2020年春人教版数学七年级下册第5章质量评估试卷及答案
人教版数学七年级下册第五单元 测试试卷(含答案)
人教版数学7年级下册第5单元·时间:90分钟 满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图,直线AB ,CD 相交于点O ,2115∠-∠=︒,3130∠=︒.则2∠的度数是( )A .37.5︒B .75︒C .50︒D .65︒2.(3分)下列说法正确的是( )A .过直线上一点有且只有一条直线与已知直线平行B .不相交的两条直线叫做平行线C .直线外一点到该直线的所有线段中垂线最短D .过直线外一点有且只有一条直线与已知直线平行3.(3分)如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角4.(3分)如图,下列条件中,不能判断直线//a b 的是( )A .13∠=∠B .23∠=∠C .45∠=∠D .24180∠+∠=︒5.(3分)画一条线段的垂线,垂足在( )A .线段上B .线段的端点C .线段的延长线上D .以上都有可能6.(3分)下列命题中,假命题是( )A .同旁内角互补B .到线段两端距离相等的点在这条线段的垂直平分线上C .两点确定一条直线D .角平分线上的点到这个角的两边的距离相等7.(3分)如图,直线a 、b 被直线c 所截.若155∠=︒,则2∠的度数是( )时能判定//a b .A .35︒B .45︒C .125︒D .145︒8.(3分)一把直尺和一个直角三角板(含30︒角的直角三角形板)按如图所示放置,若115∠=︒,则2∠的度数为( )A .60︒B .50︒C .45︒D .40︒9.(3分)如图,梯子的各条横档互相平行,若170∠=︒,则2∠的度数是( )A .70︒B .100︒C .110︒D .120︒10.(3分)已知直线//a b ,点O 在直线a 上,90AOB ∠=︒,140∠=︒,则2∠的度数是( )A .40︒B .50︒C .55︒D .60︒二.填空题(共5小题,满分15分,每小题3分)11.(3分)如图,直线AB 、CD 相交于O ,且2AOC BOC ∠=∠,则AOD ∠的度数为 .12.(3分)如图,把三角尺的直角顶点放在直线b 上,//a b ,若142∠=︒,则2∠= ︒.13.(3分)如图,已知12∠=∠,则图中互相平行的线段是 .14.(3分)如图,李老师把一把直尺斜放在一个含有30︒角的三角板上,且直尺的一边恰好过直角顶点,测得137∠=︒,则2∠= .15.(3分)如图,将长方形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上点E 处,若36AGE ∠=︒,则GHC ∠等于 ︒.三.解答题(共8小题,满分75分)16.(9分)如图所示,已知12180∠+∠=︒,4110∠=︒,求3∠的度数.17.(9分)补全下列推理过程:如图,EF BC ⊥,AD BC ⊥,12∠=∠,试说明//DG BA .解:EF BC ⊥ ,AD BC ⊥(已知),90BFE BDA ∴∠=∠=︒(垂直的定义).//(EF AD ∴ ).∴ ( ).12∠=∠ (已知),∴ (等量代换).//(DG AB ∴ ).∆的位置.18.(9分)如图,将ABC∆沿射线AB的方向移动2cm到DEF(1)找出图中所有平行的直线;(2)找出图中与AD相等的线段,并写出其长度;(3)若65∠的度数.ABC∠=︒,求BCF19.(9分)如图,直线AB、CD相交于点O,OE平分BOD∠,OF OD⊥,若∠=︒,求AOC∠的度数.EOF5420.(9分)如图,//∠=︒,BAB CD,EF分别与AB、CD交于点A、F,若25∠的度数.∠=︒,试求EAFC60∠.21.(10分)如图,//AB CD,直线EF分别交AB,CD于E,F,EG平分BEF∠相等的角;(1)请写出图中与2∠的度数.(2)若180∠=︒,求2B∠=︒,10122.(10分)如图,42∠=︒,请判断AB与CD的位置关系,ACD∠+︒=∠,64A并说明理由.23.(10分)如图,已知A ABC∠=∠,点E在BC的延长∠=∠,ABD CBD∠=∠,D CBD线上.求证:CD平分ACE∠.参考答案1.D ; 2.D ; 3.C ; 4.B ; 5.D ; 6.A ; 7.C ; 8.C ; 9.C ; 10.B ;11.60°;12.48;13.AB ∥CD ;14.97°;15.108;16.12180∠+∠=︒ ,25∠=∠,15180∴∠+∠=︒,//CD EF ∴,34∴∠=∠,4110∠=︒ ,3110∴∠=︒.17.EF BC ⊥ ,AD BC ⊥(已知),90BFE BDA ∴∠=∠=︒(垂直的定义),//EF AD ∴(同位角相等,两直线平行),23∴∠=∠(两直线平行,同位角相等),12∠=∠ (已知),13∴∠=∠(等量代换),//DG BA ∴(内错角相等,两直线平行).故答案为:同位角相等,两直线平行;23∠=∠;两直线平行,同位角相等;13∠=∠;内错角相等,两直线平行.18.(1)//AE CF ,//AC DF ,//BC EF ;(2)2AD CF BE cm ===;(3)//AE CF ,65ABC ∠=︒,65BCF ABC ∴∠=∠=︒.19.OF CD ⊥ ,54EOF ∠=︒,905436DOE ∴∠=︒-︒=︒,又OE 平分BOD ∠,272BOD DOE ∴∠=∠=︒,72AOC ∴∠=︒.20.//AB CD ,60BAF AFC ∴∠=∠=︒(两直线平行,内错角相等),BAF ∠ 是ABE ∆的外角,602535E BAF B ∴∠=∠-∠=︒-︒=︒,答:E ∠的度数为35︒.21.(1)BEG ∠,FEG ∠,理由如下://AB CD ,2BEG ∴∠=∠,EG 平分BEF ∠,BEG FEG ∴∠=∠,2BEG FEG ∴∠=∠=∠;(2)//AB CD ,1180BEF ∴∠+∠=︒,180∠=︒ ,100BEF ∴∠=︒,EG 平分BEF ∠,1502BEG BEF ∴∠=∠=︒,//AB CD ,250BEG ∴∠=∠=︒.22.//AB CD ,理由:42B ∠=︒ ,101A ∠+︒=∠,1180B A ∠+∠+∠=︒,4210180A A ∴︒+∠+︒+∠=︒,64A ∴∠=︒,64ACD ∠=︒ ,ACD A ∴∠=∠,//AB CD ∴.23.D CBD ∠=∠ ,ABD CBD ∠=∠,D ABD ∴∠=∠,//∴,AB CD∠=∠ABC DCE∴∠=∠,A ACD 又A ABC∠=∠,∴∠=∠,ACD DCE∠.CD∴平分ACE。
人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)
第五章《相交线与平行线》检测题一、选择题(每小题只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是( )A. B. C. D.2.下列命题的逆命题不正确...的是()A. 同角的余角相等B. 等腰三角形的两个底角相等C. 两直线平行,内错角相等D. 线段中垂线上的点到线段两端的距离相等3.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()A. 60°B. 50°C. 70°D. 80°4.下列图形中线段PQ的长度表示点P到直线a的距离的是()A. B. C. D.5.如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180º;②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是()A. ①②B. ③④C. ①③④D. ①②④6.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠47.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是().B. 如图2,展开后测得12∠=∠C. 如图3,测得12∠=∠D. 如图4,展开后再沿CD 折叠,两条折痕的交点为O ,测得OA OB =, OC OD = 8.如图,01,220,=B D ∠=∠∠=∠则( )A. 20B. 22C. 30D. 459.如图,从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,则∠ABC 的度数是( ) .A. 80°B. 90°C. 100°D. 95°10.如图,AB∥CD∥EF,则下列各式中正确的是( )A. ∠1+∠3=180°B. ∠1+∠2=∠3C. ∠2+∠3+∠1=180°D. ∠2+∠3﹣∠1=180°11.对于命题“若22a b >,则a b >”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( ).A. 3a =, 2b =-B. 2a =-, 3b =C. 2a =, 3b =-D. 3a =-, 2b = 12.下面的每组图形中,左面的平移后可以得到右面的是( )A. B. C. D.二、填空题13.如图,DF 平分∠CDE .∠CDF =50°.∠C =80°,则________∥________.a b c d,若a∥b. a⊥c. b⊥d,则直线,c d的位置14.同一平面内有四条直线,,,关系_________.15.如图.直线a.b.且∠1.28°..2.50°.则∠ABC._______.16.下列说法:①三角形的一个外角等于它的两个内角和;②三角形的内角和等于180°,外角和等于360°.③若一个三角形的三边长分别为3.5.x,则x的取值范围是2.x.8.④角是轴对称图形,角的对称轴是角的平分线;⑤圆既是轴对称图形,也是中心对称图形,圆有无数条对称轴.其中正确的有_ __.(填序号)17.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D 在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为________.三、解答题18.将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.19.如图,已知,AB∥CD,∠1=∠2,AE与EF平行吗?为什么?20.完成下面的证明:如图.AB和CD相交于点O.∠C.∠COA.∠D.∠BOD.求证:∠A.∠B.21.如图,在6×8 方格纸中,. ABC 的三个顶点和点P .Q都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上:. 1)在图1中画. DEF,使. DEF 与. ABC 全等,且使点P在. DEF 的内部.. 2. 在图2中画. MNH,使. MNH 与. ABC 的面积相等,但不全等,且使Q在. MNH的边上.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若向右平移AB,其他条件都不变,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.参考答案1.C 2.A 3.A 4.C 5.A 6.B 7.C 8.A 9.C 10.D 11.D 12.D 13. DE BC14.c ∥d 15.78° 16.②③⑤17.5.5秒或14.5秒 18.CF ∥AB 19.AE∥DF, . 20.证明:∵∠C.∠COA.∠D.∠BOD(已知). 又∵∠COA.∠BOD(__对顶角相等__). ∴∠C.__∠D__(等量代换).∴AC ∥__BD__(__内错角相等.两直线平行__). ∴∠A.∠B(__两直线平行.内错角相等__).21. 1)利用三角形平移的规律进而得出对应点位置即可; . 2)利用三角形面积公式求出符合题意的图形即可. 试题解析:解:(1)如图所示:. DEF 即为所求;.2)如图所示:.MNH 即为所求.22. (1)∵CB ∥OA ,180.C COA ∴∠+∠=︒100C OAB ∠=∠=︒Q ,80.COA ∴∠=︒ ∵OE 平分COF ∠, .COE EOF ∴∠=∠2COA COE EOF FOB AOB EOB ∠=∠+∠+∠+∠=∠Q ,40.EOB ∴∠=︒(2)这个比值不变,比值为1∶2.理由: ∵CB ∥OA ,.OBC BOA OFC FOA ∴∠=∠∠=∠,FOB BOA ∠=∠Q , 12BOA FOA ∴∠=∠,OBC OFC ∴∠=∠,:1:2.OBC OFC ∴∠∠=。
新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)
人教版七年级下册数学第五章相交线与平行线单元练习卷一、填空题1.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.【答案】140°2.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是____________。
【答案】140°3.如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为___________..【答案】6cm24.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是.【答案】④5.过直线外一点与已知直线平行【答案】有且只有一条直线6.如图,已知直线l1与l2交于点O,且∠1:∠2 =1:2,则∠3= ,∠4 = .【答案】60° 120°二、选择题7.下列说法正确的是( C )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角8.如图,能判定EC∥AB的条件是( D )A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE9.如图所示,下列说法不正确的是(A)A. ∠与∠是同位角B. ∠与∠是同位角C. ∠与∠是同位角D. ∠与∠是同位角10.下列各图中,过直线l外的点P画l的垂线CD,三角尺操作正确的是( D )11.下列说法正确的有( B )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个 B.2个 C.3个 D.4个12.如图,将△ABC沿AB方向平移至△DEF,且AB=5,DB=2,则CF的长度为( B )A.5B.3C.2D.113.下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤14.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( C )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°15.如图,若∠A+∠B=180°,则有( D )A.∠B=∠C B.∠A=∠ADC C.∠1=∠B D.∠1=∠C16.如下图,在下列条件中,能判定AB//CD的是( C )A. ∠1=∠3B. ∠2=∠3C. ∠1=∠4D. ∠3=∠4三、解答题17.已知,如图,AB∥CD,∠EAB+∠FDC=180°。
人教版七年级数学下册第五章测试题(含答案)
农村管理创新探讨随着城市化的推进和农村经济的快速发展,农村管理面临着新的挑战和需求。
如何利用现代科技和管理理念,提升农村管理水平,助力农村发展,成为亟待解决的问题。
本文将从不同角度出发,探讨农村管理的创新。
一、数字农村建设随着信息技术的迅猛发展,数字化已经成为农村管理的关键词之一。
数字农村建设将现代化技术引入到农村,实现农村基础设施的信息化和智能化。
通过建设农村信息化平台,实现数据的互通共享,可以提高资源的配置效率,并为农村发展提供积极支持。
二、贫困农村的创新案例在农村管理创新的过程中,贫困地区的农村发展是重点和难点。
为了解决贫困问题,一些地方政府和社会组织提出了一些创新案例。
例如,通过发展特色农业和乡村旅游,传统贫困地区的农民可以增加收入。
此外,推动农民参与农产品加工和电商平台的建设,也为贫困地区农民创造了更多就业机会。
