Multisim仿真-电路分析完整版

合集下载

模拟电子电路multisim仿真(很全-很好)【范本模板】

模拟电子电路multisim仿真(很全-很好)【范本模板】

仿真1。

1.1 共射极基本放大电路按图7。

1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。

1.静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。

2.动态分析用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。

由波形图可观察到电路的输入,输出电压信号反相位关系。

再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。

3。

参数扫描分析在图7。

1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。

选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。

4。

频率响应分析选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。

由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25。

12MHz.由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。

multisim电路分析方法

multisim电路分析方法

在Variables in Circuit栏中列出的是电路中可 用于分析的节点和变量。点击 Variables in circuit 窗口中的下箭头按钮,可以给出变量类型选择表。 在变量类型选择表中: 点击Voltage and current选择电压和电流变量。
点击Voltage选择电压变量。 点击 Current选择电流变量。 点击Device/Model Parameters 选择元件/ 模型参数变量。 点击All variables选择电路中的全部变量。
其中Output variables、 Miscellaneous Options 和Summary 3个选项与直流工作点分析的设置 一样,下面仅介绍Analysis Parameters选项, Analysis Parameters对话框如图1.6.8所示。
图1.6.8 Analysis Parameters对话框
图 1.6.5 Miscellaneous Options对话框
如果选择Use this custom analysis,可以用 来选择用户所设定的分析选项。可供选取设定的 项目已出现在下面的栏中,其中大部分项目应该 采用默认值,如果想要改变其中某一个分析选项 参数,则在选取该项后,再选中下面的Use this option选项。选中Use this option选项将在其右边
2. Parameters区 在Parameters区可以对时间间隔和步长等参数 进行设置。
Start time窗口:设置开始分析的时间。 End time窗口:设置结束分析的时间。
点击Maximum time step settings,可以设 置分析的最大时间步长。其中:
(1)设置单位时间内的采样点数 点击Minimum number of time points,可以 设置单位时间内的采样点数。

multisim数字电路仿真实验电子表电路仿真

multisim数字电路仿真实验电子表电路仿真

multisim数字电路仿真实验电⼦表电路仿真Multisim 数字电路仿真实验电⼦表电路仿真汽车⼯程系汽13班张昊 010975实验⽬的⽤Multisim的仿真软件,对数字电路进⾏仿真研究实验内容电⼦表电路的框图如图19.3 所⽰,其⼯作要求如下:时钟输⼊为秒脉冲。

秒计数器为60 进制,BCD 码输出。

秒计数器的进位脉冲送给分计数器,分计数器也是60 进制,BCD 码输出。

分计数器的进位脉冲送给⼩时计数器,⼩时计数器是24 进制,BCD 码输出。

各计数器的输出送显⽰译码器,显⽰译码器的输出送七段数码管。

设⼀个开关,开关合向⾼电平(+5V 电源),计时开始;开关合向地,各计数器清除。

电⼦表电路Multisim 仿真设计图如图19.4 所⽰。

其电路结构是:计数器芯⽚采⽤74290N,其中U1、U2 组成秒计数器,U3、U4组成分计数器,U5、U6 组成⼩时计数器。

显⽰译码器采⽤7448N。

开关J1控制计数和清除。

其他门电路实现进位或清除逻辑功能。

3.选做实验(1)修改图19.4 电路,实现时、分、秒的对表逻辑。

(2)⾃拟⼀个电路进⾏仿真实验。

电路分析本实验中最重要的部分是由两⽚74LS90组成100以内任意进制计数器的原理。

原实验电路图分为两部分,⼀是计数器部分,⼆是译码显⽰部分。

计数器部分由六个74LS90芯⽚组成的两个60进制计数器和⼀个24进制计数器级连⽽成,由秒脉冲使其实现对时,分,秒的计时功能。

其中通过逻辑电路保证分钟计数器的输⼊信号为秒计数器的进位脉冲,时计数器的输⼊脉冲为分计数器的进位脉冲。

另外,还具有同时⼿动清零的功能。

译码显⽰部分由译码器7448N和七段数码显⽰管组成,实现将计数器的值⽤数码显⽰的功能。

对原电路的改进由上述对原电路各部分功能的分析,为⽅便实验,在不影响其功能的前提下,我认为有⼏个地⽅可以作如下修改。

⾸先,可以选⽤四输⼊的带有译码电路的数码管代替原有译码显⽰部分,这样可以使得电路更加简洁,便于分析。

multisim电路仿真图

multisim电路仿真图

一.直流叠加定理仿真图1.1图1.2图1.3结果分析:从上面仿真结果可以看出,V1和I1共同作用时R3两端的电压为36.666V;V1和I1单独工作时R3两端的电压分别为3.333V和33.333V,这两个数值之和等于前者,符合叠加定理。

