循环水泵选型专题研究
浅谈循环泵选择中的问题及对策

浅谈循环泵选择中的问题及对策摘要:本文分析了热水供暖系统循环水泵容量偏大、浪费电能的问题,指出了正确选择循环水泵的容量和循环泵变频节能,是供暖系统循环水泵节电的重要措施。
关键词:循环水泵;选择;问题Abstract: This paper analyzes the hot water heating system circulating pump capacity is too large, a waste of energy problem, pointed out that the correct choice of the circulating pump capacity and circulation pump frequency energy saving heating system circulating pump power saving measures.Keywords: circulating pump; choose; problems热水供暖系统中设置的循环水泵是向用户输送热媒的主要设备,也是锅炉房中耗电量较大的设备,其用电量约占锅炉房总用电量的40%~70%。
实际工程中,循环水泵容量偏大的现象较为普遍,有的甚至达到原参数的2倍以上,如果循环水泵的流量和扬程偏大,会造成电能的严重浪费。
1 循环水泵偏大的原因造成循环水泵容量偏大的原因主要有以下几点:一是有的设计人员没有认真计算热负荷和系统阻力,尤其是外网和锅炉房的阻力,采用估算方法,为保险起见,估算值过大,使选的水泵流量和扬程加大很多;二是有的系统运行后没有进行认真的初调节,一旦系统出现水力失调,有人认为是水泵容量不够,而盲目换大泵;三是有个别设计者对循环水泵扬程的概念不清;对承压锅炉采暖系统,定压点设在循环水泵吸入侧,循环水泵进出口均承受相同的静水压力,因此,其扬程不需要考虑用户系统的高度,只要克服管网系统的阻力即可。
火力发电厂循环水泵选型的关键点探讨

3.1 性能参数 火力发 电厂常见水泵的性能 比较 。比转速:轴流泵
为 500以上 , 离心 泵为 300 ̄ 400,斜 流 泵 为 180 ̄500。 扬程范围:轴流泵为l~l5米 ,离心泵为10 ̄200米,斜 流泵为5,- ̄,30米。泵 VI径:轴流泵为300 ̄4500毫米,离
2.2.4 应 尽 量 保 证循 环 水 泵 高 可靠 性 、高 效 率地 运行 ,并且 有效 防止汽 蚀 问题 , 以保证 循环 水 泵 的使 用 寿命 长和振 动 噪音小 。
2.2.5 应 尽 量 降 低循 环 水 泵 厂 房 的工 程 造 价 ,但 也务必使水泵的台数配置满足国家技术规范的要求。
(3)其余用 水量Q ,主 要有 暖通用 水量 、生 活用水 量 、 除灰 用水量 、化水专业 用水量 、工业用 水量等 。
2.1I 2 扬程 。 第 一 ,静扬 程 。采 用直 流供 水 系 统 时 ,必须 要 考 虑 到 循环 水泵 的虹 吸作 用 ,用 以有效 降低 水泵 的 工作 水
冷 却水循 环 系统 中采 用 的循环 水 泵主 要是 叶 片泵 , 它主 要依 靠带有 叶 片 的叶轮 的高 速旋 转来对 液 体进 行压 送 。而 火 电厂循 环水 泵主 要为 叶 片泵 ,并进 一 步分 为 以 下三种类型:轴流泵、离心泵 以及斜流泵 。
1.2.1 轴流泵 。轴流泵具有轴 向流的叶轮 ,其高 度旋转时对液体质点施加的力为轴 向斜力。轴流泵的转 速 较 高 , 比转速 一 般 不低 于 500,流 量 较 大 ,但 其 扬程 较低 。