三、农村土地管理农村土地管理一直是一个复杂而重要的问题。
传统的土地占有权和承包权制度已经无法满足现代农村管理的需求。
一些地方已经开始尝试土地流转和农地集体经营的改革,以适应现代产业发展的需求。
改革可以通过确保农民权益和保护农村环境等方面,推动农村土地资源的更加合理利用。
四、农村金融服务创新传统金融服务往往难以满足农村的需求,例如小额贷款和农民保险等。
现代金融服务的创新可以提供更多种类的金融产品和服务,满足农村发展的多样化需求。
例如,一些地方政府和金融机构合作,成立农村金融合作社,为农民提供方便快捷的金融服务。
五、农村社会组织建设农村社会组织是促进农村管理创新的重要力量。
传统的村民自治组织在一些地方存在效率低下和权力滥用等问题。
为了解决这些问题,一些地方政府开始鼓励和支持农村社会组织的建设。
通过培育和引导有效的农村社会组织,可以提高村民的自治能力,推动农村管理的创新。
六、农村教育创新农村教育是农村人才培养和农村社会发展的重要基础。
农村教育普及和教师素质提升一直是农村管理创新的重要方向。
人教版七年级数学下册第五章测试卷(含答案)
人教版七年级数学下册第五章测试卷(含答案)一、选择题(每小题3分,共18分)1.下列各组图形可以通过平移得到另一个图形的是( ).A. B. C. D. 2.下列作图能表示点A 到BC 的距离的是( ).A .B .C .D .3.下列图形中,∠1和∠2是同位角的是( ).A .B .C .D .4.两条直线被第三条直线所截形成的角中,下列说法不正确的是( ). A .对顶角相等 B .邻补角互补 C .内错角相等 D .如果同位角相等,则内错角也相等5. 如图,已知AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD , 那么图中与∠AGE 相等的角有 ( ). A.5个 B.4个C.3个D.2个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;题号 一 二 三 四 五 六 总分 得分(第5题)③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180° 能判定AB ∥CD 的有( ).A.3个B.2个C.1个D.0个二,填空题(每小题3分,共18分)7.如图,计划在河边建一水厂,过C 点作CD ⊥AB 于D 点.在D 点建水厂,可使水厂到村庄C 的路程最短,这样设计的依据是____________________. 8.如图是一把剪刀,若∠AOB +∠COD =60°,则∠BOD =__ __°.9.如图,把一个三角尺的直角顶点放在直尺的一边上,如果∠1=23°,∠2= . 10.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 周长为16cm,则四边形ABFD 周长为 .11.如图,已知∠1=∠2,∠A =60°,则∠ADC = .12.若A ∠和B ∠的两条边分别平行,其中(30)A x ∠=+,(310)B x ∠=-,则A ∠的度数是 .12(第7题)(第8题)(第9题)(第6题)(第10题)(第11题)三,解答题(每小题6分,共30分)13.(1)如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数.(2)已知一个角的邻补角比它的对顶角大70°,求这个角度数.14.已知:如图,∠B =∠C ,AE ∥BC ,求证:AE 平分∠CAD .15.如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠BOF 的度数.(第13(1)题)(第14题)(第15题)16.在如图所示的方格纸中,网络中每个小正方形的边长 都是1,点A 、B 、C 均在格点上.(1)画线段BC ,将线段BC 平移,使点B 到A 位置,画出平移后的线段AD ;(2)连接BA 、CD ,则线段BA 和线段CD 的关系是 ; (3)直接写出四边形ABCD 的面积.17.如图所示,一块边长为8米的正方形土地,上面修了两条道路,一条路是宽为1米的长方形,另一条路为平行四边形,其余部分种上各种花草,若种花草的面积为49平方米,请问平行四边形道路的短边长为多少米?四,解答题(每小题8分,共24分)18.如图,已知AC ⊥BC ,CD ⊥AB ,DE ⊥AC ,∠1与∠2互补,判断GF 与AB 的位置关系,并证明.(第16题)(第17题)21FED CABG(第18题)19. 如图∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF . (1)求证:AE ∥ FC .(2)AD 与BC 的位置有怎样的位置关系?请说明理由. (3)BC 平分∠DBE 吗? 请说明理由.20.已知大正方形的边长为4厘米,小正方形的边长为2厘米,状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向大正方形的内部沿直线平移,设平移的时间为t 秒,两个正方形重叠部分的面积为S 厘米2,完成下列问题: (1)平移到1.5秒时,重叠部分的面积为 厘米2. (2)当S =3.6厘米2时,求t 的值.五,解答题(每小题9分,共18分) 21.如图,∠B 和∠D 的两边分别平行.(1)在图1 中,∠B 和∠D 的数量关系是 ,在图2中,∠B 和∠D 的数量关系是 ; (2)用“如果……,那么……”的形式归纳(1)中命题 :___________________ ; (3)应用:若两个角的两边分别互相平行,其中一个角比另一个角的2倍少10°,求这两个角的度数.(第19题)(第20题)(第21题)22、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2= °,∠3= °.(2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3= °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?六,解答题(12分)23.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,若∠EPF=80°求∠EQF的度数(3)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)(第22题)(第23题)参考答案一,选择题(每小题3分,共18分)1.C 2.B 3.D 4.C 5. A 6.C二,填空题(每小题3分,共18分)7. 垂线段最短; 8.150°; 9. 67°;10.20cm ; 11.120°; 12. 5070或.三,解答题(每小题6分,共30分)13.解:(1)如图所示,∵AB∥CD,∠1=75°∴∠3=∠1=75°∴∠2=180°-∠3=180°-75°=105°解:(1)设这个角为x度,则它的对顶角为x度、邻补角为(180-x)度。
人教版七年级数学下册第五章学情评估附答案 (3)
人教版七年级数学下册第五章学情评估一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.某同学读了《庄子》中的“子非鱼,安知鱼之乐”后,兴高采烈地利用电脑画出了几幅鲸鱼的图案,由图中所示的图案通过平移后得到的图案是()2.如图,∠ACB=90°,CD⊥AB于点D,点A到CD的距离是()A.线段AC的长度B.线段BC的长度C.线段CD的长度D.线段AD的长度3.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.连接直线外一点与直线上各点的所有线段中,垂线段最短C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.在同一平面内,平行于同一直线的两直线平行4.如图,下列结论中错误的是()A.∠1与∠2是同位角B.∠3与∠5是内错角C.∠4与∠5是同旁内角D.∠1与∠3是同位角5.如图,已知l1∥l2,则下列选项不能判定l3∥l4的是()A.∠1+∠4=180°B.∠2+∠3=180°C.∠1+∠2=180°D.∠2=∠46.把正方形ABCD和长方形EFGH按如图的方式放置在直线l上.若∠1=43°,则∠2的度数为()A.43°B.47°C.37°D.53°7.如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′等于()A.70°B.65°C.50°D.25°8.如图,快艇从P处先向正北航行到A处,再向左转50°航行到B处,然后向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°9.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°10.如图,直线AB,CD相交于点O,OD平分∠BOF,OE⊥CD,若∠EOF=α,下列说法①∠AOC=α-90°;②∠EOB=180°-α;③∠AOF=360°-2α,其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(本题共6小题,每小题3分,共18分)11.命题“如果ac=bc,那么a=b”的题设是____________,这是一个________命题(填“真”或“假”).12.如图,直线a,b相交于点O,若∠1+∠2=240°,则∠3=________.13.如图,连接直线l外一点P与直线l上各点O,A1,A2,A3,A4,…,其中PO⊥l,则线段PO,P A1,P A2,P A3,P A4,…中,最短的线段是________,理由是________________________________.14.如图,已知∠A=∠ADE,若∠EDC=54∠C,则∠C的度数为________.15.如图,正方形ABCD的边长为2,E为BC的中点,将三角形ABE平移到三角形DCE′处,则四边形AEE′D的面积为________.16.如图,若a∥b,∠1=65°,∠2=140°,则∠3的度数是________.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)按要求完成下列证明:已知:如图,在三角形ABC中,CD⊥AB于点D,E是AC上一点,且∠1+∠2=90°.求证:DE∥BC.证明:∵CD⊥AB(已知),∴∠ADC=________(垂直的定义).∴∠1+________=90°.∵∠1+∠2=90°(已知),∴________=∠2(________________).∴DE∥BC(______________________).18.(8分)如图,已知点P在∠AOB的边OA上.(1)过点P作OA边的垂线l;(2)过点P作OB边的垂线段PD;(3)过点O作PD的平行线交l于点E,比较OP,PD,OE三条线段的大小,并用“>”连接得________________,得此结论的依据是________________.19.(8分)如图,每个小正方形的边长均为1个单位长度,把三角形ABC先向右平移4个单位长度,再向上平移2个单位长度,得到三角形A′B′C′(点A′,B′,C′分别对应点A,B,C).(1)请画出平移后的图形,并标明对应字母;(2)连接A′B,若∠ABA′=104°,求∠B′A′B的度数.20.(8分)如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)∠AOC的对顶角为________,∠BOE的邻补角为________;(2)若∠AOC=70°,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.21.(10分)如图,在三角形ABC中,∠1=∠2,点E,F,G分别在BC,AB,AC上,且EF⊥AB,DG∥BC交AB于点D.请判断CD与AB的位置关系,并说明理由.22.(10分)感知:如图①,若AB∥CD,点P在直线AB,CD之间,则∠P,∠A,∠C满足的数量关系是__________________;探究:如图②,若AB∥CD,点P在直线CD下方,则∠P,∠A,∠C满足的数量关系是__________________;应用:(1)如图③是北斗七星的位置图,将北斗七星分别标为A,B,C,D,E,F,G,其中B,C,D三点在一条直线上,AB∥EF,求∠B,∠BDE,∠E满足的数量关系;(2)如图④,在(1)的条件下,延长AB到点M,延长FE到点N,过点B和点E分别作射线BP和EP,两线相交于点P,使得BD平分∠MBP,EN平分∠DEP.若∠MBD=25°,则∠D-∠P=________.答案一、1.D 2.D 3.A 4.A 5.C 6.B7.C8.A 9.B10.D二、11.ac=bc;真12.60°13.PO;垂线段最短14.80°15.416.105°三、17.90°;∠EDC;∠EDC;同角的余角相等;内错角相等,两直线平行18.解:(1)如图,直线l即为所作.(2)如图,线段PD即为所作.(3)如图,线段OE即为所作OE>OP>PD;垂线段最短19.解:(1)如图.(2)如图.∵三角形A′B′C′是由三角形ABC经过平移得到的,∴AB∥A′B′.∴∠B′A′B=∠ABA′=104°.20.解:(1)∠BOD;∠AOE(2)设∠BOE=2x°,则∠EOD=3x°,则∠BOD=∠BOE+∠EOD=5x°.∵∠BOD=∠AOC=70°,∴5x=70.∴x=14.∴∠BOE=2x°=28°.∴∠AOE=180°-∠BOE=152°.21.解:CD⊥AB.理由如下:∵DG∥BC,∴∠1=∠DCB.∵∠1=∠2,∴∠2=∠DCB.∴CD∥EF.∴∠CDB=∠EFB.∵EF⊥AB,∴∠EFB=90°.∴∠CDB=90°.∴CD⊥AB.22.解:感知:∠P=∠A+∠C探究:∠P=∠A-∠C应用:(1)如图,过点D作DH∥EF,则∠HDE=∠E.∵AB∥EF,∴AB∥DH,∴∠B+∠BDH=180°,即∠BDH=180°-∠B.∴∠HDE+∠BDH=∠E+180°-∠B,即∠BDE+∠B-∠E=180°.(2)75°。
人教版七年级数学下册第四章、第五章综合检测试卷及答案