二.戴维南定理仿真戴维南定理是指一个具有直流源的线性电路,不管它如何复杂,都可以用一个电压源UTH与电阻RTH串联的简单电路来代替,就它们的性能而言,两者是相同的。

图2.1如上图2.1电路所示,可以看出在XMM1和XMM2的两个万用表的面板上显示出电流和电压值为:IRL=16.667mA,URL=3.333V。

图2.2如上图2.2所示电路中断开负载R4,用电压档测量原来R4两端的电压,记该电压为UTH,从万用表的面板上显示出来的电压为UTH=6V。

图2.3在图2.2所测量的基础之上,将直流电源V1用导线替换掉,测量R4两端的的电阻,将其记为RTH,测量结果为RTH=160Ω。

图2.4在R4和RTH 之间串联一个万用表,在R4上并接一个万用表,这时可以读出XMM1和XMM2上读数分别为:IRL1=16.667mA ,URL1=3.333V 。

结果分析:从图2.1的测试结果和图2.4的测试结果可以看出两组的数据基本一样,从而验证了戴维南定理。

三.动态电路的仿真1、一阶动态电路:V1 1 VR110kΩC110uF12图3.12、二阶动态电路分析:图3.2 2、二阶动态电路:V110 VC11uFR12kΩL11H123图3.3一阶动态电路中V2随时间的变化可以看出,在0~500ms之间随时间的增大而非线性增大,大于500ms后趋于稳定。

图3.4当R1电位器阻值分别为500Ω,2000Ω,4700Ω时,输出瞬态波形的变化如上图所示。

四.交流波形叠加仿真图4.1图4.2结果分析:在信号分析中,一个周期的波形只要满足狄利克雷条件,该波形就可以分解为傅里叶级数。

图4.1为波形叠加仿真电路,将1kHz 15V,3kHz 5V和5kHz 3V的3路正弦信号通过电阻网络予以叠加,从图4.2可以看出示波器D通道的波形正好是示波器A,B,C通道波形的叠加,满足交流波形叠加。

《电工技术基础与仿真(Multisim 10)》项目4单相正弦交流电路分析

《电工技术基础与仿真(Multisim 10)》项目4单相正弦交流电路分析

p
ui
Im
sin tU m
sin(t
2
)
U m I m cos t sin t
UI sin 2t
在电感元件的交流电路中,没有任何能量消耗,只 有电源与电感元件之间的能量交换,其能量交换的 规模用无功功率Q来衡量,它的大小等于瞬时功率 的幅值。
QL UI I 2 X L
4.2.3 纯电容电路
将开关K1闭合,K2和K3断开,分别按给定的频 率值调节信号源的频率,每次在信号发生器中设 置好频率后,打开仿真开关,双击万用表符号, 得到测量数据,
任务3 相量法分析正弦交流电路
4.3.1 RLC串联电路 1.RLC串联电路电压电流关系 (1)瞬时关系 由于电路是串联的,所以流过R、L、C三元
件的电流完全相同
1 Z1
1 Z2
(2)复阻抗并联的分流关系
I1
U Z1
I
Z Z1
I
Z2 Z1 Z2
U
I2
I Z1 Z1 Z2
I I1 I2 Z1 Z2
a)
I
U
Z
b)
4.3.3 功率因数的提高
1.提高功率因数的意义 功率因数愈大,所损耗的功率也就愈小,
输电效率也就愈高。 负载的功率因数 愈高,发电机可提供的有
1.电压与电流的关系 线性电容元件在图所示的关联方向的条件下
iC
C duc dt
i +
u
C
_
i C duc dt
C dUm sin t
dt
U mC cost
U
mC
s
in(t
2
)
据此,可得出电容元件电压与电流关系的结论:

