zygo干涉仪gpi-p-d使用说明
ZYGO干涉仪使用说明书
1目的为了使员工正确熟悉的使用ZYGO干涉仪。
本文详细说明了如何使用ZYGO 干涉仪来测试晶体的平行度、波前、平面度等指标。
2范围本文件涉及用ZYGO 干涉仪检测平面元件的一般方法。
3 录取数据在检验过程中将会生成以下记录:3.1干涉图(保存文件名为*.Tif),在实时窗口上点击FILE-SAVE保存。
3.2测试数据(保存文件名为*.Dat),测试完成后点击SAVE DATE保存。
4 Zygo干涉仪的定义4.1 应用(application)应用是ZYGO 干涉仪中一系列功能的组合,保存为后缀名为“*.app”的文件。
不同的应用用于不同项目的测量。
比较常用的是GIP.app 用于一般的平面和球面的测量,GPI-Cylinde.app 用于柱面面形的测量,Angle.app用于平行角度的测试。
4.2 猫眼像(cateye)又称为标准镜的像。
标准镜的出射光在焦点处被返回时出现的干涉条纹,是透过干涉仪的光线与和它对称的标准面之间的干涉图形。
4.3 镜片像从标准镜出射的光在整个零件表面被原路反射回来与标准面的反射光发生干涉产生的干涉图形。
包含待测零件的表面或波前信息,是面形检测的主要信息来源。
4.4 升降台可以升降的平台,带有小倾角调节功能,一般用于放置平面元件。
4.5 Align/View 模式按下控制盒上的align/view 切换的2 个模式之一。
align模式可以看到一个黑色固定的十字线和反射回干涉仪的光点,一般用于零件对准,特点是视场较大。
View 模式是按下控制盒上的align/view 切换的2 个模式之一,可以看到干涉条纹,特点是放大率较高,但是视场较小。
一般在align界面对准后在view 界面观察条纹。
4.6 标准镜 干涉仪上使用的参考表面,用于生成理想的平面、球面波,作为测量基准。
4.7 长度基准设定图像的长度基准,因为放大率不同或者屈光度不同,同样大小的干涉图所代表的零件大小可能有很大的差异。
干涉仪器的使用方法和标准
干涉仪器的使用方法和标准
一、功能介绍:用于检查研磨后镜片面形精度(牛顿环、局部误差),
检查范围≤∮75,放大比例:1:1
二、精度描述:标准板精度为λ/ 20
三、操作规程
a)确认校验有效期:看干涉仪的标识校验有效期是否超过,若
超过有效期,则先向校验员提出校验后再使用。
b)开电源:打开变压器(220V变为110V),此时激光
干涉仪电源驱动器进入对激光管驱动工作。
c)电源驱动激光管约15分钟左右,干涉仪专用电源稳定后指
示灯亮,进入稳定状态。
d)清理台面,将待检品、不良、良品按标示区域整理准备检测
镜片。
e)擦拭干净放置镜片的检测治具,戴好手指套、口罩。
f)放置镜片到载物台或载物台的治具上,将对焦/成像开关切
换到对焦,在目视视场中可见三个光点,调节载物台的旋
扭,让屏幕上可移动按扭中较亮点与原视场点重合;再将
对焦/成像开关切换至成像。
g)调整载物台旋扭,读取需要数据,最好是将干涉条纹调到
3-5条相对数据比校准确。
四、保管保养
a)仪器玻璃表面严禁用手触摸,可用镜头纸或脱脂棉蘸酒精清
擦。
b) 清洁毛巾不能沾水,放置场地需保持干燥、清洁。
c) 若需在2H以内需使用则不需关闭电源,但需关闭显示器的
电源;若需超2H再使用则需关闭电源。
开电源:打开变压器(220V变为110V),此时
五、注意事项
a)放置干涉仪桌子与墙壁不能接触,干涉仪及干涉仪桌子不能受外力震动,否则会影响检测精度。
b)室内需恒温在1℃以内,否则会影响检测精度。
ZYGO干涉仪使用说明
1目的为了使员工正确熟悉的使用ZYGO干涉仪。
本文详细说明了如何使用ZYGO 干涉仪来测试晶体的平行度、波前、平面度等指标。
2范围本文件涉及用ZYGO 干涉仪检测平面元件的一般方法。
3 录取数据在检验过程中将会生成以下记录:3.1干涉图(保存文件名为*.Tif),在实时窗口上点击FILE-SA VE保存。
3.2测试数据(保存文件名为*.Dat),测试完成后点击SA VE DATE保存。
4 Zygo干涉仪的定义4.1 应用(application)应用是ZYGO 干涉仪中一系列功能的组合,保存为后缀名为“*.app”的文件。
不同的应用用于不同项目的测量。
比较常用的是GIP.app 用于一般的平面和球面的测量,GPI-Cylinde.app 用于柱面面形的测量,Angle.app用于平行角度的测试。
4.2 猫眼像(cateye)又称为标准镜的像。
标准镜的出射光在焦点处被返回时出现的干涉条纹,是透过干涉仪的光线与和它对称的标准面之间的干涉图形。
4.3 镜片像从标准镜出射的光在整个零件表面被原路反射回来与标准面的反射光发生干涉产生的干涉图形。
包含待测零件的表面或波前信息,是面形检测的主要信息来源。
4.4 升降台可以升降的平台,带有小倾角调节功能,一般用于放置平面元件。
4.5 Align/View 模式按下控制盒上的align/view 切换的2 个模式之一。
align模式可以看到一个黑色固定的十字线和反射回干涉仪的光点,一般用于零件对准,特点是视场较大。
