气象学与气候学复习资料
气象学与气候学考试重点
09地信气象与气候学学复习资料仅供参考一名词解释1.气象学 P1人类在长期的生产实践中不断地对它们进行观测、分析、总结,从感性认识提高到理性认识,再在生产实践中加以验证、修订、逐步提高,这就产生了专门研究大气现象和过程,探讨其演变规律和变化,并直接或间接用之于指导生产实践为人类服务的科学;2.气候系统 P1是一个包括大气圈、水圈、陆地表面、冰雪圈和生物圈在内的,能够决定气候形成、气候分布和气候变化的统一的物理系统;3.气候系统 P7气候系统是一个包括大气圈、水圈、陆地表面、冰雪圈和生物圈在内的,能够决定气候形成、气候分布和气候变化的统一的物理系统; 4.太阳常数 P25就日地平均距离来说,在大气上界,垂直于太阳光线的1cm2 面积内,1min 内获得的太阳辐射能量,用I0 表示;5.大气窗口 P32气在整个长波段,除8—12μm 一段外,其余的透射率近于零,即吸收率为1;8—12μm 处吸收率最小,透明度最大;6.大气的保温效应 P33大气辐射指向地面的部分称为大气逆辐射;大气逆辐射使地面因放射辐射而损耗的能量得到一定的补偿,由此可看出大气对地面有一种保暖作用;7. 地面有效辐射 P33地面放射的辐射Eg与地面吸收的大气逆辐射δEa之差;8.地面的辐射差额 P33地面由于吸收太阳总辐射和大气逆辐射而获得能量,同时又以其本身的温度不断向外放出辐射而失去能量;某段时间内单位面积地表面所吸收的总辐射和其有效辐射之差值;9. 气块绝热上升单位距离时的温度降低值,称绝热垂直减温率简称绝热直减率;对于干空气和未饱和的湿空气来说,则称干绝热直减率,以γd表示,即γ ;其中表示某一气块; P3910.冰晶效应 P63在云中,冰晶和过冷却水共存的情况是很普遍的,如果当时的实际水汽压介于两者饱和水汽压之间,就会产生冰水之间的水汽转移现象;水滴会因不断蒸发而缩小,冰晶会因不断凝华而增大;11. 凝结增长 P63云雾中的水滴有大有小,大水滴曲率小,小水滴曲率大;如果实际水汽压介于大小水滴的饱和水汽压之间,也会产生水汽的蒸发现象;小水滴因蒸发而逐渐变小,大水滴因凝结而不断增大;12深厚系统浅薄系统 P92暖性高压和冷性低压系统不仅存在于对流层低层,还可伸展到对流层高层,而且其气压强度随高度增加逐渐增强,称深厚系统;而暖性低压和冷性高压系统主要存在于对流层低空,称浅薄系统;13地转风 P97是气压梯度力和地转偏向力相平衡时,空气作等速、直线的水平运动;地转风方向与水平气压梯度力的方向垂直,即平行于等压线;14梯度风 P99当空气质点作曲线运动时,除受气压梯度力和地转偏向力作用外,还受惯性离心力的作用,当这三个力达到平衡时的风;15热成风 101由于水平温度梯度的存在而产生的地转风在铅直方向上的速度矢量差;16平均环流圈 P111是指在南北向沿经圈的垂直剖面上,由风速的平均北、南分量和垂直分量构成的平均环流圈;17天气 P118是一定区域短时段内的大气状态如冷暖、风雨、干湿、阴晴等及其变化的总称;18天气系统 P118通常是指引起天气变化和分布的高压、低压和高压脊、低压槽等具有典型特征的大气运动系统;19寒潮 P137长江中下游及其以北地区48h 内降温10℃以上,长江中下游最低气温≤4℃春秋季改为江淮地区最低气温≤4℃,陆上3 个大行政区有5 级以上大风,渤海、黄海、东海先后有7 级以上大风,给流经地区造成剧烈降温、霜冻、大风等等灾害性天气,这种大范围的强烈冷空气活动,称为寒潮;20厄尔尼诺 P170在南美西海岸秘鲁和厄瓜多尔附近延伸至赤道东太平洋向西至日界线180°附近的海面温度异常增暖现象;21焚风 P187沿着背风山坡向下吹的热干风叫焚风;二填空题22气温的非绝热变化方式:传导、辐射、对流、湍流、蒸发升华和凝结凝华 P3623逆温有那些:辐射逆温、湍流逆温、平流逆温、下沉逆温、锋面逆温 P5724影响饱和水水汽压的因素:饱和水气压和蒸发面的温度、性质水面、冰面、溶液面等、形状平面、凹面、凸面; P6125影响蒸发的因素:1.水源 2.热源 3.饱和差 4.风俗与湍流扩散P6426云的分类 P70云型低<2000m 中 2000-6000m 高>6000m层状云雨层云 Ns 高层云 As 卷层云Cs 卷云 Ci高积云 Ac 卷积云 Cc波状云层积云 Sc层云 St积状云淡积云 Cuhum浓积云 CuCong积雨云 Cb27人工影响冷云降水:1.在云中投入冷冻剂,如干冰 2.引入人工冰核凝结核或冻结核如碘化银 P7828气压场的基本形式:1.低气压 2.低压槽 3.高气压 4.高压脊 5.