。

知识点3 动手操作动手操作主要是让学生在实际操作的基础上设计相关的图形及制作相关图案。

这类题病根是培养学生的创新能力和实践能力。

动手操作包括折叠、裁剪、拼图等各种活动。

知识点4 找规律这类问题主要是通过一些数字或图形信息,寻求其内在的共同之处,也就是具有规律性的问题。

知识点5 统计知识在进行生产、生活和科学研究时,往往需要收集数据,并把数据加以分类、整理,需要求出数据的平均数,或者制成统计表、统计图,用来反应所了解的情况,这样的工作就是统计。

第二章有理数2.1正数与负数正数:大于零的数,正数前面可以放“+”来表示(通常省略不写)。

正数可分为正整数和正分数。

负数:小于零的数,负数前面放上“-”来表示。

负数可分为负整数和负分数。

注意:0既不是正数,也不是负数。

同时,0属于偶数、整数、非正数、非负数、非正整数、非负整数。

我们把正整数、零和负整数统称为整数,正分数、负分数统称分数。

2.2 有理数与无理数整数和分数统称为有理数。

我们把能够写成分数形式(m、n是整数,n≠0)的数叫做有理数。

实际上,有限小数和循环小数都可以化为分数,它们都是有理数。

无限不循环小数叫做无理数。

有理数有理数知识点提示: (1)有理数可按不同标准分类,标准不同,分类也不同。

(2)在分类时,要注意0的地位和意义。

(3)有理数的分类方法有很多,不论采取哪种分类方法,在对有理数分类时,都要做到不重不漏。

(4)习惯上,把正整数、0统称为非负整数(也叫自然数);把负整数、0统称为非正整数,正有理数、0统称为非负有理数,负有理数、0统称为非正有理数。

苏教版七年级上册数学知识点整理

苏教版七年级上册数学知识点整理

《有理数》知识点总结归纳正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

苏教版七年级上册数学知识点总结

苏教版七年级上册数学知识点总结

七年级数学(上)知识点总结第一章数学与我们同行知识点1 数字与生活生活中我们所遇到的很多数字都蕴含着很多的数学问题,数学已成为人们表达与交流的工具。

例如,身份证号码、学生的学籍号、火车的列次等。

知识点2 图形与生活生活中充满了图形,多姿多彩的图形不仅美化了我们的生活,还包含着丰富的信息和数学知识。

知识点3 动手操作动手操作主要是让学生在实际操作的基础上设计相关的图形及制作相关图案。

这类题病根是培养学生的创新能力和实践能力。

动手操作包括折叠、裁剪、拼图等各种活动。

知识点4 找规律这类问题主要是通过一些数字或图形信息,寻求其内在的共同之处,也就是具有规律性的问题。

知识点5 统计知识在进行生产、生活和科学研究时,往往需要收集数据,并把数据加以分类、整理,需要求出数据的平均数,或者制成统计表、统计图,用来反应所了解的情况,这样的工作就是统计。

第二章有理数2.1正数与负数正数:大于零的数,正数前面可以放“+”来表示(通常省略不写)。

正数可分为正整数和正分数。

负数:小于零的数,负数前面放上“-”来表示。

负数可分为负整数和负分数。

注意:0既不是正数,也不是负数。

同时,0属于偶数、整数、非正数、非负数、非正整数、非负整数。

我们把正整数、零和负整数统称为整数,正分数、负分数统称分数。

2.2 有理数与无理数整数和分数统称为有理数。

我们把能够写成分数形式mn(m、n是整数,n≠0)的数叫做有理数。

实际上,有限小数和循环小数都可以化为分数,它们都是有理数。

无限不循环小数叫做无理数。

有理数有理数知识点提示: (1)有理数可按不同标准分类,标准不同,分类也不同。

(2)在分类时,要注意0的地位和意义。

(3)有理数的分类方法有很多,不论采取哪种分类方法,在对有理数分类时,都要做到不重不漏。

(4)习惯上,把正整数、0统称为非负整数(也叫自然数);把负整数、0统称为非正整数,正有理数、0统称为非负有理数,负有理数、0统称为非正有理数。

苏教版初一数学上册知识点

苏教版初一数学上册知识点

苏教版初一数学上册知识点苏教版初一数学上册知识点1普查:为了一定的目的而对考察对象进行的全面调查.总体:所要考察对象的全体称为总体个休:组成总体的每一个考察对象称为个体.抽样调查:从总体中抽取部分个体进行调查.样本:总体中抽取的一部分个体叫做总体的一个样本.样本容量:样本中个体的`数目.频数:每个对象出现的次数频率:每个对象出现的次数与总次数的比值苏教版初一数学上册知识点21定义在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。