View 模式是按下控制盒上的align/view 切换的2 个模式之一,可以看到干涉条纹,特点是放大率较高,但是视场较小。
一般在align界面对准后在view界面观察条纹。
4.6 标准镜 干涉仪上使用的参考表面,用于生成理想的平面、球面波,作为测量基准。
4.7 长度基准设定图像的长度基准,因为放大率不同或者屈光度不同,同样大小的干涉图所代表的零件大小可能有很大的差异。
干涉仪的操作方法
5.干涉仪的保养事项 5.干涉仪的保养事项 1. 在主体的非润滑面、光学器件和除标准镜头外的各附 件表面使用一块软布,擦去指印和灰尘等;
2. 显示器除了日常擦拭外壳及屏幕外,无需其它 维护; 3. 对干涉仪主机之螺丝、旋钮、螺杆、导轨用润 滑油或防锈油进行擦拭; 4. 检查干涉仪各紧固元件是否有松动,滑丝等现 象,保证其牢固可靠;
干涉仪标准镜头选用计算公式: 干涉仪标准镜头选用计算公式: (R:镜片 镜片R ,D:镜片外径 镜片外径) F=R/D (R:镜片R值,D:镜片外径) 若已知镜片R值为16,镜片外径为25.8,求出可选用标准镜头? 16,镜片外径为25.8,求出可选用标准镜头 例:若已知镜片R值为16,镜片外径为25.8,求出可选用标准镜头? 解:F=16/25.8=0.62 注:若无0.62的镜头时,只能选取比0.62小的镜头. 若无0.62的镜头时,只能选取比0.62小的镜头. 0.62的镜头时 0.62小的镜头 公式:D=R/F 公式:D=R/F
5.干涉仪的保养事项 5.干涉仪的保养事项
5. 点检者按规定定期负责气垫旋钮,气垫水 准,恒扭力弹簧,平衡微调旋钮,工作台 锁紧旋钮,X\Y轴微调旋钮的检查; 6. 对每项保养工作,予以如实记录TPM点检 保养状况。由担当者签名,管理人员作确 认。
6.标准镜头的保养 6.标准镜头的保养 1. 标准镜头属高精密元件,温度变化、振动、冲击都会 造成性能上的影响,因此使用时需特别小心,不要弄 脏和碰伤标准表面; 2. 上下移动工作台或者标准镜头时,应避免标准镜头被 碰伤; 3. 安装标准镜头时,应带上干净的手套或手指套将镜头 从箱子里取出旋转装到主机上,取下时应及时放入箱 内; 4. 不可将镜片掉入镜头中,操作时应杜绝标准镜头的任 何磕碰伤。
干涉仪的使用方法-概述说明以及解释
干涉仪的使用方法-概述说明以及解释1.引言1.1 概述干涉仪是一种非常重要的光学仪器,用于测量光波的干涉现象。
通过观察和分析光波的干涉现象,可以得到有关光波性质的重要信息,例如波长、相位差等。
在科学研究、工程应用和教学实验等领域都有广泛的应用。
本文将介绍干涉仪的原理、分类和使用方法,帮助读者更深入地了解和掌握这一重要的光学仪器。
在正文部分,我们将详细介绍干涉仪的原理,包括干涉现象的基本概念和干涉仪的工作原理。
其次,我们将介绍干涉仪的分类,根据不同的工作原理和结构特点进行分类,使读者对干涉仪有更清晰的认识。
在正文的最后,我们将介绍如何正确使用干涉仪,包括使用步骤、注意事项等。
通过本文的介绍和讲解,读者将能够更好地理解和掌握干涉仪的使用方法,为科学研究和工程应用提供帮助。
文章结构部分的内容如下:1.2 文章结构本文主要分为三部分:引言、正文和结论。
- 引言部分主要介绍了本文的背景和目的,以及文章结构的概要。
- 正文部分将详细介绍干涉仪的原理、分类和使用步骤,帮助读者了解干涉仪的基本知识和操作方法。
- 结论部分将总结干涉仪的使用方法,并展望其未来的应用前景,最后给出结语。
通过这样的结构安排,可以帮助读者系统地了解干涉仪的使用方法,同时也为后续的研究和实践提供了参考和指导。
1.3 目的干涉仪是一种重要的光学仪器,它广泛应用于科研领域、工程技术和生产实践中。
本文的目的是介绍干涉仪的使用方法,帮助读者了解干涉仪的原理、分类以及正确的操作步骤。
通过深入探讨干涉仪的使用方法,希望读者能够掌握干涉仪的使用技巧,提高实验的准确性和效率。
同时,为了推动干涉仪在各个领域的应用和发展,本文还将展望干涉仪的未来应用前景。
通过本文的阅读,读者将能够全面了解干涉仪的使用方法,为实验和研究工作提供有力的支持。
2.正文2.1 干涉仪的原理干涉仪是一种利用光的干涉现象进行测量的仪器。
其原理基于光的波动性质,当两束光波相遇时,它们会互相叠加产生干涉条纹,从而揭示出样品表面的微小变化或者检测光的性质。
ZYGO干涉仪GPI-XP-D常用命令中文注解
Sm Aperture小孔径
Measure测量——测试按钮(也可用F1键)
Analyze分析——数据分析(对已保存数据进行分析)
Mask data屏蔽数据——区域选择(测试和参考区域)
Save data保存数据——对测试数据起保存作用
Load data载入数据——导入已保存数据的按钮
MTF调制传递函数
MTF Profile传函图
Zernikes泽尼克多项式
Intensity亮度
ISO 10110-5ISO-10110窗口
SynthFringe合成的条纹
Environment Test环境测试
Measure Attr测量属性
Analyze Attr分析属性
Process方法
Report报告
Removed远离
Auto aperture自动孔径