头 。应遵 循 的原 则是 尽 可能 地 降低供 水 的几 何 高度 ,但 也要 确保 循环 水 泵主 厂房 不 会被 突 发性 洪水 淹 没 。考虑 虹吸 作用 时 ,直 流供 水 系统 循环 水 量静 扬程 为 虹吸 井堰 上水 位与 取水河 段设 计平均 水位 之差 。
热水采暖系统循环水泵选择分析及应用

热水采暖系统循环水泵选择分析及应用摘要:热水采暖系统循环水泵的供热方式是新时期社会发展背景下的一种新型技术手段,目的是为了在提高供热效果的基础上降低能源消耗,这符合时代的发展需求。
基本此,本文主要从热水采暖系统循环水泵的科学选择问题入手,从容量设置以及减小水流阻力两个方面的设计工作展开分析,并结合实际工作情况分析影响供暖效果的关键因素,以拟定科学合理的解决方案,推动供暖工作的顺利开展。
关键词:热水采暖系统;循环水泵;水泵选择;应用方案在供暖工作当中为了达到节能环保的目的,目前大多数城市的供热公司都在积极研究利用循环水泵进行集中供热供暖的可行方式,这就涉及到对水泵的选择问题。
基于城市基础设施建设规模的不断扩大,想要提高循环水泵供热工作的应用效果,还必须要从水泵质量的管理及循环系统设计方案的优化等方面展开分析和研究。
一、热水采暖系统循环水泵的科学设计要点在为热水采暖系统选择循环水泵时,主要应当关注于水泵容量的选择及水流阻力的控制问题。
1、容量方面循环水泵的流量是按采暖热负荷、温降等参数计算确定的。
在实际设计水泵的总容量时,需要充分结合城市的基本供暖需求展开分析,确保设计工作的科学性和合理性。
通常来说,循环水泵的总流量应为系统的总设计流量;扬程为系统的总压力损失(可富裕5-10%)。
集中供暖的目的是为了避免各个用户家中出现温度差异过大的情况,不过由于热水采暖系统使用的是管道运输模式,因此在温度传送环节中还存在一定的热量损耗问题。
基于此,目前许多供热公司都开始积极采用分阶段改变流量质调节的运行模式,具体操作方法是:安装一台 100%流量和两台50%流量的循环水泵,然后根据当地每日自然温度的实际情况智能调节水泵的流量及流速。
实践表明,这种方法能够有效减少热能的浪费问题,还能节省水泵安装环节的经济成本,进而推动供热公司各项工作的稳步发展。
2、阻力方面热水采暖系统运行环节中,水流在管道内的流动会受到一定的阻力,为了科学降低阻力对供暖效果带来的不良影响,还需要结合实际情况对阻力进行计算,相关计算公式为:ΔP=H*Gs²/Ge²=H(Δte/Δts)²一般来说,影响水流阻力大小的主要因素就是实际的热水采暖系统温降与设计的情况不相符,这与水泵容量、水泵材质以及系统的造型设计等方面都有一定的关系,还需要工作人员具备专业的设计能力,能够不断结合具体工作经验研究优化工作流程,提高采暖系统设计效果和使用效率的可行方案。
循环水泵选择

1 循环水泵流量的确定
对只有单一供暖热负荷,或采用集中质调
节的具有多种热负荷的并联闭式热水供热系 统,网路的总最大设计流量,亦即网路循环 水泵的流量,可按下式计算:
G
K1
3.6
ct1
Q
t2
1
03
G0
• 上式中:
• K1 -考虑热网热损失的系数,取1.05~1.10;
• Q -供热系统总热负荷,W;
• G=(1.05~1.15)·0.86·Q/ △ t • H=(1.05~1.15)·h • 式中: • G—— 循环水泵流量,m /h; • H— — 循环水泵扬程,mH O; • p— — 循环系统热负荷,kW; • h—— 循环系统阻力损失,mH O,由4部分构成,包括换
热站内部阻力损失h。,管网阻力损失h ,用户资用压力 , 及裕量h (一般取3~5 m); • △t—— 供热系统供回水温差。
本讲主要内容
• 循环水泵的选择(流量、扬程)
一 循环水泵的选择
• 热网循环泵是供热系统输送热量的关键设 • 备。热网循环泵选型是否合理,对整个供
热系统的经济合理运行起着很重要的作用。 选择循环泵时应着重考虑以下几方面的因 素:
循环水泵的输送能力
• 循环水泵主要根据循环水泵的流量G和扬程 进行选择,其 值一般按如下公式 进行计算:
K -裕量系数,取1.05~1.10。
• 在热水网路水压图上,可清楚地表示 出循环水泵的扬程和上述各部分的压 力损失值。
• 注意:循环水泵是在闭合环路中工作 的,它所需要的扬程,仅取决于闭合 环路中的总压损失,而与建筑物高度 和地形无关。
二 热水网路水力计算的方法
热水网路水力计算的方法及步骤如下:
循环水泵选型

循环水泵选型—美宝环保
循环水泵广泛用于冶金、电站、发电厂、轻纺、化工等领域,在管路或封闭回路中的水循环或热换介质的输送系统中所应用的循环水泵。
但是循环水泵选型是很多人的难题,下面美宝环保给大家分享循环水泵选型依据,帮助大家选出合适的循环水泵。
循环水泵选型选型依据,应根据工艺流程,给排水要求,从五个方面加以考虑,既液体输送量、装置扬程、液体性质、管路布置以及操作运转条件等。
1、流量是选循环水泵的重要性能数据之一,它直接关系到整个装置的的生产能力和输送能力。
选择循环水泵时,以较大流量为依据,兼顾正常流量,在没有较大流量时,通常可取正常流量的1.1倍作为较大流量。
2、装置系统所需的扬程是选泵的又一重要性能数据,一般要用放大5—10余量后扬程来对循环水泵进行选择。
3、液体性质,包括液体介质名称,物理性质,化学性质和其它性质,物理性质有温度c,粘度u,介质中固体颗粒直径和气体的含量等,这涉及到系统的扬程,气蚀余量计算和合适循环水泵的类型:化学性质,主要指液体介质的化学腐蚀性和毒性,是选用泵材料和选用那一种轴封型式的重要依据。
4、装置系统的管路布置条件指的是送液高度送液距离送液走向,吸如侧较低液面,排出侧较大液面等一些数据和管道规格及其长度、材料、管件规格、数量等,以便进行系梳扬程计算和汽蚀余量的校核。
5、操作条件的内容很多,如液体的操作T饱和蒸汽力P、吸入侧压力PS、排出侧容器压力PZ、海拔高度、环境温度操作是间隙的还是连续的、循环水泵的位置是固定的还是可移的。
上面5点是循环水泵选型依据,可以从哪些方面入手选型。
根据美宝环保经验,目前的循环水泵大多采用无泄漏磁力泵。
循环水泵选型专题研究(DOC)

图号版号F0044C-S01-S040温州发电厂四期“上大压小”扩建工程初步设计水工部分循环水泵选型专题浙江省电力设计院设计证书号:A133007109勘察证书号:120001-kj2012年12月温州发电厂四期“上大压小”扩建工程初步设计水工部分循环水泵选型专题批准:审核:校核:编写:目录1概述 (1)2循环水泵的结构形式和循环水系统水量调节 (2)2.1循环水泵的结构形式 (2)2.2循环水系统水量调节 (3)3循环水泵型式及配置方案 (4)3.1本工程循环水泵可能的配置方案 (4)3.2循环水泵型式及配置方案 (6)3.3循环水泵配置推荐方案 (9)4循环水泵容量、运行方式 (9)5结论 (10)【内容摘要】本报告针对温州发电厂四期“上大压小”扩建工程(2×660MW超超临界机组)循环冷却水系统之循环水泵的配置方案,结合汽轮机组冷端参数优化结果、不同性能与不同结构形式水泵的选型、系统的水力计算等优化计算与比较,提出循环冷却水系统循环水的优选方案:1) 循环水系统采用一机二泵扩大单元制供水方案;2) 循环水系统流量调节在一机二泵扩大单元制供水的基础上,推荐循泵双速电机方案;3) 循环水泵结构形式推荐国产立式、固定叶、可抽芯式混流泵;4) 循环水泵运行方式推荐夏季一机二泵、春秋季二机三泵、冬季一机一泵,并依据机组负荷、凝汽器背压等运行参数调整循泵的运行台数与高、低转速。
达到了循环水泵性能高、结构选型合理、运行经济调节灵活、工程投资低廉、设备备用率高的目的。