双极型放大电路Multisim仿真结果及分析

双极型放大电路Multisim仿真结果及分析

双极型放大电路Multisim仿真结果及分析1. 引言双极型放大电路是一种常见的电子电路,在电子设备中广泛应用。

本文将通过Multisim软件对双极型放大电路进行仿真,并对仿真结果进行分析。

2. 简介双极型放大电路由NPN或PNP型晶体管构成,常用于放大电压、电流和功率。

它由输入端、输出端和供电端构成。

输入信号通过输入端进入电路,经过放大后,输出到输出端,实现信号放大的功能。

3. 仿真设置在Multisim软件中,我们使用电感耦合输入的双极型放大电路进行仿真。

具体的仿真设置如下:- NPN型晶体管- 输入信号为正弦波,幅值为1V,频率为1kHz- 电源电压为12V4. 仿真结果经过仿真,我们得到了双极型放大电路的输出波形。

图1展示了输出波形及输入波形的对比。

从图中可以看出,输入信号经过放大后,输出信号的幅值明显增大。

![图1:双极型放大电路输出波形](output_waveform.png)图1:双极型放大电路输出波形5. 结果分析通过对仿真结果的观察和分析,我们可以得出以下结论:5.1 增益在双极型放大电路中,放大器的增益是一个重要指标。

从图1可以看出,输出信号的幅值相对于输入信号的幅值有明显的增大,表明双极型放大电路具有较高的增益。

5.2 非线性失真在实际电路中,双极型放大电路可能会产生非线性失真。

通过观察输出波形,我们可以看到输出波形的顶部和底部存在一定的畸变,即波形变成了非完全正弦波。

这是由于双极型晶体管的非线性特性导致的。

5.3 偏置电压在双极型放大电路中,偏置电压的设置对电路的工作状态和放大效果有重要影响。

通过模拟实验,我们可以调整偏置电压,观察输出波形的变化,进一步优化电路的工作效果。

6. 结论通过Multisim仿真,我们成功分析了双极型放大电路的输出结果。

我们观察到了信号放大效果、非线性失真和偏置电压的影响。

这些结果对于设计和优化双极型放大电路具有指导意义,有助于提高电路的性能。

Multisim仿真—电路

Multisim仿真—电路

电路分析基础2.1 L 、C 并联谐振回路频率特性的仿真测试电路说明:①电源选择“Sources ”→“SIGNAL_VOLTAGE_SOURCE ”→“AC_VOLTAGE ”。

9个,设置为电路分析:理论值:kHz FmH LCf 035.51121210=⨯==μππ实际值:kHz f 006.50=左右测量此处的频率观察左下脚的值,为实际值2.2 L 、C串联谐振回路频率特性的仿真测试电路说明:①电源选择“Sources”→“SIGNAL_VOLTAGE_SOURCE”→“AC_VOLTAGE”。

9个,设置为电路分析:理论值:kHz nFmH LCf 23.1591121210=⨯==ππ实际值:kHz f 23.1590=2.3 电容特性仿真测试C11uF按Space 键,来回切换,看电容的充放电过程。

2.4 电感特性仿真测试按Space键,来回切换,观察电感特性。

模拟电子线路2.5 全波整流电路¸1N40072.6 光电控制电路图中,SONALERT为固体音调发生器,按Space键,是开关闭合,观察效果如下图。

若接实际电路,SONALERT应发出200Hz对应的声音。

图中用2.5V的红色探针来表示。

X1在指示器库(Indicators)中的探针(PROBE)中选择PROBE-RED。

2.7 桥式整流∏滤波电路¸观察波形:①起始波形:②平稳后波形:2.8同向比例运算电路W① 理论值:通过同向比例运算的公式计算:V mV k k 110.010101001U 2=⨯ΩΩ+=)(。

② 实际值:电压表示数0.110V 。

2.9 三角波发生器观察示波器波形,分析三角波的产生过程。

数字电子技术2.10译码器仿真电路的分析XWG1为字信号发生器(Word Generation)。

设置其值为0-7。

选择循环时,灯依次点亮,可设断点、可单步执行。

74LS138的真值表:例:当字发生器-XWG1运行到0000000003时,2.11 模数AD与转换电路的仿真电路中函数信号发生器设置为:改变变阻器的值,观察数码管显示数值的变换。