人教版七年级数学下册第四章、第五章综合检测试卷(答案附后)一、选择题(共8个小题)1.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )2.一个三角形的两边长分别为4cm 和9cm ,则此三角形第三边长可能是( ) A .13cmB .8cmC .4cmD .5cm3.如图,在△ABC 中,AD 是高,AE 是角平分线,AF 是中线,则下列说法中错误的是( ) A .BF =CF B .∠C+∠CAD =90°C .∠BAF =∠CAFD .S △ABC =2S △ABF4.如图,△ABC 与△A ′B ′C ′关于直线l 对称,且∠A =105°,∠C ′=30°,则∠B =( ) A .45°B .25°C .30°D .20°5.如图,AB =AC ,若要使△ABE ≌△ACD .则添加的一个条件不能是( ) A .∠B =∠CB .∠ADC =∠AEBC .BD =CED .BE =CD6.如图为正方形网格,则∠1+∠2+∠3=( ) A .105°B .120°C .135°D .115°7.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=85°,则∠2的度数为( ) A .35° B .25° C .30° D .20°8.如图,分别以△ABC 的边AB ,AC 所在直线为对称轴作△ABC 的对称图形△ABD 和△ACE ,∠BAC =150°,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA ,有如下结论:①∠EAD =90°;②∠BOE =60°;③OA 平分∠BOC ;其中正确的结论个数是( )第3题图第6题图第5题图第4题图第7题图第8题图二、填空题(共5个小题)9.等腰三角形的一个角是80°,则它的底角的度数是 .10.如图所示,要测量池塘AB 宽度,在池塘外选取一点P ,连接AP ,BP 并分别延长,使PC =PA ,PD =PB , 连接CD .测得CD 长为10m ,则池塘宽AB 为 m ,理由是 .11.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为 .12.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°, 则∠P 的度数是 .13.如图,在锐角三角形ABC 中,AB =4,△ABC 的面积为8,BD 平分∠ABC .若M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 . 三、解答题(共3个小题)14.已知:如图,点A ,F ,C ,D 在同一直线上,AF =DC ,AB ∥DE ,AB =DE ,求证:BC ∥EF .15.如图,在△ABC 中,AB =AC ,DE 是边AB 的垂直平分线,交AB 于E 、交AC 于D ,连接BD . (1)若∠A =40°,求∠DBC 的度数;(2)若△BCD 的周长为16cm ,△ABC 的周长为26cm ,求BC 的长. 第14题图第15题图 第11题图第12题图第13题图第10题图16.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE =.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.答案见下页第16题图备用图备用图七下数学第四章、第五章综合检测卷参考答案一、选择题(共8个小题)1.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( D )2.一个三角形的两边长分别为4cm 和9cm ,则此三角形第三边长可能是( B ) A .13cmB .8cmC .4cmD .5cm3.如图,在△ABC 中,AD 是高,AE 是角平分线,AF 是中线,则下列说法中错误的是( C ) A .BF =CF B .∠C+∠CAD =90°C .∠BAF =∠CAFD .S △ABC =2S △ABF4.如图,△ABC 与△A ′B ′C ′关于直线l 对称,且∠A =105°,∠C ′=30°,则∠B =( A ) A .45°B .25°C .30°D .20°5.如图,AB =AC ,若要使△ABE ≌△ACD .则添加的一个条件不能是( D ) A .∠B =∠CB .∠ADC =∠AEBC .BD =CED .BE =CD6.如图为正方形网格,则∠1+∠2+∠3=( C ) A .105°B .120°C .135°D .115°7.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=85°,则∠2的度数为( A ) A .35° B .25° C .30° D .20°解:∵∠A =60°,∴∠AEF +∠AFE =180°﹣60°=120°, ∴∠FEB +∠EFC =360°﹣120°=240°,第3题图第6题图第5题图第4题图第7题图第8题图∴∠1+∠2=240°﹣120°=120°, ∵∠1=85°,∴∠2=120°﹣85°=35°, 故选:A .8.如图,分别以△ABC 的边AB ,AC 所在直线为对称轴作△ABC 的对称图形△ABD 和△ACE ,∠BAC =150°,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA ,有如下结论:①∠EAD =90°;②∠BOE =60°;③OA 平分∠BOC ;其中正确的结论个数是( B )A .0个B .3个C .2个D .1个解:∵△ABD 和△ACE 是△ABC 的轴对称图形,∴∠BAD =∠CAE =∠BAC ,∴∠EAD =3∠BAC ﹣360°=3×150°﹣360°=90°,故①正确. ∴∠BAE =∠BAD ﹣∠DAE =150°﹣90°=60°, 由翻折的性质得,∠AEC =∠ABD , 又∵∠EPO =∠BPA ,∴∠BOE =∠BAE =60°,故②正确. ∵△ACE ≌△ADB , ∴S △ACE =S △ADB ,BD =CE ,∴BD 边上的高与CE 边上的高相等, 即点A 到∠BOC 两边的距离相等, ∴OA 平分∠BOC ,故③正确. 故选:B .二、填空题(共5个小题)9.等腰三角形的一个角是80°,则它的底角的度数是 80°或50° .10.如图所示,要测量池塘AB 宽度,在池塘外选取一点P ,连接AP ,BP 并分别延长,使PC =PA ,PD =PB , 连接CD .测得CD 长为10m ,则池塘宽AB 为 10 m ,理由是 全等三角形的对应边相等 .第11题图第12题图第13题图第10题图第8题图12.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P 的度数是30°.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP =∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM﹣∠CBP=50°﹣20°=30°,故答案为:30°.13.如图,在锐角三角形ABC中,AB=4,△ABC的面积为8,BD平分∠ABC.若M、N分别是BD、BC上的动点,则CM+MN的最小值是4 .解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为8,AB=4,∴×4•CE=8,∴CE=4.即CM+MN的最小值为4.三、解答题(共3个小题)14.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,求证:BC∥EF.证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC即AC=DF,第14题图在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.15.如图,在△ABC 中,AB =AC ,DE 是边AB 的垂直平分线,交AB 于E 、交AC 于D ,连接BD . (1)若∠A =40°,求∠DBC 的度数;(2)若△BCD 的周长为16cm ,△ABC 的周长为26cm ,求BC 的长. 解:(1)∵AB =AC ,∠A =40°∴∠ABC =∠C ==70°,∵DE 是边AB 的垂直平分线, ∴DA =DB ,∴∠DBA =∠A =40°,∴∠DBC =∠ABC ﹣∠DBA =70°﹣40°=30°;(2)∵△BCD 的周长为16cm ,∴BC +CD +BD =16, ∴BC +CD +AD =16, ∴BC +CA =16,∵△ABC 的周长为26cm , ∴AB =26﹣BC ﹣CA =26﹣16=10, ∴AC =AB =10,∴BC =16﹣AC =16﹣10=6cm .16.在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一条边在AD 的右侧作△ADE ,使AE =AD ,∠DAE =∠BAC ,连接CE .(1)如图,当点D 在BC 延长线上移动时,若∠BAC =25°,则∠DCE = 25° . (2)设∠BAC =α,∠DCE =β.①当点D 在BC 延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D 在直线BC 上(不与B ,C 两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(1)解:∵∠DAE =∠BAC ,∴∠DAE +∠CAD =∠BAC +∠CAD , 即∠BAD =∠CAE , 第15题图第16题图备用图备用图,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=25°,∴∠DCE=25°,故答案为:25°;(2)解:当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;(3)解:当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.。
2020人教版七年级数学下册第5章相交线与平行线测试卷含解析
2020人教版七年级数学下册第5章相交线与平行线测试卷一.选择题(共10小题)1.同一平面内,三条不同直线的交点个数可能是()个.A.1或3B.0、1或3C.0、1或2D.0、1、2或3 2.如图,在所标识的角中,互为对顶角的两个角是()A.∠1和∠2B.∠1和∠4C.∠2和∠3D.∠3和∠43.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°4.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短5.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.6.如图,直线l与∠BAC的两边分别相交于点D、E,则图中是同旁内角的有()A.2对B.3对C.4对D.5对7.如图,直线DE截AB,AC,其中内错角有()对.A.1B.2C.3D.48.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线9.在同一平面内两条不重合的直线的位置关系是()A.相交或垂直B.平行或垂直C.相交或平行D.以上都不对10.下列说法正确的有()①同位角相等;②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;④同一平面内两条直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.A.1个B.2个C.3个D.4个二.填空题(共10小题)11.下列说法中,①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.不正确的是(填序号)12.已知直线a∥b,b∥c,则直线a、c的位置关系是.13.如图所示,请你填写一个适当的条件:,使AD∥BC.14.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为.(任意添加一个符合题意的条件即可)15.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.16.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.17.如图,DF∥AC,若∠1=∠2,则DE与AH的位置关系是.18.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是.19.把命题“对顶角相等”改写成“如果…那么…”的形式:.20.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n次移动n格.则不停留棋子的格子的编号有.三.解答题(共7小题)21.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.22.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA,OB的垂线,分别交BO的延长线于M、N,线段的长表示点P到直线BO的距离;线段的长表示点M 到直线AO的距离;线段ON的长表示点O到直线的距离;点P到直线OA的距离为.23.如图,∠ACD=2∠B,CE平分∠ACD,求证:CE∥AB.24.(1)如图1,已知AB∥CD,那么图1中∠P AB、∠APC、∠PCD之间有什么数量关系?并说明理由.(2)如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE 的平分线交于点F,请利用(1)的结论求图2中∠F的度数.25.(1)如图,它的周长是cm.(2)已知:|a|=2,|b|=5,且a>b,求a+b的值.26.如图,在直角三角形ABC中,∠ACB=90°,∠A=33°,将三角形ABC沿AB方向向右平移得到三角形DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm,求出BE的长度.27.已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(﹣1,7),B(﹣5,1),C(1,3),请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC;(2)将三角形ABC先向下平移7个单位长度,再向右平移2个单位长度后得到的三角形A1B1C1(点A1,B1,C1分别是点A,B,C移动后的对应点),请画出三角形A1B1C1;并判断线段AC与A1C1的关系.参考答案与试题解析一.选择题(共10小题)1.同一平面内,三条不同直线的交点个数可能是()个.A.1或3B.0、1或3C.0、1或2D.0、1、2或3【分析】根据两直线平行和相交的定义作出图形即可得解.【解答】解:如图,三条直线的交点个数可能是0或1或2或3.故选:D.2.如图,在所标识的角中,互为对顶角的两个角是()A.∠1和∠2B.∠1和∠4C.∠2和∠3D.∠3和∠4【分析】对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.依此即可求解.【解答】解:观察图形可知,互为对顶角的两个角是∠3和∠4.故选:D.3.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°【分析】根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.【解答】解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故选:C.4.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短【分析】根据垂线段的性质:垂线段最短进行解答.【解答】解:要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是:垂线段最短,故选:D.5.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.【分析】根据点到直线的距离是指垂线段的长度,即可解答.【解答】解:线段AD的长表示点A到直线BC距离的是图D,故选:D.6.如图,直线l与∠BAC的两边分别相交于点D、E,则图中是同旁内角的有()A.2对B.3对C.4对D.5对【分析】根据第三条截线可能是直线AB、直线AC、直线l,结合同旁内角的定义,数出同旁内角即可.【解答】解:直线AC与直线AB被直线l所截形成的同旁内角有:∠ADE与∠AED、∠CDE与∠BED;直线AC与直线DE被直线AB所截形成的同旁内角有:∠DAE与∠DEA;直线AB与直线DE被直线AC所截形成的同旁内角有:∠EAD与∠EDA;故选:C.7.如图,直线DE截AB,AC,其中内错角有()对.A.1B.2C.3D.4【分析】如果两条直线被第三条直线所截,那么位于截线的两侧,在两条被截直线之间的两个角是内错角.两条直线被第三条直线所截,可形成两对内错角.【解答】解:直线DE截AB,AC,形成两对内错角;直线AB截AC,DE,形成一对内错角;直线AC截AB,DE,形成一对内错角.故共有4对内错角.故选:D.8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线【分析】根据平行线的定义,即可解答.【解答】解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C错误;D正确;故选:D.9.在同一平面内两条不重合的直线的位置关系是()A.相交或垂直B.平行或垂直C.相交或平行D.以上都不对【分析】根据在同一平面内两条不重合的直线的位置关系得出即可.【解答】解:在同一平面内两条不重合的直线的位置关系是平行和相交.故选:C.10.