1概述本工程建设规模为2×660MW超超临界凝汽式燃煤机组,同步建设烟气脱硫、脱硝装置。
温州发电厂位于温州市东北方向的乐清市北白象镇磐石,距温州市16公里,距乐清市中心约18公里,距柳市镇8公里,距瓯江入海口13公里。
本工程循环冷却水采用扩大单元制直流供水系统,每台660MW机组配2台循环水泵,1根压力供水管道,1根排水箱涵。
火电厂直流供水系统取水及循环水泵配置研究

火电厂直流供水系统取水及循环水泵配置研究摘要:沿海火电厂优先采用海水直流供水系统,2×1000MW凝汽式超超临界汽轮发电机组额定工况时凝汽总量为1641.614t/h,循环水系统冷却倍率为76倍,凝汽器设计压力约5.1kPa。
海水取水可采用明渠、箱涵以及二者结合的方式,从系统运行角度,明渠引水,流速较箱涵引水要低,水头损失小,明渠方案相比箱涵方案,可降低水泵扬程,减小水泵前池的深度,从而减少初投资和运行费用。
循环水泵采用双速电机方案初投资高于定速电机方案,考虑运行费用后年总费用比定速电机方案节省。
关键词:直流供水系统;明渠;箱涵;循环水泵1供排水系统1.1循环水系统流程电厂二期循环水系统以海水为冷却水,采用直流供水系统。
循环水系统流程为:取水明渠→引水箱涵→泵房前池→栏污栅(移动式清污机)→旋转滤网→循环水泵→液控蝶阀→循环水压力进水管→凝汽器及辅机冷却器→循环水压力回水管→循环水压力回水沟道→脱硫提升水泵前池和脱硫曝气池(兼做虹吸井)→排水沟道→工作井→排水沟道→排水口→大海。
1.2循环水需水量本期工程安装2×1000MW凝汽式超超临界汽轮发电机组,开展了循环水《冷端优化研究专题报告》研究,通过对各主要可变参数的不同组合,经过水力、热力及经济计算,进行了多方案的比选,选取了优化配置方案。
汽轮机的热力数据见下表。
1000MW汽轮机热力数据表本工程采用单流程双背压凝汽器,循环水系统按照机组TMCR工况进行配置,额定工况时凝汽总量为1641.614t/h,循环水系统冷却倍率为76倍,凝汽器设计压力5.1kPa,单台机组冷却水量为127643m3/h。
2取水方案比选一期工程已经按照按照规划容量4×1000MW机组规模的取水量,建设了取水口和取水明渠。
并将取水明渠引入厂区,本工程拟在一期基础上取水。
取水方式可采用三种方案:方案一,延长明渠到正对本期循泵房的位置,采用箱涵引水到前池;方案二:一期明渠扩建端不再延长,做适当改造,采用引水箱涵,引水到前池;方案三:较长明渠延长并改造,采用较短箱涵引水到前池。
循环水泵选型方案

循环水泵选型方案一、引言循环水泵是一种常用于将水或其他液体循环输送的设备,广泛应用于工业、建筑、农业等领域。
合理选型循环水泵对于确保系统正常运行和提高效率非常重要。
本文将介绍循环水泵选型的一般原则和具体操作步骤,以便于工程师在实际工作中能够根据需求选择合适的循环水泵。
二、循环水泵选型原则循环水泵选型的基本原则是根据系统的流量和扬程来确定水泵的类型和规格。
以下是一些常用的选型原则:1.流量需求: 根据系统需要循环的液体流量确定水泵的流量要求。
流量通常以单位时间内液体通过的体积或质量来表示,常见的单位有升/秒、立方米/小时等。
2.扬程要求: 扬程是指循环水泵需要克服的液体上升高度或压力损失,也是选型中重要的参数。
扬程的单位通常为米或帕斯卡(Pa)。
3.工作温度: 不同的工作温度对水泵的材质和密封性能有要求,需要根据实际情况选择耐高温或耐低温的水泵。
4.介质特性: 循环水泵的选型还要考虑到液体的特性,如颗粒物含量、腐蚀性等。
对于腐蚀性液体,需选择能抵抗腐蚀的材质。
5.节能要求: 选型时要考虑循环水泵的能效,尽量选择高效节能的水泵,以降低运行成本。
三、循环水泵选型步骤以下是循环水泵选型的具体步骤:1. 确定流量需求首先要根据系统的流量需求确定每小时水泵需要循环输送的液体数量。