Multisim电路仿真实验

Multisim电路仿真实验

(1) 万用表的使用 如图所示,在万用表控制面板上可以选择电压值、电流值、 电阻以及分贝值。参数设置窗口,可以设置万用表的一些参数。
万用表图标、面板和参数设置
(2) 函数信号发生器 如图所示,在函数信号发生器中可以选择正弦波、三角波和 矩形波三种波形,频率可在1~999范围内调整。信号的幅值、 占空比、偏移量也可以根据需要进行调节。偏移量指的是交流 信号中直流电平的偏移。
IV分析仪及其使用
Multisim 电路仿真分析
1. 仿真实验法 应用Multisim 进行仿真的基本步骤如下。
(1) 启动Multisim
双击Multisim 图标进入Multisim 主窗口。 (2) 创建实验电路 连接好电路和仪器,并保存电路文件。
(3) 仿真实验
① 设置仪器仪表的参数。
② 运行电路:单击主窗口的启动开关O/I按钮,电 路开始仿真,若再单击此按钮,则仿真实验结束。若 要使实验暂停,可单击主窗口的暂停键,在开关旁边 再单击就可重新恢复电路运行。 ③ 观测记录实验结果。实验结果也可存储或打印输 出,并可用word的剪贴板输出。
新特点:
可以根据自己的需求制造出真正属于自己的仪器; 所有的虚拟信号都可以通过计算机输出到实际的 硬件电路上; 所有硬件电路产生的结果都可以输回到计算机中 进行处理和分析。
Multisim 使用方法
通过Option菜单可以对软件的运行环境进行定制和设置。 Global Preference:Symbol standard栏选DIN(欧洲标准,我国采用 的是欧洲标准) 放置元器件 通过Place/ Place Component命令打开Component Browser窗口。 选中相应的元器件:在Component Family Name中选择74LS系列, 在Component Name List中选择74LS00。单击OK按钮就可以选中 74LS00,出现如下备选窗口。7400是四/二输入与非门,在窗口种的 Section A/B/C/D分别代表其中的一个与非门,用鼠标选中其中的一个 放置在电路图编辑窗口中,如左图所示。器件在电路图中显示的图形 符号,用户可以在上面的Component Browser中的Symbol选项框中 预览到。当器件放置到电路编辑窗口中后,用户就可以进行移动、复 制、粘贴等编辑工作了。 将元器件连接成电路 将电路需要的元器件放置在电路编辑窗口后,用鼠标就可以方便地将 器件连接起来。方法是:用鼠标单击连线的起点并拖动鼠标至连线的 终点。在Multisim中连线的起点和终点不能悬空。 通过Simulate菜单执行仿真分析命令。项

Multisim电路仿真

Multisim电路仿真

Multisim电路仿真示例1.直流电路分析步骤一:文件保存打开Multisim 软件,自动产生一个名为Design1的新文件。

打开菜单File>>Save as…,将文件另存为“CS01”(自动加后缀)步骤二:放置元件打开菜单Place>>Component…1.选择Sources(电源)Group (组),选择POWER_SOURCES(功率源)Family(小组),在元件栏中用鼠标双击DC_POWER,将直流电源放置到电路工作区。

说明:所有元件按Database -> Group -> Family 分类存放2.继续放置元件:Sources Group –>POWER_SOURCES Family->ROUND(接地点Basic Group->RESISTOR Family(选择5个电阻)3.设定元件参数。

采用下面两种方式之一1)在放置元件时(在一系列标准值中)选择;2)在工作区,鼠标右键点击元件,在Properties (属性)子菜单中设定。

步骤三.根据电路图连线用鼠标拖动元件到合适位置,如果有必要,鼠标右键点击元件,可对其翻转(Flip)或旋转(Rotate)。

连线时先用鼠移至一个元件的接线端,鼠标符号变成叉形,然后拖动到另一结点,点击右键确认连线。

若需显示全部节点编号,在菜单Option>>Sheet Properties>>Sheet visibility的Net names 选板中选中show all。

步骤四.电路仿真选择菜单Simulate>>Analyses>>DC operating point…(直流工作点分析)在DC operating point analysis窗口中,选择需要分析的变量(节点电压、元件电流或功率等)。

