《电路分析基础》_第4章

合集下载

《电路分析基础》习题参考答案

《电路分析基础》习题参考答案

《电路分析基础》各章习题参考答案第1章习题参考答案1-1 (1) SOW; (2) 300 V、25V,200V、75V; (3) R=12.50, R3=1000, R4=37.5021-2 V =8.S V, V =8.S V, V =0.S V, V =-12V, V =-19V, V =21.S V U =8V, U =12.5,A mB D 'AB B CU =-27.S VDA1-3 Li=204 V, E=205 V1-4 (1) V A=lOO V ,V=99V ,V c=97V ,V0=7V ,V E=S V ,V F=l V ,U A F=99V ,U c E=92V ,U8E=94V,8U BF=98V, u cA=-3 V; (2) V c=90V, V B=92V, V A=93V, V E=-2V, V F=-6V, V G=-7V, U A F=99V, u c E=92V, U B E=94V, U BF=98V, U C A =-3 V1-5 R=806.70, 1=0.27A1-6 1=4A ,11 =llA ,l2=19A1-7 (a) U=6V, (b) U=24 V, (c) R=SO, (d) 1=23.SA1-8 (1) i6=-1A; (2) u4=10V ,u6=3 V; (3) Pl =-2W发出,P2=6W吸收,P3=16W吸收,P4=-lOW发出,PS=-7W发出,PG=-3W发出1-9 l=lA, U5=134V, R=7.801-10 S断开:UAB=-4.SV, UA0=-12V, UB0=-7.2V; S闭合:12 V, 12 V, 0 V1-12 UAB=llV / 12=0.SA / 13=4.SA / R3=2.401-13 R1 =19.88k0, R2=20 kO1-14 RPl=11.110, RP2=1000第2章习题参考答案2-1 2.40, SA2-2 (1) 4V ,2V ,1 V; (2) 40mA ,20mA ,lOmA 2-3 1.50 ,2A ,1/3A2-4 60 I 3602-5 2A, lA2-6 lA2-7 2A2-8 lOA2-9 l1=1.4A, l2=1.6A, l3=0.2A2-10 11=OA I l2=-3A I p l =OW I P2=-l8W2-11 11 =-lA, l2=-2A I E3=10V2-12 11=6A, l2=-3A I l3=3A2-13 11 =2A, l2=1A ,l3=1A ,14 =2A, l5=1A2-14 URL =30V I 11=2.SA I l2=-35A I I L =7.SA2-15 U ab=6V, 11=1.SA, 12=-lA, 13=0.SA2-16 11 =6A, l2=-3A I l3=3A2-17 1=4/SA, l2=-3/4A ,l3=2A ,14=31/20A ,l5=-11/4A12-18 1=0.SA I l2=-0.25A12-19 l=1A32-20 1=-lA52-21 (1) l=0A, U ab=O V; (2) l5=1A, U ab=llV。

电路分析基础第四章(李瀚荪)

电路分析基础第四章(李瀚荪)

一、陈述 对任意含源单口网络N,都可以用一个电压源 与一个电阻相串联来等效。 R0 i i + + 即 + 等效 u N u u oc _ _ _
电压源的电压等于该网络的开路电压uoc, 这个电阻等于从此单口网络两端看进去,当网 络内部所有独立源均置零(No)时的等效电阻R0 i =0
+
4.6 戴维南定理

10Ω
例(2) a 44 b
20 60 60
20
20 60
22
结论 只含电阻单口网络 等效为一个电阻
只含 电阻
R
2.含独立源电路 1V 例(1)
+
_
2
3
0.5A
0.2A 5
0.5A
5
5 0.3A
+ 1.5V _
结论 含独立源单口网络 等效为实际电压源 或实际电流源 含独立 源和电 阻电路
试用电压源与电流源等效变换的方 法计算2电阻中的电流。
1 2A
解:
I
1 3 2A 2A 6
1
3 + 6V –
6 + – 12V (a)
1 2
(b)
– 2V 2
I + +
由图(d)可得
82 I A 1A 2 2 2
2 2 +
2 2 4A

8V (d)
(c)
+
– 2V 2
第四章
分解方法及单口网络
——用等效化简的方法分析电路
本章的主要内容: 1、分解、等效的概念; 2、二端网络的等效化简,实际电源 的等效变换 ; 3、置换、戴维南、诺顿定理, 最大功率传递定理; 4、三端网络T形和形的等效变换。

电路分析基础第四、第五章测验测试题

电路分析基础第四、第五章测验测试题

第四章测试一、填空题(共6 题,75.0分)1.只要求出__________、__________和__________这三个量,就能立即写出换路后的电压或电流________________的表达式。

2.具有一个独立初始条件的动态电路叫( )电路。

3.换路后的一瞬间,电容的端_________和电感中的___________都保持换路前一瞬间的数值,这叫做___________。

4.R、C串联电路过渡过程的时间常数τ=( ),而R、L串联电路过渡过程的时间常数τ=( )5.线性动态电路的全响应,根据叠加定理可表示为( )响应与( )响应之和。

6.换路后的一瞬间,电容的端________和电感的_________都保持前一瞬间的数值,这叫_________。

二.判断题(共2 题,25.0分)1.一阶动态电路三要素法的通式为f(t)=f(∞)+[f(0+)-f(∞)]·e-t/τ答案:对2.RC一阶电路中,电容电压UC的零输入响应是按指数规律增长。

答案:对第五章测试一、单选题(共8 题,20.0分)1.标有额定值220V 60W的灯泡,将它接在电源上,它消耗的功率()。

A.小于60WB.等于60WC.大于60WD.无法确定答案:B2.在电阻和电容串联电路中,阻抗1Z1=( )A.A+XCB.sqrt(R*R±Xc*Xc)C.uc/icD.Ucm/Ic答案:B3.启辉器中装有一只电容器,其作用是( )A.启辉器中装有一只电容器,其作用是B.保护启辉器的动静触片C.通交流隔直流答案:A4.在纯电容电路中,电压有效值不变,频率增大时,电路中的电流将( )A.增大B.减小C.不变D.无法确定答案:A5.若频率为f时电路的感抗等于容抗,当频率为2f时,该感抗为容抗的( )。

A.2倍B.0.25倍C.相等D.4倍答案:D6.两个同频率正弦交流电流i1、i2的有效值各为40A和30A, 当i1+i2的有效值为70A时,i1与i2的相位差是( )。

电路分析基础第4章 相量法(2h)

电路分析基础第4章  相量法(2h)

Im
U 2
U
U 1
41.9
60 30
Re
U
Im
U 2

U 1
60 尾
41.9
相 接
30
Re
/38 章目录 上一页 下一页 返回 退出
第4章 正弦稳态电路分析
4.3 基尔霍夫定律的相量形式和基本
元件伏安关系的相量形式
一. 电阻 i(t)
+
uR(t) R -

I
+

UR
R
-
相量模型
已知 i(t) 2I cos(wt y i )
设 i(t)=Imcos(w t+ )
I
1 T
T 0
I
2 m
cos2
(
wt
Ψ
) dt
def
I
1 T i 2 (t )dt
T0
cos2 ( wt Ψ ) 1 cos2(wt Ψ )
2
I 0.707Im Im 2I
i(t) Im cos(wt Ψ ) 2I cos(wt Ψ )
10/38 章目录 上一页 下一页 返回 退出
u2 (t) 4 2cos(314t 60o ) V
U1 630o V U 2 460o V
U U1 U 2 630 460 5.19 j3 2 j3.46
7.19 j6.46 9.6441.9o V
u(t) u1(t) u2 (t) 9.64 2cos(314 t 41.9o ) V
dt
C 相量形式:

U Uy u

IC
wCUy u
π 2
1 相量关系:

电路分析基础第5版第4章 分解方法及单、双口网络

电路分析基础第5版第4章 分解方法及单、双口网络
+ 2
9V
4Ω 3
I1
应用举例
例1:求图示电路中各支路电流。
解: 将3Ω电阻用电流源置换
I3 = 2.7
I1
9 4
1 2
0.9
2.7
A
I2
9 4
1 2
0.9
1.8
A
I4
I5
1 2
I3
0.45
A
I1
2
+
9V
I3 3
2
2
I2
I4
4- 3
2 I5
I1
0.9A I3
2
+
9V
2
I2
2 2
I4
I5
结论:置换后对其他支路没有任何影响。
电压u =α和端口电流i =β,则N2 (或N1)可用一个电压为 α 的电
压源或用一个电流为 β 的电流源置换 ,置换后对 N1 (或N2 ) 内各支路电压、电流没有影响。
i=β
N1
+
u=α
N2
i=β
+
N1
α
N1
+ u=α
β
置换定理适用于线性和非线性电路。
二. 置换的实质
置换:如果一个网络N由两个单口网络组成,且已
联立(1)、(2),解得 u=12V, i=-1A
用12V电压源置换N1,可求得 i1
用-1A电流源置换N2,可求得 u2=12V
[例]求上一例题中N1和N2的等效电路
0.5i1

i
5Ω i1
+
+ 10Ω 1A
12V u
- -2
+

电路分析基础第4章 动态电路的时域分析

电路分析基础第4章 动态电路的时域分析
图4.2-4 例4.2-2用图(一)
第4章 动态电路的时域分析 解 (1) 先计算电容电压uC(0-)和电感电流iL(0-)。开关
开启前电路已处于直流稳定状态,这时电容相当于开路,电 感相当于短路,t=0-时的等效电路如图4.2-5(a)所示。由图(a) 可得
图4.2-5 例4.2-2用图(二)
第4章 动态电路的时域分析
第4章 动态电路的时域分析
(2) 根据换路定律,有
iL(0+)=iL(0-)=1 A (3) 画出换路后瞬间t=0+时的等效电路,计算其他支路 电压、电流的初始值。根据置换定理,用一个电流值等于
iL(0+)=1 A的理想电流源代替电感元件,画出t=0+时的等效电 路如图(b)所示。对图(b)中右边一个回路应用KVL,得
第4章 动态电路的时域分析 图4.2-1 动态电路过渡过程说明用图
第4章 动态电路的时域分析
4.2.2 换路定律 如果电容电流iC和电感电压uL在无穷小区间[t0-,t0+]
为有限值,则上面两式中等号右边第二项积分为零,于是有
uC (t0 iL (t0
) uC (t0 ) iL (t0 )
4.2.1 动态电路的过渡过程 当动态电路的结构或元件参数发生变化时,电路将从一
个稳定状态变化到另一个稳定状态,这种变化一般需要经历 一个过程,这个过程称为过渡过程。通常把电路中电源的接 入或断开,以及元件参数或电路结构的突然改变,统称为 “换路”。下面以图4.2-1(a)所示的动态电路为例来说明过 渡过程的概念。
第4章 动态电路的时域分析
4.1 电容元件和电感元件
4.1.1 电容元件 1. 电容元件的定义 电容元件是从实际电容器中抽象出来的理想化模型。实

电路分析基础 网络的VAR和电路的等效

电路分析基础 网络的VAR和电路的等效

解: 设端口电压u,支路电路i1和i2

KCL I i1 3 0
I a
i1 10
+
i2
2A
u
10
i1 2 i2 0 可得 i1 I 3, i2 I 1

3A
b
u/V
2A
u 10i1 10i2 20I 40
i/A
-40V
返节目录
电路分析基础
测试题2 求单口网络的VAR,并画出其伏安特性曲线。
uS= uSk 注意参考方向 2、理想电压源并联
+
º
uS1_
+

uS _
uS2+
º
uS= uS1- u S2
实电际压电值压相源同可的电压源 才能以并并联联吗?
+
+
uS_ uS _
+ uS_
这种情况下每个电源的电流不确定。
返节目录
电路分析基础
3、理想电流源并联
iS1
iS2
iS
iS= iSk
iS3
注意参考方向
返节目录
电路分析基础
如何找到电路的最简等效电路呢?
+i
首先求出电路外端口的VAR。
u

①若VAR为 u K i 则电路等效为R=K的电阻
②若VAR为 u K i A
则电路等效为R=K的电阻 串联一个电压为A的电压源
或者 i K u A 则电路等效为R=1/K'的电阻
并联一个电流为A'的电流源
(1)分压电路:
uk
Rk
n
u
两个电阻串联:
Rk
k 1
u1

电路分析基础第四版课后习题第四章第五章第六章答案

电路分析基础第四版课后习题第四章第五章第六章答案

/i4-16 用戴维南定理求图题4-11所示电路中流过20k Ω电阻的电流及a 点电压。

a U 解将电阻断开,间戴维南等效电路如图题解4-16所示。

20k Ω,a bk Ω60//3020120120(30120100)V 60V6030a OCR k k k U ==Ω+=×−+=+ 将电阻接到等效电源上,得20k Ω3360mA 1.5mA2020(2010 1.510100)V 70V ab a i U −==+=×××−=− 4-21 在用电压表测量电路的电压时,由于电压表要从被测电路分取电流,对被测电路有影响,故测得的数值不是实际的电压值。

如果用两个不同内险的电压表进行测量,则从两次测得的数据及电压表的内阻就可知道被测电压的实际值。

设对某电路用内阻为的电压表测量,测得的电压为45V ;若用内阻为510Ω5510×Ω的电压表测量,测得电压为30V 。

问实际的电压应为多少? 解将被测电路作为一含源二端网络,其开路电压,等效电阻OC U O R ,则有5OC 555o o OC OC 454OCo OC 4o 10451045104510(18090)V 90V 30510151051030510u R R u u u R u R ⎧×=⎪⎧+=−×⎪⎪⇒⇒=⎨⎨=×−×⎪⎪⎩××=⎪+×⎩−=4-28 求图题4-20所示电路的诺顿等效电路。

已知:12315,5,10,R R R =Ω=Ω=Ω。

10V,1A S S u i ==解对图题4-20所示电路,画出求短路电流和等效内阻的电路,如下图所示SC i对左图,因ab 间短路,故0,0i i α==,10A 0.5A 155SC i ==+ 对右图,由外加电源法,106ab R α=Ω− 4-30 电路如图题4-22所示。

电路分析基础 第4章 一阶电路的时域分析

电路分析基础 第4章 一阶电路的时域分析

时域模型:
电路模型中,元件用R、L、C等参数表征,激励 用电压源电压、电流源电流的时间t的函数表征。
成都信息工程学院-控制工程学院
《电路分析基础》
第四章 一阶电路的时域分析
第4章 一阶电路的时域分析
知识
能力
建立并深刻理解电路的暂态和稳态、 根据给定电路问题合理选择分析方
电路的换路、电路的零输入响应、
线性时不变电容:库伏特性曲线为q-u平面上一条过
原点的直线,且不随时间而变的电容元件。 q(t)=Cu(t)
(2) 符号: q(t) C
i(t) + u(t)
关联参考方向 系数C :电容;
单位:法[拉], F; μF 10-6F ; pF 10-12F;
成都信息工程学院-控制工程学院
《电路分析基础》
《电路分析基础》
第四章 一阶电路的时域分析
动态电路的时域分析
集总电路分:电阻电路和动态电路。 动态电路:至少含有一个动态元件的电路。 动态元件:元件的VCR关系均要用微分或积分来表示的元件。
时域分析: 在时域模型中,以时间为主变量列写电路的 微分方程并确定初始条件,通过求解微分方 程获得电压、电流的时间函数(变化规律)。
即:仅以电场方式存储能量,并可将此能量释放出去,电容本身并不消耗 能量;电容电压反映了电容的储能状态,称电容电压为状态变量。
成都信息工程学院-控制工程学院
《电路分析基础》 5、电容电路的分析 第四章 一阶电路的时域分析
例1 设0.2F电容流过的电流波形如图a所示,
i
5A
已知 u(0) 3。0V试计算电容电压的
C uc(t0)=U0
uc(t) U0
uc1(t) u1(t0)=0