Aperture size孔径大小
Trimmed裁边
Trim mode调整方式
Filter滤光镜
Type类型
Window size窗口大小
Freq频率
Print Panel打印标准
Destination目的地
White白色
File文件
Color颜色
Calibrate校准——校准按钮(打开进入校准界面)
Reset复位——点击可初始化程序
Measure ctrl测量控制——数据控制按钮
Analyze ctrl分析控制
S/W Map图
S/W Profile剖面图
Slope Mag斜面图
Slope x x方向斜面
Slope y y方向斜面
PSF点列图
te删除
激光干涉仪对光操作指南讲解
激光干涉仪对光操作指南6.1 使用前的工作6.1.1 为什么要对光?对光的目的是为了让检测的光线能准确返回激光干涉仪上,让激光干涉仪得到最强的反馈信息,以便计算实际的行程数值。
6.1.2 影像线性测量精度的因素包括哪些?①、死程误差死程误差是在线性测量过程中与环境因素改变有关的误差,这时已采用 EC10 自动补偿功能。
在正常状况下,死程误差并不大,而且只会发生在定标后以及测量过程中的环境改变。
路径 L2的激光测量死程误差与两个光学元件间的距离有关,此时系统定标为 L1,请参阅图 1。
若干涉镜及反射镜之间没有动作,且激光束四周的环境状况有所改变,整个路径(L I + L2)的波长(空气中)都会改变,但激光测量系统只会对 L2距离进行补偿。
因此,死程测量误差会由于光束路径 L1没有获得补偿而产生。
图 1 - 死程误差不过,若当设定定标时固定和移动镜组彼此邻接,死程误差就可忽略不计。
如下图 2 所示。
图 2 - 死程误差可不计时的正确设置如果可能,定标激光器时使镜组互相靠近。
若定标激光器时镜组彼此相隔不到 10 mm,则正常状况下的死程误差就可忽略。
机床几何显示当移动镜组位于轴的零点位置,这两个镜组彼此分得最开,此时可用预置功能来避免与定标激光干涉镜系统有关的潜在死程误差。
②、余弦误差激光束路径与运动轴之间存在的任何未准直都会造成测得的距离和实际的运动距离之间有差异,如图 1 所示。
图 1 - 余弦误差.此未准直误差通常被称为余弦误差。
此误差的大小与激光束和运动轴间的未准直角度有关,如图 1 中的。
当激光测量系统与运动轴未准直时,余弦误差会使得测量的距离比实际距离要短。
随着角度未准直的增加,误差也跟着显著增加,如下表所示:角度( mm/metre) 角度(弧分)误差( ppm)0.451.001.403.204.50 10.001.533.434.8710.8715.3935.390.10.51.05.010.050.0要使余弦误差达到最小,测量激光束必须准直,并与运动轴平行。
子孔径拼接干涉检测光学平面方法的研究
⎛ ⎜⎝
oD Ao
⎞⎞ ⎟⎠ ⎟⎠
(10)
( ( )) AD = Ao×sin arc cos
sin θ
2 x
+
sin
θ
2 y
(11)
因此真正的面形值为:
( ( )) u′ = u ×sin arc cos
sin
θx2
+sinθ源自2 y(12)用 Matlab 编制相应程序对全口径面形去倾斜得到的结果:
如图 1 所示,子孔径拼接方法的基本原理在于用干涉方法分别测量整个大孔径面形的一 部分(孔径扫描) ,并使各子孔径相互之间稍有重叠, 然后从重叠区提取出相邻子孔径的参考 面之间的相对平移、旋转,并依次把这些子孔径的参考面统一到某一指定的参考面(即拼接) , 从而恢复出全孔径波面。由于受运动误差等的影响,直接对子孔径数据进行拼接将得到错误
3. 检测中倾斜量对检测结果的影响
对于理想平面来说当平面与干涉仪的探测波前法方向垂直时,是探测不到干涉条纹的。 一旦面形有误差,这时会探测到局部的干涉条纹,检测结果也就是最精确的。但是在实际中, 被测平面的放置是人工调整,因此也就只能使得被测平面与探测波前法方向大致垂直。例如 口径为 D 的平面,倾斜 λ/2D 的弧度,对于干涉仪来说就会产生一个干涉条纹。说明干涉仪 对倾斜量是十分敏感的。为了说明问题实验中使用 Zygo 公司的 Mark 系列 GPI-XP 干涉仪, 为防止空气扰动,在封闭的气浮平台条件下对一口镜 150mm(平面镜实际口径为 160mm 但 加工口径为 150mm)的平面镜进行了测量,这时在用干涉仪自带软件 Matropro 分别在没有 去平移和去除了平移和倾斜项后得到的结果:
图 4 纵向截面示意图
4. 去倾斜模型
ZYGO干涉仪说明书 ppt课件
ZYGO干涉仪说明书
D
d
ZfYGO干涉仪说明书 R
ZYGO儀器名稱說明
凹透鏡
控制器控制桿說明
上方(放 大) ( ZOOM )
中央(焦 點) ( FOCUS )
下方(設 定) (QUICK FAS)
一倍 1X
近 Near
設定 Align
系統焦點
六倍 6X
遠 Far
顯像 View
凸透鏡 鏡片承座
左右旋鈕(水平) 前後旋鈕(垂直)
顯像器 前後旋鈕 (垂直)
zygo
ZYGO干涉仪说明书
旋鈕 (水平) 標準鏡頭
範例說明
☺ 鏡片CA為∮50,曲率-100,應用何種鏡頭?