比如说圆、正方形、等腰三角形、等边三角形、等腰梯形等。

2举例例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形.有的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴。

圆有无数条对称轴,都是经过圆心的直线。

要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。

3性质1.对称轴是一条直线。

2.垂直并且平分一条线段的'直线称为这条线段的垂直平分线,或中垂线。

线段垂直平分线上的点到线段两端的距离相等。

3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线6.图形对称。

定理定理1:关于某条直线对称的两个图形是全等形。

定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。

定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。

定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

生活作用1、为了美观,比如天安门,对称就显的美观漂亮;2、保持平衡,比如飞机的两翼;3、特殊工作的需要,比如五角星,剪纸苏教版初一数学上册知识点31.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的.和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);;(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a某10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.苏教版初一数学上册知识点4一个整数a和一个非零整数b的比是有理数(rationalnumber)正数与负数像3,2,1。

苏教版七年级数学上册知识点详细全面精华

苏教版七年级数学上册知识点详细全面精华

苏教版七年级数学上册知识点详细全面精华本篇文章旨在详细介绍苏教版七年级数学上册的知识点,旨在为学生提供全面而有效的数学学习资料。

文章将深入浅出地解释每个知识点,帮助读者更好地理解并掌握数学的基础概念和方法。

一、数与代数数与代数是数学的基础,学好这一部分对于掌握后续的数学知识至关重要。

在这一章节中,我们将学习自然数、整数、有理数和实数的概念,并掌握它们的运算规则。

1.自然数自然数是人们最早形成的一种数字概念,用于计数。

从1开始,一直往上递增,没有终点。

2.整数整数是由正整数、负整数和0组成的,可以用来表示具有方向的数量。

3.有理数有理数是指整数和分数的集合,可以用来表示除了整数之外的所有数。

4.实数实数是包含有理数和无理数的集合,是数轴上的所有点。

二、比例与比例的应用比例是数学中常见的概念之一,在生活中也有广泛的应用。

本章将帮助我们理解比例的含义,并学习如何运用比例解决实际问题。

1.比例比例是指两个或多个数之间的关系,又称为比。

比例的表示形式为“:”或“/”。

2.比例的性质比例有三个性质:比例恒等、比例反比例和比例倍数。

3.比例的应用场景比例在解决实际问题时有着广泛的应用。

例如,我们可以通过比例计算物体的相似性、解决商品折扣问题等。

三、图形与空间几何图形与空间几何是数学中的一个重要分支,它涉及形状、位置、尺寸等概念。

本章将介绍各种图形的性质以及它们在实际生活中的应用。

1.点、线、面点是没有大小和形状的,用来表示位置;线是由无数个点组成的,长度没有限制;面是由无数条线组成的,有面积的概念。

2.多边形多边形是有限个线段按一定次序连接而成的封闭图形,包括三角形、四边形、五边形等。

3.角与三角形角是由两条射线公共的端点组成的,用来度量物体之间的旋转程度;三角形是由三条线段围成的封闭图形。

四、数据与统计数据与统计是将大量的数据按照一定的方式进行整理和处理的过程。

本章将帮助我们学习如何收集和整理数据,并运用统计方法进行分析和解释。

苏教数学七上的复习知识点总结及练习

苏教数学七上的复习知识点总结及练习

初一数学(上)知识点代数初步知识1.代数式:用运算符号+-× ÷ 连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式)2.几个重要的代数式:(m、n 表示整数)(1)a 与 b 的平方差是: a 2-b 2;a与b差的平方是:(a-b)2;(2)若 a、b、c 是正整数,则两位整数是: 10a+b , 则三位整数是: 100a+10b+c;(3)若 m、n 是整数,则被 5 除商 m余 n 的数是: 5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1 、n、n+1;有理数1.有理数:(1) 凡能写成q(p, q为整数且 p 0) 形式的数,都是有理数. 正整数、0、负整数统称整数;正分数、负分数p统称分数;整数和分数统称有理数 . 注意:0 即不是正数,也不是负数; -a 不一定是负数,+a 也不一定是正数;不是有理数;正有理数正整数正整数正分数整数零(2) 有理数的分类:① 有理数零② 有理数负整数负有理数负整数分数正分数负分数负分数(3)注意:有理数中,1、0、-1 是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4) 自然数0 和正整数;a>0 a 是正数; a<0 a 是负数;a≥0 a 是正数或 0 a 是非负数;a≤ 0 a 是负数或 0 a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线 .3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数; 0 的相反数还是 0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是 b-a;a+b 的相反数是-a-b ;(3)相反数的和为0a+b=0 a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身, 0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:a( a0)a( a0)0( a0)或 a a (a0) ;绝对值的问题经常分类讨论;aa (a0)(3)a a1a0 ;1 a 0 ;aa(4) |a|是重要的非负数,即|a|a a≥0;注意:|a| ·|b|=|a · b|,.b b5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比 0 大,负数永远比 0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数- 小数> 0 ,小数- 大数< 0.6.