可以通过测量或估算得到。
2. 计算总扬程根据系统的水平距离和高度差来计算总扬程。
水平距离可以直接测量,而高度差可以通过测量或估算得到。
3. 选择水泵类型根据流量需求和总扬程,选择合适的水泵类型。
常见的水泵类型有离心泵、自吸泵、潜水泵等。
不同类型的水泵适用于不同的工况条件。
4. 选择水泵规格根据流量需求和总扬程,选择合适的水泵规格。
可以参考水泵的性能曲线图,找到符合需求的工作点。
5. 考虑工作温度和介质特性根据实际工作条件和液体特性,选择适用的水泵材质和密封形式。
对于高温或腐蚀性液体,需选择能够耐受这些条件的水泵。
6. 节能考虑在满足流量和扬程需求的前提下,选择高效节能的水泵,以降低运行成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温州发电厂四期“上大压小”扩建工程初步设计水工部分循环水泵选型专题浙江省电力设计院设计证书号:A133007109勘察证书号:120001-kj2012年12月温州发电厂四期“上大压小”扩建工程初步设计水工部分循环水泵选型专题批准:审核:校核:编写:目录1概述 (1)2循环水泵的结构形式和循环水系统水量调节 (2)2.1循环水泵的结构形式 (2)2.2循环水系统水量调节 (2)3循环水泵型式及配置方案 (4)3.1本工程循环水泵可能的配置方案 (4)3.2循环水泵型式及配置方案 (6)3.3循环水泵配置推荐方案 (9)4循环水泵容量、运行方式 (9)5结论 (10)【内容摘要】本报告针对温州发电厂四期“上大压小”扩建工程(2×660MW超超临界机组)循环冷却水系统之循环水泵的配置方案,结合汽轮机组冷端参数优化结果、不同性能与不同结构形式水泵的选型、系统的水力计算等优化计算与比较,提出循环冷却水系统循环水的优选方案:1) 循环水系统采用一机二泵扩大单元制供水方案;2) 循环水系统流量调节在一机二泵扩大单元制供水的基础上,推荐循泵双速电机方案;3) 循环水泵结构形式推荐国产立式、固定叶、可抽芯式混流泵;4) 循环水泵运行方式推荐夏季一机二泵、春秋季二机三泵、冬季一机一泵,并依据机组负荷、凝汽器背压等运行参数调整循泵的运行台数与高、低转速。
达到了循环水泵性能高、结构选型合理、运行经济调节灵活、工程投资低廉、设备备用率高的目的。
1概述本工程建设规模为2×660MW超超临界凝汽式燃煤机组,同步建设烟气脱硫、脱硝装置。
温州发电厂位于温州市东北方向的乐清市北白象镇磐石,距温州市16公里,距乐清市中心约18公里,距柳市镇8公里,距瓯江入海口13公里。
本工程循环冷却水采用扩大单元制直流供水系统,每台660MW机组配2台循环水泵,1根压力供水管道,1根排水箱涵。
循环水系统工艺流程依次为:取水口→钢闸门→拦污栅→旋转滤网→循环水泵→出口阀门→供水管→凝汽器→排水箱涵→虹吸井→排水箱涵→虹吸井。
循环水泵是电厂的主要辅机设备之一,其型式、数量配置及参数的选择会直接影响汽轮机组的设计背压、凝汽器冷却面积、循环水量等主要冷端设计参数,从而影响到整个汽轮机组运行的经济性与合理性,循环水泵也是电厂“能耗大户”及节能的主要对象。
循泵水泵的选型应在保证循环冷却水系统安全可靠、运行经济的前提下尽量降低工程造价,从而保证机组长期安全、经济运行。
电厂循环水泵的设计选型主要通过两个方面来确定,其一是循环水泵的结构形式,其二是循环水泵的配置及性能参数。
2循环水泵的结构形式和循环水系统水量调节2.1循环水泵的结构形式目前大容量机组配套的循环水泵均以立式水泵为主,而立式水泵又有干井式和湿井式之分。
两种水泵对进水流道的要求有所不同,湿井式水泵着重于吸水井的水力设计,而干井式水泵则着重于吸水弯道的水力设计。