下列说法正确的有()①同位角相等;②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;④同一平面内两条直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.A.1个B.2个C.3个D.4个【分析】平行线的性质即可判断①;根据补角的定义即可判断②,根据平行线的性质即可判断③,根据两直线的位置关系即可判断④;根据对顶角的定义即可判断⑤.【解答】解:∵同位角不一定相等,∴①错误;∵互补或互余是两个角之间的关系,∴说∠A+∠B+∠C=180°,则∠A、∠B、∠C互补错误,∴②错误;∵同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交,∴③正确;∵同一平面内两条直线的位置关系可能是平行或相交,∴④错误;∵如图,∠ABC=∠ABD,∠ABC和∠ABD有公共顶点并且相等的角,但不是对顶角,∴⑤错误;即正确的个数是1个,故选:A.二.填空题(共10小题)11.下列说法中,①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.不正确的是①②④(填序号)【分析】分别根据平行线的判定以及平行线定义和平行公理分析得出即可.【解答】解:①在同一平面内,不相交的两条线段叫做平行线,正确;②过一点,有且只有一条直线平行于已知直线,正确;③两条平行直线被第三条直线所截,当两直线平行,同位角相等,故原命题错误;④同旁内角相等,两直线平行,正确.故答案为:①②④.12.已知直线a∥b,b∥c,则直线a、c的位置关系是平行.【分析】根据平行于同一条直线的两条直线互相平行,可得答案.【解答】解:若直线直线a∥b,b∥c,则直线a、c的位置关系是平行,故答案为:平行.13.如图所示,请你填写一个适当的条件:∠F AD=∠FBC,或∠ADB=∠DBC,或∠DAB+∠ABC=180°,使AD∥BC.【分析】欲证AD∥BC,结合图形,故可按同位角相等、内错角相等和同旁内角互补两直线平行来补充条件.【解答】解:添加∠F AD=∠FBC,或∠ADB=∠DBC,或∠DAB+∠ABC=180°.∵∠F AD=∠FBC∴AD∥BC(同位角相等两直线平行);∵∠ADB=∠DBC∴AD∥BC(内错角相等两直线平行);∵∠DAB+∠ABC=180°∴AD∥BC(同旁内角互补两直线平行).14.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(任意添加一个符合题意的条件即可)【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断.【解答】解:若∠A+∠ABC=180°,则BC∥AD;若∠C+∠ADC=180°,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD;故答案为:∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)15.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行.【分析】根据同位角相等,两直线平行解答即可.【解答】解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.16.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=80度.【分析】设∠EPC=2x,∠EBA=2y,根据角平分线的性质得到∠CPF=∠EPF=x,∠EBF=∠FBA=y,根据外角的性质得到∠1=∠F+∠ABF=42°+y,∠2=∠EBA+∠E=2y+∠E,由平行线的性质得到∠1=∠CPF=x,∠2=∠EPC=2x,于是得到方程2y+∠E =2(42°+y),即可得到结论.【解答】解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.17.如图,DF∥AC,若∠1=∠2,则DE与AH的位置关系是平行.【分析】先由DF∥AC知∠2=∠G,结合∠1=∠2得∠1=∠2,据此知DE∥AH.【解答】解:∵DF∥AC,∴∠2=∠G,又∵∠1=∠2,∴∠1=∠2,∴DE∥AH,故答案为:平行.18.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是3.【分析】根据直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,即可得出点P到b的距离.【解答】解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为:3.19.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.20.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n次移动n格.则不停留棋子的格子的编号有2,4,5.【分析】棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.【解答】解:因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),应停在第=n(n+1)﹣7p格,这时p是整数,且使0≤n(n+1)﹣7p≤6,分别取n=1,2,3,4,5,6,7时,n(n+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n≤10,设n=7+t(t=1,2,3)代入可得,=n(n+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与n=t时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.三.解答题(共7小题)21.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.【分析】(1)由两点之间线段最短可知,连接AD、BC交于H,则H为蓄水池位置;(2)根据垂线段最短可知,要做一个垂直EF的线段.【解答】解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线上各点的连线中,垂线段最短”是把河水引入蓄水池H中开渠最短的根据.22.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA,OB的垂线,分别交BO的延长线于M、N,线段PN的长表示点P到直线BO的距离;线段PM的长表示点M 到直线AO的距离;线段ON的长表示点O到直线PN的距离;点P到直线OA的距离为0.【分析】先根据题意画出图形,再根据点到直线的距离的定义得出即可.【解答】解:如图所示:线段PN的长表示点P到直线BO的距离;线段PM的长表示点M到直线AO的距离;线段ON的长表示点O到直线PN的距离;点P到直线OA的距离为0,故答案为:PN,PM,PN,0.23.如图,∠ACD=2∠B,CE平分∠ACD,求证:CE∥AB.【分析】由CE为角平分线,利用角平分线的定义得到一对角相等,再由已知一对角相等,利用等量代换得到一对同位角相等,利用同位角相等两直线平行即可得证.【解答】证明:∵CE平分∠ACD,∴∠ACD=2∠DCE,∵∠ACD=2∠B,∴∠DCE=∠B,∴AB∥CE.24.(1)如图1,已知AB∥CD,那么图1中∠P AB、∠APC、∠PCD之间有什么数量关系?并说明理由.(2)如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE 的平分线交于点F,请利用(1)的结论求图2中∠F的度数.【分析】(1)结论:∠P=∠PCD﹣∠P AB.根据平行线的性质以及三角形的外角的性质即可解决问题;(2)如图2中,设∠ABF=∠FBD=y,∠ACF=∠FCE=x,由(1)可知:∠F=x﹣y,想办法求出x﹣y即可解决问题;【解答】解:(1)结论:∠P=∠PCD﹣∠P AB.理由:如图1中,设AB交PC于H.∵AB∥CD,∴∠PCD=∠AHC,∵∠AHC=∠P AB+∠P,∴∠P=∠AHC﹣∠P AB,∴∠P=∠PCD﹣∠P AB.(2)如图2中,设∠ABF=∠FBD=y,∠ACF=∠FCE=x,由(1)可知:∠F=x﹣y,∵BD∥CE,∴∠BDC=∠DCE=2x,∵∠BDC=∠ABD+∠A,∴2x=2y+80°,∴x﹣y=40°,∴∠F=40°.25.(1)如图,它的周长是20cm.(2)已知:|a|=2,|b|=5,且a>b,求a+b的值.【分析】(1)将图形的右上角分别平移,根据长方形的周长公式计算即可求解;(2)由a>b,利用绝对值的代数意义化简,计算即可确定出a+b的值.【解答】解:(1)(6+4)×2=10×2=20(cm).答:它的周长是20cm.(2)∵|a|=2,|b|=5,且a>b,∴a=2,b=﹣5;a=﹣2,b=﹣5,则a+b=﹣3或﹣7.故答案为:20.26.如图,在直角三角形ABC中,∠ACB=90°,∠A=33°,将三角形ABC沿AB方向向右平移得到三角形DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm,求出BE的长度.【分析】(1)先利用三角形内角和计算出∠ABC=57°,然后根据平移的性质确定∠E 的值;(2)根据平移的性质得到AB=DE,则AD=BE,然后利用AD+BD+BE=AE得到BE+2+BE =9,再解关于BE的方程即可.【解答】解:(1)∵∠ACB=90°,∠A=33°∴∠ABC=90°﹣33°=57°,∵三角形ABC沿AB方向向右平移得到三角形DEF,∴∠E=∠ABC=57°;(2)∵三角形ABC沿AB方向向右平移得到三角形DEF,∴AB=DE,∴AD=BE,∴AD+BD+BE=AE,即BE+2+BE=9,∴BE=3.5(cm).27.已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(﹣1,7),B(﹣5,1),C(1,3),请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC;(2)将三角形ABC先向下平移7个单位长度,再向右平移2个单位长度后得到的三角形A1B1C1(点A1,B1,C1分别是点A,B,C移动后的对应点),请画出三角形A1B1C1;并判断线段AC与A1C1的关系.【分析】(1)根据点A、B、C三点的坐标在坐标系中描出各点,再顺次连接即可得;(2)将三顶点分别向下平移7个单位长度,再向右平移2个单位长度后得到对应点,顺次连接可得,继而根据平移的性质解答可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,A1B1C1即为所求,AC与A1C1平行且相等.。
2020年人教版 七年级数学下册第5章相交线与平行线单元综合评价试卷含解析
2020年人教版七年级数学下册第5章相交线与平行线单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共10小题,满分30分,每小题3分)1.(3分)第七届世界军人运动会(7thCISMMilitaryWorldGames),于2019年10月18日至27日在中国武汉举行,图中是吉祥物“兵兵”,将图中的“兵兵”通过平移可得到图为()A.B.C.D.2.(3分)如图,直线a,b被直线m所截,若a∥b,∠2=62°,则∠1=()A.62°B.108°C.118°D.128°3.(3分)毛泽东主席在《水调歌头游泳》中写道“一桥飞架南北,天堑变通途”.正如从黄果树风景区到关岭县城的坝陵河大桥建成后,从黄果树风景区到关岭县城经大桥通过的路程缩短20公里,用所学数学知识解释这一现象恰当的是()A.两点确定条直线B.两点之间线段最短C.垂线段最短D.连接两点间线段的长度是两点间的距离4.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.5.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=3,b=﹣2C.a=﹣3,b=﹣2D.a=﹣2,b=﹣3 6.(3分)在下面各图中,∠1=∠2,能判断AB∥CD的是()A.B.C.D.7.(3分)如图,已知AB∥CD,下列各角之间的关系一定成立的是()A.∠1=∠3B.∠2=∠4C.∠1>∠4D.∠3+∠5=180°8.(3分)如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个9.(3分)如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=30°,则∠BOC=()A.150°B.140°C.130°D.120°10.(3分)如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()A.60°B.70°C.150°D.170°二.填空题(共6小题,满分24分,每小题4分)11.(4分)“同位角相等”的逆命题是.12.(4分)如图,已知OC⊥OA,OD⊥OB.若∠AOB=148°,则∠COD=.13.(4分)已知∠1与∠2是对顶角,∠1=28°,则∠2=°.14.(4分)如图所示,想在河的两岸搭建一座桥,沿线段搭建最短,理由是.15.(4分)如图,直线l1,l2被直线l3所截,已知l1∥l2,∠1=110°,则∠2=.16.(4分)如图,某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格红色地毯,其侧面如图所示,则至少需要购买地毯米.三.解答题(共9小题,满分66分)17.(6分)已知AB∥DE,∠B=∠E,说明BC∥EF.18.(6分)如图,直线AB,CD相交于点O,OE⊥CD于点O,∠EOB=115°,求∠AOC 的度数.请补全下面的解题过程(括号中填写推理的依据).解:∵OE⊥CD于点O(已知),∴().∵∠EOB=115°(已知),∴∠DCB==115°﹣90°=25°.∵直线AB,CD相交于点O(已知),∴∠AOC==25°().19.(6分)如图,已知AB∥CD,EF与AB,CD相交于点M,N,∠BMR=∠CNP,试说明MR∥NP的理由.20.(7分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=65°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数21.(7分)在数学课本中,有这样一道题:已知:如图1,∠B+∠C=∠BEC求证:AB∥CD(1)请补充下面证明过程证明:过点E,做EF∥AB,如图2∴∠B=∠∵∠B+∠C=∠BEC∠BEF+∠FEC=∠BEC(已知)∴∠B+∠C=∠BEF+∠FEC(等量代换)∴∠=∠(等式性质)∴EF∥∵EF∥AB∴AB∥CD(平行于同一条直线的两条直线互相平行)(2)请再选用一种方法,加以证明22.(7分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD=7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.23.(7分)如图,在△ABC中,GD⊥AC于点D,∠AFE=∠ABC,∠1+∠2=180°,∠AEF=65°,求∠1的度数.解:∠AFE=∠ABC(已知)∴(同位角相等,两直线平行)∴∠1=∠(两直线平行,内错角相等)∠1+∠2=180°(已知)∴(等量代换)∴EB∥DG∴∠GDE=∠BEAGD⊥AC(已知)∴(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠﹣∠=90°﹣65°=25°(等式的性质)24.(10分)如图,已知AB∥CD,AB∥EF.(1)判断CD和EF是否平行,若平行,说明平行的依据是.(2)∠ABC与哪些角是内错角?∠ABD与哪些角是同旁内角?(3)若CE平分∠BCD,∠ABC=46°,试求∠CEF的度数.25.