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a ≠0,那么a的倒数是1;倒数是本身的 a数是±1;若 ab=1 a 、b 互为倒数;若 ab=-1 a 、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0 相加,仍得这个数 .8.有理数加法的运算律:(1)加法的交换律: a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b ). 10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定 .11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a( b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a无意义 . 013.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a) n=-a n或(a -b) n=-(b-a) n , 当n 为正偶数时 : (-a)n =a n或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即 a2≥0;若 a2+|b|=0a=0,b=0 ;15.科学记数法:把一个大于 10 的数记成 a×10n的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位 .17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字 .18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法 , 但不能用于证明 .整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

2024年苏教版七年级数学知识点总结

2024年苏教版七年级数学知识点总结

2024年苏教版七年级数学知识点总结一、数与式1. 自然数、整数、有理数的认识和比较2. 分数的概念及其表示方法3. 数的运算:加法、减法、乘法、除法4. 整数的四则运算5. 分数的加减运算及混合运算6. 数的乘方和乘法运算律7. 简单的代数式二、比1. 比的定义和性质2. 比例和比例的性质3. 比例中的四则运算4. 百分数与百分数的运算5. 比例的应用三、形状与运动1. 平面图形:点、线、面、角的基本概念2. 直线与角3. 三角形和四边形的性质4. 平行线与它们的性质5. 梯形、菱形和平行四边形的性质6. 圆的基本性质四、数据和图表1. 数据收集与整理2. 图表的读取和分析3. 表格的制作和应用4. 统计的基本概念和统计图的绘制5. 常见统计图形的分析五、方程与不等式1. 一元一次方程与一元一次不等式2. 代数式与方程式的应用3. 做运算与解方程之间的关系六、正比例与反比例1. 直接比例与反比例2. 比例线性方程和反比例函数图形的认识3. 比例线性方程和反比例函数的应用七、整式的加减1. 代数式的加减法则和乘法法则2. 积的分配率和提公因式3. 化简代数式八、三角形的面积1. 三角形的面积及其性质2. 面积公式的推导和应用3. 相似三角形与面积的计算九、数与式的应用1. 问题的变式及解法2. 数与式的应用问题3. 代数方法解决应用问题十、数据和不等式1. 数据和不等式的综合应用2. 数据的分析、预测和预测误差3. 解决实际问题以上是____年苏教版七年级数学的主要知识点,总结如上,希望对您有所帮助。

初一数学上册苏教版知识点

初一数学上册苏教版知识点

初一数学上册苏教版知识点七年级数学知识点变量之间的关系一理论理解1、若Y随X的变化而变化,则X是自变量Y是因变量。

自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。

3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。

⑤总价=单价×总量。

⑥平均速度=总路程÷总时间二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。

列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。

列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。

三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。

四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.九、估计(或者估算)对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.初一数学知识点一元一次方程的应用1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).2.利用方程解决实际问题的基本思路:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