点击“Simulate”按钮,得到结果:可以验证,模拟结果与理论计算完全一致。

第4讲.电路分析Multisim仿真

第4讲.电路分析Multisim仿真

电阻电路分析
电路分析方法与组成电路的元件、激励源和结构有关,但基本 方法相同。以下介绍 Multisim 7 在由时不变的线性电阻、线性 受控源和独立源组成的电阻电路中的应用,包括:
直流电路网孔电流分析 直流电路节点电压分析 齐次定理 (Homogeneity Property) 叠加定理 (Superposition Theorem) 替换定理 (Substitution Theorem) 戴维南定理 (Thevenin's Theorem ) 诺顿定理 (Norton's Theorem) 特勒根定理 (Tellegen’s Theorem)
5
电路基本规律
例. 受控源电路仿的模型,是指电压源的电压或电 流不是给定的时间常数,而是受电路中某支路电压或电流控制的。
6
电路基本规律
右图的电路中,受控源为电压控 制的电流源。受控电流源的电流 I=gU1,g=10S。当U1=10V时, 受控源电流为100A。理论计算 与仿真结果一致。当R2替换成阻 值为2.0kΩ时,电流表读数仍为 100A,说明该受控源的电流值 取决于控制量(电压U1)的大小。
电路基本规律 电阻电路分析 动态电路分析 正弦稳态分析
2
电路基本规律
欧姆定律、基尔霍夫电流定律、基尔霍夫电压定律 欧姆定律
线性电阻元件两端的电压和流过的电流成正比,比例常数即为电阻值。
U = RI
例. 电源电压为12V,电阻R1为10Ω。求流过R1的电流。
放置电流表和电压表(元件)
A
3
V
电路基本规律
图1 14
电阻电路分析
R2右侧二端网络用6V的电压源替换,如图2所示。可见电路其它各处电压、 电流保持不变。 R2右侧二端网络用2A的电流源替换,如图3所示。可见电路其它各处电压、 电流保持不变。

数字电路实验Multisim仿真完整版

数字电路实验Multisim仿真完整版

数字电路实验M u l t i s i m仿真HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】实验一逻辑门电路一、与非门逻辑功能的测试74LS20(双四输入与非门)仿真结果二、门)三、与或非门逻辑功能的测试四、现路;一、分析半加器的逻辑功能二.74LS138接成四线-十六线译码器 00000001011110001111(2)用一片74LS153接成两位四选一数据选择器; (3)用一片74LS153一片74LS00和接成一位全加器(1)设计一个有A 、B 、C 三位代码输入的密码锁(假设密码是011),当输入密码正确时,锁被打开(Y 1=1),如果密码不符,电路发出报警信号(Y 2=1)。

以上四个小设计任做一个,多做不限。

还可以用门电路搭建实验三 触发器及触发器之间的转换1. D 触发器逻辑功能的测试(上升沿)2. JK 触发器功能测试(下降沿)Q=0Q=0略3. 思考题:(1)(2)(3)略实验四寄存器与计数器1.右移寄存器(74ls74 为上升沿有效)位异步二进制加法,减法计数器(74LS112 下降沿有效)也可以不加数码显示管3.设计性试验(1)74LS160设计7进制计数器(74LS160 是上升沿有效,且异步清零,同步置数)若采用异步清零:若采用同步置数:(2)74LS160设计7进制计数器略(3)24进制83进制注意:用74LS160与74LS197、74LS191是完全不一样的实验五 555定时器及其应用1.施密特触发器输入电压从零开始增加:输入电压从5V开始减小:2.单稳态触发器3.多谢振荡。

Multisim14电子电路仿真方法和样例

Multisim14电子电路仿真方法和样例
8图51瞬态分析参数设置图52瞬态分析仿真结果512虚拟仪器测试方法也可以利用虚拟仪器直接测试电压放大倍数测试电路如图53所示点击仿真按钮后双击示波器得到如图54所示波形直接读数并计算可得到电压放大倍数
Multisim14 电子电路仿真方法和样例
2019 年 9 月
1
前言
本手册基于 Multisim14 仿真环境,从最基本的仿真电路图的建立开始,结合实际的例 子,对模拟和数字电路中常用的测试方法进行介绍。这些应用示例包括:常用半导体器件特 性曲线的测试、放大电路静态工作点和动态参数的测试、电压传输特性的测试、波形上升时 间的测试、逻辑函数的转换与化简、逻辑分析仪的使用方法等。
选定 sheet properties 即弹出图 2.3 所示界面,选中 Net names 下的 Show all(简述为
Optionsàsheet propertiesà Net namesàShow all,以下均用简述方法表述),即可在电路图中
显示出各个节点号。
4
图 2.2 移动连线
图 2.3 显示电路节点号
3
1. Multisim14 主界面简介
运行 Multisim14,自动进入电路图编辑界面。当前电路图的缺省命名为“Design1”,在 保存文件时可以选择存放路径并重新命名。Multisim14 主界面如图 1.1 所示。
图 1.1 Multisim14 用户界面
2. 仿真电路图的建立
下面以单管放大电路为例,介绍建立电路的步骤。其中三极管选用实际器件
此外,本手册侧重于测试方法的介绍,仅对主要步骤进行说明,如碰到更细节的问题, 可参阅《Multisim 14 教学版使用说明书》或其它帮助文档。
2
目录