电路分析基础第4章分解方法及单口网络

电路分析基础第4章分解方法及单口网络

is
is is1 is2 isK
5.电流源的串联 电流值相等的电流源可作方向相同的串联,电 流值不相等的电流源不允许串联。
a is1 is2 b
a
is b
is is1 is2
17
6.电流源与二端网络的串联 N1的等效网络不是理想电流源支路。
a
is N1 b
a is b
3
4-2 单口网络的电压电流关系
单口网络的描述方式:
• 详尽的电路图; • VCR(表现为特性曲线或数学公式); • 等效电路。
VCR只取决于单口本身的性质,与外接电路无关。
因而:
• 可以孤立出单口,而用外施电源法求它的VCR; • 求解单口(例如N2)内各电压、电流时,其外部 (例如N1)可 用适当的电路代替。
a
10
10
-
4
2 24V
I +-
+
b 12V
Isc
-
2 24V
+-
+
12V 图(a)
解:把原电路除4电阻以外的部分化简为诺顿等效电 路。为此先把拟化简的单口网络短路,如图(a)所示:
根据叠加原理求短路电流Isc,可得:
Isc

24 10

12 10 // 2

2.4

7.2

9.6 A
35
N a iK
N' uK NK
b
已知:
uk ,或 ik
a
a
N' isk
N'
usk
b
b
isk
usk
11
例:已知电路中U=1.5V,试用置换定理求U1

《电路分析基础》第2版-习题参考答案

《电路分析基础》第2版-习题参考答案

《电路分析基础》各章习题参考答案《电路分析基础》各章习题参考答案第 1 章 习题参考答案习题参考答案1- 1 (1) 50W ; (2) 300 V 、25V, 200V 、75 V ; (3)2=12.5 QR a =100 Q, R 4=37.5 Q 1- 2 V A =8.5V =8.5V,, V m =6.5V =6.5V,, V B =0.5V =0.5V,, V C =- 12V , V D =-19V =-19V,, V p =-21.5V =-21.5V,, U A B AB =8V =8V,, U B C BC =12.5=12.5,,U DA =-27.5V1-3 电源电源((产生功率产生功率)): A 、 B 元件;负载元件;负载元件;负载((吸收功率吸收功率)): C 、 D 元件;电路满足功率平衡元件;电路满足功率平衡元件;电路满足功率平衡 条件。