∵ 為了檢驗∮50的範圍,光線通過待測面 直徑應≧50
R = d ≧ 50
F
100 F
≧ 50
∴ 該選F=0.75或F=1.5之鏡頭
ZYGO干涉仪说明书
ZYGO 鏡頭選用及光圈判讀
1.F=f/D F: F/#=0.75, 1.5, 3.3, 7.2
f: focal length)
D: 鏡頭有效徑 (4”~100mm)
2.ZYGO 鏡頭上有2組數字:
例 F 1.5 D=4”
待測面曲率半徑
f R
=
D d
R,依d 相=似RfD三=角形RF原理,可得
最新ZYGO干涉仪-使用说明
11目的2为了使员工正确熟悉的使用ZYGO干涉仪。
本文详细说明了如何使用ZYGO 干3涉仪来测试晶体的平行度、波前、平面度等指标。
42范围5本文件涉及用ZYGO 干涉仪检测平面元件的一般方法。
63 录取数据7在检验过程中将会生成以下记录:83.1干涉图(保存文件名为*.Tif),在实时窗口上点击FILE-SAVE保存。
93.2测试数据(保存文件名为*.Dat),测试完成后点击SAVE DATE保存。
104 Zygo干涉仪的定义4.1 应用(application)1112应用是ZYGO 干涉仪中一系列功能的组合,保存为后缀名为“*.app”的文件。
13不同的应用用于不同项目的测量。
比较常用的是GIP.app 用于一般的平面和球面的测量,GPI-Cylinde.app 用于柱面面形的测量,Angle.app用于平行角度的1415测试。
164.2 猫眼像(cateye)17又称为标准镜的像。
标准镜的出射光在焦点处被返回时出现的干涉条纹,是18透过干涉仪的光线与和它对称的标准面之间的干涉图形。
14.3 镜片像1920从标准镜出射的光在整个零件表面被原路反射回来与标准面的反射光发生干21涉产生的干涉图形。
包含待测零件的表面或波前信息,是面形检测的主要信息22来源。
234.4 升降台24可以升降的平台,带有小倾角调节功能,一般用于放置平面元件。
4.5 Align/View 模式2526按下控制盒上的align/view 切换的2 个模式之一。
align模式可以看到一个27黑色固定的十字线和反射回干涉仪的光点,一般用于零件对准,特点是视场较28大。
View 模式是按下控制盒上的align/view 切换的2 个模式之一,可以看到29干涉条纹,特点是放大率较高,但是视场较小。
一般在align界面对准后在view Array界面观察条纹。
304.6 标准镜31干涉仪上使用的参考表面,用于生成理想的平面、球面波,作为测量基准。
激光干涉仪使用方法
用激光干涉仪系统进行精确的线性测量—最佳操作及实践经验1 简介本文描述的最佳操作步骤及实践经验主要针对使用激光干涉仪校准机床如车床、铣床以及坐标测量机的线性精度。
但是,文中描述的一般原则适用于所有情况。
与激光测量方法相关的其它项目,如角度、平面度、直线度和平行度测量不包括在内,用于实现0.1微米即0.1 ppm以下的短距离精度测量的特殊方法(如真空操作)也不包括在内。
微米是极小的距离测量单位。
(1微米比一根头发的1/25还细。
由于太细,所以肉眼无法看到,接近于传统光学显微镜的极限值)。
可实现微米级及更高分辨率的数显表的广泛使用,为用户提供了令人满意的测量精度。
尽管测量值在小数点后有很多位数,但并不表明都很精确。
(在许多情况下精度比显示的分辨率低10-100倍)。
实现1微米的测量分辨率很容易,但要得到1微米的测量精度需要特别注意一些细节。
本文描述了可用于提高激光干涉仪测量精度的方法。
2 光学镜组的位置光学镜的安放应保证其间距变化能够精确地反映待校准机器部件的线性运动,并且不受其它误差的影响。
方法如下:2.1 使Abbe(阿贝)偏置误差降至最低激光测量光束应当与需要校准的准线重合(或尽量靠近)。
例如,要校准车床Z轴的线性定位精度,应当对测量激光光束进行准直,使之靠近主轴中心线。
(这样可以极大降低机床俯仰 (pitch) 或扭摆 (yaw) 误差对线性精度校准数据的影响。
2.2 将光学镜组固定牢靠要尽量减小振动影响并提高测量稳定性,光学镜组应牢牢固定所需的测量点上。
安装支柱应尽可能短,所有其它紧固件的横截面都应尽量牢固。
磁力表座应直接夹到机床铸件上。
避免将其夹到横截面较薄的机器防护罩或外盖上。
确保紧固件表面平坦并没有油污和灰尘。
2.3 将光学镜组直接固定在相关的点上材料膨胀补偿通常只应用在与测量激光距离等长的材料路径长度上。
如果测量回路还包括附加的结构,该“材料死程”的任何热膨胀或收缩或因承载而发生的偏斜都将导致测量误差。
激光平面干涉仪说明书讲解
一、用途激光平面干涉仪是一种使用方便的光学精密计量仪器,主要用于精密测量光学平面度。
仪器配有激光光源(波长为632.8nm)。
对于干涉条纹可目视、测量读数。
工作时对防震要求一般。
该仪器可应用与光学车间、实验室、计量室。
如需配购相关的必要附件,可精密测量光学平面的微小楔角、光学材料折射率n的均匀性,光学镀膜面或金属块规表面的平面度,90度棱镜的直角误差及角锥棱镜单角和综合误差。
二、主要数据1. 第一标准平面(A面),不镀膜。
工作直径:D1=φ146mm不平度小于0.02um2.第二标准平面(B面),不镀膜。
工作直径:D2=φ140mm不平度小于0.03um3.准直系统:孔径F/2.8,工作直径:D0=φ146mm焦距:f=400mm4.测微目镜:焦距f=16.7mm,放大倍数β=15X,视场角2W=40°,成像物镜:1.D=4.5 II.D=7 III.D=10F=15 f=23 f=375.工作波长:632.8nm6.干涉室尺寸:深260X宽300X190mm。