(10分)(1)【感知】如图①,AB∥CD,点E在直线AB与CD之间,连接AE、CE,试说明∠AEC=∠A+∠DCE.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E作EF∥AB.∴∠A=∠1 ()∵AB∥CD(已知)EF∥AB(辅助线作法)∴CD∥EF()∴∠2=∠DCE()∵∠AEC=∠1+∠2∴∠AEC=∠A+∠DCE()(2)【探究】当点E在如图②的位置时,其他条件不变,试说明∠A+∠AEC+∠C=360°(3)【应用】如图③,延长线段AE交直线CD于点M,已知∠A=130°,∠DCE=120°,则∠MEC的度数为.(请直接写出答案)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)第七届世界军人运动会(7thCISMMilitaryWorldGames),于2019年10月18日至27日在中国武汉举行,图中是吉祥物“兵兵”,将图中的“兵兵”通过平移可得到图为()A.B.C.D.【分析】把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.【解答】解:将图中的“兵兵”通过平移可得到图为:故选:C.2.(3分)如图,直线a,b被直线m所截,若a∥b,∠2=62°,则∠1=()A.62°B.108°C.118°D.128°【分析】根据平行线的性质和邻补角定义即可求解.【解答】解:如图,∵a∥b,∴∠3=∠2=62°,∵∠3+∠1=180°,∴∠1=180°﹣62°=118°.故选:C.3.(3分)毛泽东主席在《水调歌头游泳》中写道“一桥飞架南北,天堑变通途”.正如从黄果树风景区到关岭县城的坝陵河大桥建成后,从黄果树风景区到关岭县城经大桥通过的路程缩短20公里,用所学数学知识解释这一现象恰当的是()A.两点确定条直线B.两点之间线段最短C.垂线段最短D.连接两点间线段的长度是两点间的距离【分析】直接利用线段的性质得出答案.【解答】解:把弯曲的路径改直,就能缩短路程,用数学知识解释这一现象产生的原因:两点之间线段最短.故选:B.4.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.【分析】根据点到直线的距离是指垂线段的长度,即可解答.【解答】解:线段AD的长表示点A到直线BC距离的是图D,故选:D.5.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=3,b=﹣2C.a=﹣3,b=﹣2D.a=﹣2,b=﹣3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:当a=3,b=2时,a2>b2,而a>b成立,故A选项不符合题意;当a=3,b=﹣2时,a2>b2,而a>b成立,故B选项不符合题意;当a=﹣3,b=﹣2时,a2>b2,但a>b不成立,故C选项符合题意;当a=﹣2,b=﹣3时,a2>b2不成立,故D选项不符合题意;故选:C.6.(3分)在下面各图中,∠1=∠2,能判断AB∥CD的是()A.B.C.D.【分析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此判断即可.【解答】解:第一个图中,∠1、∠2不是两条直线被第三条直线所截的内错角或同位角,不能判定AB∥CD;第二个图中,∠1、∠2不是两条直线被第三条直线所截的同位角,不能判定AB∥CD;第三个图中,∠1、∠2不是两条直线被第三条直线所截的同位角,不能判定AB∥CD;第四个图中,∠1、∠2是两条直线被第三条直线所截的同位角,能判定AB∥CD;故选:D.7.(3分)如图,已知AB∥CD,下列各角之间的关系一定成立的是()A.∠1=∠3B.∠2=∠4C.∠1>∠4D.∠3+∠5=180°【分析】根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠4,∠2+∠4=180°,∠3+∠5=180°,故选:D.8.(3分)如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个【分析】由平行线的性质得出内错角相等、同位角相等,得出(2)正确;再由已知条件证出∠2=∠DCB,得出FG∥DC,(1)正确;由平行线的性质得出(5)正确;即可得出结果.【解答】解:∵DE∥BC,∴∠DCB=∠1,∠AED=∠ACB,(2)正确;∵∠1=∠2,∴∠2=∠DCB,∴FG∥DC,(1)正确;∴∠BFG=∠BDC,(5)正确;正确的个数有3个,故选:C.9.(3分)如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=30°,则∠BOC=()A.150°B.140°C.130°D.120°【分析】根据垂直的定义可得∠BOE=90°,然后列式计算即可求出∠BOD,再根据邻补角互补求出∠BOC即可.【解答】解:∵EO⊥AB,∴∠BOE=90°,∵∠EOD=30°,∴∠BOD=90°﹣∠EOD=90°﹣30°=60°,∴∠BOC=180°﹣∠BOD=180°﹣60°=120°,故选:D.10.(3分)如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()A.60°B.70°C.150°D.170°【分析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.(4分)“同位角相等”的逆命题是相等的角是同位角.【分析】“同位角相等”的题设为两个角为同位角,结论为这两个角相等,然后交换题设与结论即可得到原命题的逆命题.【解答】解:“同位角相等”的逆命题为:相等的两个角为同位角.故答案为:相等的角是同位角.12.(4分)如图,已知OC⊥OA,OD⊥OB.若∠AOB=148°,则∠COD=32°.【分析】直接利用垂直的定义结合已知得出∠AOD的度数,进而得出答案.【解答】解:∵OC⊥OA,OD⊥OB,∴∠AOC=∠BOD=90°,∵∠AOB=148°,∴∠AOD=148°﹣90°=58°,∴∠DOC=∠AOC﹣∠AOD=90°﹣58°=32°.故答案为:32°.13.(4分)已知∠1与∠2是对顶角,∠1=28°,则∠2=28°.【分析】直接利用对顶角的性质分析得出答案.【解答】解:∵∠1与∠2是对顶角,∠1=28°,∴∠2═∠1=28°.故答案为:28.14.(4分)如图所示,想在河的两岸搭建一座桥,沿线段PM搭建最短,理由是垂线段最短.【分析】根据垂线段最短的性质填写即可.【解答】解:∵PM⊥MN,∴由垂线段最短可知PM是最短的,故答案为:PM,垂线段最短.15.(4分)如图,直线l1,l2被直线l3所截,已知l1∥l2,∠1=110°,则∠2=70°.【分析】根据两直线平行,同位角相等求出∠1的同位角,再根据邻补角的定义即可求出∠2的度数.【解答】解:∵l1∥l2,∴∠1=∠3=110°,∵∠3+∠2=180°,∴∠2=70°,故答案为:70°.16.(4分)如图,某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格红色地毯,其侧面如图所示,则至少需要购买地毯8.4米.【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,据此计算即可.【解答】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为5.8米,2.6米,∴地毯的长度为2.6+5.8=8.4米.故答案为:8.4三.解答题(共9小题,满分66分)17.(6分)已知AB∥DE,∠B=∠E,说明BC∥EF.【分析】根据平行线的性质得出∠B=∠DGC,求出∠E=∠DGC,根据平行线的判定推出即可.【解答】解:∵AB∥DE,∴∠B=∠DGC,∵∠B=∠E,∴∠E=∠DGC,∴BC∥EF18.(6分)如图,直线AB,CD相交于点O,OE⊥CD于点O,∠EOB=115°,求∠AOC 的度数.请补全下面的解题过程(括号中填写推理的依据).解:∵OE⊥CD于点O(已知),∴∠EOD=90°(垂直的定义).∵∠EOB=115°(已知),∴∠DCB=∠EOB﹣∠EOD=115°﹣90°=25°.∵直线AB,CD相交于点O(已知),∴∠AOC=∠DOB=25°(对顶角相等).【分析】根据垂直的定义可得∠EOD=90°,根据角的和差关系可得∠DOB=∠EOB﹣∠EOD=115°﹣90°=25°,再根据对顶角的性质解答即可.【解答】解:∵OE⊥CD于点O(已知),∴∠EOD=90°(垂直的定义),∵∠EOB=115°(已知),∴∠DOB=∠EOB﹣∠EOD=115°﹣90°=25°.∵直线AB,CD相交于点O(已知),∴∠AOC=∠DOB=25°(对顶角相等).故答案为:∠EOD=90°;垂直的定义;∠EOB﹣∠EOD;∠DOB;对顶角相等.19.(6分)如图,已知AB∥CD,EF与AB,CD相交于点M,N,∠BMR=∠CNP,试说明MR∥NP的理由.【分析】根据平行线的性质得出∠BMF=∠CNE,求出∠RMN=∠PNM,根据平行线的判定得出即可.【解答】解:理由是:∵AB∥CD,∴∠BMF=∠CNE,∵∠BMR=∠CNP,∴∠BMF+∠BMR=∠CNE+∠CNP,即∠RMN=∠PNM,∴MR∥NP.20.(7分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=65°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数【分析】(1)根据角平分线的定义求出∠BOC的度数,根据邻补角的性质求出∠AOC的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.【解答】解:(1)∵OE平分∠BOC,∠BOE=65°,∴∠BOC=2∠BOE=130°,∴∠AOC=180°﹣1300=500又∵∠COF=90°∴∠AOF=90°﹣500=400;(2)∵OE平分∠BOC,∴∠BOD:∠BOE:∠EOC=1:2:2,∴∠BOD=36°,∴∠AOC=36°又∵∠COF=90°,∴∠AOF=90°﹣360=540.21.(7分)在数学课本中,有这样一道题:已知:如图1,∠B+∠C=∠BEC求证:AB∥CD(1)请补充下面证明过程证明:过点E,做EF∥AB,如图2∴∠B=∠BEF∵∠B+∠C=∠BEC∠BEF+∠FEC=∠BEC(已知)∴∠B+∠C=∠BEF+∠FEC(等量代换)∴∠C=∠FEC(等式性质)∴EF∥CD∵EF∥AB∴AB∥CD(平行于同一条直线的两条直线互相平行)(2)请再选用一种方法,加以证明【分析】(1)利用平行线的判定和性质一一判断即可.(2)如图1中,延长BE交CD于F.证明∠B=∠EFC即可.【解答】(1)证明:过点E,做EF∥AB,如图2.∴∠B=∠BEF,∵∠B+∠C=∠BEC,∠BEF+∠FEC=∠BEC(已知),∴∠B+∠C=∠BEF+∠FEC(等量代换),∴∠C=∠FEC(等式性质),∴EF∥CD,∵EF∥AB,∴AB∥CD(平行于同一条直线的两条直线互相平行)故答案为:BEF,C,FEC,CD.(2)如图1中,延长BE交CD于F.∵BEC=∠EFC+∠C,∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB∥CD.22.(7分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD=7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.【分析】(1)首先依据∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°可求得∠AOC、∠AOD的度数,然后可求得∠BOD的度数,依据角平分线的定义可求得∠DOE的度数,最后可求得∠COE的度数;(2)先求得∠FOD的度数,然后依据邻补角的定义求解即可.【解答】解:(1)∵∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°,∴∠AOC=70°,∠AOD=110°.∴∠BOD=70°.∵OE平分∠BOD,∴∠DOE=35°,∴∠COE=180°﹣35°=145°.(2)∵∠DOE=35°,OF⊥OE,∴∠FOD=55°,∴∠FOC=180°﹣55°=125°.23.(7分)如图,在△ABC中,GD⊥AC于点D,∠AFE=∠ABC,∠1+∠2=180°,∠AEF=65°,求∠1的度数.解:∠AFE=∠ABC(已知)∴EF∥BC(同位角相等,两直线平行)∴∠1=∠EBC(两直线平行,内错角相等)∠1+∠2=180°(已知)∴∠EBC+∠2=180°(等量代换)∴EB∥DG同旁内角互补,两直线平行∴∠GDE=∠BEA两直线平行,同位角相等GD⊥AC(已知)∴∠GDE=90°(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠BEA﹣∠AEF=90°﹣65°=25°(等式的性质)【分析】根据平行线的性质和判定可填空.【解答】解:∠AFE=∠ABC(已知)∴EF∥BC(同位角相等,两直线平行)∴∠1=∠EBC(两直线平行,内错角相等)∠1+∠2=180°(已知)∴∠EBC+∠2=180°(等量代换)∴EB∥DG(同旁内角互补,两直线平行)∴∠GDE=∠BEA(两直线平行,同位角相等)GD⊥AC(已知)∴∠GDE=90°(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠BEA﹣∠AEF=90°﹣65°=25°(等式的性质)故答案为:EF∥BC,∠EBC,∠EBC+∠2=180°,同旁内角互补,两直线平行,两直线平行,同位角相等,∠GDE,∠BEA,∠AEF.24.(10分)如图,已知AB∥CD,AB∥EF.(1)判断CD和EF是否平行,若平行,说明平行的依据是平行公理的推论.(2)∠ABC与哪些角是内错角?∠ABD与哪些角是同旁内角?(3)若CE平分∠BCD,∠ABC=46°,试求∠CEF的度数.【分析】(1)根据平行公理的推论,直接判断即可;(2)根据内错角、同旁内角的定义,直接解答即可;(3)根据平行的性质,求出∠BCD的度数,根据角平分线的定义,求出∠ECD的度数,根据平行线的性质,即可解答.【解答】解:(1)CD平行EF,依据是:平行公理的推论;(2)∠ABC的内错角有:∠BCD,∠BCE;∠ABD的同旁内角有:∠BFD,∠BDC;(3)∵AB∥CD,∠ABC=46°,∴∠BCD=∠ABC=46°,∵CE平分∠BCD,∴∠ECD=∠BCD=23°,由(1)可知,CD∥EF,∴∠CEF+∠ECD=180°,∴∠CEF=180°﹣∠ECD=180°﹣23°=157°.25.(10分)(1)【感知】如图①,AB∥CD,点E在直线AB与CD之间,连接AE、CE,试说明∠AEC=∠A+∠DCE.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E作EF∥AB.∴∠A=∠1 (两直线平行,内错角相等)∵AB∥CD(已知)EF∥AB(辅助线作法)∴CD∥EF(平行于同一直线的两条直线平行)∴∠2=∠DCE(两直线平行,内错角相等)∵∠AEC=∠1+∠2∴∠AEC=∠A+∠DCE(等量代换)(2)【探究】当点E在如图②的位置时,其他条件不变,试说明∠A+∠AEC+∠C=360°(3)【应用】如图③,延长线段AE交直线CD于点M,已知∠A=130°,∠DCE=120°,则∠MEC的度数为70°.(请直接写出答案)【分析】(1)过点E作EF∥AB,由平行线的性质得出∠A=∠1,证出CD∥EF,由平行线的性质得出∠2=∠DCE,即可得出结论;(2)过点E作EF∥AB,则EF∥CD,由平行线的性质得出∠A+∠AEF=180°,∠C+∠CEF=180°,即可得出结论;(3)同(2)得∠A+∠AEC+∠DCE=360°,得出∠AEC=110°,即可得出答案.【解答】(1)证明:如图①,过点E作EF∥AB,∴∠A=∠1(两直线平行,内错角相等),∵AB∥CD(已知),∵EF∥AB(辅助线作法),∴CD∥EF(平行于同一直线的两条直线平行),∴∠2=∠DCE(两直线平行,内错角相等),∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠DCE(等量代换),故答案为:两直线平行,内错角相等;平行于同一直线的两条直线平行;两直线平行,内错角相等;等量代换;(2)证明:过点E作EF∥AB,如图②所示:∵AB∥CD,∴EF∥CD,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°;(3)解:同(2)得:∠A+∠AEC+∠DCE=360°,∴∠AEC=360°﹣∠A﹣∠DCE=360°﹣130°﹣120°=110°,∴∠MEC=180°﹣∠AEC=180°﹣110°=70°,故答案为:70°.。