干井式水泵安装在水泵间内,水泵通过吸水管或吸水弯道与吸水井连接,一般在吸水管上设检修隔离阀,或在吸水弯道入口处设检修闸门,水泵各部件的维护及检修均可在干燥的水泵间内进行。
卧式和立式的双吸式离心水泵是最常见的干井式水泵,立式蜗壳混流水泵亦为干井式水泵。
湿井式水泵直接安装在吸水井之上,叶轮、出水导叶及下部管筒及喇叭口均淹没于最低水位之下。
检修时可将叶轮、出水导叶、轴及下部管筒在水泵运转层上整体从上部管筒中抽出,也可设计成不可抽的,而将整台水泵从运转层吊出。
从水泵适用性来讲,立式干井式水泵对水位变化的适应性较好,但结构相对比较复杂(电机水泵需双层布置),肘管式流道的施工精度要求相对较高,比较适合于水源水位变幅较大而不适合于采用湿井式水泵的情况。
本工程循环冷却水取自瓯江海水,电厂附近水域海水水位变化幅度不大(平均高潮位2.54m,平均低潮位-1.98m,平均海平面0.3m),因此循环水泵拟以湿井式水泵作为选型对象。
2.2循环水系统水量调节对于超大容量超高参数电厂的循环水泵来讲,循环水泵配置及性能参数的确定是循环水泵选型的关键所在。
循环水泵的特性会直接影响凝汽器的背压,即影响机组的发电量。
而循环水泵电动机的能耗与机组的微增功率有着复杂的函数关系,如果采用能适应循环水系统参数变化的泵来代替常规水泵(改变水泵性能),或者是改变运行方式(如根据循环水季节性水温变化、机组负荷变化来调整水泵的运行台数)以便在循环水水温变化或机组负荷变化时改变系统的供水流量,降低循环水泵所耗功率,就可以节约大量能源。
循环水系统的经济水量随机组负荷、循环水温和气象条件等变化而变化,所以目前已投运的电厂一般根据外部自然条件和电厂机组运行情况等对循环水系统水量进行调节。
循环水系统水量调节主要有下述几种方法:1)通过开泵台数调节母管制供水系统通过调节开泵台数可以较容易地调节水量。
一机两(三)泵的单元制或扩大单元制供水系统一般根据水温等在冷季少开一台或两台循环水泵来调节水量。
2)改变循环水泵Q~H特性对于改变循环水泵Q~H特性一般采用下列三种方法:(1)改变泵的转速(采用双速电机或变频电机);(2)调节前置导叶;(3)调节叶片的安装角度。
欧、美先进工业国家由于电力工业供大于求,多数电厂按DSS(Daily Start-Shutdown)日启停体制的调峰运行,特性不可调的循泵占多数,少数特性可调泵多采用第(1)、(2)种方法。
前苏联及我国基本采用第(3)种方法改变水泵Q~H特性。
改变泵的转速可采用双速电机或变频电机实现。
配置变频电机的循环水泵可根据机组负荷、水温,对循环水量无级调速,使得机组在各种工况下运行更经济,但大型循泵的变频装置投资很高。
配置双速电机的循环水泵增加系统运行工况,但没有变频灵活,同样须增加初期投资,但与变频比较,增加的投资较少。
调节前置导叶的方式比较适合扬程变幅较大而流量变化较小的情况。
可调叶水泵可分为动叶可调和静叶可调,有级和无级。
静叶可调水泵过去用得比较多,主要由上海水泵厂生产。
动叶无级可调水泵比较先进,可以在水泵运行过程中调节叶片角度,即可根据电力负荷、水温、水位的情况来改变水泵的流量、扬程运行特性,使得机组在各种工况下运行更经济。
3)调节水泵出口阀门本调节方式由于会增加系统的能量损失,所以正常运行情况下,一般不采用这种节流方式。
3循环水泵型式及配置方案3.1本工程循环水泵可能的配置方案大型燃煤机组的循泵配置台数基本为一台机组配两台或者三台循泵,可采用单元制或采用扩大单元制,水泵叶片分固定叶和可调叶两种,固定叶中可配定速、双速或者变频电机,产品可国产或者进口。
本工程为2×660MW燃煤机组,循环冷却水系统采用直流供水系统,一台机组拟配两台循环水泵。
