生物医学工程论文

合集下载

生物医学工程专业毕业论文选题推荐

生物医学工程专业毕业论文选题推荐

生物医学工程专业毕业论文选题推荐一、引言生物医学工程专业涵盖了医学、工程学和生物学等领域的知识,旨在研究和应用科技手段,改善医疗保健和医疗设备。

一个成功的毕业论文选题是非常重要的,它应该具有实际意义、创新性和可行性。

本文将为生物医学工程专业的毕业生推荐一些潜在的选题,并简要介绍每个选题的研究方法和应用前景。

二、智能医疗设备的开发与应用随着人工智能和传感技术的不断进步,智能医疗设备越来越受到关注。

这类设备可以监测患者的生理参数、提供个性化的医疗服务,并在疾病早期诊断和治疗中发挥重要作用。

本选题建议研究智能医疗设备的开发和应用,包括设计合适的传感器、数据处理算法和用户界面,以及验证其在临床实践中的有效性。

三、生物医学信号处理与分析生物医学信号处理和分析是生物医学工程领域的核心任务之一。

该选题可研究不同类型的生物医学信号,如心电图、脑电图和生物体运动信息的采集、预处理、特征提取和分类方法。

此外,还可以探索如何应用机器学习和神经网络等技术,提高信号处理和分析的准确性和效率。

四、生体材料与组织工程生体材料和组织工程是生物医学工程领域的重要研究方向。

该选题可研究新型生物材料的设计、制备和应用,如生物可降解聚合物、生物陶瓷和生物金属材料等。

此外,还可以探索生物工程和再生医学中的组织修复和再生技术,如干细胞治疗和三维打印器官等。

五、远程医疗与健康监护远程医疗和健康监护通过无线通信和互联网技术,使医生能够实时监测和诊断患者的健康状况。

该选题可研究远程医疗系统的设计和开发,包括传感器网络的布置、数据传输和隐私保护等。

此外,还可以探索远程医疗在特定疾病管理、健康监护和康复护理中的应用。

六、生物图像处理与医学影像分析生物图像处理和医学影像分析是生物医学工程领域的重要研究方向。

该选题可研究不同类型的生物图像的获取、预处理、分割和特征提取方法,并探索机器学习和深度学习技术在医学影像诊断中的应用。

此外,还可以研究医学影像数据的存储、传输和安全性等问题。

生物医学工程概论论文

生物医学工程概论论文

生物医学工程概论论文引言生物医学工程是将工程技术与医学相结合的跨学科领域,旨在开发和应用工程技术来改善医疗保健和生物领域的过程和系统。

随着科技的发展和人们对健康和医疗的需求不断增长,生物医学工程的重要性得到了广泛认可。

本文将对生物医学工程的发展背景和应用领域进行综述。

发展背景生物医学工程的发展可以追溯到20世纪60年代,当时医学和工程技术的融合开始取得突破性进展。

随着计算机技术的发展,医学图像处理和诊断技术得到了很大发展。

同时,生物材料的研究也为医学领域带来了新的突破,如人工关节和假肢的开发。

此外,生物医学工程还涉及到心脏起搏器、药物输送系统和医学仪器等方面的研究和应用。

应用领域生物医学工程在医学领域有广泛的应用。

其中一个重要的应用领域是医学成像,如X光、核磁共振和超声成像等技术,可以帮助医生进行疾病的诊断和监测。

此外,生物医学工程还在假肢、义肢和外骨骼等方面发挥着重要作用,帮助身体受损者恢复正常的行动能力。

另外,生物医学工程还在药物输送系统方面有广泛的应用,如缓释药物和纳米技术等。

此外,生物医学工程还在心脏起搏器、人工器官和生物传感器等方面做出了重要贡献。

挑战和前景尽管生物医学工程在医学领域做出了很大贡献,但是仍然面临一些挑战。

其中一个挑战是技术的不断发展和更新,医生和工程师需要不断学习和更新知识,以便掌握最新的技术和应用。

另一个挑战是技术的安全性和可靠性,生物医学工程的应用涉及到人体和健康,在技术开发和应用过程中必须保证安全和可靠性。

此外,生物医学工程还需要充分考虑伦理和法律的问题,确保技术的合理和道德使用。

尽管面临一些挑战,生物医学工程有着广阔的发展前景。

随着人口老龄化和慢性疾病的增加,人们对医疗和健康的需求不断增长,生物医学工程将在疾病的预防、诊断和治疗方面发挥越来越重要的作用。

同时,生物医学工程可以促进医学和工程技术的互相借鉴和融合,推动科技的进步和创新。

结论生物医学工程是跨学科的领域,通过将工程技术与医学相结合,致力于改善医疗保健和生物领域的过程和系统。

生物医学工程论文

生物医学工程论文

生物医学工程论文在过去几十年中,生物医学工程领域取得了巨大的进展和突破。

生物医学工程是将工程学原理和技术应用于医学领域,旨在改善医疗保健服务、诊断和治疗方法。

本文将从生物医学工程的基本概念、应用领域和未来发展等角度进行论述。

一、生物医学工程的基本概念生物医学工程是多学科交叉的领域,涉及生物学、医学、工程学和计算机科学等多个学科。

它的核心目标是研究和开发新的医疗设备、治疗方法以及改进现有技术,以提高医学诊断和治疗的效率和质量。

二、生物医学工程的应用领域1. 医学成像技术医学成像技术是生物医学工程领域的一个重要应用领域。

通过使用各种成像技术,如X光、磁共振成像(MRI)和超声波,可以非侵入性地观察人体内部的器官和组织,以进行疾病的诊断和治疗。

2. 生物材料与人工器官生物医学工程致力于开发和应用各种生物材料,用于修复和替代人体组织和器官。

例如,人工关节、心脏瓣膜和假肢等医疗器械,都是生物医学工程的成果。

3. 医疗信息技术医疗信息技术是生物医学工程的另一个重要领域。

通过使用电子医疗记录系统、医学图像处理和远程医疗技术等,可以提高医疗数据的管理和共享,提供更便捷和高效的医疗服务。

4. 生物传感器和检测技术生物传感器和检测技术是为了提高医学诊断和监测技术而发展起来的。

例如,著名的血糖仪就是一种生物传感器,可以实时监测糖尿病患者的血糖水平。

三、生物医学工程的未来发展1. 个性化医疗随着科技的进步,生物医学工程可以为每个患者提供更加个性化的医疗服务。

通过基因组学和生物信息学的发展,可以更好地理解个体的基因组和生理特征,从而为每个患者量身定制更有效的治疗方案。