人教版数学七年级下册第5章专题01 相交线与平行线测试试卷(含答案)
人教版数学7年级下册第5章专题01 相交线与平行线一、选择题(共24小题)1.下面各图中∠1和∠2是对顶角的是( )A.B.C.D.2.如图,下列图形中的∠1和∠2不是同位角的是( )A.B.C.D.3.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30',则下列结论中不正确的是( )A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30'4.如图,点O在直线BD上,已知∠1=20°,OC⊥OA,则∠DOC的度数为( )A.20°B.70°C.110°D.90°5.下列说法错误的是( )A.两条直线相交,只有一个交点B.在连接直线外一点与直线上各点的线段中,垂线段最短C.同一平面内,过一点有且只有一条直线垂直于已知直线D.直线外一点到直线的距离就是这点到直线的垂线段6.如图,在三角形ABC中,∠ACB=90°,CD⊥AB,垂足为D,则下列说法不正确的是( )A.线段AC的长是点A到BC的距离B.线段AD的长是点C到AB的距离C.线段BC的长是点B到AC的距离D.线段BD的长是点B到CD的距离7.如图,已知AC⊥BC于点C,CD⊥AB于点D,亮亮总结出了如下结论:①线段AC的长,表示点A到直线BC的距离;②线段CD的长,表示点C到直线AB的距离;③线段AD的长,表示点A到直线CD的距离;④∠ACD是∠BCD的余角.亮亮总结的结论正确的有( )个.A.1B.2C.3D.48.如图,AC⊥BC,CD⊥AB,则点A到CD的距离是线段( )的长度.A.CD B.AD C.BD D.BC9.如图,点P是直线l外一点,从点P向直线l引PA,PB,PC,PD四条线段,其中只有PC与l垂直,这四条线段中长度最短的是( )A.PA B.PB C.PC D.PD10.如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )使AC=53A.3.5B.4.1C.5D.5.511.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠3;②∠2=∠6;③∠4+∠7=180°;④∠5+∠3=180°.其中能判定a∥b的是( )A.①②④B.①③④C.②③④D.①②③12.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是( )A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行13.如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )A.15°B.25°C.35°D.50°14.如图,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=62°,那么添加下列哪个条件后,可判定l1∥l2( )A.∠2=118°B.∠4=128°C.∠3=28°D.∠5=28°15.若将一副三角板按如图所示的方式放置,则下列结论正确的是( )A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE16.如图,下列说法中,正确的是( )A.若∠3=∠8,则AB∥CDB.若∠1=∠5,则AB∥CDC.若∠DAB+∠ABC=180°,则AB∥CDD.若∠2=∠6,则AB∥CD17.如图,下列能判定AB∥CD的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B=∠5;(4)∠B+∠BCD=180°.A.1B.2C.3D.418.如图,在下列条件中,能够证明AD∥CB的条件是( )A.∠1=∠4B.∠B=∠5C.∠1+∠2+∠D=180°D.∠2=∠319.如图为平面上五条直线l1,l2,l3,l4,l5相交的情形,根据图中标示的角度,下列叙述正确的是( )A.l1和l3平行,l2和l3平行B.l1和l3平行,l2和l3不平行C.l2和l3平行,l4和l5不平行D.l2和l3平行,l4和l5平行20.下列说法中正确的是( )A.过一点有且只有一条直线与已知直线平行B.两条直线有两种位置关系:平行或相交C.同一平面内,垂直于同一直线的两条直线平行D.三条线段两两相交,一定有三个交点21.如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是( )如图,已知∠1=∠3,∠2+∠3=180°,求证:AB与DE平行.证明:①:AB∥DE;②:∠2+∠4=180°,∠2+∠3=180°;③:∠3=∠4;④:∠1=∠4;⑤:∠1=∠3.A.①②③④⑤B.②③⑤④①C.②④⑤③①D.③②④⑤①22.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.15°B.18°C.25°D.30°23.如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为( )A.40°B.35°C.30°D.25°24.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A.58°B.42°C.32°D.30°二、填空题(共11小题)25.如图,CE∥AB,∠ACB=75°,∠ECD=45°,则∠A的度数为 .26.如图,已知DE∥BC,BE平分∠ABC,若∠1=70°,则∠AEB的度数为 .27.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC 为 度.28.如图,l1∥l2,则﹣γ+α+β= .29.如图,∠PQR=138°.SQ⊥QR于Q,QT⊥PQ于Q,则∠SQT等于 .30.如图,直线AB、CD相交于点O,过点O作EO⊥AB.若∠1=55°,则∠2的大小为 度.31.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=80°,则∠BOD = .32.如图,CD⊥AD,BE⊥AC,AF⊥CF,CD=2cm,BE=1.5cm,AF=4cm,则点A到直线BC的距离是 cm,点B到直线AC的距离是 cm,点C到直线AB的距离是 cm.33.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,AB=5,则点C到AB的距离为 .34.如图,要从马路对面给村庄P处拉网线,在如图所示的几种拉网线的方式中,最短的是PB,理由是 .35.如图,小华同学的家在点P处,他想尽快到公路边,所以选择沿线段PC去公路边,那么他的这一选择体现的数学基本事实是 .三、解答题(共16小题)36.如图,AB∥CD,点E在BC上.求证:∠B=∠D+∠CED.37.如图:已知直线AB、CD相交于点O,EO⊥CD.(1)若∠AOC=34°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:4,直接写出∠AOE= .38.(1)【问题】如图1,若AB∥CD,∠BEP=25°,∠PFD=30°.则∠EPF= ;(2)【问题归纳】如图1,若AB∥CD,请猜想∠BEP,∠PFD,∠EPF之间有何数量关系?请说明理由;(3)【联想拓展】如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?直接写出结论.39.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥CE;(2)若DA平分∠BDC,DA⊥FE于点A,∠FAB=55°,求∠ABD的度数.40.如图,在△ABC中,AD⊥BC于D,G是BA延长线上一点,AH平分∠GAC.且AH∥BC,E是AC上一点,连接BE并延长交AH于点F.(1)求证:AB=AC;(2)猜想并证明,当E在AC何处时,AF=2BD.41.如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=70°,求∠AGC的度数.42.如图,直线AB与CD相交于点O,OE是∠BOC的平分线,如果∠BOC:∠DOF:∠AOC =1:2:4.求∠BOE和∠DOF的度数.43.如图,OB⊥OD,OC平分∠AOD,∠BOC=40°,求∠AOB的大小.44.如图,直线AB,CD,EF相交于点O,OG平分∠BOC,∠DOF=90°.(1)写出∠AOE的余角和补角;(2)若∠BOF=30°,求∠AOE和∠COG的度数.45.已知AM∥CN,点B在直线AM、CN之间,∠ABC=88°.(1)如图1,请直接写出∠A和∠C之间的数量关系: .(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .46.如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°( )又,∵∠1=∠B(已知)∴ (同位角相等,两直线平行)∴∠AFB=∠AOE( )∴∠AFB=90°( )又,∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=( )°又∵∠A+∠2=90°(已知)∴∠A=∠AFC( )∴AB∥CD.(内错角相等,两直线平行)47.如图,已知点D是△ABC中BC边上的一点,DE⊥AC于点E,∠AGF=∠ABC,∠1+∠2=180°.(1)求证:DE∥BF;(2)若AF=3,AB=4,求BF的长.48.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,请将解题过程填写完整.解:∵EF∥AD(已知),∴∠2= ( ),又∵∠1=∠2(已知),∴∠1=∠3( ),∴AB∥DG( )∴∠BAC+ =180°( ),∵∠BAC=70°(已知),∴∠AGD=110°49.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F,若∠OFD=65°,补全图形,并求∠1的度数.50.如图,已知∠A=∠F,∠MCB+∠B=180°,AC⊥BC,垂足是C.(1)AN和EF平行吗?为什么?请说明理由.(2)若∠BEF=70°,求∠MCN的度数.51.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,求证:AC∥DF.参考答案一、选择题(共24小题)1.B2.C3.D4.C5.D6.B7.D8.B9.C10.D11.B12.C13.C14.A15.B16.D17.C18.D19.D20.C21.B22.A23.B24.C二、填空题(共11小题)25.60°26.35°27.7028.180°29.42°30.3531.40°32.4;1.5;233.12534.垂线段最短35.垂线段最短三、解答题(共16小题)36.证明:∵AB∥CD,∴∠B+∠C=180°,在△ECD中,∠CED+∠D+∠C=180°,∴∠C=180°﹣∠CED﹣∠D,∴∠B+180°﹣∠CED﹣∠D=180°,∴∠B=∠CED+∠D.37.解:(1)∵EO⊥CD,∴∠EOC=90°,∵∠AOC=34°,∴∠BOE=180°﹣∠AOC﹣∠COE=56°,∴∠BOE的度数为56°;(2)∵∠BOD:∠BOC=1:4,∠BOD+∠BOC=180°,∴∠BOD=180°×1=36°,14∴∠AOC=∠BOD=36°,∵∠COE=90°,∴∠AOE=∠AOC+∠COE=126°,∴∠AOE的度数为126°,故答案为:126°°.38.解:(1)如图1,过点P作PM∥AB,∵AB∥CD,∴AB∥PM∥CD,∴∠1=∠BEP=25°,∠2=∠PFD=30°,∴∠EPF=∠1+∠2=25°+30°=55°.故答案为:55°;(2)∠EPF=∠BEP+∠PFD,理由如下:如图1,∵AB∥CD,∴AB∥PM∥CD,∴∠1=∠BEP,∠2=∠PFD,∴∠EPF=∠1+∠2=∠BEP+∠PFD;(3)∠PFC=∠PEA+∠EPF,理由如下:如图2,过P点作PN∥AB,∵AB∥CD,∴AB∥PN∥CD,∴∠PEA=∠NPE,∠FPN=∠PFC,∴∠PFC=∠FPN=∠NPE+∠EPF=∠PEA+∠EPF.39.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE于E,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,∴∠ADC=∠2=∠DAF﹣∠FAB,∵∠FAB=55°,∴∠ADC=35°,∵DA平分∠BDC,∠1=∠BDC,∴∠1=∠BDC=2∠ADC=70°∴∠ABD=180°﹣70°=110°.40.(1)证明:∵AH平分∠GAC,∴∠GAF=∠FAC,∵AH∥BC,∴∠GAF=∠ABC,∠FAC=∠C,∴∠ABC=∠C,∴AB=AC.(2)解:当AE=EC时,AF=2BD.理由:∵AB=AC,AD⊥BC,∴BD=DC,∵AF∥BC,∴∠FAE=∠C,∵∠AEF=∠CEB,AE=EC,∴△AEF≌△CEB(ASA),∴AF=BC=2BD.41.(1)证明:∵AB ∥DF ,∴∠D +∠BHD =180°,∵∠D +∠B =180°,∴∠B =∠DHB ,∴DE ∥BC ;(2)解:∵DE ∥BC ,∠AMD =70°,∴∠AGB =∠AMD =70°,∴∠AGC =180°﹣∠AGB =180°﹣70°=110°.42.解:设∠BOC =x °,则∠DOF =2x °,∠AOC =4x °,由题意得:x +4x =180,解得:x =36,∴∠BOC =36°,∠DOF =72°,∠AOC =144°,∵OE 是∠BOC 的平分线,∴∠BOE =∠COE =12∠BOC =12×36°=18°.43.解:∵OB ⊥OD ,∴∠BOD =90°,又∵∠BOC =40°,∴∠COD =90°﹣40°=50°,∵OC 平分∠AOD ,∴∠AOD =2∠COD =100°,∴∠AOB =∠AOD ﹣∠BOD=100°﹣90°=10°,即∠AOB=10°.44.解:(1)∠AOE的余角是∠AOC,∠BOD;补角是∠AOF,∠EOB;(2)∠AOE=∠BOF=30°;∵∠DOF=90°,∴∠COF=90°,∵∠BOC=∠BOF+∠COF,∴∠BOC=90°+30°=120°,∵OG平分∠BOC,∠BOC=60°.∴∠COG=1245.解:(1))过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C=∠CBE.∵∠ABC=88°.∴∠A+∠C=∠ABE+∠CBE=∠ABC=88°.故答案为:∠A+∠C=88°;(2)∠A和∠C满足:∠C﹣∠A=92°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C+∠CBE=180°.∴∠CBE=180°﹣∠C.∵∠ABC=88°.∴∠ABE+∠CBE=88°.∴∠A+180°﹣∠C=88°.∴∠C﹣∠A=92°.(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∠MAB.∴∠GAF=12∵CH平分∠NCB,∠BCN.∴∠BCF=12∵∠B=88°,∴∠BFC=88°﹣∠BCF.∵∠AFG=∠BFC,∴∠AFG=88°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,(∠BCN﹣∠MAB).∴∠AGH=12由(2)知:∠BCN﹣∠MAB=92°,∴∠AGH=1×92°=46°.2故答案为:46°.46.证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),∴∠AFC+∠2=90°.又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直的定义;CE∥BF;已知;两直线平行,同位角相等;等量代换;90;同角的余角相等.47.(1)证明:∵∠AGF=∠ABC,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°,∴DE∥BF;(2)解:∵DE⊥AC,∴∠DEA=90°,∵DE∥BF,∴∠BFA=∠DEA=90°,∵AF=3,AB=4,∴BF===48.解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°(已知),∴∠AGD=110°,故答案为:∠3;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;∠DGA;两直线平行,同旁内角互补.49.(1)证明:∵OC⊥OD,∴∠COD=90°,∴∠1+∠DOB=90°,∵∠D与∠1互余,∴∠D+∠1=90°,∴∠D=∠DOB,∴ED∥AB;(2)解:如图,∵ED∥AB,∠OFD=65°,∴∠AOF=∠OFD=65°,∵OF平分∠AOD,∴∠AOD=2∠AOF=130°,∵∠COD=90°,∠AOD=∠1+∠COD,∴∠1=40°.50.解:(1)AN∥EF,理由如下:∵∠MCB+∠B=180°,∴FM∥AB,∴∠A=∠MCA,∵∠A=∠F,∴∠MCA=∠F,∴AN∥EF;(2)∵∠BEF=70°,AN∥EF,∴∠A=∠BEF=70°,∵FM∥AB,∴∠FCN=∠A=70°,∴∠MCN=180°﹣∠FCN=110°.51.证明:如图,∵∠1=∠2(已知),且∠1=∠3(对顶角相等),∴∠2=∠3,∴EC∥DB(同位角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF(内错角相等,两直线平行).。