鞍形气压场 P9029七个气压带和六个风带: P10830气旋和反气旋分哪几种:气旋按发生地区分温带气旋和热带气旋,反气旋分极地反气旋、温带反气旋和副热带反气旋 P13331影响气候形成和变化的因子::①太阳辐射②宇宙地球物理因子,③环流因子包括大气环流和洋流,④下垫面因子包括海陆分布、地形与地面特性、冰雪覆盖,⑤人类活动的影响; P152三简答题32、对流层对流层是地球大气中最低的一层,云,雾,雨雪等主要大气现象都出现在此层;对流层有三个主要特征:1气温随高度增加而降低;由于对流层主要是从地面得到热量,此气温随高度增加而降低;2 垂直对流运动: 由于地表面的不均匀加热,产生垂直对流运动;对流运动的强度主要随纬度和季节的变化而不同;一般情况是:低纬较强,高纬较弱;夏季较强,冬季较弱;3气象要素水平分布不均匀:由于对流层受地表的影响最大,而地表有海陆分异、地形起伏等差异,因此在对流层中,温度、湿度等的水平分布是不均匀;33、气温的日变化近地层气温日变化的特征是:在一日内有一个最高值,一般出现在午后14 时左右,一个最低值,一般出现在日出前后;一天中正午太阳辐射最强,但最高气温却出现在午后两点钟左右;这是因为大气的热量主要来源于地面;地面一方面吸收太阳的短波辐射而得热,一方面又向大气输送热量而失热;这就是说地温的高低并不直接决定于地面当时吸收太阳辐射的多少,而决定于地面储存热量的多少;;正午以后,地面太阳辐射强度虽然开始减弱,但得到的热量比失去的热量还是多些,地面储存的热量仍在增加,所以地温继续升高,由于地面的热量传递给空气需要一定的时间,所以最高气温出现在午后14 时左右;盆地和谷地由于坡度及空气很少流动之故,白天增热与夜间冷却都较大,日较差大;而小山峰等凸出地形区,地表面对气温影响不大,日较差小;34.、气温的水平分布特征首先,赤道地区气温高,向两极逐渐降低,这是一个基本特征;其次,冬季北半球的等温线在大陆上大致凸向赤道,在海洋上大致凸向极地,而夏季相反;这是因为在同一纬度上,冬季大陆温度比海洋温度低,夏季大陆温度比海洋温度高的缘故;再次,最高温度带并不位于赤道上,而是冬季在5°—10°N 处,夏季移到20°N 左右;最后,南半球不论冬夏,最低温度都出现在南极;35、空气中水汽达到饱和或过饱和的途径一是通过暖水面蒸发,增加空气中的水汽,使水汽压大于饱和水汽压;二是通过冷却作用,减少饱和水汽压,使其少于当时的实际水汽压; 大气的冷却方式有:绝热冷却、辐射冷却、平流冷却、混合冷却; 36、各类云降水的特点层状云的降水:由于层状云云体比较均匀,云中气流也比较稳定,所以层状云的降水是连续性的,持续时间长,降水强度变化小;积状云的降水:积状云一般包括淡积云、浓积云和积雨云;1淡积云由于云薄,云中含水量少,而且水滴又小,所以一般不降水;2浓积云是否降水则随地区而异;在中高纬度地区,浓积云很少降水;在低纬度地区,因为有丰富的水汽和强烈的对流,故可降较大的阵雨; 3积雨云是冰水共存的混合云,能降大的阵雨、阵雪,有时还可下冰雹; 4积状云的降水是阵性的;波状云的降水:波状云由于含水量较小,厚度不均匀,所以降水强度较小,往往时降时停,具有间歇性;37、气压变化的原因:某地气压的变化,实质上是该地上空空气柱重量增加或减少的反映,因而一地的气压变化就决定于其上空气柱中质量的变化;空气柱质量的变化主要是由热力和动力因子引起;热力因子是指温度的升高或降低引起的体积膨胀或收缩、密度的增大或减小以及伴随的气候辐合或辐散所造成的质量增多或减少;动力因子是指大气运动所引起的气柱质量的变化,根据空气运动的状况可归纳为下列三种情况;水平气流的辐合与辐散、不同密度气团的移动、空气垂直运动;38、摩擦层中风随高度的变化:在摩擦层中风随高度的变化,既受摩擦力随高度变化的影响,又受气压梯度力随高度变化的影响;假若各高度上的气压梯度力都相同,由于摩擦力随高度不断减小,其风速将随高度增高逐渐增大,风向随高度增高不断向右偏转北半球,到摩擦层顶部风速接近于地转风,风向与等压线相平行;39、锋面气旋的结构和降水特征从平面看,锋面气旋是一个逆时针方向旋转的涡旋,中心气压最低自中心向前方伸展一个暖锋,向后方伸出一条冷锋,冷、暖锋锋之间是暖空气,冷、暖锋以北是冷空气;锋面上的暖空气呈螺旋式上升,锋面下冷空气呈扇形扩展下沉;从垂直方面看,气旋的高层是高空槽前气流辐散区,低层是气流辐合区;气旋前方是宽阔的暖锋云系及相伴随的连续性降水天气;气旋后方是比较狭窄的冷锋云系和降水天气,气旋中部是暖气团天气,如果暖气团中水汽充足而又不稳定,可出现层云、层积云,并下毛毛雨,有时还出现雾,如果气团干燥,只能生成一些薄云而没有降水;40、热带辐合带的两种类型热带辐合带按其气流辐合的特性分为:一是在北半球夏季,由东北信风与赤道西风相遇形成的气流辐合带;该辐合带活动与季风区,称季风辐合带;另一种是南北半球信风直接交汇形成的辐合带,称信风辐合带;四论述题一、论述西太平洋副高的活动规律和西太平洋副高对我国的影响P140答:1、西太平洋副高的季节性活动具有明显的规律性;冬季位置最南,夏季最北,从冬到夏向北偏西移动,强度增大;自夏至冬则向南偏东移动,强度减弱;西太平洋副高对我国夏季天气影响最大的一个天气系统;副高的季节性南北移动并不是匀速进行的,而表现出稳定少动、缓慢移动和跳跃三种形式,而且在北进过程中有暂时南退,在南退过程中有短暂北进的南北振荡现象;同时,北进过程持续的时间较久、移动速度较缓,而南退过程经历时间较短、移动速度较快;2、西太平洋副高是对我国夏季天气影响最大的一个天气系统;在它控制下将产生干旱、炎热、无风天气;西太平洋副高是向我国输送水汽的重要天气系统;平均而言,每年2—5 