对600MW机组配2×50%容量的国产循环水泵是一个常规配置方案,不管直流系统还是二次循环系统,国内电厂基本均采用此种配置,如600MW机组采用二次循环系统的兰溪电厂、凤台电厂等;直流系统的乌沙山电厂、乐清电厂等。
运行情况均成熟、平稳、可靠。
因此,本次投标设计按一台机组配两台国产循环水泵考虑。
循环水泵可能的配置方案见下表:1)关于进口对600MW机组配2×50%容量的循环水泵固定叶方案,国产技术和产品质量已非常成熟,且有大量运行业绩。
因此,本方案不需要进口。
对可调叶片泵方案,本工程为大容量机组,将在系统中承担基本负荷,安全运行显得尤为重要。
按目前国内大型水泵的生产情况分析,如采用动叶可调水泵必将采用进口水泵。
2)关于变频众所周知,采用变频方案肯定能更好的适应机组负荷、水温、水位的变化,调节水泵的运行方式,从而节约厂用电。
参考其他类似工程,对一机两泵方案,若采用变频方案(一台工频、一台变频),每台机组循环水系统年运行费可节省约18万元左右。
但据了解,大功率电动机的变频装置价格非常昂贵,经初步询价,对一机两泵方案,每套变频装置的价格约235~345万元。
折合年费用值为29.8~43.8万元,远高于节约的厂用电费用。
且循环水量的调节还可通过水泵运行台数、双速电机和调节叶片角度等方面实现,因此,变频方案不推荐。
3)关于叶片调节我国自80年代初从日本引进第一台动叶可调循环水泵(1983年宝钢自备电厂2×350MW机组,共四台循环水泵),至长沙水泵厂生产第一台动叶可调叶水泵(1985年龙口电厂2×100MW机组,共六台水泵)及上海水泵厂生产第一台静叶可调叶水泵(1987年石洞口电厂一期4×300MW机组,共八台循环水泵),我国电厂已经运行了约60余台动叶可调水泵。
从运行情况来看有好有坏。
运行较好的如宝钢自备电厂,建立了循环水系统的数学模型及自控系统,循环水泵可根据电力负荷、水温及水位来调节循环水泵的流量、扬程。
运行尚可的如北仑电厂、嘉兴电厂及外高桥电厂,按季节(或按水温)调节动叶角度。
运行不太好的电厂,把循环水泵调节机构拆了,把可调叶水泵改成了固定叶水泵。
从目前国内可调叶泵工程应用的调查分析情况看,可调叶泵均在直流循环供水系统、且水位(或潮位)变幅较大的环境中应用。
可调叶泵由于其叶片调节机构、调节程序较为复杂,正常使用情况下的运行、维护工作量就很大,且大大增加了循泵的检修几率。
可调叶泵运行情况较好的水泵均为进口水泵,国产可调叶水泵都不同程度地存在这样或那样的问题,且目前均配套在300MW及以下机组。
从可调叶水泵使用的经济性来讲,根据有关方面的分析,一般来讲,当循泵前池水位(潮位)变幅大、机组运行负荷及水温变幅较大,在控制方式上采用智能化自动无级调节的情况下,可调叶水泵的经济性才比较显著。
对本工程,可调叶水泵需进口,一机二泵扩大单元制方案运行已比较灵活,从节约工程投资的角度考虑,故不再考虑叶片可调泵方案。
3.2循环水泵型式及配置方案3.2.1定性分析结合国内已投运电厂的实际情况和国内、外循泵制造商的生产能力,对上述可能的配置方案,经过初步筛选,对本工程,可进行方案比选的循环水泵配置方案见下表,各方案的运行方式和特点定性分析如下:根据初步分析结果,确定上述二个方案进行较为详细的经济比较。
3.2.2流量系数经与国内某水泵生产厂家联系,根据本工程的具体情况,水泵厂提供了初步的水泵特性曲线(一机两泵,高、低速配置)。
为充分优化循环水系统配置,对循环水泵的运行方式进行了各种可能的方案组合,绘制管路阻力曲线和水泵并联运行特性曲线,通过计算、绘图,得出各种组合方案的流量系数,详见下表:3.2.3循环水泵可推荐方案的经济比较3.2.3.1静态投资通过对各方案的运行方式和特点进行分析,确定四个方案比较适合本工程的运行情况,对两个方案进行进一步的经济比较,各方案的静态投资比较见下表:在上表中,造成投资差值的主要原因为双速电机的原因。