2. 组织工程学组织工程学是生物医学工程领域的前沿研究方向之一。

通过使用生物材料和细胞,可以在实验室中培养和制造出人体的各种组织和器官,为组织损伤和器官衰竭提供替代方案。

3. 神经工程学神经工程学是生物医学工程领域的另一个热点研究方向。

它通过研究和开发可植入的神经界面和脑机接口技术,旨在帮助残疾人恢复或增强他们的感知和运动功能。

生物医学工程专业优秀毕业论文范本人工智能在医学影像诊断中的应用与发展

生物医学工程专业优秀毕业论文范本人工智能在医学影像诊断中的应用与发展

生物医学工程专业优秀毕业论文范本人工智能在医学影像诊断中的应用与发展Title: Application and Development of Artificial Intelligence in Medical Imaging Diagnosis in the Field of Biomedical EngineeringAbstract:With the rapid advancement of technology, artificial intelligence (AI) has made remarkable progress in various fields, especially in the healthcare industry. This article discusses the application and development of AI in medical imaging diagnosis, focusing on its significance in the field of biomedical engineering. It explores the benefits, challenges, and future prospects of utilizing AI techniques for medical image analysis.Introduction:The field of biomedical engineering aims to integrate engineering principles with medical sciences, improving healthcare practices. In recent years, AI has emerged as a powerful tool, revolutionizing medical imaging diagnosis. This article explores how AI technologies have significantly enhanced medical image analysis, contributing to accurate and efficient diagnoses.1. AI and Medical Imaging:1.1 Importance of Medical Imaging in Diagnosis:Medical imaging plays a crucial role in diagnosing various diseases and understanding human anatomy. Traditional methods of image analysisrequire manual interpretation, which is subjective and time-consuming. Here, AI comes into play by automating and enhancing the analysis process.1.2 AI Techniques in Medical Imaging:AI techniques, such as machine learning and deep learning, have proven to be effective in medical image analysis. Machine learning algorithms, like support vector machines (SVM) and random forests, enable accurate classification and detection of abnormalities. Deep learning, especially convolutional neural networks (CNN), has shown exceptional performancein tasks like image segmentation and disease diagnosis.2. Applications of AI in Medical Imaging:2.1 Computer-Aided Diagnosis:AI-based computer-aided diagnosis (CAD) systems assist radiologists in interpreting medical images. These systems quickly analyze images, detect anomalies, and provide diagnostic suggestions, improving the accuracy and efficiency of medical diagnosis.2.2 Image Segmentation and Reconstruction:AI algorithms can perform precise image segmentation, separating structures of interest from the background. This