七年级上册数学知识点

七年级上册数学知识点

七年级上册数学知识点苏教版七年级上册数学知识点苏教版七年级上册数学知识点11、正数:比0大的数是正数;2、负数:比0小的数是负数;3、0既不是正数也不是负数。

4、有理数包括整数和分数;整数包括正整数、0和负整数;分数包括正分数和负分数。

5、数轴:规定了原点、正方向和单位长度的直线叫做数轴,它包括三个方面:1)数轴的三要素:原点、正方向和单位长度,缺一不可。

2)数轴是一条直线,可以向两边无限延伸。

3)原点的选定、正方向的取向、单位长度大小的确定都是根据需要“规定”的。

现在是不是觉得学期学习很简单啊,希望这篇七年级上册数学知识点辅导可以帮助到大家。

努力哦!苏教版七年级上册数学知识点21.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.苏教版七年级上册数学知识点3射线:1、射线的定义:直线上一点和它们的一旁的部分叫做射线。

2、射线的特征:“向一方无限延伸,它有一个端点。

”线段:1、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。

2、线段的性质(公理):所有连接两点的线中,线段最短。

苏教版初一数学上册知识点

苏教版初一数学上册知识点

初一数学〔上〕应知应会的知识点代数初步知识1. 代数式:用运算符号"+ - ×÷……〞连接数与表示数的字母的式子称为代数式〔字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式〕2.列代数式的几个注意事项:〔1〕数与字母相乘,或字母与字母相乘通常使用"·〞 乘,或省略不写; 〔2〕数与数相乘,仍应使用"×〞乘,不用"·〞乘,也不能省略乘号; 〔3〕数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ; 〔4〕带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ;〔5〕在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式;〔6〕a 与b 的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b和b-a .3.几个重要的代数式:〔m 、n 表示整数〕〔1〕a 与b 的平方差是: a 2-b 2; a 与b 差的平方是:〔a-b 〕2;〔2〕若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;〔3〕若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是:n-1、n 、n+1 ;〔4〕若b >0,则正数是:a 2+b ,负数是:-a 2-b ,非负数是:a 2,非正数是:-a 2. 有理数 1.有理数: <1>凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;<2>有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 <3>注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;<4>自然数⇔0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0⇔a 是非负数;a ≤0 ⇔ a 是负数或0⇔a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:<1>只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; <2>注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; <3>相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:<1>正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;<2> 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;<3>0a 1aa >⇔= ;0a 1aa <⇔-=;<4> |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|,baba =. 5.有理数比大小:〔1〕正数的绝对值越大,这个数越大;〔2〕正数永远比0大,负数永远比0小;〔3〕正数大于一切负数;〔4〕两个负数比大小,绝对值大的反而小;〔5〕数轴上的两个数,右边的数总比左边的数大;〔6〕大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:〔1〕同号两数相加,取相同的符号,并把绝对值相加;〔2〕异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; 〔3〕一个数与0相加,仍得这个数. 8.有理数加法的运算律:〔1〕加法的交换律:a+b=b+a ;〔2〕加法的结合律:〔a+b 〕+c=a+〔b+c 〕. 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+〔-b 〕. 10 有理数乘法法则:〔1〕两数相乘,同号为正,异号为负,并把绝对值相乘; 〔2〕任何数同零相乘都得零;〔3〕几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:〔1〕乘法的交换律:ab=ba ;〔2〕乘法的结合律:〔ab 〕c=a 〔bc 〕; 〔3〕乘法的分配律:a 〔b+c 〕=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a. 13.有理数乘方的法则: 〔1〕正数的任何次幂都是正数;〔2〕负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: <-a>n=-a n或<a -b>n=-<b-a>n, 当n 为正偶数时: <-a>n=a n或<a-b>n=<b-a>n. 14.乘方的定义:〔1〕求相同因式积的运算,叫做乘方;〔2〕乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 〔3〕a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;〔4〕据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则. 19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 整式的加减1.单项式:在代数式中,若只含有乘法〔包括乘方〕运算.或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:〔若a 、b 、c 、p 、q 是常数〕ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变.8.去〔添〕括号法则:去〔添〕括号时,若括号前边是"+〞号,括号里的各项都不变号;若括号前边是"-〞号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大〔或从大到小〕排列起来,叫做按这个字母的升幂排列〔或降幂排列〕.注意:多项式计算的最后结果一般应该进行升幂〔或降幂〕排列. 一元一次方程1.等式与等量:用"=〞号连接而成的式子叫等式.注意:"等量就能代入〞!2.等式的性质:等式性质1:等式两边都加上〔或减去〕同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以〔或除以〕同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入〞!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0〔x是未知数,a、b是已知数,且a≠0〕.8.一元一次方程的最简形式: ax=b〔x是未知数,a、b是已知数,且a≠0〕.9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……〔检验方程的解〕.10.列一元一次方程解应用题:〔1〕读题分析法:…………多用于"和,差,倍,分问题〞仔细读题,找出表示相等关系的关键字,例如:"大,小,多,少,是,共,合,为,完成,增加,减少,配套-----〞,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.〔2〕画图分析法: …………多用于"行程问题〞利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系〔可把未知数看做已知量〕,填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:〔1〕行程问题: 距离=速度·时间 时间距离速度=速度距离时间=; 〔2〕工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=; 〔3〕比率问题: 部分=全体·比率 全体部分比率=比率部分全体=; 〔4〕顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 〔5〕商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;〔6〕周长、面积、体积问题:C圆=2πR,S 圆=πR 2,C 长方形=2<a+b>,S 长方形=ab, C 正方形=4a,S 正方形=a 2,S 环形=π<R 2-r 2>,V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.。