人教版2020年七年级数学下册第五章质量评估试卷附答案
人教版2020年七年级数学下册第五章质量评估试卷含答案一、选择题(每题3分,共30分)1.下列图形可以由一个图形经过平移变换得到的是()A B C D2.如图1,已知直线AB与CD相交于点O,EO⊥CD,垂足为点O,则图中∠AOE和∠DOB的关系是()图1A.同位角B.对顶角C.互为补角D.互为余角3.如图2,一对平行线AB,CD被直线AE所截,若∠1=80°,则∠2的度数是()图2A.80°B.90°C.100°D.110°4.如图3,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是()图3A.①②③B.①②④C.②③④D.①②③④5.一副三角板如图4摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()图4A.105°B.100°C.75°D.60°6.如图5,∠BAC=90°,AD⊥BC于点D,则下列结论中:①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥线段AB是点B到AC的距离.图5其中正确的有()A.3个B.4个C.5个D.6个7.如图6,已知AB∥CD,AF交CD于点E,且BE⊥AF,∠BED=40°,则∠A的度数是()图6A.45°B.50°C.80°D.90°8.如图7,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()图7A.65°B.60°C.55°D.75°9.已知直线m∥n,将一块含30°角的直角三角板ABC按如图8方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为()图8A.100°B.120°C.130°D.140°10.如图9,AB∥CD∥EF,则下列各式中正确的是()图9A.∠1=180°-∠3 B.∠1=∠3-∠2C.∠2+∠3=180°-∠1 D.∠2+∠3=180°+∠1二、填空题(每题4分,共24分)11.如图10,若AB∥CD,则在图中所标注的角中,一定相等的角是________.图1012.如图11,直线AB∥CD,直线EC分别与AB,CD相交于点A,C,AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为________.图1113.一大门栏杆的平面示意图如图12所示,BA垂直地面AE于点A,CD平行于地面AE.若∠BCD=150°,则∠ABC=________.图1214.如图13,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于________.图1315.如图14,直线AB∥CD∥EF,则∠α+∠β-∠γ=________.图1416.一副直角三角尺叠放如图15①所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°,其他所有可能符合条件)的度数为________.图15三、解答题(共66分)17.(8分)如图16,补充下列结论和依据.∵∠ACE=∠D(已知),图16∴________∥________(____________________).∵∠ACE=∠FEC(已知),∴________∥________(____________________).∵∠AEC=∠BOC(已知),∴________∥________(____________________).∵∠BFD+∠FOC=180°(已知),∴________∥________(____________________).18.(8分)如图17,直线AB与CD相交于点O,OP是∠BOC 的平分线,OE⊥AB, OF⊥CD.(1)图中除直角和平角外,还有相等的角吗?请写出两对:①________;②________;(2)如果∠AOD=40°,求∠COP和∠BOF的度数.图1719.(8分)如图18,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF.求证:∠DAF=∠F.图1820.(10分)如图19,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于点C.(1)若∠O=38°,求∠ECF的度数;(2)试说明CG平分∠OCD的理由;(3)当∠O为多少度时,CD平分∠OCF,请说明理由.图1921.(10分)如图20,BD⊥AC于点D,EF⊥AC于点F,∠AMD =∠AGF,∠1=∠2=35°.(1)求∠GFC的度数;(2)求证:DM∥BC.图2022.(10分)是大众汽车的标志图案,其中蕴涵着许多几何知识.根据下面的条件完成证明.已知:如图21,BC∥AD,BE∥AF.(1)求证:∠A=∠B;(2)若∠DOB=135°,求∠A的度数.图2123.(12分)问题情境:如图22①,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:如图22②,过点P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图22③,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD,∠α,∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A,M两点之间和B,O两点之间运动时(点P与点A,B,O三点不重合),请分别写出∠CPD,∠α,∠β之间的数量关系.图22参考答案1.B 2.D 3.C 4.A 5.A 6.A7.B8.C9.C10.D11.∠1=∠312.50°13.120°14.90°15.180°16.45°,60°,105°,135°17.CE DF同位角相等,两直线平行EF AD内错角相等,两直线平行AE BF同位角相等,两直线平行EC DF同旁内角互补,两直线平行18.(1)①∠COE=∠BOF②∠COP=∠BOP(答案不唯一)(2)∠COP=20°,∠BOF=50°.19.略20.(1)109°(2)略(3)当∠O为60°时,CD平分∠OCF,理由略.21.(1)125°(2)略22.(1)略(2)45°23.(1)∠CPD=∠α+∠β.理由略(2)当点P在A,M两点之间时,∠CPD=∠β-∠α;当点P在B,O两点之间时,∠CPD=∠α-∠β.。
人教版七年级数学下册单元检测(含答案) :第5章《相交线与平行线》含答案
人教版数学七年级下册单元检测试卷第 5 章《相交线与平行线》班级:姓名:成绩:题号一二三四五六七八总分得分一.单项选择题。
(本大题共10 小题,每小题4 分,共40 分。
每小题只有一个正确答案,请将正确的答案的序号填入括号中。
)1.如图所示的图案分别是奔驰、宝马、大众、奥迪汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.在“同一平面”条件下,下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)平移只改变图形的位置,不改变图形的形状和大小;(4)有公共顶点且有一条公共边的两个角互为邻补角;(5)连接直线外一点与直线上各点的所有线段中,垂线段最短。
A.1 个B.2 个C.3 个D.4 个3.如图,若AB,CD 相交于点O,且AB⊥OE,则下列结论不正确的是()A.∠EOC 与∠BOC 互为余角B.∠EOC 与∠AOD 互为余角C.∠AOE 与∠EOC 互为补角D.∠AOE 与∠EOB 互为补角第3 题图第4 题图第5 题图4.下列说法错误的是()A.∠1 与∠A 是同旁内角B.∠3 与∠A 是同位角C.∠2 与∠3 是同位角D.∠3 与∠B 是内错角5.新农村建设中一项重要工程是“村村通自来水”,如图是某一段自来水管道,若经过每次拐弯后,管道保持平行(即AB∥CD∥EF,BC∥DE).若∠B=70°,则∠E 的度数为( )A.70°B.110°C.120°D.130°6.如图,直线AB、CD 相交于点O,OE 平分∠BOD,OF 平分∠COE,∠AOD:∠BOE=4:1,则∠AOF 的度数为()A.135°B.130°C.125°D.120°7.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD 的度数为()A.97°B.117°C.125°D.152°8.如图,AB⊥BD 于点B,BC⊥CD 于点C,已知AD=7,CD=4,则BD 的长可能为( )A.5 B.7 C.8 D.12第6 题图第7 题图第8 题图9.将一副三角板按如图放置,则下列结论①∠BAE+∠CAD=180°;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④第9 题图第10 题图第11 题图10.甲乙丙丁四位同学在在一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB,甲说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB。
人教版数学七年级下册 第五章 相交线与平行线 单元练习含答案
人教版数学七年级下册第五章相交线与平行线单元练习含答案人教版数学七年级下册第五章相交线与平行线单元练习1.下列说法中正确的是( )A.两条直线相交所成的角是对顶角B.互补的两个角是邻补角C.互补且有一条公共边的两个角是邻补角D.不相等的角一定不是对顶角2. 如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2与∠3互余 B.∠2与∠3互补C.∠2=∠3 D.不能确定3. 如图是一跳远运动员跳落沙坑时留下的痕迹,则表示该运动员成绩的是( )A.线段AP1的长 B.线段AP2的长 C.线段BP3的长 D.线段CP3的长4. 如图,已知直线b,c被直线a所截,则∠1与∠2是一对( )A.同位角 B.内错角 C.同旁内角 D.对顶角5. 若a⊥b,c⊥d,则a与c的关系是( )A.平行 B.垂直 C.相交 D.以上都不对6. 如图,下列条件中不能判定AB∥CD的是( )A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠57. 如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=( )A.55° B.125° C.135° D.140°8. 下列命题:①有理数和数轴上的点一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④邻补角一定互补.其中真命题的个数是( )A.1个 B.2个 C.3个 D.4个9. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为( )A.8 B.9 C.10 D.1110. 如图所示,OA⊥OB,∠AOC=120°,则∠BOC等于______度.11. 如图,直线AB,CD相交于点O,若∠AOD=28°,则∠BOC =__________,∠AOC=___________.12. 自来水公司为某小区A改造供水系统,如图所示,沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短、工程造价最低,其根据是垂线段_____________13. 如图,直线BD上有一点C,则:(1)∠1和∠ABC是直线AB,CE被直线_______所截得的_______角;(2)∠2和∠BAC是直线CE,AB被直线______所截得的________角;(3)∠3和∠ABC是直线_______,_______被直线_______所截得的__________角;14. 如图,过点A画直线l的平行线,能画条15. 如图,用两个相同的三角板按照如图所示的方式作平行线,能解释其中道理的是内错角,两直线 .16. 如图,四边形ABCD中,A D∥BC,∠A=110°,则∠B=___________.17. 两个锐角之和是钝角,其条件是两个锐角之和,结论是钝角,这是一个________命题(填“真”或“假”).18. 如图所示,将直角三角形ABC沿BC方向平移4 cm,得到直角三角形DEF,连接AD,若AB=5 cm,则图中阴影部分的面积为_____________.19. 如图,O为直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.判断OD与AB的位置关系,并说明理由.20. 如图,直线a,b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.21. 如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.22. 如图,AD∥BC,且AD<BC,△ABC经过平移后到了△DEF,(1)平移的方向是射线___________的方向,平移距离是线段________________的长度;(2)在观察图形时,小明发现了AD+BC=BF这一结论,你觉得这一结论成立吗?为什么?参考答案:1---9 DABAD DBBC10. 3011. 28° 152°12. 最短13. (1) DB 同位(2) AC 内错(3) AB AC BC 同旁内14. 115. 相等平行16. 70°17. 假18. 20cm219. 解:OD⊥AB.理由:因为OC平分∠AOD,所以可设∠AOC=∠COD=x°,而∠AOC=13∠BOC,所以∠BOC=3∠AOC=3x°.因为∠AOC+∠BOC=180°,所以x+3x=180,所以x=45,所以∠AOD=2∠COD=90°,即OD⊥AB.20. 解:∵∠1=40°,∴∠3=∠1=40°,4=180°-∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°. 21. 解:∵∠AEC=42°,∴∠AED=180°-∠AEC=138°.∵EF 平分∠AED,∴∠DEF=∠AED=69°.又∵AB∥CD,∴∠AFE=∠DEF=69°.22. (1) BC BE或CF或AD(2) 解:结论成立.理由:∵△A BC经过平移后到了△DEF,∴AD =BE=CF,BC=EF,∴AD+BC=BE+EF=BF.人教版七年级数学下册第五章相交线平行线单元检测题一、选择题。