月,主要雨带位于华南;6 月份雨带位于长江中下游和淮河流域,使江淮一带进入梅雨期;7 月中旬雨带移到黄河流域,而江淮流域处于高压控制下,进入伏旱期,天气酷热、少雨,如果副高强大;控制时间长久,将造成严重干旱;副高南侧为东风带,常有东风波、热带风暴甚至台风活动,产生大量降水,因此7 月中旬后,华南又出现一次雨期;从7 月下旬到8 月初,主要雨带移至华北、东北地带;从9 月上旬起副高脊线开始南撤,降水带也随之南移;二、海洋性气候与大陆性气候的对比 P1831、气温指标1气温年较差:愈向内陆年较差愈大,2年温相时:因受海洋影响,降温、增温皆慢;3春温与秋温差值:气候学上通常以4 月和10 月气温分别代表春温和秋温;海洋性气候气温变化和缓,春来迟,夏去亦迟,春温低于秋温;大陆性气候气温变化急剧,春来速,夏去亦速,春温高于秋温4气温日较差:气温日较差一般在夏季比冬季大;2、水分标志海洋性气候年降水量比同纬度大陆性气候多,其一年中降水的分配比较均匀,而以冬季为较多;气旋雨的频率为最大,降水的变率小;大陆性气候以对流雨居多,降水集中于夏季,降水变率大;此外,海洋性气候的绝对湿度和相对湿度一般都比大陆性气候大;相对湿度的年较差海洋性气候小于大陆性气候;三、地形对气候的影响 P1851高大地形对气温的影响以青藏高原为例,机械阻挡:阻挡南下寒流和北上寒流;导致西风分流,同纬度西北角的温度大于东北角;南部温度大于其他地区温度;热力作用:冬季是冷源,夏季是热源;2中小形地形对气温的影响首先,由于坡地方位不同,日照和辐射条件各异,导致土温和气温有明显的差异;南坡大于北坡北半球;其次,地形凹凸和形状的不同,对气温也有明显的影响;凸地的气温日较差、年较差皆较小;此外,在同样的地形条件下,由于海拔高度不同,山地气温有很大的差异,一般情况都是随着地方海拔高度的加大,气温下降;五图形题一、 P1641.湾流;2.北大西洋漂流;3.东格陵兰洋流;4.西格陵兰洋流;5.拉布拉多洋流;6.加那利洋流;7.北赤道洋流;8.加勒比洋流;9.安的列斯洋流;10.南赤道洋流;11.巴西洋流;12.福克兰洋流;13.西风漂流;14.本格拉洋流;15.几内亚洋流;16.西南和东北季风漂流;17.南赤道洋流;18.赤道逆流;19.莫桑比克洋流;20.厄加勒斯洋流;21.西澳大利亚洋流;22.黑潮洋流;23.北太平洋漂流;24.加利福尼亚洋流;25.北赤道洋流;26.赤道逆流;27.阿拉斯加洋流;28.堪察加洋流;29.南赤道洋流;30.东澳大利亚洋流;31.秘鲁洋流;32.赤道逆流二、P208 图7.5分布、气候特征、形成因素副热带季风气候副热带季风气候位于副热带亚欧大陆东岸,约以30°N 为中心,向南北各伸展5°左右;它是热带海洋气团与极地大陆气团交绥角逐的地带,夏秋间又受热带气旋活动的影响;典型台站:上海;一年中冬季风来自大陆,夏季风来自海洋;夏热冬温,最热月平均气温在22℃以上,最冷月在0℃—15℃左右,年较差约在15℃—25℃左右;可以出现短时间霜冻,无霜期在240天以上;四季分明,降水量在750—1000mm 以上,夏雨较集中,无明显干季;副热带湿润气候位于南北美洲、非洲和澳大利亚大陆副热带东岸;由于所处大陆面积小,未形成季风气候;典型台站:查尔斯顿;这里冬夏温差比季风区小,一年中降水分配比季风区均匀;副热带夏干气候地中海气候该带位于副热带大陆西岸,纬度30°—40°之间的地带,包括地中海沿岸、美国加利福尼亚州沿岸、南非和澳大利亚南端;这里受副热带高压季节移动的影响,在夏季正位于副高中心范围之内或在其东缘,气流是下沉的,因此干燥少雨,日照强烈;冬季副高移向较低纬度,这里受极锋影响,锋面气旋活动频繁,带来大量降水;全年降水量在300—1000mm 左右;冬季气温比较暖和,最冷月平均气温在4—10℃左右;因夏温不同,分为两个亚型;凉夏型:贴近冷洋流沿岸,夏季凉爽多雾,少雨;最热月平均气温在22℃以下,最冷月平均气温在10℃以上;如蒙特雷,气温年较差小,仅6.7℃;暖夏型:离海岸较远,夏季干热,最热月平均气温在22℃以上,冬季温和湿润,年较差稍大;如那不勒斯年较差为16℃祝所有地信同学考试成功;。
《气象与气候学》复习资料
第一章引论1、天气:指某一地区瞬时或短时期气候要素和天气现象的综合,是大气的短暂期过程。
2、气候:在太阳辐射,下垫面性质,大气环境和人类活动的互相作用下,长期天气综合。
3、天气系统:是一个包括大气圈,水圈,陆地表面,冰雪圈和生物圈在内的,能够决定气候形成,气候分布和气候变化的统一的物理系统。
4、下垫面:水圈,陆地表面,冰雪圈和生物圈可视为大气圈的下垫面。
5、饱和水汽:饱和水汽压动态平衡时的水汽称为饱和水汽,当时的水汽压称为饱和水汽压。
6、大气的结构:①对流层:特征:a)气温随高度增加而降低:高度每增加100m,气温下降0.65℃,称为气温直减率,也叫气温垂直梯度。
b)垂直对流运动:低纬较强,高纬较弱;夏季较强,冬季较弱。
对流层的厚度是从赤道向两极递减。
c)气象要素分布不均匀:由于对流层受地表影响最大,而地表面有海陆分异、地形起伏等差异,因此在对流层中,温度湿度等水平分布是不均匀的。