7.光源规格:激光ZN18(He-Ne)。
8.仪器的外形尺寸:长X宽X高 350X400X720mm9.仪器重量:100公斤图一第一标准平面(A面)精度照片图二第二标准平面(B面)三、工作原理本仪器工作基于双光束等厚干涉原理。
根据近代光学的研究结果,光兼有波动与颗粒两重特性。
光的干涉现象是光的波动性的特性。
因此,介绍本节内容时,仅在光的波动性的范围内讨论,例如,把“光”称为“光波”,“平行光”称为“平面光”。
波长为的单色光经过仪器有关的光学系统后成为平面波M。
(如图三所示),经仪器的标准平面P1和被检系统P2反射为平面波M1和 M2。
M1、M2即为两相干光波,重叠后即产生等厚干涉条纹。
等厚干涉原理能够产生干涉的光束,叫相干光。
相干光必须满足三个条件:1.震动方向必须一致,2.频率相等:3.光束必须相遇,且在相遇点处的相位差在整个时间内为一常量。
ZYGO干涉仪使用指导书2024
引言概述:正文内容:1.原理说明1.1干涉仪的基本原理1.1.1干涉仪是通过光的干涉来实现测量的原理1.1.2干涉仪利用光程差的变化来测量物体的形状、表面粗糙度等参数1.1.3干涉仪的工作原理与Michelson干涉仪类似,基于光的分波器和合波器的原理1.2ZYGO干涉仪的特点1.2.1高分辨率和高灵敏度1.2.2宽波长范围和大工作距离1.2.3快速测量和数据处理能力2.操作方法2.1仪器准备2.1.1确保仪器位置稳定,免受振动和干扰2.1.2进行仪器校准,包括波前校正和零点校正2.2测量设置2.2.1选择适当的测量模式,如表面形状测量、表面粗糙度测量等2.2.2设置测量参数,包括光源波长、采样点数、测量范围等2.3测量操作2.3.1将样品放置在适当的位置,避免阴影和反射干扰2.3.2调整仪器参数和位置,使样品与仪器对准并获得清晰的干涉图像2.3.3启动测量程序,记录数据并保存结果2.4数据处理2.4.1利用仪器提供的数据处理软件对测量结果进行分析和处理2.4.2使用滤波、拟合等方法提取所需参数,如表面形状、曲率半径等2.5结果解释2.5.1根据测量结果解释样品的特征和性能2.5.2与标准数据或设计要求进行对比,评估样品的质量和一致性3.常见问题解答3.1仪器故障排除3.1.1仪器无法启动或无法连接到电脑3.1.2干涉图像模糊或变形3.1.3数据处理出现错误或异常3.2测量误差分析3.2.1测量环境的干扰因素分析与处理方法3.2.2探测器的噪声和非线性对测量结果的影响3.3数据处理技巧3.3.1如何选择合适的滤波算法和参数3.3.2数据拟合的方法和准确性评估4.仪器维护与保养4.1保持仪器环境的清洁和稳定4.2定期对仪器进行校准和维护4.3避免仪器受到物理损坏或电磁干扰5.应用案例分享5.1光学元件的形状和表面质量测量5.2大型镜面的检测和修正5.3精密器件的尺寸和形状测量5.4光学薄膜的厚度和折射率测量5.5表面粗糙度的测量和评估总结:。
ZYGO干涉仪GPI-XP-D常用命令中文注解
MTF Profile传函图
Zernikes泽尼克多项式
Intensity亮度
ISO 10110-5ISO-10110窗口
SynthFringe合成的条纹
Environment Test环境测试
Measure Attr测量属性
Analyze Attr分析属性
Process方法
Report报告
Delete删除
Pick选取
PickAll选取所有
BG Exc去掉背景
Auto inc自动包括
Fringes条纹
Acq默认
Test测试
Ref查询
Define定义
Show显示
Undef撤销定义
Width宽度
Height高度
Fiducials基准
Surface/warfront map表面/波前图
Zernike terms泽尼克项
Removed远离
Auto aperture自动孔径
Aperture size孔径大小
Trimmed裁边
Trim mode调整方式
Filter滤光镜
Type类型
Window size窗口大小
Freq频率
Print Panel打印标准
Destination目的地
White白色
File文件
Color颜色
Zernike sample泽尼克取样
Fr RMST均方根
Radius(nominal)半径(标称)
Radius(measured)半径(实测)
Select results选择结果
Wavelength波长
Part diameter零件直径——有效口径
干涉仪透射球面镜的选择
在某些情况下,我们必须接受非全范围取样的方案来测量那些大曲率半径而且又非 常“快”的表面。凸面样品测量设置决定了为什么需要多种规格的透射球面。在测 量凸面样品时,相比凹面测量,会有诸多的限制因素。 表 1 提供了所有已有透射球面的焦点距离。 有关全范围的覆盖百分比的算法与前文所述凹面样品一样。 综上所述,已经概述了在通常测量环境中的重要设置,读者或许可以跳过下一段, 直接参阅实践帮助,尝试一些实例。
Zygo
透射球面选择
介绍
Zygo 公司的 GPI 干涉仪(包括 MARK/PTI)的一个典型应用就是检测球面表面。将 被测凹面或凸面样品曲面中心与透射球面的焦点重合放置,我们就可以检测样品的 表面面形及不规则性。下文将主要介绍如何在球面测量中选择透射球面。
什么是透射球面?