technique aids in the accurate localization and quantification of abnormalities. Additionally, AI technologies contribute to image reconstruction, enhancing image quality and reducing noise.3. Challenges in Implementing AI in Medical Imaging:3.1 Data Availability and Quality:The success of AI models relies heavily on the availability of accurate and diverse datasets for training. Obtaining labeled medical images for training purposes can be challenging, and ensuring data quality is crucial. Data privacy and security concerns must also be addressed.3.2 Interpretability and Trust:AI-driven diagnoses raise concerns regarding the interpretability and trustworthiness of the generated results. It is necessary to develop explainable AI models that provide insights into the decision-making process for the medical professionals.4. Future Prospects and Conclusion:The application of AI in medical imaging diagnosis has immense potential for further growth and development. It is expected that AI technologies will continue to enhance diagnostic accuracy, improve patient outcomes, and reduce human errors. However, addressing the challenges associated with data acquisition, interpretability, and trust is essential to ensure the successful integration of AI in clinical practice.In conclusion, the implementation of AI in medical imaging diagnosis within the field of biomedical engineering has revolutionized the healthcare industry. AI techniques, such as machine learning and deep learning, have proven to be effective in automating analysis, improving accuracy, and aiding in diagnosis. This article highlights the significance, applications, challenges, and future prospects of AI in medical imaging, emphasizing its potential to enhance healthcare practices.。

生物医学工程概论论文

生物医学工程概论论文

生物医学工程概论结课论文姓名:***学号:U*********院系:生命科学与技术学院专业班级:生物医学工程201101班2012年1月5日感·观生物医学工程摘要:进入大学半年,学习了关于生物医学工程的基础学科的知识,通过生物医学工程概论这门课程更多地了解了生物医学工程的专业发展方向,也更深入的了解了生物医学工程的专业思想。

也许之前有过些许犹豫,但是,既然选择了远方,便只顾风雨兼程。

唯有对专业本身及其发展方向有更深入的了解,才能真正的在生物医学工程领域有所发展。

关键字:生物医学工程医学影像生物材料与组织工程三维医学超声及其应用在现代医学与技术蓬勃发展的时期,生物医学工程这一新兴学科涌现。

生物医学工程是因医学进步的需要而兴起的一个学科,其内涵是运用现代自然科学和工程技术的原理和方法,从工程学的角度,在多层次上研究人体结构、功能及其相互关系,揭示生命现象,为防病、治病提供新的技术手段的一门综合性、高技术的学科。

这一学科的重点并非医学,而是工程,其最大的特点是高度综合性。

(一)生物医学工程的主要研究与发展方向生物医学工程作为一门新兴学科,在社会中普遍受到争议。

,想要得到大众的认可还需要一定时间。

其实,生物医学工程并非是一门偏且难的学科,它的研究发展方向有很多:1.生物力学2.生物材料与组织工程学3.生物系统建模与仿真4.生物医学信号监测与传感器5.生物医学信息处理6.医学图像处理7.物理因子在治疗中的应用及其生物学效应8.微系统—微米、纳米技术:传输药物的微型针9.激光生物医学在过去的五十年中,生物医学工程为医学的发展与进步做出了很大的贡献,它发展了一系列以疾病的诊断和治疗为目标的医学仪器和装备,从技术科学角度出发,追求技术的先进性。