②平流层:随着高度的增高,气温最初保持不变,或微有上升。
③中间层:气温随高度增加而加速下降,并有相当强烈的垂直运动。
④热层:又称热成层或暖层:气温随高度的增加而迅速增高。
⑤散逸层:800km高度以上,气温随高度增加很少变化。
7、对流层的分层:①对流层的最下层称为行星边界层或摩擦层。
边界层的范围夏季高于冬季,白昼高于夜晚,大风和扰动强烈的天气高于平稳天气。
在这层里大气受地面摩擦和热力的影响最大,湍流交换作用强,水汽和微尘含量较多,各种气象要素都有明显的变化。
②行星边界层以上的大气层称为自由大气。
在自由大气中,地球表面的摩擦力可以忽略不计。
③在对流层的最上层,介于对流层和平流层之间,还有一个厚度为数百米到1-2km的过渡层,称为对流层顶。
这一层的主要特征是:气温随温度高度的增加突然降低缓慢,或者几乎不变,成为上下等温。
8、气象要素:①气温:表示大气冷热程度的物理量。
②气压:大气的压强。
③湿度:表示大气中水汽量多少的物理量称为大气湿度。
气象学与气候学复习资料
第六章气候的形成1、气候形成、变化因子:①、太阳辐射;②、宇宙地球物理因子;③、环流因子;④、下垫面因子;⑤、人类活动影响。
2、天文辐射:太阳辐射在大气上界的时空分布由太阳与地球间的天文位置决定,又称天文辐射。
除太阳本身变化外,天文辐射能量主要决定于日地距离、太阳高度、白昼长度。
3、气候形成的环流因子:包括大气环流、洋流。
海洋与大气间通过一定的物理过程发生相互作用。
组成复杂的耦合系统。
海洋对大气主要作用给大气热量、水汽,为其提供能源。
大气通过向下动量输送,产生风生洋流、海水上下翻涌。
海洋是CO2巨大储存库,通过调节大气中的CO2含量影响气温、环流。
海洋从大气圈下层向大气输送热量、水汽,大气运动产生的风应力向海洋上层输送动量,使海水发生流动,形成风生洋流,也称风海流。
热带、副热带海洋,北半球洋流围绕副高顺时针流动,南半球反时针流动。
海洋提供给大气潜热、显热,大气运动的能源,使大气环流得以形成、维持。
环流与热量输送:大气环流、洋流对气候系统中热量分配起重要作用,将低纬热量传输到高纬,调节赤道与两极间温度差异;大气环流方向有由海向陆与由陆向海差异、洋流冷暖不同,使同纬度带大陆东西岸气温产生明显差别,破坏天文气候地带性分布。
环流与水分循环:水分循环通过蒸发、大气中水分输送、降水、径流实现。
环流变异与气候:厄尔尼诺现象:表示在南美西海岸延伸至赤道东太平洋向西至日界线附近海面温度异常增暖现象。
南方波动:南太平洋副高与印度洋赤道低压间气压变化的负相关关系。
沃克环流、哈德莱环流。
厄尔尼诺年印尼、澳大利亚、印度次大陆、巴西东北部均出现干旱,赤道中太平洋到南美西岸多雨。
(日本、我国东北夏季持续低温,我国大部降水有偏少趋势。
)4、海陆风:白天风从海洋吹向陆地;夜晚从陆地吹向海洋,这种风称海陆风。
5、季风:大范围地区盛行风随季节有显著改变的现象。
海陆热力差异、及差异的季节变化,行星风带季节移动、广大高原热力、动力作用。
气象学与气候学复习
⽓象学与⽓候学复习题型:⼀、名词解释(每⼩题3分,共15分)⼆、填空题(每空1分,共25分)三、单项选择题(每⼩题1分,共15分)四、解答题(每⼩题6分,共30分)五、论述题(共15分)第⼀章绪论⼀、天⽓的概念:是指某⼀地区在某⼀瞬间或某⼀短时间内⼤⽓状态(如⽓温、湿度、压强等)和⼤⽓现象的综合。
⼆、⽓候的概念及其内涵:1、⽓候系统的概念是指太阳辐射、⼤⽓环流、下垫⾯性质和⼈类活动在长时间相互作⽤下,某⼀段时间内⼤量天⽓过程的综合,它不仅包括该地多年来经常发⽣的天⽓状况,⽽且包括某些年份偶然发⽣的极端的天⽓状况。
2内涵:A、⽓候的物质基础是⽓候系统,⽽不仅仅是⼤⽓,它和天⽓系统是有区别的。
B、⽓候是⼀个历史概念,它和特定的时间阶段相联系,⽽不存在绝对的⽓候概念。
C、某⼀时段的⽓候状态是指,这⼀时段的⽓候系统各属性的平均系统特征,不像天⽓之某⼀段时间内的⼤⽓中⽓象要素和天⽓现象的综合。
第⼆章⽓候系统和⼤⽓的物理性状1、⼤⽓层各层的特征(1)对流层:A、⽓温随温度的增加⽽降低B、垂直对流运动显著C、⽓象要素⽔平分布不均匀(2)平流层:A、⽓温随⾼度的增加⽽增加B、⽓流⽐较稳定,空⽓的垂直混合作⽤显著减弱(3)中间层:A、⽓温随⾼度的增加⽽迅速下降B、有相当强列的垂直运动,含⽔极少。
(4)热层:A、⽓温随⾼度的增加⽽迅速增⾼B、该处的空⽓处于⾼度电离状态(5)散逸层:A是⼤⽓的最⾼层,⽓温随⾼度的增加很少变化B、⼤⽓粒⼦经常散逸⾄星际空间,是⼤⽓圈与星际空间的过渡地带2、理解相对湿度、绝对湿度、⽐湿、露点(P16)(1)相对湿度:是空⽓中的实际⽔汽压与饱和⽔汽压之间的⽐值F=e/E×100% 它是直接反映空⽓接近饱和状态的程度,当其接近100%时,表明当空⽓接近于饱和。
当⽔汽压不变时,⽓温升⾼,饱和⽔汽压增⼤,相对湿度会减⼩。
(2)绝度湿度:(3)⽐湿:在⼀团湿空⽓中,⽔汽的质量与该团空⽓总质量的⽐值—⽐湿。
气象学气候学复习要点
《气象学与气候学》复习要点第一章研究对象、任务和发展简史1.气象、天气和气候的含义气象:大气中发生的物理现象和过程,称为气象。