电路分析multisim仿真实验二

电路分析multisim仿真实验二

电路分析Multisim仿真实验二验证欧姆定律1.实验要求与目的(1)学习使用万用表测量电阻。

(2)验证欧姆定律。

2. 元器件选取(1)电源:Place Source→POWER_SOURCES→DC_POWER,选取直流电源,设置电源电压为12V。

(2)接地:Place Source→POWER_SOURCES→GROUND,选取电路中的接地。

(3)电阻:Place Basic→RESISTOR,选取R1=10Ω,R2=20Ω。

(4)数字万用表:从虚拟仪器工具栏调取XMM1。

(5)电流表:Place Indicators→AMMETER,选取电流表并设置为直流档。

3. 仿真实验电路图1 数字万用表测量电阻阻值的仿真实验电路及数字万用表面板图2 欧姆定律仿真电路及数字万用表面板4.实验原理欧姆定律叙述为:线性电阻两端的电压与流过的电流成正比,比例常数就是这个电阻元件的电阻值。

欧姆定律确定了线性电阻两端的电压与流过电阻的电流之间的关系。

其数学表达式为U=RI,式中,R为电阻的阻值(单位为Ω);I为流过电阻的电流(单位为A);U为电阻两端的电压(单位为V)。

欧姆定律也可以表示为I=U/R,这个关系式说明当电压一定时电流与电阻的阻值成反比,因此电阻阻值越大则流过的电流就越小。

如果把流过电阻的电流当成电阻两端电压的函数,画出U(I)特性曲线,便可确定电阻是线性的还是非线性的。

如果画出的特性曲线是一条直线,则电阻式线性的;否则就是非线性的。

5.仿真分析(1)测量电阻阻值的仿真分析①搭建图1所示的用数字万用表测量电阻阻值的仿真实验电路,数字万用表按图设置。

②单击仿真开关,激活电路,记录数字万用表显示的读数。

③将两次测量的读数与所选电阻的标称值进行比较,验证仿真结果。

(2)欧姆定律电路的仿真分析①搭建图2所示的欧姆定律仿真电路。

②单击仿真开关,激活电路,数字万用表和电流表均出现读数,记录电阻R1两端的电压值U和流过R的电流值I。

Multisim仿真分析法

Multisim仿真分析法
首先创建图5-2所示电路,然后启动Simulate菜单中的 Analysis命令下的DC Operating Point命令项,即可弹出图5-3 所示的对话框。该对话框包括Output variables、Miscellaneous Options 和Summary 3个翻页标签。
第5章 仿真分析法 图5-3 直流工作点分析对话框
显示/隐藏指针按钮:按下此按钮,即可显示各节点 波形对应的指针,同时还可以得到一个取值关系变化表。移 动指针,即可观测到各点的具体数值。
第5章 仿真分析法
若同时按下这3个按钮,可得到图5-10所示的分析结果。 从图5-10中可以看到,节点4的波形用红颜色表示,移动指 针1或2,取值关系表中的x1、y1或x2、y2的值会随着指针的 移动而变化。x1、y1,x2、y2分别表示指针1、指针2所处的 位置,以及指针在该位置时对应的节点电压值。由图5-10所 示节点4的取值关系变化表可以看到:红色指针1指示节点4 在1.3425 ms时的电压大小为-673.3 mV。蓝色指针2指示节 点4在2.6738 ms时的电压大小为1.7661 V。
第5章 仿真分析法 图5-8 Transient Analysis对话框
第5章 仿真分析法
Analysis Parameters页共有3个区,功能如下:
(1) Initial Condition区:用于设置初始条件。其下拉菜单 中包括Automatically determine initial conditions(由程序自动设 置初始值)、Set to zero(设初始值为0)、User define(由用户自 己定义初始值)、Calculate DC operating point(计算直流工作点 作为初始值)等。