(二)我选择的生物医学工程在生物医学工程的诸多领域里,诚然有不少的领域至今仍不为人所知,因而发展受到了阻碍。

但不可否认的是,生物医学工程与我们的现实生活是紧密联系的。

生物医学工程毕业论文

生物医学工程毕业论文

生物医学工程毕业论文标题: 基于生物医学工程的远程监测技术在医疗领域的应用引言:随着生物医学工程技术的快速发展,远程监测技术开始在医疗领域得到广泛应用。

远程监测技术允许医务人员通过无线连接跟踪和监测病人的生理数据。

本文将主要探讨远程监测技术在医疗领域的应用,包括远程心脏监测、远程血压监测和远程糖尿病管理等。

一、远程心脏监测心血管疾病是当今社会的主要健康问题之一。

远程心脏监测技术可以帮助医生及时监测和诊断心脏病患者的病情,降低医疗风险。

通过佩戴可穿戴的心脏监测设备,病人的心电图、心率和血氧饱和度等生理参数可以实时传输到医院,医生可以随时对病人的病情进行监测和诊断。

同时,远程心脏监测技术还可以提供心脏病患者的历史数据,医生可以根据这些数据做出更准确的诊断和治疗计划。

二、远程血压监测高血压是一种常见的健康问题,对人体健康造成严重影响。

传统的血压监测方法需要患者定期到医院测量血压,这不仅浪费时间和金钱,还不便于及时监测。

远程血压监测技术可以解决这个问题。

通过佩戴可穿戴的血压监测设备,患者的血压数据可以实时传输到医院,医生可以及时掌握患者的血压情况。

此外,远程血压监测技术还可以提供长期血压趋势和变化,帮助医生调整治疗方案。

三、远程糖尿病管理糖尿病是一种常见的代谢性疾病,需要患者长期监测血糖水平。

传统的血糖监测方法需要患者每天多次采血检测,这给患者带来很大的不便。

远程糖尿病管理技术通过佩戴可穿戴的血糖监测设备和通过无线连接将血糖数据传输到医院。

医生可以随时监测患者的血糖水平,并根据数据调整患者的饮食和药物治疗方案。

此外,远程糖尿病管理技术还可以提供患者的血糖历史数据,医生可以根据这些数据做出更合理的治疗决策。

结论:远程监测技术在医疗领域的应用具有重要的意义。

通过远程心脏监测、远程血压监测和远程糖尿病管理等技术,医生可以及时监测和诊断患者的病情,提高医疗质量和效率。

同时,远程监测技术还可以降低医疗成本和患者的负担,改善患者的生活质量。

生物医学工程的新进展前沿科研论文解读

生物医学工程的新进展前沿科研论文解读

生物医学工程的新进展前沿科研论文解读随着科技的飞速发展,生物医学工程作为一门交叉学科,取得了巨大的成就和进展。

本文将针对一篇前沿的科研论文进行解读,详细介绍生物医学工程领域的新进展。

论文标题:用纳米技术实现的药物传输系统的优点与挑战引言:生物医学工程的研究旨在将工程技术与生物医学应用相结合,以改善医学治疗效果和提高生活质量。

本文中,研究人员通过纳米技术实现药物传输系统,并探讨了该系统的优势和面临的挑战。

第一部分:纳米技术在生物医学工程中的应用1. 纳米粒子在药物传输中的作用纳米粒子具有较大的比表面积和特殊的生物活性,可用于包裹药物分子,并提高其生物利用率。

通过改变纳米粒子的尺寸、形状和表面特性,可以实现药物的靶向输送和控制释放。

2. 纳米材料在生物成像中的应用纳米材料具有良好的生物相容性和生物标记性,可用于生物成像,如磁共振成像(MRI)和荧光显微镜成像。

这些成像技术可以提供高分辨率和特异性,帮助医生准确诊断疾病,并监测治疗效果。

第二部分:纳米技术在药物传输系统中的优势1. 靶向性纳米技术可以制备具有特异性靶向的纳米颗粒,将药物准确输送至病变区域,减少对健康组织的损伤,提高药物治疗效果。

2. 控制释放纳米技术可以调控药物的释放速率和时间,实现长效治疗和避免药物浓度剧烈波动。

这种针对性的释放方式可以减少药物的副作用并提高患者的依从性。

第三部分:纳米技术在药物传输系统中面临的挑战1. 稳定性纳米粒子在体内易受到生物环境的影响,如酶的降解、晶体生长等。

因此,提高纳米粒子的稳定性是一个关键的挑战,旨在延长其在体内的寿命,增强药物传递效果。

2. 安全性纳米粒子对人体的安全性是一个重要的问题。

虽然一些纳米粒子被证明是生物相容的,但仍然需要进行更多的研究来评估其毒性和潜在的副作用,确保其在临床应用中的安全性。

结论:随着纳米技术的发展,生物医学工程的药物传输系统取得了显著的进展。

通过纳米材料的应用,药物可以更加精确地被输送至病变区域,提高治疗效果。

生物医学工程学科导论论文