天气:短时间内大气状态和大气现象的综合。
气候:长时间内,大气状态和现象的的平均状况和极端状态。
2.广义的气象学和狭义的气象学:广义的气象学:所有研究大气现象和过程的学科统称为气象学。
狭义的气象学:仅研究大气中大气现象的学科称为狭义气象学。
3.大气的主要组成成份氮、氧、氩、 CO2、氖、氦、甲烷、氪、氧化氮、氙、臭氧、氡等。
前四个的含量分别是78.08、20.95、0.93、0.03,累加值 99.03、99.96、99.99。
大气气溶胶粒子:大气中悬浮的多种固体和液体微粒,统称为大气气溶胶粒子。
4.大气的质量随高度的变化大气总质量约5.3×1015吨。
50%在5.5公里以下;75%在11公里以下;25%在11公里—100公里;1% 在36公里—100公里;5. 大气上界有两种划分方法一是大气中出现物理现象的最高高度:极光,1200千米,大气的物理上界;另一种着眼于大气密度与星际气体密度接近的高度:大约2000—3000千米。
6. 大气的垂直分层⑴对流层高度:平均高度10—12公里,赤道平均高17—18公里,极地平均高8—9公里。
特征:①气温随高度升高而降低;平均而言:气温直减率γ=0.65℃/100米②盛行垂直对流运动;③气象要素分布不均;⑵平流层自对流层顶—55km。
温度最初随高度增加不显著,30 km以上显著升高。
气流比较平稳,空气的对流运动很弱。
对流层中水汽含量少,大多数时间天空是晴朗的。
在20 km以上高空,可在早晚观测到贝母云。
⑶中间层自平流层顶到85 km左右为中间层。
温度随高度升高而降低。
有强烈的对流运动。
几乎无云出现,有时能看到薄、银白色的夜光云。
有一个白天出现的电离层,叫做D层。
高度60—90公里。
⑷暖层高度自85公里到250或500 km。
又称热成层或暖层。
气象学与气候学复习重点
气象学与气候学复习重点第一章绪论1.天气与气候的区别(时间、空间尺度)2.气象学发展历程:气象仪器、无线电报、无线电探空仪、遥感探测、自动气象站第二章大气的基本情况1.大气组成:干洁空气(N2、O2、CO2、O3)、水分、悬浮杂质2.大气的垂直结构(温度、成分、电荷、大气垂直运动)a.对流层:①气温随高度增加而降低②垂直对流运动③气象要素水平分布不均匀④主要大气现象发生在此层分层:贴地层、摩擦层、对流中层、对流上层、对流层顶b.平流层:①25km(臭氧层)以下,气温保持不变;25km以上,气温随高度增加而显着升高。
(臭氧层能大量吸收太阳辐射热而使空气温度大大升高)②空气运动以水平运动为主,无明显的垂直运动。
③水汽和尘埃含量极少,晴朗少云,大气透明度好,气流比较平稳,适宜飞机航行。
c.中间层:温随高度增加而迅速下降,并有强烈的垂直运动。
d.热层:气温随温度的增加而迅速增高;电离现象e.散逸层3. 气象要素:气温、气压、湿度、风向、风速、云量、降水量、能见度a.比湿:一团湿空气中,水汽质量与该团空气总质量(水汽与干空气的质量)的比值;b.露点:空气水汽含量不变,气压一定时,使空气达到饱和时的温度,称露点温度气压一定时,露点的高低只与空气中水汽含量有关,水汽含量高,露点高;实际大气中,空气经常处于未饱和状态,露点温度比气温低第三章辐射系统1.辐射通量及辐射通量密度定义辐射通量:单位时间通过任意面积上的辐射能量辐射通量密度:单位面积上的辐射通量2.辐射规律(选择)a.基尔荷夫定律(选择吸收定律):放射能力强(弱),吸收能力强(弱)黑体吸收(放射)能力最强同一物体,温度T时它放射某一波长的辐射,同一温度下也吸收这一波长的辐射。
b.斯蒂芬—波尔兹曼定律:物体温度越高,放射能力越强c.维恩位移定律:物体的温度愈高,放射能量最大值的波长愈短,随着物体温度不断增高,最大辐射波长向短位移。
太阳辐射是短波辐射;地面、大气辐射是长波辐射。
气象学与气候学复习要点
气象学与气候学第一章1.名词解释气象学:研究大气现象和过程(大气组成、范围、结构、温度、湿度、压强和密度等),探讨其演变规律和变化,并直接或间接用于指导生产实践为人类服务的科学。
气候学:研究某一地区多年间大气的一般状态及其变化特征;它既反映平均状况,也反映极端情况,是各种天气的多年综合。
气候系统是一个包括大气圈、水圈、陆地表面、冰雪圈和生物圈在内的,能够决定气候形成、气候分布和气候变化的统一的物理系统。
气象要素是指表示大气属性和大气现象的物理量,如气温、气压、湿度、风向、风速、云量、降水量、能见度等等。
2、简答题(1)大气结构及各层特点?1.对流层①气温随着高度而降低。
平均0.65℃/100米由于对流层主要从地面得到热量,因此气温随高度的增加而降低。
②空气具有强烈的对流、乱流运动③气象要素水平分布不均匀2.平流层(对流层顶到55km)①温度随高度升高而增加在平流层内,随着高度的增高,气温最初保持不变或微有上升,自25km以上气温随高度增加而明显上升,到平流层顶可达-3℃左右,平流层这种气温分布的特征,主要是臭氧对太阳紫外线的强烈吸收。