1-4 (1) V A =1 00V , V B =99V, V C =97V, V D =7V, V E =5V, V F =1V, U A F AF =99V, U C E CE =92V,U BE =94V, U BF =98V, U CA =- 3 V ; (2) V C =90V, V B =92V , V A =93V, V E =-2V, V F =-6V, V G =- 7V, U AF =99V, U CE =92V, U B E BE =94V, U B F BF =98V, U C A CA =- 3 V1-5 I 〜0.18A ,6 度,度,2.7 2.7 元 1- 6 I=4A , I 1=11A =11A,,I 2=19A 1-7 (a) U=6V , , (b) U=24 V , (c) R=5Q , Q, (d) I=23.5A 1- 8 (1) i 6=-1A ; (2) u 4=10V, u 6=3 V ; (3) P 1=-2W 发出发出, P , P 2 2 =6W 吸收吸收, P , P 3 3 =16W 吸收吸收, ,P 4 =-10W 发出发出, P , P 5 5 =-7W 发出发出, P , P 6 6 =-3W 发出发出1- 9 I=1A, , U s =134V , R ~ 7.8Q 1- 10 S断开:断开:断开:U U AB =- 4.8V , U AO =- 12V , U BO =-7.2V ;S 闭合:闭合:闭合:U U AB = -12V, U A O AO = - 12V , U BO =0V 1- 11支路支路 3 3,节点,节点,节点 2 2,网孔,网孔,网孔 2 2 ,回路,回路,回路 3 3 1- 12节点电流方程:节点电流方程: (A) I (A) I 1 +I 3- I 6=0=0,,(B)I 6- I 5- I 7=0=0,,(C)I 5 +I 4-I 3=0 回路电压方程:① I6 R 6+ U S 5 S5 +I 5 R 5- U S 3 +1 3 3 R 3=0 ,②-15 R 5- U S 5+ I 7R 7- U S 4 =0 ,③-丨3 R 3+ U S3 + U S 4 S4 + I 1 1 R 2+ I 1 1 R 1=01- 13 UA B AB =11V , I 2=0.5A , l 3=4.5A , R 3~ 2.4 Q 1-14 VA =60V V C =140V V D =90V U A C AC =- 80V U AD =- 30V U CD =50V 1- 15 I 1=- 2A I 2=3A I 3=- 5A I 4=7A I 5=2A第 2 章 习题参考答案习题参考答案2- 1 1 2.42.4 Q 5 A 2- 2 (1) 4 V 2 V 1 V; (2) 40 mA 20 mA 10 mA 2-3 1.5 Q 2 A 1/3 A 2-4 6 Q 36 Q 2-5 2 2 A 1 A A 1 A 2-6 1 1 A A2-7 2 2 A A 2- 8 1 1 A A2- 9 I1 1 = -1.4 A I2 = 1.6 A I3 = 0.2 A 2- 10 I1 1 = 0 A I2 = -3 A P 1 = 0 W P 2 = -18 W 2-11 I i = -1 mA , I 2 = - 2 mA , E 3 = 10 V 2- 12 I 1 = 6 A , I 2 = -3 A ,I 3 = 3 A 2- 13 I1 1 =2 A , , I 2 = 1A , , I3 = 1 A , I4 =2 A , , I5 = 1 A 2-14 2-14 V V a = 12 V , I 1 = - 1 A ,I 2 = 2 A 2-15 2-15 V V a = 6 V , I 1= 1.5 A , I 2 = - 1 A ,I 3= 0.5 A 2-16 2-16 V V a = 15 V , , I 1 = - 1 A , , I 2 =2 A , , I 3= 3 A 2-17 2-17 I I 1 = -1 A ,, I 2 = 2 A 2-18 2-18 I I 1 =1.5 A , , I 2 = - 1 A , , I 3= 0.5 A 2-19 2-19 I I 1 =0.8 A , , I 2 = - 0.75 A , , I 3 = 2 A , I 4 = - 2.75 A , I 5 = 1.55 A 2-20 2-20 I I 3= 0.5 A 2-21 U o o = 2 V , R o = 4 Q ,Q, I 00 = 0.1 A 2-22 I 55 = -1 A 2-23 2-23 (1) I (1) I5 5 = 0 A , U ab = 0 V ; (2) I 5 5 = 1 A , U ab = 11 V 2-24 I L = 2 A2-25 I s s =11 A , , R 0 = 2 QQ 2-26 2-26 18 18 Q, - 2 Q ,Q, 12 Q 2-27 U == 5 V 2-28 I =1 A2-29 U == 5 V 2-30 I =1 A2-31 2-31 10 V 10 V ,, 180 Q 2-32 U 0 = 9 V , R 0 = 6 Q ,Q, U=15 V 第3章习题参考答案章习题参考答案3- 1 50Hz, 314rad/s, 0.02s, 141V, 100V, 120° 3-2 200V, 141.4V 3-3 u=14.1si n (314t-60 °V3- 4 (1) ®u1-贏2= 120° (2) ®1 = -90-90° °%= - 210°210°, , %1-屁=120=120° (不变° (不变) 3-5 (1) U^50 .^_90V , U 2 =50 .2.2 - 0 V ; ; (2) U 3=100 2 sin (3t+ 45 °)V , U, U 4=100 ■■ 2 sin ( ®t + 135 °)V 3- 6 (1) i 1=14.1 sin ( 72 °)A ;; (2) U 2=300 sin ( 3—60 °)V3- 7错误:(1),1),⑶,⑶,⑶,(4), (5) (4), (5) 3-8 (1) R ; (2) L ; (3) C; (4) R 3-9 i=2.82 sin (10t-30 °)A , Q~ 40 var , Q~ 40 var 3-10 u =44.9sin (3141-135 °V, Q=3.18 var 3- 11 (1) I=20A ; (2) P=4.4kW3- 12 (1)I ~ 1.4A , I 1.4 - 30 A; (3)Q~ 308 var, P=0W ; (4) i~ 0.98 sin (628t-30 °)A 3- 13 (1)I=9.67A , I =9.67450 A ,i=13.7 sin (314t+150 °) A ; (3)Q=2127.4 var, P=0W; (4) I C =0A3- 14 (1)C=20.3 尸;(2) I L = 0.25A ,l c = 16A第4章习题参考答案章习题参考答案4-1 (a) Z =5. 36.87 J, Y =0.2 / 36.87 S ; (b) ; (b) ZZ =2.5 - 2/ 45 门,Y =0.2.2/45 S 4- 2 Y=(0.06-j0.08) S , , R ~ 16.67 Q, X L =12.5 Q, L ~0.04 H 4-3 U R =6 0^0 V U L =8080//90 V , , U S =100100^^53.13 V 4-4 卩=2 0 £ 3 6.874-5 Z =100 =100 22^45 ;:;: ■,卩=1^0 A , , U R =100100^^0 V , U L =125125//90 V , , U C =2525/ /90 V 4-6 Y =0.25 2^45 S , U =4 “2/0 V ,卩R = .2. 0 A , , I L =0.^ 2 / 90 A , , I C =1.21.2..2/90 A4-7 ll =1 0.=1 0.「2 4 5,A U S =100 乙 90 V 4-8 (a) 30 V ; (b) 2.24 A 4-9 (a) 10 V ; (b) 10 A (b) 10 A 4-10 10 (a) (a) 10 V ; (b) 10 V (b) 10 V 4- 11 U=14.1 V4- 12 UL 1 =15 V , U C 2 =8 V , U S =15.65 V 4-13 4-13 U U X 1 =100 V , U 2 =600 V , , X 1=10Q, X 2=20 Q, X 3=30 Q 4-14 Z =20 .2 45 门,l =2. -45 A , h , h = 2 0 = 2 0 A , .2/-90 A , U ab ab==0V 4- 15 (1)1 =£2 2 A A , Z RC =5、2「,「, Z =5 10 门;门;(2) R (2) R =10 门,门,X X ^1010'J 'J4-16 P = 774.4 W , Q = 580.8 var, S = 968 V A- 4-17 l 1 = 5 A , l 2 = 4 A 4-18 4-18 I I 1 = 1 A , I 2 =2 A , l =.5. 26.565 A , S =44.72. -26.565 V V V A A 4-19 Z=10", I =190A I=190A ,U R2 =5 2 135 V , P =10 W 64-20 a =5X10 rad/s , p = 1000 = 1000 Q ,Q, Q = 100 , l = 2 mA , U R =20 mV , U L = U C = 2 V 4-21 30 =104 rad/s , p = 100 = 100 Q ,Q, Q = 100 , U = 10 V , I R = 1 mA , I L = I C = 100 mA 4-22 L 1 1 = 1 H , L 2 ~ 0.33 H 第5章习题参考答案章习题参考答案5- 3 M = 35.5 mH5- 4 301 =1000 rad/s ,3,302=2236 rad/s5-5 Z 1 = j31.4 Q , Q , Z 2 = j6.28 Q Q 5-6 Z r = 3+7.5 Q Q 5-7 M = 130 mH 5- 8 “2 二-2/45 A5- 9 U1 = 44.8 V 5- 10 M12 12 = 20 mH , 11 = 4 A 5- 11 U 2 = 220 V , I 1 = 4 A5- 12 n = 1.95- 13 N2 = 254 匝,匝,匝,N N3 = 72 匝 5- 14 n = 10 , P 2 = 31.25 mW章习题参考答案章习题参考答案(1) A 相灯泡电压为零,相灯泡电压为零,B B 、C 相各位为220V I L = I p = 4.4 A ,U p = 220 V ,U L = 380 V ,P = 2.3 kW (2) I p = 7.62 A ,I L = 13.2 A A 、C 相各为2.2A 2.2A,,B 相为3.8A U L = 404 VU A N =202202/ -/ -47 47 Vcos $ = 0.961 , Q = 5.75 kvar Z =334 28.4 门(1) I p p = 11.26 A , Z = 19.53 / 42.3 °Q; (2) I p p = I l l = 11.26 A , P = 5.5 kW U l = 391 Vi A =22 2sin(・t —53.13 ) Ai B =22 .2sin(・t —173.13 ) Ai C =22 2 sin(,t 66.87 ) AU V = 160 V(1) 负载以三角形方式接入三相电源负载以三角形方式接入三相电源(2) I — =3.8 T 2 -15 A , 1仁 =3.3.^-2/ ^-2/ 135 A , , 仁 =3.8、「2也105 AI A =3.8、. 6/「45 A , I B =3.8I Q 165 A , , I c =3.8.6. 75 AL = 110 mH , C = 91.9 mF 章习题参考答案章习题参考答案P = 240 W, Q = 360 var P = 10.84 W(1) i(t) 4.7sin( t 100 ) - 3sin3 t A(2) I ~ 3.94 A , U ~ 58.84 V , P ~ 93.02 W 0MU m n o L 1 r~2 ------------- 2u 2(t) msin(,t —-arctan 1)V , R 2 (丄J 2z 2 R '直流电源中有交流,交流电源中无直流直流电源中有交流,交流电源中无直流U 1=54.3 V , , R = 1 Q, L = 11.4 mH ;约为约为 8% 8% , , ( L'= 12.33 mH ) 使总阻抗或总导纳为实数使总阻抗或总导纳为实数((虚部为虚部为 0)0)的条件为的条件为的条件为 尺二尺二& = & = R x = Rx = ■ L/C ■ L/C G =9.39 折,C 2 =75.13 M F L 1 = 1 H , L 2 = 66.7 mHC 1 = 10 M F, C 2 2 = 1.25 M F章习题参考答案章习题参考答案第6 6-1 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-12 6-13 6-14 6- 15 第7 7- 1 7-2 7-3 7-4 7-5 7-6 7-7 7-87-9 7- 10 第88- 6 8-78-8i L (0+) = 1.5mA , U L (0+) = - 15V- 15V h (0+) = 4A , i 2(0+) = 1A , U L (0+) = 2V 2V ,i 1(s )= 3A , i 2(^)= 0, U L ()= 0 i 1 1 (0+) = 75mA , i 2(0+) = 75mA , i 3(0+) = 0, U L 1 (0+) = = 0, U L 2(0+) = 2.25V 2.25V6i c (t)二 2訂 A 4t U L (t) =6e _V u C (t) =10(1 _eg )V , i C (t) =56说*人 500t 貝 u C (t) =115e~ sin(866 亠60 ) V10t 10t 山⑴=12e - V , L(t) =2(1 —e — )A 1 1 t t U R (t) =~U s e 下2C V , U R (3 J - -U S e-V (1) T = 0.1s, (2) u c (t) =10e -V , (3) t = 0.1s u C (t) =10 _9e 」° V 10t _ i L (t) =5e 一 A (a)f(t) =1(t —t 。