生物医学工程学科导论论文

BME 学科导论论文——生物医学工程131班罗族关键字:生物医学工程研究领域现状发展趋势就业前景一、生物医学工程简介1.学科概况生物医学工程是一门新兴的边缘学科,它综合工程学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化,其目的是解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务。

2.学科特点(1)交叉性:它是各种学科知识的高水平交叉、新时代结合的产物;是生命科学(生物学与医学)现代化的迫切需求;是现代科学技术迅速发展的必然结果。

(2)依赖性:它尚未形成自己的独立基础理论与知识体系(与传统学科不同),融合各交叉学科知识为自己的基础;缺乏永恒的研究主题与固有的中心目标,随交叉学科的发展和应用对象的需求而变化。

(3)复杂性:它知识覆盖面非常广,几乎涉及所有自然科学与技术的基础理论与知识体系;相关的研究机构、专业教育、企业厂家和市场营销只能涉足其部分,而不能包揽全局。

(4)服务性:它以应用基础或直接应用性研究为中心,以最终在生物医学领域应用为目的;为生命科学的创新性发展提供现代化工具,为医疗卫生事业现代化发展提供新装备(支撑生物医学工程产业)。

二、研究领域生物医学工程学是工程学与生物学、医学结合的产物,任何工程学科与生物学和医学的结合均属于生物医学工程的范畴,因此生物医学工程的研究领域十分广泛,并在不断的发展,目前较成熟的领域有如下八个:1. 生物力学2. 生物材料3. 生物系统建模与仿真4. 物理因子在治疗中的应用及其生物效应5. 生物医学信号检测与传感器6. 生物医学信号处理7. 医学图像技术8. 人工器官三、生物医学工程的现状1、发达国家生物医学工程的现状在美国以及欧洲等经济发达国家,早在上世纪50年代就指出生物医学工程的重要性,基于其强大的经济、科技实力,经过近半个世纪的努力均取得了各自的成果。

如今,这些国家在生物医学工程方面处于世界前列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁性纳米材料在医学中的应用功能材料2012-1 黄卓2012441113指导老师:刘雪摘要磁性纳米生物材料是将纳米材料和生物材料交叉起来组成的一个全新的材料领域,这种材料在医学上有着相当诱人的并且广泛的应用前景。

本文将主要针对磁性纳米材料目前的研究以及其在生物医学中的应用做出比较全面的讲述,并展望了纳米生物材料在医学上的发展趋势。

关键词磁性纳米生物材料;医学;应用Several Nano-Biomaterials for Medical ApplicationFunctional Materials 2012-1 Huang Zhuo 2012441113Tutor:Liu XueAbstract: Biomaterial and nano-material comprise a bran-new field what named nano-biomaterial which has a comparatively attractive and comprehensive medical application prospect[1]. In this paper, the current researches and applications of magnetic nano-biomaterial will be reviewed all round. And the developmental tendency of nano-biomaterials about medicine is also forecasted[2].Key words: magnetic nano-biomaterial; medicine; application一、前言纳米材料由于具有以下一些特点:①小尺寸效应(结构单元或特征维度尺寸在纳米数量级,即1~100nm);②存在大量的界面或自由表面;③各个纳米单元之间存在一定的相互作用;④具有磁导向性能、低毒性、生物相溶性、可注射性等,因此越来越受到生物医学工作者的肯定和关注。

由于纳米材料结构的特殊性,使得纳米材料具有一些独特的效应,主要表现为表面或界面效应和小尺寸效应,因而在性能上与相同组成的微米材料有非常显著的差异,拥有许多优异的性能和全新的功能[3]。