②没有强烈的对流运动③水汽、尘埃含量很少3.中间层(平流层顶到85km)①气温随高度增加迅速降低:顶界温度可降至-83℃-113℃,几乎成为大气层中的最低温。
其原因是这里没有臭氧吸收太阳紫外辐射,而氮和氧等气体所能吸收的波长更短的太阳辐射又大部分被更上层的大气吸收了。
因此,这里的气温随高度是递减的。
②有相当强烈的垂直运动:4.暖层(中间层顶到800km)①温度随高度增加迅速上升:据探测,在300km高度上,气温可达1000℃以上,这是因为所有波长<0.175μm的紫外线辐射,都被该层中的大气物质所吸收的缘故。
②空气处于高度电离状态:5.散逸层(外层)(800km高度以上的大气层)整个大气层的最外一层,是大气圈与星际空间的过渡地带,没有明显的边界。
这一层的气温也随高度的增加而升高。
气象学与气候学复习资料
第六章气候带和气候型1、气候带、气候型划分方法:①实验分类法:根据大量观测记录,以某些气候要素长期统计平均值、季节变化,来与植物分布、土壤水分平衡、水文情况及自然景观相对照来划分气候带、气候型。
柯本、桑斯威特、沃耶伊柯夫、杜库洽夫。
②成因分类法:根据气候形成的辐射、环流、下垫面因子划分气候带、气候型。
阿里索夫、弗隆、特尔真、斯查勒。
柯本气候分类法:以气温、降水为基础,参照自然植被分布而确定;斯查勒气候分类法:认为天气是气候的基础,而天气特征、变化又受气团、锋面、气旋、反气旋所支配。
2、高地气候特点:高山地带随高度增加,空气愈稀薄,空气组分中的二氧化碳、水汽、微尘、大气中污染物质逐渐减少,气压降低、风力增大,日照增强、气温降低。
在一定坡向、一定高度范围内,降水量随高度而加大,过了最大降水带后随高度而减小—导致高山气候具有明显垂直地带性,又因高山所在地纬度、区域气候条件有所不同。
第七章气候变化和人类活动对气候的影响1、气候变化的史实:全球地质时期气候变化时间尺度在22亿年到1万年以上,以冰期、间冰期出现为特征,气温变化幅度在10℃以上;历史时期气候变化是近1万年来,主要是近5000年来的气候变化,变化幅度最大不超过2—3℃,大都是在地理环境不变的情况发生;近代气候变化主要指近百年或20世纪以来的气候变化,气温振幅在0.5—1.0℃间。
2、气候变化的因素:①太阳辐射的变化:太阳辐射是气候形成的最主要因素。
引起太阳辐射能变化的条件:⑴地球轨道因素的改变:偏心率、地轴倾角(产生四季的原因)、春分点位置(其变动结果引起四季开始时间的移动和近日点、远日点变化)都以一定周期变化导致地球受到天文辐射发生变动,引起气候变迁。
⑵火山活动引起大气透明度变化;⑶太阳活动的变化。
②宇宙-地球物理因子:宇宙因子:月球、太阳的引潮力,地球物理因子:地球重力空间变化,地球转动瞬时极的运动和地球自转速度变化等。
宇宙-地球物理因子时间、空间变化引起地球上变形力产生,导致海洋、大气变形,进而影响气候发生变化。
气象学与气候学 复习资料
气象学与气候学复习资料气象学与气候学复习资料气象学和气候学是研究大气现象和气候变化的两个重要学科。
虽然它们有着密切的联系,但在研究对象和方法上有所不同。
本文将为大家提供一些关于气象学和气候学的复习资料,帮助大家更好地理解和掌握这两个学科。
一、气象学气象学是研究大气现象的学科,主要关注天气的形成、演变和预测。
它涉及的内容非常广泛,包括大气的物理性质、天气系统的结构和运动、气象观测和仪器等。
下面我们来看一些气象学的重要概念和知识点。
1. 大气层结:大气层结是指大气在垂直方向上的温度和湿度变化。
常见的大气层结类型有逆温层、正常层、辐射逆温层等。
了解大气层结对于预测天气和理解大气运动非常重要。
2. 天气系统:天气系统是指在一定时间和空间范围内形成的大气现象,如高压系统、低压系统、冷锋、暖锋等。
它们的形成和演变对于天气变化有着重要的影响。
3. 气象观测:气象观测是指对大气现象进行系统的监测和记录。
常用的气象观测参数包括温度、湿度、气压、风速和降水量等。
气象观测数据是进行天气预报和气候研究的重要依据。
4. 天气预报:天气预报是根据气象观测数据和气象模型进行的对未来天气情况的预测。
它可以帮助人们做出合理的决策,如出行安排、防灾减灾等。
二、气候学气候学是研究气候变化的学科,主要关注长期气候的统计规律和变化趋势。
它涉及的内容包括气候系统的组成、气候要素的测量和分析、气候变化的原因和影响等。
下面我们来看一些气候学的重要概念和知识点。
1. 气候要素:气候要素是指描述气候特征的物理量,如温度、降水量、风速、湿度等。
它们的变化可以反映气候的不同特征和变化趋势。
2. 气候类型:气候类型是根据气候要素的长期统计特征划分的。
常见的气候类型有热带雨林气候、温带季风气候、地中海气候等。
了解不同气候类型对于理解全球气候分布和变化具有重要意义。
3. 气候变化:气候变化是指长期气候的统计规律和变化趋势。
气候变化的原因包括自然因素和人类活动因素。
[理学]气象与气候学复习资料
[理学]⽓象与⽓候学复习资料第⼀章:引论1.⽓象:⼤⽓中的物理现象2.⽓候:多年天⽓综合的表现,包括某地地区多年的⼤⽓平均状况和极端状况3.天⽓:⼀定区域短期天⽓状况及其变化的总称4.⽓温垂直递减率:⼜叫绝热率,是表征⽓体随着⾼度的增加⽽其⽓温的变化程度的物理量。