透射球面是用于将自主机输出的平行波前转变为球形波前,同时也用于将激光分离 为参考光束和测量光束两部分。Zygo 的透射球面可以安装在主机的附件调整架 上,也可以安装在位于平行输出光束中,远离主机的辅助调整架中。
实践帮助:
在订购干涉仪时,我们就应该确认所需最适合的透射球面,以便测量更大参数范围 的样品表面。以下是经过多年实践经验总结的实际原则。
如果您面临如何选择最合适的透射球面的问题,我们建议您填写本文后所附的表 格。您可以参考示例,注意前 6 列构成了您所需测样品表面的相关信息。没有这些 信息,您就不能为您的测量应用选择合适的透射球面。它们是:样品部分编号,直 径(净孔径),曲率半径,表面 R/No.(曲率半径除以直径)以及凹面还是凸面。
zygo干涉仪gpi-p-d使用说明
ZYGO干涉仪使用说明目的制定本文件是为了详细说明如何使用ZYGO干涉仪测量平面、球面、柱面晶体元件的曲率半径、面形(平行度、平面度)、以及透过波前畸变,并提高检验过程的准确性和可重复性。
范围本文件涉及用ZYGO干涉仪检测平面、球面、柱面元件的一般方法。
记录在检验过程中将会生成以下记录:干涉图(保存文件名为*.Tif),在实时窗口上点击FILE-SAVE保存。
测试数据(保存文件名为*.Dat),测试完成后点击SAVE DATE保存。
相关文件与本文件相关的文件有:•待测零件图纸定义应用(application)应用是ZYGO干涉仪中一系列功能的组合,保存为后缀名为“*.app”的文件。
不同的应用用于不同项目的测量。
比较常用的是用于一般的平面和球面的测量,用于柱面面形的测量,用于平行角度的测试。
猫眼像(cateye)又称为标准镜的像。
标准镜的出射光在焦点处被返回时出现的干涉条纹,是透过干涉仪的光线与和它对称的标准面之间的干涉图形。
镜片像从标准镜出射的光在整个零件表面被原路反射回来与标准面的反射光发生干涉产生的干涉图形。
包含待测零件的表面或波前信息,是面形检测的主要信息来源。
升降台可以升降的平台,带有小倾角调节功能,一般用于放置平面元件。
Align/View 模式按下控制盒上的align/view切换的2个模式之一。
align模式可以看到一个黑色固定的十字线和反射回干涉仪的光点,一般用于零件对准,特点是视场较大。
View模式是按下控制盒上的align/view切换的2个模式之一,可以看到干涉条纹,特点是放大率较高,但是视场较小。
一般在align界面对准后在view界面观察条纹。
标准镜干涉仪上使用的参考表面,用于生成理想的平面、球面波,作为测量基准。
长度基准设定图像的长度基准,因为放大率不同或者屈光度不同,同样大小的干涉图所代表的零件大小可能有很大的差异。
设定长度基准的目的就是告诉干涉仪图形中的一段长度相当于镜片中长度的多少,方便控制测量区域和设定掩膜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ZYGO干涉仪使用说明目的制定本文件是为了详细说明如何使用ZYGO干涉仪测量平面、球面、柱面晶体元件的曲率半径、面形(平行度、平面度)、以及透过波前畸变,并提高检验过程的准确性和可重复性。
范围本文件涉及用ZYGO干涉仪检测平面、球面、柱面元件的一般方法。
记录在检验过程中将会生成以下记录:干涉图(保存文件名为*.Tif),在实时窗口上点击FILE-SAVE保存。
测试数据(保存文件名为*.Dat),测试完成后点击SAVE DATE保存。
相关文件与本文件相关的文件有:•待测零件图纸定义应用(application)应用是ZYGO干涉仪中一系列功能的组合,保存为后缀名为“*.app”的文件。
不同的应用用于不同项目的测量。
比较常用的是用于一般的平面和球面的测量,用于柱面面形的测量,用于平行角度的测试。
猫眼像(cateye)又称为标准镜的像。
标准镜的出射光在焦点处被返回时出现的干涉条纹,是透过干涉仪的光线与和它对称的标准面之间的干涉图形。
镜片像从标准镜出射的光在整个零件表面被原路反射回来与标准面的反射光发生干涉产生的干涉图形。
包含待测零件的表面或波前信息,是面形检测的主要信息来源。
升降台可以升降的平台,带有小倾角调节功能,一般用于放置平面元件。
Align/View 模式按下控制盒上的align/view切换的2个模式之一。
align模式可以看到一个黑色固定的十字线和反射回干涉仪的光点,一般用于零件对准,特点是视场较大。
View模式是按下控制盒上的align/view切换的2个模式之一,可以看到干涉条纹,特点是放大率较高,但是视场较小。