当铁磁材料的粒子处于单筹尺寸时,矫顽力将呈现极大值,粒子进入超顺磁性状态。

这些特殊性能使各种磁性纳米粒子的制备方法及性质的研究越来越受到重视。

开始,以纯铁纳米粒子为研究对象,制备工艺几乎都是采用化学沉积法。

后来,出现了许多新的制备方法,如湿化学法和物理方法,或两种及两种以上相结合的方法制备具有特殊性能的磁性纳米材料。

磁性纳米材料具有许多不同于常规材料的独特效应,如量子尺寸效应、表面效应、小尺寸效应以及宏观量子隧道效应等,这些效应使磁性纳米粒子具有不同于常规材料的声、光、电、磁、热、敏感特性[4]。

当磁性纳米粒子的粒径小于其超顺磁性临界尺寸时,粒子进入超顺磁性状态,无矫顽力和剩磁。

众所周知,对于块状磁性材料,其体内往往形成多筹结构以降低体系的退磁场能。

纳米粒子尺寸处于单筹临界尺寸时具有高的矫顽力。

小尺寸效应和表面效应导致磁性纳米粒子具有较低的居里温度。

另外,磁性纳米粒子的饱和磁化强度比常规材料低,并且其饱和磁化强度随粒径的减小而减小。

当粒子尺寸降低到纳米量级时,磁性材料甚至会发生磁性相变。

磁性纳米材料也具有良好的磁导向性、较好的生物相容性、生物降解性和活性能基团等特点,它可结合各种功能分子,如酶、抗体、细胞、DNA或RNA等,因而在靶向药物、控制释放、酶的固定化、免疫测定、DNA和细胞的分离与分类领域有广泛的应用。

近十几年来,科学工作者对磁性纳米粒子进行各种化学的、物理的、生物的表面修饰,制备出各种各样的不同用途的具生物活性功能基团的纳米磁粒,极大地拓宽了纳米磁粒在医学上的应用范围。

本文拟就近几年来纳米磁粒在医学研究领域的主要进展概述如下[5]。

二、磁性纳米粒子在医学中的应用(1)肿瘤的热疗肿瘤热疗是肿瘤治疗技术中的一个非常重要的方法。

磁粒用于肿瘤热疗(磁致热疗)治疗癌症是因为磁粒在磁场的引导下,可靶向病变部位,同时在交变磁场的作用下,磁滞后效应而产生热量将富有磁粒的肿瘤部位加热到43~48℃之间,选择性杀死癌细胞同时又不伤害正常细胞。

该方面有所进展的例子是A.Jordan博士领导的研究团队发现用糖衣包裹氧化铁粒子伪装后,可以成功逃过人体免疫细胞的攻击而安然进入肿瘤组织内,加上交换磁场,在维持治疗部位45~47℃的温度下,氧化铁粒子便可杀死肿瘤细胞,临近的健康组织却不受到明显影响。

有人结合细胞免疫技术采用磁性阳离子脂质体对小鼠的瘤灶进行热疗,能使小鼠75%的瘤块消退,把磁流体热疗与放疗结合起来对移植性前列腺的哥本哈根老鼠模型进行实验,发现在第一个疗程,热疗温度可达到42~58℃,两个疗程后与对照组比较,抑制肿瘤增生87%~89%。

颜士岩等采用Fe2O3纳米磁流体对小鼠热疗,实验显示纳米磁流体热疗对肝癌的体积和质量有明显的抑制作用[6]。

(2)肿瘤的栓塞治疗血管栓塞术已广泛应用于临床肿瘤的治疗,尤其用于晚期肝、肾恶性肿瘤的治疗。

磁性微纳米球栓塞技术是采用微纳米磁性颗粒做栓塞剂,在磁场的引导下有利于靶向进入病灶部位并滞留于末梢血管床而不再通过其它通路进入静脉循环引起栓塞失败或异位栓塞。

磁性微纳米球栓塞还可结合化疗、热疗、放疗等方法一起施行,提高其治疗效果。

目前采用有机硅管模拟血管,探讨了体外肿瘤栓塞治疗中的磁流体浓度、流速、磁场参数等。

结果显示当磁流体流速小于0.12m/min时可阻塞小动脉血管。

把栓塞和热疗结合起来,在荷瘤家兔的肝动脉灌注氧化铁碘化油混悬液,在磁场下阻塞血管,并交变电流,测定瘤组织的温度变化和组织内的铁含量。

发现升温速率为0.5℃~1.0℃/min升稳速率与铁含量成正相关,顾亚律等探讨四氧化三铁微粒与碘化油混悬液对兔肾动脉的栓塞作用和导向作用机制,发现四氧化三铁微粒与碘化油混悬液对兔肾动脉栓塞效果好,无明显毒副反应;栓塞过程中Fe3O4微粒栓塞肿瘤临床作用与疗效,结果显示Fe3O4微粒具有缓慢性栓塞,可避免和减少栓塞后对正常组织的损伤,能降低栓塞后并发症[7]。