电路分析基础(英文版)课后答案第四章

电路分析基础(英文版)课后答案第四章

DE 4.4 [a]
vn vn ¡ vo + = 0; 4500 63;000 Thus vo = 15vp ;
therefore vo = 15vn ; vp = 0:4Rx 15;000 + Rx vp = 0:32 V; 123
So when Rx = 60 k−;
vo = 4:8 V
124
0 0 ¡ va 0 ¡ vo + + in = 0; Ra Rb
in = 0
Therefore 0 vo va =¡ ; Rb Ra
0 vo =
Rb va Ra
Assume vb is acting alone. Replace va with a short circuit. Now vp = vn = vb Rd Rc + Rd in = 0
Rd Ra =
Rb Ra + Rb vb ¡ va Rc + Rd Ra therefore Rd (Ra + Rb ) = Rb (Rc + Rd ) Ra Rc = Rb Rd
Rd [b] Ra
µ
Ra + Rb Rc + Rd

Rb ; Ra
Rd Ra = Rb Rc ; Rd When Ra
µ
vb = 0 V; vb = 0 V; vb = 2 V; vb = 2 V; vb = 8 V;
vo = 18 V (sat)
vo = 40:5 ¡ 8va = §18
:¢: 2:8125 · va · 7:3125 V P 4.4 [a] ia = 120 £ 10¡6 = 20 ¹A 6
[b]
250 250 va ¡ vb = ¡50(0:1) ¡ 10(0:25) = ¡5 ¡ 2:5 = ¡7:5 V 5 25 [b] vo = ¡50va ¡ 2:5 = ¡10 V; therefore 50va = 7:5; va = 0:15 V [d] vo = ¡50va + 10vb = ¡5 + 2:5 = ¡2:5 V vo = ¡50va + 2:5 = ¡10 V; 50va = 12:5; va = 0:25 V 10vb = 20; vb = 2:0 V vn = vp vo = ¡5 + 10vb = 15 V; [c] vo = ¡5 ¡ 10vb = ¡10 V; 10vb = 5; vb = 0:5 V

《电路分析基础》第2版-习题参考答案

《电路分析基础》第2版-习题参考答案

《电路分析基础》各章习题参考答案第 1 章习题参考答案1- 1 (1) 50W ; (2) 300 V、25V, 200V、75 V ; (3) 2=12.5 Q R a=100 Q, R4=37.5 Q1- 2 V A=8.5V, V m=6.5V, V B=0.5V, V C=- 12V, V D=-19V, V p=-21.5V, U AB=8V, U BC=12.5,U DA=-27.5V1- 3 电源(产生功率): A 、 B 元件;负载(吸收功率): C、 D 元件;电路满足功率平衡条件。