⼜指在对流层主要从地⾯的到热量,因此⽓温随着⾼度的增加⽽降低。
⼀般⽽⾔,⾼度每增加100⽶,⽓温就下降约0.65,通常⽤r表⽰。
5.⼤⽓污染:是指由于⼈类活动或者⾃然过程引起某些物质进⼊⼤⽓中,呈现出⾜够的浓度,达到⾜够长的时间,并因此危害了⼈体的舒适,健康,福利和环境污染的现象(⼤⽓中某些⽓体和尘埃的增多导致⽓体⽓候发上改变)6.标准⼤⽓压:在摄⽒温度0℃,纬度45°,晴天时海平⾯上的⼤⽓压强为标准⼤⽓压,其值⼤约相当于760mm汞柱⾼7.饱和⽔汽压:在温度⼀定情况下,单位体积空⽓中⽔汽量有⼀定限度,⽔汽含量达到限度时饱和空⽓的⽔汽压。
(温度:指数曲线;形状:凸凹⽔平;性质:溶液⾯)8.饱和差:在⼀定温度下,饱和⽔汽压与实际空⽓中的⽔汽压之差9.相对湿度:空⽓中的实际⽔汽压与同温度下的饱和⽔汽压的⽐值10.当⽔汽压不变时,⽓温升⾼,饱和⽔汽压增⼤,相对湿度会减⼩11.⽓象学:是把⼤⽓当作研究的客体,从定性和定量两⽅⾯来说明⼤⽓特征的学科,集中研究⼤⽓的天⽓情况和演变规律和对天⽓的预报12.⽓候学:是研究⽓候特征,形成,形成,分布和演变规律,以及⽓候与其他⾃然因⼦和⼈类活动关系的学科13.天⽓学:是研究天⽓现象和天⽓过程的物理本质以及规律,并⽤以制作天⽓预报的学科1.⽓候和天⽓的区别:⼀,从定义上,天⽓是指某⼀地区在某⼀瞬间或某⼀短时间内⼤⽓状态(温度,湿度,压强)和⼤⽓现象(风⾬雷电)的综合。
⽓候是指在太阳辐射,⼤⽓环流,下垫⾯性质和⼈类活动在长时间相互作⽤下,在某⼀时段内⼤量天⽓过程的综合。
⼆,从形成机制上:天⽓是指⼀般在单⼀天⽓系统的控制和影响下形成的,⽓候则复杂得多,⾄少是天⽓系统共同作⽤所致。
气象学与气候学要点及试题-复习要点
《气象学与气候学》要点及试题*教学要点及试题:绪论重点: 1.气象学、气候学、天气学的概念及所研究对象2.本学科与其他部门地理、区域地理学的关系●气象(meteor): 大气中的冷、热、干、湿、风、云、雨、雪、雾、霜、雷电、光等各种物理现象和物理过程的统称。
●气象学(meteorology):运用物理学原理和数学物理方法,研究发生于大气中一切物理性质、物理现象和物理过程的大气学科。
(研究对象:地球上的大气)●气象学主要研究内容是什么:1.大气一般的组成、范围、结构及各种要素等;2.大气现象的发生、发展及能量来源;3.探求大气现象的本质及其变化规律;4.将大气现象中的规律应用于实践。
●气候(climatology):指一个地方多年天气的平均状况。
●天气:某一地区在某一瞬间或某一段时间内大气状况和大气现象的综合。
●天气学:天气学是研究一定地理条件下,不同区域内所产生的天气系统、天气过程的成因演变规律,并在天气预报上应用的科学。
(研究对象:地球上的天气)●天气与气候简析:1.气候和天气关系密切,既有联系又有区别。
(概念不同)2.气候是长期天气状况的综合,但不是天气状况的简单平均。
3.变化周期不同,气候变化慢,周期长;天气变化快,周期长。
4.●气候学:某地气候—在太阳辐射、大气环流、下垫面性质和人类活动长时间的相互作用下,某时段内(一般指30年以上)大量天气过程的综合。
(研究对象:地球上的气候)●气象学、天气学、气象学的关系:气象学是基础,天气学是纽带,气候学是综合。
●气候学研究任务:1.掌握方法、记叙现象,说明特征;2.探讨规律,弄清分布,进行区划3.应用规律,采取措施,防御灾害;4.为有关后续课程奠定基础。
●气候系统及其组成:指一个包括(大气圈、水圈、陆地表面、冰雪圈和生物圈)在内的,能够决定气候形成、气候分布和气候变化的统一的物理系统。
●大气的物质组成:(1)干洁空气、(2)水汽、(3)固态、液态颗粒●什么是气溶胶(Aerosols),其分布特征和作用是什么?气溶胶:空气中悬浮的固态或液态颗粒的总称。
气候与气象学复习资料
气候与气象学复习资料气候与气象学复习资料气候和气象学是研究大气现象和气候变化的学科。
气象学关注的是短期天气现象,而气候学则研究长期气候模式和变化趋势。
了解气候和气象学的基本概念和原理对于我们更好地理解和应对气候变化至关重要。
首先,让我们来了解一些基本概念。
气象学中最基本的要素之一是温度。
温度是指物体内部分子运动的快慢程度,通常用摄氏度或华氏度来表示。
气象学中另一个重要的要素是湿度。
湿度是指空气中水蒸气的含量,通常用相对湿度来表示。
相对湿度是指空气中所含水蒸气的实际含量与该温度下饱和水蒸气含量的比值。
除了温度和湿度,气象学还研究风。
风是空气在地球表面上的运动,它的产生与地球的自转和地形的不平坦有关。
风的强度和方向对于气象学研究和天气预报至关重要。
此外,气象学还研究降水,包括雨、雪、冰雹等形式的降水。
降水是地球上水循环的重要组成部分,对于生态系统和农业有着重要影响。
了解了这些基本概念后,我们可以进一步了解气象学的原理和方法。
气象学主要通过观测、实验和模拟来研究大气现象和气候变化。
观测是气象学研究的基础,通过观测气象要素的变化,我们可以了解天气的变化趋势和规律。