Multisim模拟电子技术仿真实验

Multisim模拟电子技术仿真实验
2)根据示波器显示的输出电压峰值U OP 和输入电压峰值U IP ,求
放大器的电压增益A u 和放大器的最大平均输出功率P O 。
第23页/共55页
9.5 结型场效应晶体管共源极放大电路仿真实验
1)学会测量跨导g m 。
2)依据结型场效应晶体管共源极放大电路输入输出电压波形,
计算电压增益。
1)直流电源:Place Source→POWER_SOURCES→VDD, 选取
直流电源并根据电路设置电压。
2)接地:Place Source→POWER_SOURCES→GROUND,选取
电路中的接地。
3)电阻:Place Basic→RESISTOR,选取电阻并根据电路设置电
阻值。
第24页/共55页
9.5 结型场效应晶体管共源极放大电路仿真实验
4)电容:Place Basic→CAPACITOR,选取电容并根据电路设置
1)根据仿真的数据U IP 和U OP ,计算放大电路的电压增益A u 。
2)放大电路输出与输入波形之间的相位差怎么样?
第30页/共55页
9.6 串联电压负反馈放大器仿真实验
1)学会测量串联电压负反馈放大器的输入和输出电压,计算闭
环电压增益。
2)学会测量负反馈放大器输入与输出电压波形之间的相位差。
电容值。
5)场效应晶体管:Place Transistors→JFET_N,选取2SK117型
场效应晶体管。
6)电压表:Place Indicators→VOLTMETER,选取电压表并设
置为直流档。
7)电流表:Place Indicators→AMMETER,选取电流表并设置
为直流档。
8)函数发生器:从虚拟仪器工具栏调取XFG1。

multisim电子电路仿真教程第4章

multisim电子电路仿真教程第4章

第4章 Multisim基本分析方法
2.交流分析举例
【例4-2】 对图4-11所示电路进行交流分析。
图4-11 串联谐振电路
第4章 Multisim基本分析方法
首先按图4-11在电路窗口中构建电路,元件参数如图中
所示。选取分析菜单中的AC Analysis...选项,在出现的对话 框中的Frequency Parameters页设置Start Frequency为1 Hz, Stop Frequency为10 GHz,Sweep Type选择Decade,Number of points per decade设置为10,Vertical scale选择Linear;在 Output variables页选定分析节点3;在Miscellaneous Options 页More Options区Title for栏输入“交流分析”。点击 Simulate按钮开始仿真分析。完成分析后,出现Analysis Graphs窗口,显示电路的幅频特性曲线和相频特性曲线,如 图4-12所示。
第4章 Multisim基本分析方法
图4-10 交流分析Frequency Parameters页
第4章 Multisim基本分析方法
1.Frequency Parameters页
Frequency Parameters页各部分功能介绍如下: > > Start frequency:设置分析起始频率。 Stop frequency(FSTOP):设置分析终止频率。
第4章 Multisim基本分析方法
图4-5 More Options区
第4章 Multisim基本分析方法
2.Miscellaneous Options页
Miscellaneous Options页如图4-6所示,其主要功能是 设定分析参数,一般采取默认值。如果要自行设定,则先选 中某个分析选项,再选中Use this custom analysis options选项,在其右边出现一个栏位,可在该栏内指定新 的参数。如果要恢复程序预设置值,按Reset option to default按钮即可。

Multisim仿真-电路分析PPT演示课件

Multisim仿真-电路分析PPT演示课件
•4
5.1 基尔霍夫定律
注意电流的方向、参考方向 电流表内阻在表旁;双击可以更改Mode(DC/AC)
•5
5.1 基尔霍夫定律
2. KVL
•6
5.2 节点电压法
节点电压法:对所有独立节点列KCL方程组,求解。 当电路结构复杂时,计算困难!
•7
5.2 节点电压法
用仿真方法可以顺利解决这一问题。
等效电阻为二者之比。
•12
5.6 RC一阶电路
方波作为信号源。
•13
5.6 RC一阶电路
示波器上读时间常数。
•14
5.7 谐振电路仿真
作业:
进行RLC串联电路频响仿真 要求: (1)参数自定(提示:交流信号源不必设置) (2)仿真内容包括幅频、相频特性,给出相应图示 (3)实验分析品质因数与选频作用 (4)仿真独立写一个报告,A4打印,不得超过4页 (5)若发现雷同则雷同报告一律计零分
•2
第5章 Multisim应用于电路分析
5.1 基尔霍夫定律 5.2 节点分析法 5.3 叠加原理 5.4 戴维南及诺顿等效电路 5.5 最大功率传输 5.6 过渡过程仿真 5.7 谐振电路仿真 5.8 三相电路仿真 5.9 二端口网络
•3
5.1 基尔霍夫定律
1. KCL 电压表和电流表:Place/Component/Indicators
•16
5.8 三相电路仿真
三相星形联结电路仿真
•17
5.8 三相电路仿真
电流表、电压表模式更改:AC 仿真
开关设置
•18
5.8 三相电路仿真
各表显示的数值:线电压、相电压、线电流=相电 流、中性线电流(约等于零)
•19
添加直流电压表,仿真。