1- 4 (1) V A=1 00V , V B=99V, V C=97V, V D=7V, V E=5V, V F=1V, U AF=99V, U CE=92V, U BE=94V, U BF=98V, U CA=- 3 V;(2) V C=90V, V B=92V , V A=93V, V E=-2V, V F=-6V, V G=- 7V, U AF=99V, U CE=92V, U BE=94V, U BF=98V, U CA=- 3 V1- 5 I 〜0.18A , 6 度,2.7 元1- 6 I=4A, I1=11A,I2=19A1- 7 (a) U=6V, (b) U=24 V, (c) R=5Q, (d) I=23.5A1- 8 (1) i6=-1A ; (2) u4=10V, u6=3 V; (3) P1=-2W 发出, P2 =6W 吸收, P3 =16W 吸收, P4 =-10W 发出, P5 =-7W 发出, P6 =-3W 发出1- 9 I=1A , U s=134V , R~ 7.8Q1- 10 S 断开:U AB=- 4.8V , U AO=- 12V , U BO=-7.2V ;S 闭合:U AB =-12V, U AO =- 12V , U BO=0V1- 11 支路 3,节点 2,网孔 2 ,回路 31- 12 节点电流方程: (A) I1 +I3- I6=0,(B)I6- I5- I7=0,(C)I5 +I 4-I3=0回路电压方程:① I6 R6+ U S5 +I 5 R5- U S3 +1 3 R3=0 ,②-15 R5- U S5+ I 7R7- U S4 =0 ,③-丨3 R3+ U S3 + U S4 + I 1 R2+ I 1 R1=01- 13 U AB=11V , I2=0.5A , l3=4.5A , R3~ 2.4 Q1-14 V A=60V V C=140V V D=90V U AC=- 80V U AD=- 30V U CD=50V1- 15 I1=- 2A I2=3A I3=- 5A I4=7A I5=2A第 2 章习题参考答案2- 1 2.4 Q 5 A2- 2 (1) 4 V 2 V 1 V; (2) 40 mA 20 mA 10 mA2- 3 1.5 Q 2 A 1/3 A2- 4 6 Q 36 Q2- 5 2 A 1 A2- 6 1 A2- 7 2 A2- 8 1 A2- 9 I1 = -1.4 A I2 = 1.6 A I3 = 0.2 A2- 10 I1 = 0 A I2 = -3 A P1 = 0 W P2 = -18 W2- 11 I i = -1 mA , I2 = - 2 mA , E3 = 10 V2- 12 I1 = 6 A , I2 = -3 A , I3 = 3 A2- 13 I1 =2 A , I2 = 1A , I3 = 1 A , I4 =2 A , I5 = 1 A2-14 V a = 12 V , I1 = - 1 A, I2 = 2 A2-15 V a = 6 V , I1= 1.5 A , I2 = - 1 A ,I3 = 0.5 A2-16 V a = 15 V , I1 = - 1 A , I2 =2 A , I3 = 3 A2-17 I1 = -1 A , I2 = 2 A2-18 I1 =1.5 A , I2 = - 1 A , I3 = 0.5 A2-19 I1 =0.8 A , I2 = - 0.75 A , I3 = 2 A , I4 = - 2.75 A , I5 = 1.55 A2-20 I3 = 0.5 A2-21 U o = 2 V , R o = 4 Q, I0 = 0.1 A2-22 I5 = -1 A2-23 (1) I5 = 0 A , U ab = 0 V ; (2) I5 = 1 A , U ab = 11 V2-24 I L = 2 A2-25 I s =11 A , R0 = 2 Q2-26 18 Q, - 2 Q, 12 Q2-27 U = 5 V2-28 I =1 A2-29 U = 5 V2-30 I =1 A2-31 10 V , 180 Q2-32 U0 = 9 V , R0 = 6 Q, U=15 V第3章习题参考答案3- 1 50Hz, 314rad/s, 0.02s, 141V, 100V, 120 °3- 2 200V, 141.4V3- 3 u=14.1si n (314t-60 °V3- 4 (1) ®u1-贏2= 120°(2) ®1 = -90° %= - 210°, %1-屁=120° (不变)3-5 (1) U^50 .^_90 V , U2 =50 .2 -0 V ;(2) U3=100 2 sin (3t+ 45 °)V , U4=100 ■■ 2 sin ( ®t+ 135 °)V3- 6 (1) i 1=14.1 sin ( 72 °)A ; (2) U2=300 sin ( 3—60 °)V3- 7 错误:(1),⑶,(4), (5)3- 8 (1) R; (2) L ; (3) C; (4) R3- 9 i=2.82 sin (10t-30 °)A , Q~ 40 var3- 10 u=44.9sin (3141-135 °V, Q=3.18 var3- 11 (1) I=20A ; (2) P=4.4kW3- 12 (1)I ~ 1.4A , I 1.4 - 30 A ; (3)Q~ 308 var, P=0W ; (4) i~ 0.98 sin (628t-30 °)A3- 13 (1)I=9.67A , I =9.67450 A , i=13.7 sin (314t+150 °) A ; (3)Q=2127.4 var, P=0W;(4) I C=0A3- 14 (1)C=20.3 尸;(2) I L = 0.25A ,l c = 16A第4章习题参考答案4-1 (a) Z =5. 36.87 J, Y =0.2 /36.87 S; (b) Z =2.5 - 2/45 门,Y =0.2.2/45 S4- 2 Y=(0.06-j0.08) S , R~ 16.67 Q, X L=12.5 Q, L~0.04 H4- 3 U R=6 0^0 V U L=80/90 V , U S=100^53.13 V4- 4 卩=2 0 £ 3 6.874-5 Z =100 2^45 ;:■,卩=1^0 A , U R=100^0 V , U L=125/90 V , U C=25/ 90 V4-6 Y =0.25 2^45 S , U =4 “2/0 V ,卩R = .2. 0 A , I L =0.^ 2 / 90 A , I C=1.2.2/90 A4- 7 ll =1 0.「2 4 5,A U S=100 乙90 V4- 8 (a) 30 V ; (b) 2.24 A4- 9 (a) 10 V ; (b) 10 A4- 10 (a) 10 V ; (b) 10 V4- 11 U=14.1 V4- 12 U L1 =15 V , U C2 =8 V , U S=15.65 V4-13 U X1 =100 V, U2 =600 V, X1=10 Q, X2=20 Q, X3=30 Q4- 14 Z =20 .2 45 门,l =2. -45 A , h = 2 0 A , .2/-90 A , U ab=0V 4- 15 (1)1 =£2 A, Z RC=5、2「,Z =5 10 门;(2) R =10 门,X^10'J4- 16 P = 774.4 W , Q = 580.8 var, S = 968 V A-4- 17 l1 = 5 A , l2 = 4 A4-18 I1 = 1 A , I2 =2 A , l =.5. 26.565 A , S =44.72. -26.565 V A4-19 Z=10", I=190A, U R2 =5 2 135 V , P =10 W64-20 a =5X10 rad/s , p= 1000 Q, Q = 100 , l = 2 mA , U R =20 mV , U L = U C = 2 V4-21 30 =104rad/s , p= 100 Q, Q = 100 , U = 10 V, I R = 1 mA , I L = I C = 100 mA4-22 L1 = 1 H , L2 ~ 0.33 H第5章习题参考答案5- 3 M = 35.5 mH5- 4 301 =1000 rad/s ,302 =2236 rad/s5- 5 Z1 = j31.4 Q , Z2 = j6.28 Q 5- 6 Z r = 3+7.5 Q5- 7 M = 130 mH5- 8 “2 二-2/45 A5- 9 U1 = 44.8 V5- 10 M12 = 20 mH , 11 = 4 A5- 11 U2 = 220 V , I1 = 4 A5- 12 n = 1.95- 13 N2 = 254 匝,N3 = 72 匝5- 14 n = 10 , P2 = 31.25 mW章习题参考答案 (1) A 相灯泡电压为零,B 、C 相各位为220V I L = I p = 4.4 A ,U p = 220 V ,U L = 380 V ,P = 2.3 kW (2) I p = 7.62 A ,I L = 13.2 A A 、C 相各为2.2A ,B 相为3.8A U L = 404 V U A N =202/ -47 V cos $ = 0.961 , Q = 5.75 kvar Z =334 28.4 门 (1) I p = 11.26 A , Z = 19.53 / 42.3 °Q; (2) I p = I l = 11.26 A , P = 5.5 kW U l = 391 V i A =22 2sin(・t —53.13 ) A i B =22 .2sin(・t —173.13 ) A i C =22 2 sin(,t 66.87 ) A U V = 160 V (1) 负载以三角形方式接入三相电源 (2) I — =3.8 T 2 -15 A , 1仁 =3.^-2/ 135 A , 仁 =3.8、「2也105 A I A =3.8、. 6/「45 A , I B =3.8I Q 「165 A , I c =3.8.6. 75 A L = 110 mH , C = 91.9 mF 章习题参考答案 P = 240 W, Q = 360 var P = 10.84 W (1) i(t) 4.7sin( t 100 ) - 3sin3 t A (2)I ~ 3.94 A , U ~ 58.84 V , P ~ 93.02 W 0MU m n o L 1 r~2 ------------- 2 u 2(t) m sin(,t —-arctan 1)V , R 2 (丄J 2 z 2 R ' 直流电源中有交流,交流电源中无直流 U 1=54.3 V , R = 1 Q, L = 11.4 mH ;约为 8% , ( L'= 12.33 mH ) 使总阻抗或总导纳为实数(虚部为 0)的条件为 尺二& = Rx = ■ L/C G =9.39 折,C 2 =75.13 M F L 1 = 1 H , L 2 = 66.7 mH C 1 = 10 M F, C 2 = 1.25 M F 章习题参考答案 第66-16-36-46-56-66-76-86-96-106-116-126-136-146- 15第77- 17-27-37-47-57-67-77-87-97- 10第88- 68-78-8i L(0+) = 1.5mA , U L(0+) = - 15Vh(0+) = 4A, i2(0+) = 1A , U L(0+) = 2V, i1(s)= 3A , i2(^)= 0, U L()= 0 i1 (0+) = 75mA , i2(0+) = 75mA , i3(0+) = 0, U L1 (0+) = 0, U L2(0+) = 2.25V6i c (t)二 2訂 A 4tU L (t) =6e _V u C (t) =10(1 _eg 0t )V , i C (t) =56说*人 500t 貝 u C (t) =115e~ sin(866 亠60 ) V10t 10t 山⑴=12e - V , L(t) =2(1 —e — )A 1 t U R (t) =~U s e 下2C V , U R (3 J - -U S e-V (1) T = 0.1s, (2) u c (t) =10e -0t V , (3) t = 0.1s u C (t) =10 _9e 」°t V 10t _ i L (t) =5e 一 A (a)f(t) =1(t —t 。

《电路分析基础》课程练习题及答案

《电路分析基础》课程练习题及答案

《电路分析基础》课程练习题及答案电路分析基础第⼀章⼀、1、电路如图所⽰,其中电流为答( A )A 0.6 A B. 0.4 A C. 3.6 A D. 2.4 A2、电路如图⽰, 应为答( C )A. 0 VB. -16 VC. 0 VD. 4 V3、电路如图所⽰, 若、、均⼤于零,, 则电路的功率情况为答( B )A. 电阻吸收功率, 电压源与电流源供出功率B. 电阻与电流源吸收功率, 电压源供出功率C. 电阻与电压源吸收功率, 电流源供出功率D. 电阻吸收功率,供出功率⽆法确定UI S⼆、 1、图⽰电路中, 欲使⽀路电压之⽐,试确定电流源之值。

I SU解:由KCL 定律得:22328222U U U ++=V由KCL 定律得:0422=++U I U S1160-=S I A 或-5.46 A 2、⽤叠加定理求解图⽰电路中⽀路电流,可得:2 A 电流源单独作⽤时,2/3A;4 A 电流源单独作⽤时,-2A, 则两电源共同作⽤时-4/3A 。

3、图⽰电路ab端的戴维南等效电阻 4 ;开路电压22 V。

解:U=2*1=2 I=U+3U=8A Uab=U+2*I+4=22V Ro=4第⼆章⼀、1、图⽰电路中,7 V电压源吸收功率为答( C )A. 14 WB. -7 WC. -14 WD. 7 W2、图⽰电路在时开关闭合,时为答(D )精品⽂档A. B.C. D.3、图⽰桥式电路中,已知,欲使图中u=0,应满⾜的条件为答( A )A. B.C. D.⼆、1、试⽤叠加定理求图⽰电路中的电压。