一般在align界面对准后在view界面观察条纹。
标准镜干涉仪上使用的参考表面,用于生成理想的平面、球面波,作为测量基准。
长度基准设定图像的长度基准,因为放大率不同或者屈光度不同,同样大小的干涉图所代表的零件大小可能有很大的差异。
设定长度基准的目的就是告诉干涉仪图形中的一段长度相当于镜片中长度的多少,方便控制测量区域和设定掩膜。
掩膜(mask)表明干涉图中有效区域的工具。
可以根据需要设定有效区域的形状、大小、位置,也可以从有效区域中挖去一部分不需要的。
职责主要包括以下几个方面:zygo干涉仪使用和维护部门为品管部。
品管部经理负责保证过程实施所需的培训及资源。
按照校准计划对设备定期检定。
指定的仪器使用者需保证使用过程按按照操作规程操作仪器(程序文件要求实施)。
定期对设备进行保养。
工具、计量器具、测量设备主要设备和工具包括:ZYGO干涉仪,导轨,三爪卡盘,六维调整架,平面标准镜TF,各种规格的球面标准镜TS,柱面标准镜CGH,标准平面反射镜,升降台认识ZYGO干涉仪ZYGO干涉仪由主机,测长装置导轨,电脑,控制盒四个主要部分组成。
其中主机又分为主机箱,移相头和标准镜支架三部分。
测长装置是多普勒双频激光测距仪,其中角锥(反射器)安装在导轨上的六维调整架上可以随着调整架上的镜片同步移动。
认识软件界面干涉仪软件MetroPro界面左边是各种功能按钮,有些的作用是实现某种操作,有些的点开是一个窗口,右边是各种图形、数据、信息窗口。
安全要求•测量过程中,注意对透镜的防护,尤其是表面和边角容易损坏的部位。
•标准镜使用时要插入到位,螺丝拧紧。
不用时要摆放到盒子中避免意外损坏。
操作流程使用干涉仪测量面形主要包括以下步骤:开机,选择、安装标准镜,找到待测零件表面干涉条纹,输入零件号等相关信息,设定长度基准,取掩膜,测量,结果保存和打印。
不同的零件在找干涉条纹和一些设定方面有所区别,但是基本步骤差不多。
开机依次开启ZYGO显示器电源,机箱控制面板上电源按钮:MASTER、MONITOR、AUX1、AUX2,以及干涉仪主机箱右侧下方POWER。
启动软件,运行程序打开干涉仪主机上的开关以及光栅尺显示屏背后的开关,打开电脑开关启动电脑。
进入Windows 后,双击电脑桌面上的(如图一)图标启动干涉测量分析软件,运行程序,进入ZYGO测试操作桌面。
启动完成后会自动进入,如果没有,关闭当前的窗口,待其缩小为按钮后,在应用选择窗口中点击,或者相应的程序。
图一平行度测试主要测试步骤如下:按监视器遥控器上的显示切换键(ALIGN/VIEW),使监视器处于排列状态。
扭动参考反射镜上方的调节旋钮,调整镜面方向,使得反射镜反射回的最亮光斑与十字分划线交点重合。
完成后,按遥控器上的显示切换键(ALIGN/VIEW),使监视器处于浏览状态。
双击ZYGO测试操作桌面中按钮进入平行测试操作界面。
调整好后将待测晶体放置到样品支架上,通过观察监视器调整晶体,使晶体垂直于测试光(监视器中晶体边缘清晰可见。
)点击操作界面左下角Measure Controls 对话框中的Refractive index, 录入待测晶体的折射率(选择时对应晶体的折射率,如图二),按回车键确定。
图二点击测试界面左上角的Calibrate按钮,在弹出的对话界面中点击Fringe 按钮,对话框中图像显示会进行更新,锁定并显示监视器中画面。
使用鼠标标记晶体通光面宽度,在弹出的对话框中,录入晶体通光面宽度,按回车键确定。
点击测试界面中左上角Mask Data按钮(如图三、四所示), 在弹出的有动态图像的对话框中,首先从下部选项中选择晶体外形标定(例如正方形则选择square)。
在动态图像中,使用鼠标准确标定待测晶体,要求标定范围不能超出晶体。
并在动态图像上方无晶体的空间内,选择与待测晶体规格相近的区域,此区域将作为参考区域。
图三然后,点击下部选项中的BG Inc使该按钮变为BG EXC,锁定选择区,点击Define,定义Acq。
之后点击Test,选择Unfill,去除最后标定的参考区域,图四点击Define,定义Test(晶体测试区域)。
再点击Ref,选择Fill,添加最后标定的参考区域,点击Pick,然后用鼠标点击待测晶体区域边框,选择Unfill,去除晶体待测区域,点击Define,定义Ref(参考区域)。
点击测试界面中左上角Measure按钮,系统进行自动测算。
当监视器中左下角出现Wedge sec(表示被测量器件两表面的夹角为秒)时,记录下此时即为晶体的平行度。