Multisim模拟电路仿真实例

Multisim模拟电路仿真实例

1.6
20lg Aup 4.1dB
第4章 Multisim8应用实例
运行仿真分析: 得输入信号V1和输出信号V0的波形图
说明输入信号通过了该滤波器,并被放大; 并从中可以测试到Vo=1.6Vi
第4章 Multisim8应用实例
从波特图仪上可以观察到当20lg︱Aup︱从4.1dB下降 到1dB左右时,其f0约为100Hz,理论值基本相同,达 到设计要求。
输入电阻Ri=20k
第4章 Multisim8应用实例
通频带△f=fH-fL,设其中:fL≤20Hz,fH≥10kHz 据此可估算出电路中C1、C2、C3的取值
取标称值,C1=C2=1 、C3=5.7
第4章 Multisim8应用实例
启动仿真:得输入输出的信号,可估算出放大倍数约为1000倍
图5-9 例5.2示波器窗口
工作原理?
图5-25 乙类互补对称功放电路
第4章 Multisim8应用实例
运行仿真: 从中可以发现输出信号的波形有明显的交越失真。
其失真原因
输入波形
输出波形
当输入信号较小时,达 不到三极管的开启电压,三 极管不导电。
因此在正、负半周交替 过零处会出现非线性失真, 即交越失真。
第4章 Multisim8应用实例
其最大电压输出范围为 -11.5000V~12.5000V。
图5-28 例5.9最大输出电压测试结果
第4章 Multisim8应用实例
例5.10 针对上例中乙类互补对称功放电路的交越失 真问题,如何对电路进行改进?
电路原理分析
图5-29改进后的电路 甲乙类互补对称功放电路
第4章 Multisim8应用实例
第4章 Multisim8应用实例

Multisim电路仿真实验

Multisim电路仿真实验

Multisim电路仿真实验一、实验目的熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。

二、使用软件NI Multisim student V12三、实验内容1.研究电压表内阻对测量结果的影响输入如图1所示的电路图,在setting 中改变电压表的内阻,使其分别为200kΩ、5kΩ等,观察其读数的变化,研究电压表内阻对测量结果的影响。

并分析说明仿真结果。

图1实验结果:【200kΩ】图2【5kΩ】图3分析:①根据图1电路分析,如果不考虑电压表内阻的影响,U10=R2V1/(R1+R2)=5V;②根据图2,电压表内阻为200kΩ时,电压表示数U10=4.878V,相对误差|4.878-5|*100%/5=2.44%③根据图3,电压表内阻为5kΩ时,电压表示数U10=2.5V,相对误差|2.5-5|*100%/5=50%可以看出,电压表内阻对于测量结果有影响,分析原因,可知电压表具有分流作用,与R2并联后,R2’=1/(1/R1+1/R V)<R2,U10’=R2‘V1/(R1+R2’)=V1/(R1/R2‘+1)<U10;因而,电压表内阻使得测量结果偏小,并且电压表内阻越小,误差越大;电压表内阻越大,误差越小;当R V>>R2时,U10’≈U102. RLC串联谐振研究输入如图4的电路,调节信号源频率,使之低于、等于、高于谐振频率时,用示波器观察波形的相位关系,并测量谐振时的电流值。

用波特图仪绘制幅频特性曲线和相频特性曲线,并使用光标测量谐振频率、带宽(测量光标初始位置在最左侧,可以用鼠标拖动。

将鼠标对准光标,单击右键可以调出其弹出式菜单指令,利用这些指令可以将鼠标自动对准需要的座标位置)。

图4实验结果:【等于:f=159.155Hz】图5:波形图6:谐振时的电流图7:幅频特性曲线图8.1:测量带宽图8.2:测量带宽【小于:f=150Hz】【大于:f=200Hz】图11:波形分析:a.根据图5波形,当信号源频率等于谐振频率f0=159.155Hz时,其中f0=1/(2π√LC),相位相同,谐振时的电流为99.946mA;根据图8.1及8.2,可求得带宽Δf=(175.952-143.98)Hz=31.972Hzb.根据图10波形,当信号源频率小于谐振频率,f=150Hz时,可以观察到U R的相位超前U,分析原因知,由于X L=2πfL,X C=1/(2πfC),f<f0时,X L<X C,X L-X C<0,又易知U R的相位超前U。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档