4Ω解:4Ω电路可分为图1和图2单独作⽤图1U 1=-3v图2U 2=- 249+ ×(4×4)=-3V U=U 1+U 2=-6v 2、图⽰电路在换路前已达稳态。

当时开关断开,求的。

100u C解:Uc(0)=100vUc(∞)=40150×20=75v 10RC ==τUc (t )=75+25e-0.1t3、求:⽰⽹络ab ⼆端间的戴维南等效电路。

电路分析基础第四版 课后习题答案

电路分析基础第四版 课后习题答案

+

120V
Ro
a
+
U OC −
20kΩ
b
w. Ra = 60k // 30k = 20kΩ
khd 故
i3
=
udc 4
= −2.5A, i4
= is
− i3
= (−3.5 + 2.5)A =
− 1A
. 由此判定
R = 0Ω
www 试用支路电流法求解图题所示电路中的支路电流 i1,i2,i3 。
a

网 i1
i2 3Ω
案 2Ω
答5A
d+ 8V
c
i3
+ 6V



b

课 求解三个未知量需要三个独立方程。由 KCL 可得其中之一,即
(2)当 N 内含电源 iS = 1A 能产生 ux 为 c ,则根据叠加定理列出方程,
⎧⎪⎨8−a8a++124bb++iiSScc==800 ⎪⎩iSc = −40

⎧8a +12b = 120 ⎩⎨−8a + 4b = 40

⎧a ⎨⎩b
= =
0 10
⇒ ux = (20× 0 + 20×10 − 40)V = 160V
i1 + i2 + i3 = 5
对不含电流源的两个网孔,列写 KVL 方程,得
网孔badb 2i1 − 3i2 + 8 = 0 网孔bdacb − 8 + 3i2 − i3 + 6 = 0
整理得:
⎧⎪⎨i−1 2+i1i2++3ii32

李瀚荪《电路分析基础》(第4版)课后习题详解-第4章 分解方法及单口网络【圣才出品】

李瀚荪《电路分析基础》(第4版)课后习题详解-第4章 分解方法及单口网络【圣才出品】

第4章 分解方法及单口网络§4-2 单口网络的电压电流关系4-1 求图4-1所示单口网络的VCR。

图4-1解:标出端口u和i,电压u可认为是外施电压源电压,i流出网络,指向外施电源正极。

用网孔法列出电路方程。

设网孔电流和i均为顺时针方向。

找出i和u的关系得u=-12.5i+11.25 (1)如i指向网络内部,则u=12.5i+11.25 (2)u、i的单位分别为V、A。

列网孔方程就是如此规定的。

4-2 试用外施电源法求图4-2所示含源单口网络的VCR,并绘出伏安特性曲线。

图4-2解:图中u可认为是外施电压源的电压。

根据图中所示i的参考方向,可列出u=(3 Ω)i+(6 Ω)(i+5 A)+20 V=(3 Ω+6 Ω)i+(6 Ω)(5 A)+20 V=(9 Ω)i+50 V伏安特性曲线是条直线。

i=0时u=50 V,即u轴截距为50;u=0时,即i轴截距为4-3 试求图4-3所示电路的VCR。

图4-3解:施加电压源u于a、b两端,由KVL和KCL,可得§4-3 单口网络的置换——置换定理4-4 在图4-4所示电路中已知N的VCR为5u=4i+5,试求电路中各支路电流。

图4-4解:分割出图4-4所示虚线框内电路,设外施电压为u,为求其VCR,可列出节点方程整理得VCRu=2-1.2i以之与N的VCR联立可解出i,即5(2-1.2i)=4i+5解得i=0.5 A,u=1.4 V以1.4 V电压源置换N,可简便地估计到N存在的影响,由此可得4-5 试设法利用置换定理求解图4-5所示电路中的电压何处划分为好?置换时用电压源还是电流源为好?图4-5图4-6解:试从图4-6的虚线处将电路划分成两部分,对网络有整理得15u=117-14i(1)对网络有 联立(1)、(2)两式解得i=3 A。

用3 A电流源置换较为方便,置换后利用分流关系,可得4-6 电路如图4-7(a)所示,网络N的VCR如图4-7(b)所示,求u和i,并求流过两线性电阻的电流。

(大学物理电路分析基础)第4章网络定理

(大学物理电路分析基础)第4章网络定理
大学物理电路分析 基础 第4章 网络定 理
目录
• 基尔霍夫定律 • 叠加定理 • 戴维南定理 • 诺顿定理
01
CATALOGUE
基尔霍夫定律
定义
基尔霍夫定律是电路分析中的基本定律之一,它包括基尔霍夫电流定律(KCL)和 基尔霍夫电压定律(KVL)。
基尔霍夫电流定律指出,对于电路中的任一节点,流入该节点的电流之和等于流出 该节点的电流之和。
流和电压、计算功率等。
在解决复杂电路问题时,通常需要结合 其他电路定理和定律,如欧姆定律、电
源定理等,以简化问题的解决过程。
基尔霍夫定律是电路分析中的基础理论 之一,对于理解电路的工作原理、设计 电路以及解决实际问题具有重要的意义

02
CATALOGUE
叠加定理
定义
• 叠加定理:线性电路中,多个独立源共同作用产生的响应 ,等于各个独立源单独作用于电路所产生的响应之和。
内容
线性电路
01
叠加定理适用于线性电路,即电路元件的电压和电流成正比关
系。
独立源
02
叠加定理只适用于独立源,即源之间没有相互影响。
响应之和
03
各个独立源单独作用于电路所产生的响应是相互独立的,它们
的响应之和即为多个独立源共同作用产生的响应。
应用
简化计算
在复杂电路中,通过应用叠加定理, 可以将多个独立源的共同作用分解为 各个独立源单独作用于电路所产生的 响应,从而简化计算过程。
诺顿定理还可以用于验证电路分析的正确性和解决复杂电路问题,提高电 路分析的效率和准确性。
THANKS
感谢观看
基尔霍夫电压定律指出,对于电路中的任一闭合路径,沿该路径的电压降之和等于 零。

电路分析基础第四章

电路分析基础第四章

开路电压
等效电阻
二、戴维南定理证明:
置换
叠加
线性含源
线性或非线性
u ' = uoc
N中所有独立源产生的电压 电流源开路
' ''
u '' = − Rabi
电流源产生的电压 N0中所有独立源为零值
u = u + u = uoc − Rabi
u = uoc − Rabi
含源线性单口网络N可等效为 电压源串联电阻支路
Rab = 6 + 15 //(5 + 5) = 6 + 6 = 12Ω
Rcd = 5 //(15 + 5) = 4Ω
例3:试求图示电阻网络的Rab和Rcd。
Rab = 8 + {4 //[2 + 1 + ( 2 // 2)]} = 8 + {4 // 4} = 10Ω
Rcd = ( 2 // 2) + {1 //[4 + 2 + ( 2 // 2)]} = 1 + (1 // 7) = 1.875Ω
例5:求图中所示单口网络的等效电阻。
u R i = = ( μ + 1) R i
例6:求图所示单口网络的等效电阻。
u R Ri = = i 1+α
例7:求图示电路输入电阻Ri,已知α =0.99。
1. 外施电源法 2. 电源变换法
Ri = 35Ω
三、含独立源单口网络的等效电路:
1. 只含独立源、电阻,不含受控源 只含独立源、电阻不含受控源的网络,端口 VCR为u=A+Bi,u和i关联时,B为正。 2. 含受控源的有源单口网络 含受控源、独立源、线性电阻的网络,端口 VCR为u=A+Bi,B可正可负。 等效为电压源串联电阻组合或电流源并联电阻组合。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RO
+
– B
40 RO 8 // 10 4.44 9
A
10 280 uoc 10 ( 20 10) 15.6V 10 8 18
此例从一个侧面证明了戴维南定 理的正确性。也反映了其简便性。
RO
4.44
15.6V B
uoc
+