通过栓后外科手术切除病理证实:未见肿瘤侧枝形成.肿瘤坏死彻底。

(3)肿瘤的基因治疗近年来,肿瘤基因治疗因其具有特异性、安全性、有效性的特点而受到越来越多的关注,而且许多临床研究取得了满意的效果。

建立有效靶向细胞转移目的基因的载体系统是基因治疗研究必不可少的一个重要方面。

目前临床试验中所用的载体一般有两类:病毒载体和非病毒载体。

非病毒载体较病毒载体更为安全而成为较佳的选择。

肿瘤基因治疗中用到的非病毒载体主要分为:脂质体、脂质复合物、阳离子多聚物、磁性纳米粒子等。

把经便面修饰的磁性纳米粒与日本血凝病毒壳蛋白结合,可提高其转入细胞的转染效率。

向娟娟等探讨了氧化铁纳米颗粒作为体外基因载体的可行性及其外加磁场对于其转染效率的影响。

氧化铁纳米颗粒可将外源基因转染至多个细胞系并高效表达。

不同细胞系的转染效率和时间各不相同。

外加磁场可使转染效率提高5~10倍[8]。

(4)磁性纳米颗粒对蛋白酶的吸附及固定化生物高分子例如酶等都具有很多官能团,可以通过物理吸附、交联、共价偶合等方式将他们固定在磁性颗粒的表面。

用磁性纳米颗粒固定化酶的有点是:易于将酶与底物和产物分离;可提高酶的生物相容性和免疫活性;能提高酶的稳定性,且操作简单、成本较低。

制备吸附蛋白酶的磁性高分子颗粒的过程可以概括为:制备磁流体,在对磁流体中的磁性纳米颗粒用大分子包覆或联结,所形成的磁性高分子载体可用作亲和吸附的磁性亲和载体。

作为酶的固定化载体,磁性高分子颗粒有利于固定化酶从反应体系中分离和回收,还可以利用外部磁场控制磁性材料固定化酶的运动和方向,从而代替传统的机械搅拌方式,提高固定化酶的催化效率。

磁性高分子颗粒作为美的固定化载体还具有以下优点:固定化酶可重复使用,降低成本;可提高酶的稳定性,改善酶的生物相容性、免疫活性、亲疏水性;分离及回收,操作简单,适合大规模连续化操作[9]。

三、磁性纳米材料在医学应用上存在的问题及展望目前的磁性纳米材料在生物医学领域的应用研究才刚刚起步,但随着磁性纳米材料的产业化和商业化的推进,如何大批量的生产质量可靠稳定的磁性纳米材料,如何在生产过程中简化生产步骤,降低成本,以期望大规模临床应用[10]。

磁性纳米材料在生物医学方面已表现出独特的优势,具有潜在的应用前景。

随着高分子材料学、电磁学、医学、生物工程学的进一步发展,必将加速推动对磁性纳米材料的基础研究和在生物医学应用研究工作,使之进入一个新的发展阶段。

参考文献:[1] TakeshiKbayashi,etal.JBiosciBioeng,2005,100(1):112~115.[2] MarxJ,Science,2000,288(5470):137.[3]孟祥兵,王秀芳.生命的化学,2001,21(2):111~113.[4]汤富酬,薛友纺.遗传,2001,23(2):167~172.[5]段发平,梁承邺.生物学通报,2002,37(3):15~16.[6]孙建国,陈正堂。

生物化学与生物物理进展,2002,29(5):678~681.[7]陈忠斌,于乐成,王升启。

中国生物化学与分子生物学研究学报,2002,18(5):525~528.[8]雷迎峰.国外医学分子生物学分册[M],2002,24(4):124~126.[9]向娟娟,聂新民。

中华肿瘤杂志,2004,26(2):71~74.。

相关文档
最新文档