2020年人教版七年级数学下册第五章综合检测试卷附答案解析
第五章综合检测试卷(满分:120分)一、选择题(每小题3分,共30分)1.下列语句:①两条直线相交,只有一个交点;②若a=b,则a2=b2;③不是对顶角不相等;④作∠AOB的平分线;⑤明天是晴天吗?其中是命题的有()A.1个B.2个C.3个D.4个2.在数学课上,老师让同学们画对顶角∠1与∠2,其中正确的是()A B C D3.如图所示,与∠α构成同位角的角有()A.1个B.2个C.3个D.4个4.如图,已知直线AB、CD相交于点O,OE⊥AB于点O,∠BOD =35°.则∠COE的度数为()A.35°B.55°C.65°D.70°5.同桌读了“子非鱼,安知鱼之乐”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()6.如图,a∥b,下列选项中,可以用来说明命题“相等的角是内错角”是假命题的反例是()A.∠1+∠3=180°B.∠2=∠4C.∠2=∠3 D.∠4=∠67.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=30°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.15°B.30°C.45°D.60°8.如图,下列条件中,不能判断AD∥BC的是()A.∠1=∠3 B.∠2=∠4C.∠EAD=∠B D.∠D=∠DCF9.如图,AB∥CD,直线EF分别与直线AB、CD相交于点G、H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于()A.60°B.80°C.50°D.130°10.如图,已知直线a∥b,且c、d和a、b分别交于M、N、A、B四点,点P是d上一动点.下列说法:①∠MPN=∠AMP+∠BNP;②点P在A、B两点之间运动时,∠MPN=∠AMP+∠BNP;③当点P在线段AB的延长线上运动时,∠AMP=∠BNP+∠MPN;④当点P 在线段BA的延长线上运动时,∠BNP=∠AMP+∠MPN.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.下列命题中:①一个角小于它的补角;②一个锐角大于它的余角;③两条直线被第三条直线所截,同位角相等.其中是假命题的是___.(填序号)12.如图,按角的位置关系填空:∠1与∠2是__ __角,∠1与∠3是__ _角,∠2与∠3是__ __角.13.如图,AD⊥BD,BC⊥CD,AB=6 cm,BC=4 cm,则BD 的长度取值范围是( ).14.如图是一条街道的两个拐角,∠ABC与∠BCD均为140°,则街道AB与CD的位置关系是__ _,这是因为__ __.15.如图,在△ABC中,AB=4,BC=6,将△ABC沿射线BC 方向平移2个单位后,得到△A′B′C′,连接A′C.若A′C=4,则△A′B′C的周长为____.16.如图,已知AD∥CB,AE、BE分别平分∠DAC和∠ABC,若∠E=4∠BAC,则∠BAC=___.三、解答题(共72分)17.(6分)如图,直线AB、CD相交于点O,OM平分∠AOD,且∠1∶∠2=1∶8,ON平分∠AOC,求∠BON的度数.18.(6分)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)图中AC与A1C1的关系是__;(3)能使△ABQ的面积等于△ABC的面积的格点Q共有几个?在图中分别用Q1、Q2、…表示出来.19.(7分)完成下面的推理过程:如图,AB∥CD,∠1=∠2,试说明∠B=∠D.20.(8分)指出下列命题的题设和结论,并将其改写成“如果……,那么……”的形式.(1)内错角相等;(2)内错角相等,两直线平行.21.(8分)如图,直线AB、CD相交于点O,∠BOC=60°,点P 在直线CD上.(1)过点P画PE∥AB;(2)过点P画AB的垂线段PF,垂足为点F;(3)过点P画CD的垂线,与AB相交于点G;(4)比较PF、PG、OG三者的大小,其依据是什么?。
人教版数学七年级下册第五章相交线与平行线测试卷(含答案)
人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。
人教版七年级数学下册第五章章节综合检测卷及答案
第五章检测卷考试时间:120分钟满分:120分一、选择题(每小题3分,共10小题,满分30分)1.下列语句是命题的是( )A.连接A、B两点B.画一个角等于已知角C.过点C作直线AB的垂线D.两直线相交,有且只有一个交点2.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角第2题图第3题图3.如图,已知直线a∥b,直线c与a、b分别交于点A、点B,且∠1=120°,则∠2=( )A.60°B.120°C.30°D.150°4.下列各组图形可以通过平移互相得到的是( )5.如图,BD平分∠ABC,点E在BC上,EF∥AB,若∠CEF=100°,则∠ABD的度数为( )A.60°B.50°C.40°D.30°第5题图第6题图第7题图6.如图,直线a、b被直线c所截,下列说法正确的是( )A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是( )A.点B到AC的垂线段是线段CAB.CD和AB互相垂直C.AC与BC互相垂直D.线段AC的长度是点A到BC的距离8.下列语句错误的是( )A.连接两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,两角的和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行(或在同一直线上)且相等9.如图,可由三角形BOC平移得到的三角形有A.2个B.3个C.4个D.5个第9题图第10题图10.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为A.①②B.③④C.②④D.①③④二、填空题(每小题3分,共8小题,满分24分)11.把命题“三角形内角和为180°”写成“如果……那么……”的形式是.12.如图,CD⊥AB,垂足为C,∠1=130°,则∠2= 度.第12题图第13题图13.如图,已知∠A=∠F=40°,∠C=∠D=70°,则∠CED= .14.如图所示,将线段b向右平移3格,再向上平移格,能与线段重合.第14题图第15题图15.如图,FE∥ON,OE平分∠MON,若∠FEO=28°,则∠MFE= .16.如图,若计划把河水引到水池A中,可以先作AB⊥CD,垂足为B,然后沿AB开渠,则能使所开的渠最短,这样设计的依据是.第16题图第17题图第18题图17.如图,一只船从点A出发,沿北偏东60°方向航行到点B,再沿南偏西25°方向航行到点C,则∠ABC= .18.如图,在直角三角形ABC中,∠C=90°,AC=4,将三角形ABC沿CB向右平移得到三角形DEF,若平移距离为2,则四边形ABED的面积等于.三、解答题(本大题共7小题,满分66分)19.(8分)(山东淄博中考)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.20.(8分)如图,三角形ABC的顶点都在方格纸的格点上.将三角形ABC向左平移2格,再向上平移4格.请在图中画出平移后的三角形A′B′C′,再在图中画出三角形A′B′C′的高C′D′.21.(8分)如图所示,两个边长为5的正方形拼合成一个长方形,则图中阴影部分的面积是多少?22.(10分)已知:如图所示,AB∥CD,∠A=∠C.求证:BC∥AD.证明:∵AB∥CD(已知),∴∠ABE=∠(),∵∠A=∠C(已知),∴(),∴BC∥AD().23.(10分)如图,直线AB交CD于点O,由点O引射线OG、OE、OF,使OC平分∠EOG,∠AOG=∠FOE,∠BOD=56°,求∠FOC.24.(10分)如图,EF∥CD,∠1+∠2=180°,试判断∠BGD与∠BCA 的大小,并给予证明.25.(12分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别为∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别为∠ABE2和∠DCE2的平分线,交点为E3,…第n次操作,分别作∠ABE n-1和∠DCE n-1的平分线,交点为E n. (1)如图①,求证:∠BEC=∠ABE+∠DCE;∠BEC;(2)如图②,求证:∠BE2C=14(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
第五章质量评估试卷
[时间:90分钟分值:120分]
一、选择题(每题3分,共30分)
1.下列图形可以由一个图形经过平移变换得到的是()
A B C D
2.如图1,已知直线AB与CD相交于点O,EO⊥CD,垂足为点O,则图中∠AOE和∠DOB的关系是()
图1
A.同位角B.对顶角
C.互为补角D.互为余角
3.如图2,一对平行线AB,CD被直线AE所截,若∠1=80°,则∠2的度数是()
图2
A.80°B.90°
C.100°D.110°
4.如图3,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是()
图3
A.①②③B.①②④
C.②③④D.①②③④
5.一副三角板如图4摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()
图4
A.105°B.100°
C.75°D.60°
6.如图5,∠BAC=90°,AD⊥BC于点D,则下列结论中:①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;
④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥线段AB是点B到AC的距离.
图5
其中正确的有()
A.3个B.4个
C.5个D.6个
7.如图6,已知AB∥CD,AF交CD于点E,且BE⊥AF,∠BED=40°,则∠A的度数是()
图6
A.45°B.50°
C.80°D.90°
8.如图7,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()
图7
A.65°B.60°
C.55°D.75°
9.已知直线m∥n,将一块含30°角的直角三角板ABC按如图8方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为()
图8
A.100°B.120°
C.130°D.140°
10.如图9,AB∥CD∥EF,则下列各式中正确的是()
图9
A.∠1=180°-∠3 B.∠1=∠3-∠2
C.∠2+∠3=180°-∠1 D.∠2+∠3=180°+∠1
二、填空题(每题4分,共24分)
11.如图10,若AB∥CD,则在图中所标注的角中,一定相等的角是________.
图10
12.如图11,直线AB∥CD,直线EC分别与AB,CD相交于点A,C,AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为________.
图11
13.一大门栏杆的平面示意图如图12所示,BA垂直地面AE于点A,CD平行于地面AE.若∠BCD=150°,则∠ABC=________.
图12
14.如图13,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于________.
图13
15.如图14,直线AB∥CD∥EF,则∠α+∠β-∠γ=________.
图14
16.一副直角三角尺叠放如图15①所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°,其他所有可能符合条件)的度数为________.
图15
三、解答题(共66分)
17.(8分)如图16,补充下列结论和依据.
∵∠ACE=∠D(已知),
图16
∴________∥________(____________________).
∵∠ACE=∠FEC(已知),
∴________∥________(____________________).
∵∠AEC=∠BOC(已知),
∴________∥________(____________________).
∵∠BFD+∠FOC=180°(已知),
∴________∥________(____________________).
18.(8分)如图17,直线AB与CD相交于点O,OP是∠BOC 的平分线,OE⊥AB, OF⊥CD.
(1)图中除直角和平角外,还有相等的角吗?请写出两对:
①________;②________;
(2)如果∠AOD=40°,求∠COP和∠BOF的度数.
图17
19.(8分)如图18,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF.
求证:∠DAF=∠F.
图18
20.(10分)如图19,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于点C.
(1)若∠O=38°,求∠ECF的度数;
(2)试说明CG平分∠OCD的理由;
(3)当∠O为多少度时,CD平分∠OCF,请说明理由.
图19
21.(10分)如图20,BD⊥AC于点D,EF⊥AC于点F,∠AMD =∠AGF,∠1=∠2=35°.
(1)求∠GFC的度数;
(2)求证:DM∥BC.
图20
22.(10分)是大众汽车的标志图案,其中蕴涵着许多几何知识.根据下面的条件完成证明.
已知:如图21,BC∥AD,BE∥AF.
(1)求证:∠A=∠B;
(2)若∠DOB=135°,求∠A的度数.
图21
23.(12分)问题情境:如图22①,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:如图22②,过点P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图22③,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD,∠α,∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A,M两点之间和B,O两点之间运动时(点P与点A,B,O三点不重合),请分别写出∠CPD,∠α,∠β之间的数量关系.
图22
参考答案
1.B 2.D 3.C 4.A 5.A 6.A7.B
8.C9.C10.D
11.∠1=∠312.50°13.120°14.90°
15.180°16.45°,60°,105°,135°
17.CE DF同位角相等,两直线平行EF AD内错角相等,两直线平行AE BF同位角相等,两直线平行EC DF同旁内角互补,两直线平行
18.(1)①∠COE=∠BOF②∠COP=∠BOP(答案不唯一)(2)∠COP=20°,∠BOF=50°.
19.略20.(1)109°(2)略(3)当∠O为60°时,CD平分∠OCF,理由略.
21.(1)125°(2)略22.(1)略(2)45°
23.(1)∠CPD=∠α+∠β.理由略
(2)当点P在A,M两点之间时,∠CPD=∠β-∠α;当点P在B,O两点之间时,∠CPD=∠α-∠β.
关闭Word文档返回原板块。