苏教版七年级数学上册基本知识点

苏教版七年级数学上册基本知识点

苏教版七年级数学上册基本知识点一、有理数1、正数:比0大的数是正数;2、负数:比0小的数是负数;3、0既不是正数也不是负数。

4、有理数包括整数和分数;整数包括正整数、0和负整数;分数包括正分数和负分数。

5、数轴:规定了原点、正方向和单位长度的直线叫做数轴,它包括三个方面:1)数轴的三要素:原点、正方向和单位长度,缺一不可。

2)数轴是一条直线,可以向两边无限延伸。

3)原点的选定、正方向的取向、单位长度大小的确定都是根据需要“规定”的。

6、数轴的画法1)画:画一条水平直线。

2)取:在直线上选取一点为原点,并在原点的下面标上“0”。

3)定:确定正方向,画上箭头(向右为正)。

4)选:根据需要选取适当的长度作为单位长度。

根据需要从原点右向左选取各点。

7、数轴上的点与有理数的关系1)任何一个有理数都可以数轴的一个点来表示。

2)正数可以用原点右边的点表示,负数可以用原点左边的点表示,0用原点表示。

3)数轴上的点右边的点总比左边的点表示的数大(右边为数轴正方向)。

8、最小的正整数是“1”;最大的负正数是“-1”;没有最大的正整数,也没有最小的负整数。

9、绝对值的概念1)绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离,数a的绝对值记作“│a│”。

2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.也就是说:如果a>0那么│a│=a;如果a< 0那么│a│=-a;如果a=0那么│a│=03) 绝对值的非负性:任何一个有理数的绝对值都不可能是一个负数,即非负数。