戴维南定理也可以在单口外加电流源i ,用叠加定理计算端 口电压表达式的方法证明。

i NS
+ –
a
+
RO
u
b 含源单口网络的VCR表达式:
uoc

b
u =K1+K2i = uoc+ Roi
其中:
uoc等于该网络NS的端口开路电压;
a + u

i RO
+ –
i
NS
a
+
端口开路时: i =0 u = uoc
u
uoc

b
b
RO等于该网络中所有独立源置零时所得网络NR 的等效电阻Rab。 独立源置零
I
+ +
I
º +
5V _
5V _
º
5V _
与电压源并联的元件称为多余元件,多余元件的存在与否并 不影响端口电压的大小,端口电压总等于电压源电压。
us
is
提示:多余元件的存在会使电压源的电流有所改变,但电压源 的电流可为任意值。
总结:一个理想电压源与任何一条支路并联后,对外 等效为理想电压源。 i
(3)外加电压源,求入端电流:
网孔法列方程
( R1+R2 )I + R1IS = - US - U
U = - ( R1+R2 )I - R1IS - US
§4 -2 单口网络的伏安关系
注意:
1)单口网络的伏安关系是由其本身性质决定的,与外接 电路无关。 2)含有独立电源单口网络的伏安关系,可表示为u=A+Bi 的形式。 3)外加电流源求电压法和外加电压源求电流法是常用 的方法,也是用实验方法确定VCR的依据。这是求单口 网络VCR的基本方法。
1.5k
I
º + U _ º
课堂练习 1. 化成最简电路
20 4A
+ 30V 3 6
10
6
2.
求等效电路中R和US的参数 3I1 I
2A
I1
2
+
-
+ U _
º US
R
I
+
_
º + U _ º
º
§4-6 戴维南定理 (Thevenin Theorem)
线性含源单口网络NS ,就其端口VCR而言,可以等效 为一个电压源串联电阻的支路。 i a + u
解:引入中间变量i1 、i2 u = 2 ·i2 +4+1 ·i1 i2= i +4 i1= i + 4 –1 u = 2(i +4) +4+(i + 4 –1) = 3i +15 = uOC+ROi 得: uOC = 15V RO = 3 RO 3 uOC +
– 15V
i2

i
4V
+

2 4A 1
电路分析课的本质: 在 KCL 和 KVL 的前提下,找到求解电路变 量(电压和电流)的简便方法。 结构简单电路 分解 结构复杂电路 等效 分解?核心思想? 分析过程或步骤?
第4章 分解方法及单口网络
几个名词: (1) 端口( port ): 电路引出的一对端钮,其中从一个端钮(如a) 流入的电流一定等于从另一端钮(如b)流出的 i a 电流。
+ U _
2A
6A
+ U 5∥ 5 _
U=20V
含受控源单口网络的等效电路
可用加压求流法或加流求 压法,求得VCR
10V
1k 1k 0.5I I º + U _ º
U 1500 I 10
含受控源、电阻及独立源的单口网 10V 络与含电阻及独立源的单口网络一 样,可以等效为电压源-串联电阻组 合或电流源-并联电阻组合。
Req=( R1+ R2 +…+Rn) = Rk 结论: 串联电路的等效电阻等于各分电阻之和。
+
_
2.并联等效电阻Req
i
+ u _ R1 i1 R2 i2 Rk ik Rn in 等效 + u _
i
Req
由KCL:
i = i1+ i2+ …+ ik+ …+in= u / Req
故有 u/R = i = u/R +u/R + …+u/R =u(1/R +1/R +…+1/R ) eq 1 2 n 1 2 n
+
+
任意 元件
i
uS _
u _
uS
+ _
+ u _
对外等效 等效理想电压源中的电流不等于替代前的理想 电压源的电流,而等于外部电流。
理想电流源的串并联 并联:
is is1 is 2 isk isn
º iS2 iSk º
( 注意参考方向)
º iS º
iS1
串联:
只有电流相等且方向一致的电流源才允许串联,否则违背 KCL,此时等效电路为其中任一电流源。 i S1 i i S2 iS
u=k1i+A1
u=k2i+A2
4. 分别求单口网络N1,N2内部各支路的电压,电流。
§4 -2 单口网络的伏安关系
单口网络的伏安关系的求法
1. 根据电路模型直接列写u与i的关系 ; 2. 外接电流源求电压法; + IS + US R2 + R1 I1 I + U -
3. 外接电压源求电流法 。
例 求图示电路的VCR。 解:(1)列电路方程: U= -R2I - US + (-I-IS)R1 = -(R1+R2)I - R1IS-US
§4 -2 单口网络的伏安关系
(2)外加电流源,求入端电压: 4 节点法列方程
U1 U S IS I R1 R1
IS
US R2 2 . + + R1 I1 1
.
+ -
I
3 + U
I
-
U1 R2 I U 0
U= - ( R1+R2 )I - R1IS - US
§4 -2 单口网络的伏安关系
A
1A
i1
+ u –
B A
B
例3, 用戴维南定理求 i 。 解: 把 i 支路以外的电路 作戴维宁等效; (1) 求uOC uOC = uA – uB uA=2A·10 +10V=30V uB=2A·10 +35V= 55V
uS
_
+
u _Leabharlann iSRu=uS – Ri
u=R’iS –R’i
通过比较,得等效的条件: R=R’
us=R’iS 或 iS=us /R’
等效是指对外等效(等效互换前后对外伏安特性一致)
对内不等效 a RS I a I'
Is + - US
Uab RL
RS'
Uab' b RL
b
具有串联电阻的电压源称为有伴电压源,
2 1
(b) 伏安特性曲线相交 法求解图(a)电路
u = US i =US / R
§4 -l 分解的基本步骤
上例启示
如果在端钮1 1'处相连接的 是两个内部结构复杂或是内部 情况不明的单口网络,也可按 此思路求得这两个网络的端口 电压u和端口电流i,所不同的 是,需要的是这两个 单口网络 的VCR而不是元件的VCR。
第四章 分解方法与单口网络
§4-l 分解的基本步骤 §4-2单口网络的电压、电流关系 §4-3单口网络的置换——置换定理 §4-4单口网络的等效电路 §4-5一些简单的等效规律和公式 §4-6 戴维南定理√ §4-7 诺顿定理 √ §4-8 最大功率传递定理 §4-9 T形网络和Π形网络的等效变换
第4章 分解方法及单口网络
在第一章我们学过,一个元件的伏安关系 是由这个元件本身所决定的,这一关系不会因外接 电路不同而有所不同。同样,一个单口网络的伏安 关系也是由这个单口网络本身所确定的,与外接电 路无关,只要这个单口网络除了通过它的两个端钮 与外界相连接外,别无其他联系。
§4 -l 分解的基本步骤
i 1 + US N1 + u 1' N2 (a) 电压源及电阻的串联电路看 成两个单口N1和N2相连的电路 u = US u = Ri 0 US / R R u US Q
具有并联电阻的电流源称为有伴电流源。
有伴电压源和有伴电流源才能进行等效互换。
恒压源和恒流源不能等效互换
+
a I
I'
a
Uab'
US -
b
Is
b
应用:利用电源转换可以简化电路计算。 例1.
5A 2A 3 7 4 I
7 + 15v _ _ 8v + I 7
I=0.5A
例2.
5 10V 10V 5 6A
独立电压源短路; 独立电流源开路。
一、验证
例1 , 化简电路, 应用电源变换。
8 + 20V – 10V A 10 2.5A 8 10 A
相关文档
最新文档