测试完毕后关闭平行度测试操作界面,点击左上角X符号,退回到ZYGO主测试操作桌面。
平面度测试调整监视器遥控器上的显示切换键(ALIGN/VIEW),使监视器处于排列状态。
移除标准参考反射镜面,将晶体放置到样品支架上,调整晶体方向,使其反射回的光斑与十字分划线交点重合。
完成后,按监视器遥控器上的显示切换键,使监视器处于浏览状态。
点击ZYGO 测试操作桌面中按钮进入平面度测试操作界面。
点击测试界面左上角的Calibrate按钮(如图五所示),在弹出的对话界面中点击Fringe 按钮,对话框中图像显示会进行更新,锁定并显示监视器中画面。
使用鼠标标记晶体通光面宽度,在弹出的对话框中,录入晶体通光面宽度,按回车键确定。
点击测试界面中左上角Mask Data按钮(如图五所示), 在弹出的有动态图像的对话框中,首先从下部选项中选择晶体外形标定(例如正方形则选择square)。
在动态图像中,使用鼠标准确标定待测晶体,要求标定范围不能超出晶体。
点击Define,定义待测区域。
点击测试界面中左上角Measure按钮,系统进行自动测算。
当监视器中左上角出现PV Wave(表示被测样品最高点与最低点之间的距离为λ)时(如图六所示),记录此时即为晶体的平面度值。
测试完毕后关闭测试操作界面,点击左上角X符号,退回到ZYGO主测试操作桌面。
图五图六波前畸变测试主要测试步骤如下:调整监视器遥控器上的显示切换键(ALIGN/VIEW),使监视器处于排列状态。
扭动参考反射镜上方的调节旋钮,调整镜面方向,使得反射镜反射回的最亮光斑与十字分划线交点重合。
完成后,按监视器遥控器上的显示切换键(ALIGN/VIEW),使监视器处于浏览状态。
点击ZYGO测试操作桌面中按钮进入波面测试操作界面。
将待测晶体放置到样品支架上,通过观察监视器调整晶体,使晶体垂直于测试光(监视器中晶体边缘清晰可见)。
点击测试界面左上角的Calibrate按钮,在弹出的对话界面中点击Fringe 按钮,对话框中图像显示会进行更新,锁定并显示监视器中画面。
使用鼠标标记晶体通光面宽度,在弹出的对话框中,录入晶体通光面宽度,按回车键确定。
点击测试界面中左上角Mask Data按钮, 在弹出的有动态图像的对话框中,首先从下部选项中选择晶体外形标定(例如正方形则选择square)。
在动态图像中,使用鼠标准确标定待测晶体,要求标定范围不能超出晶体。
点击Define,定义待测区域。
点击测试界面中左上角Measure按钮,系统进行自动测算。
当监视器中左上角出现PV Wave(表示被测样品最高点与最低点之间的距离为λ)时,记录此时即为晶体的波面数值(如图五所示)。
测试完毕后关闭波面测试操作界面,点击左上角X符号,退回到ZYGO 主测试操作桌面。
细节说明和结语安全要求测量过程中,注意对透镜的防护,尤其是表面和边角容易损坏的部位。
标准镜使用时要插入到位,螺丝拧紧。
不用时要摆放到盒子中避免意外损坏。
使用干涉仪测量面形主要包括以下步骤:开机,选择、安装标准镜,找到待测零件表面干涉条纹,输入零件号等相关信息,设定长度基准,取掩膜,测量,结果保存和打印。
不同的零件在找干涉条纹和一些设定方面有所区别,但是基本步骤差不多。
选择、安装标准镜选择:平面和柱面选择平面标准镜TF,球面选择球面标准镜。
球面标准镜在选择的时候要考虑镜片的曲率半径和口径,参照JENfizar的标准镜选择图例(附件A)。
安装:将标准镜的两个插销对准标准镜安装支架上的卡口插入,旋转,安装到位,旋转锁死螺钉固定好。
按下控制盒上align/view切换到align模式,将光点调到十字线的中心。
寻找干涉条纹平面:将待测面正对干涉仪主机放置到升降台上,如果是楔角较小的平片或者直角棱镜之类的可能需要把背面事先涂上凡士林来消除杂光影响。
按下控制盒上的align/view按钮切换到align模式,调整待测零件的俯仰和水平旋转在动态窗口中找到零件表面反射回来的光点,并将其调整到十字线中心。
再次按下align/view按钮切换到view模式,微调零件或者标准镜的俯仰和水平旋转,将条纹调到3根左右。
球面将镜片夹到六位调整架上,待测面正对干涉仪主机。
切换到view界面,沿导轨前后移动调整架至干涉仪的出射光聚焦到零件表面(可用一张小纸条贴于零件表面观察)。
此时干涉仪中出现的条纹称为猫眼像(cateye),也常称作标准镜的像。
调整六位调整架,使零件上下移动把条纹调到充满整个视场,微调标准镜的位置,使得条纹对称。