│a│≥04)要求一个数(或一个代数式)的绝对值,首先应判断这个数(或这个代数式的值)是正数、0,还是负数。

再根据绝对值的意义确定去掉绝对值符号后的形式。

如:是正数,就等于它的本身;是负数,就等于它的相反数。

是0,就等于0。

5)0是绝对值最小的有理数;绝对值等于同一正数的有理数有两个,它们互为相反数。

苏教版七年级上册数学知识点归纳总结

苏教版七年级上册数学知识点归纳总结

一、整数1.1 整数的概念整数是由自然数、0以及它们的负数组成的数集,用来表示有向量的数量。

1.2 整数的比较与运算比较整数大小时,可以通过数轴上的位置来判断。

整数的加减法遵循符号相同则相加,符号不同则相减的规则。

二、有理数2.1 有理数的概念有理数包括整数和分数,是可以表示为两个整数之比的数。

2.2 有理数的加减乘除有理数的加减乘除遵循相同大小的数加减得到的结果仍然是同符号的数,相乘相同符号得正,相乘不同符号得负的规则。

有理数的除法可以转化为乘法运算。

三、代数3.1 代数表达式代数表达式是由数字、代数符号和运算符组成的式子,可以包括单项式、多项式等。

3.2 代数式的加减乘除代数式的加减乘除遵循相同项相加减、同底数指数相乘、指数相除的规则。

四、方程与方程组4.1 方程的概念方程是含有未知数的等式,通过求解可以得到未知数的值。

4.2 一元一次方程一元一次方程是形如ax+b=0的方程,可以通过逆运算求解出未知数的值。

4.3 解方程的基本原则解方程时,可以通过逐步化简、消去分母、合并同类项等步骤来求解未知数的值。

五、比例和比例方程5.1 比例的概念比例是两个等量的比值关系,可以表示为a:b=c:d。

5.2 比例的性质和运算比例的性质包括等比例和反比例,比例的运算包括比例乘除的运算法则。

六、百分数6.1 百分数的概念百分数是每百份之一的比例,可以表示为百分数/100=实际比例。

6.2 百分数的应用百分数可以用来表示比例关系、增减量等,应用广泛。

七、不等式7.1 不等式的概念不等式是含有大于、小于、大于等于、小于等于等符号的数学式子。

7.2 不等式的性质和解法不等式可以通过加减消去、移项、乘除等方法求解未知数的范围。

八、数据的收集和整理8.1 统计数据的方式统计数据可以通过调查、观察、抽样等方式进行收集。

8.2 统计数据的整理和分析统计数据可以通过频数、频率、累积频数等方式进行整理和分析。

九、图形的认识和绘制9.1 基本图形的认识和性质基本图形包括直线、线段、射线、角等,具有各自的特点和性质。

苏教版七年级上册数学知识点

苏教版七年级上册数学知识点

苏教版七年级上册数学知识点苏教版七年级上册数学知识点概述一、数与代数1. 有理数的认识- 正数、负数、整数、分数、小数、正有理数、负有理数、非负数 - 有理数的比较大小- 有理数的加法和减法运算- 有理数的乘法和除法运算- 有理数的乘方2. 整式的加减- 单项式的概念和运算- 多项式的概念和运算- 合并同类项- 整式的加减运算法则3. 一元一次方程- 方程的概念- 解一元一次方程- 方程的解的检验- 方程的应用问题二、几何1. 线段、射线、直线- 线段的性质- 射线和直线的定义- 两点间的距离2. 角的概念与分类- 角的定义- 角的度量- 角的分类(锐角、直角、钝角、平角、周角)3. 角的运算- 角的和与差- 角的倍数关系4. 三角形初步- 三角形的定义和分类- 三角形的内角和定理- 等腰三角形和等边三角形的性质三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 绘制统计表和统计图(条形图、折线图)2. 概率- 随机事件的概念- 可能性的判断- 概率的初步认识四、解题方法与技巧1. 列方程解应用题- 根据问题的条件列出方程- 解方程得到答案2. 利用图形解决几何问题- 通过作图辅助理解问题- 运用几何定理和性质解决问题3. 分析法和综合法- 分析法:从已知条件出发,逐步推导出答案- 综合法:从问题的目标出发,逐步寻找解题途径以上是苏教版七年级上册数学的主要知识点概述。

在学习过程中,学生应注重理解和掌握每个知识点的概念、性质和运算规则,通过大量的练习来提高解题能力和应用能力。

同时,培养良好的逻辑思维和数学思维,为以后的学习打下坚实的基础。

苏教版初一年级数学上册知识点

苏教版初一年级数学上册知识点

苏教版初一年级数学上册知识点
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

m
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。

在a的n次方中,a叫做底数(base number),n 叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a10的n次方的形式,使用的就
是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

查字典数学网为大家整理了初中的相关内容,希望能助考生一臂之力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习参考初一数学(上)应知应会的知识点代数初步知识1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式;(6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2; a 与b 差的平方是:(a-b )2;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2,非正数是:-a 2. 有理数 1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;学习参考(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|,baba =. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的学习参考数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a. 13.有理数乘方的法则: (1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n 为正偶数时: (-a)n=a n或 (a-b)n=(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;学习参考(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列. 一元一次方程1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形学习参考学习参考 各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度=速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率=比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V圆锥=31πR 2h.H Y P E R。

相关文档
最新文档