实验是通过人为干预和控制来研究气象现象,例如人工降雨和云种植等。
模拟是利用计算机模型来模拟和预测天气和气候变化,它可以帮助我们更好地理解和预测未来的气候变化。
气候学是气象学的一个重要分支,它研究的是长期气候模式和变化趋势。
气候学主要通过收集和分析历史气象数据来研究气候变化。
气候变化是指长期时间尺度上的气候模式的变化,包括气温、降水、风向等方面的变化。
气候变化对于人类社会和自然生态系统都有着深远的影响,因此研究气候变化对于我们制定应对措施和保护环境至关重要。
最后,让我们来看看气候与气象学在现实生活中的应用。
气象学的应用范围非常广泛,从天气预报到灾害预警,都离不开气象学的知识和技术。
天气预报可以帮助人们做出合理的出行和生活安排,减少不必要的损失和风险。
气象学与气候学复习资料
气象学与气候学单选/填空/判断1.大气层可分为均值层和非均质层2.除去水汽及悬浮在大气中的固体、液体质粒外的整个混合气体称为干洁大气3.当气温为0℃,在纬度45°的海平面上,760㎜水银柱高时的大气压称为1个标准大气压。
4.物体收入辐射能与指出辐射能的差值称为净辐射或辐射差额,用R表示,公式为:R=收入辐射—支出辐射5.一天中气温最高值与最低值之差,称为气温日较差。
6.大陆上全年气压最高值出现在冬季,最低值出现在夏季。
7.大气环流是指大范围大气运动的平均状态或某一时段的变化过程。
8.相对湿度年变化:一般是冬季最大,夏季最小9.干燥系数:一地某时段内最大可能蒸发量与同期内降水量之比值,称为干燥度或干燥系数其表达式为K=Wo/R(K为干燥度,Wo为最大可能蒸发量,R为同期内降水量)10.温度和湿度等气象要素水平分布比较均匀的大范围空气块称为气团。
11.活动在我国境内的气团,大多是从其他地区移来的变性气团,且随季节而变化。
其中最重要的是极地大陆气团和热带海洋气团。
12.南方涛动:印度洋赤道低压与东南太平洋副热带高压之间的反相气压震荡,由于它主要发生在南半球,故称南方涛动。
13.气候带:指根据气候要素的纬向分布特征而划分的带状气候区域14.我国气候学家以斯查勒成因气候分类法为基础,把年可能蒸散量作为气候带的划分标准。
15.第四纪大冰期气候:在约2MaBP(2百万年以前)开始,直到现在。
简答/分析1.黑体辐射定律:①普朗克定律②斯特藩—玻尔兹曼定律③维恩位移定律2.太阳辐射在大气中的减弱的特点:①大气对太阳辐射的吸收(17%)②大气对太阳辐射的散射(22%)③云层和尘埃对太阳辐射的反射(30%)④到达地面的太阳辐射(31%)3.太阳总辐射的变化特点:①一天中,太阳总辐射在夜间为零,日出后逐渐增大,正午达到最大值,午后又逐渐减小。
一年中,赤道地区有两个最大值,分别出现在春分和秋分,而其他地区只有一个最大值,出现在夏季,最小值出现在冬季。
气象学与气候学复习要点
气象学与气候学复习要点一、气象学1.气象学的基本概念:气象学是研究大气层的物理、化学和动力学过程,以及它们与地球表面的相互作用和气象现象的发生发展规律的科学。
2.大气的组成:大气主要由氮气、氧气、水蒸气和少量的氩气、二氧化碳等组成。
3.大气的层次结构:大气可以分为对流层、平流层、中间层、热层和外气层等。
对流层是人类活动最为集中的层次。
4.温度和湿度:温度是大气分子热运动的表现,湿度是空气中水蒸气含量的度量。
常用的温度单位有摄氏度、华氏度和开尔文。
5.大气中的水循环:大气中的水主要通过蒸发、凝结和降水等过程循环,形成了雨水、雪、冰等各种降水形式。
6.风的形成和分布:风是由于大气压力差异引起的空气运动。
风的分布包括垂直气压分布、水平气压分布以及海洋表面风等。
7.气象要素和气象现象:气象要素包括温度、湿度、气压、风速和降水等,而气象现象主要包括各种云、雨、雪、雷暴、龙卷风等。
8.气象预报和预警:气象预报是根据气象观测数据和数值模型计算结果,对未来天气变化进行预测。
而气象预警则是在出现极端天气或自然灾害前向公众发布警告。
二、气候学1.气候学的基本概念:气候学是研究地球不同地区长时期天气变化的科学,它包括气候分布、气候变化和气候系统等内容。
2.气候系统:气候系统包括大气、陆地、海洋和冰雪等组成部分,它们通过能量和物质的交换与相互作用,共同维持着地球的气候系统。
3.气候因子和控制要素:气候因子包括太阳辐射、地球自转、地理位置和地形等因素,它们对气候的形成和分布产生影响。
而控制要素则是指影响气候变化的主要因素,如水汽、云量、海洋流和地表覆盖等。
4.气候分类:气候可以根据气象要素的年际和季节性变化特征进行分类,常见的分类系统有科本和较新的气候分类系统。
5.气候变化:气候变化是指气候系统的长时期变化,主要受到自然和人类活动的影响。
全球变暖和气候极端事件是当前气候变化的主要研究方向。
6.气候预测和模拟:气候预测是根据当前气候状态和数值模型计算结果,对未来气候变化进行预测。
《气象与气候学》总结
气象学复习资料一.名词解释:1.干空气:大气中除了固,液微粒及水汽以外的空气湿空气:含有水汽的空气2.对流层:从地面至约12km高的大气层。
其下垫面为地面,上界高度随纬度和季节而变。
集中了大气质量的80%和全部水汽,云、雾、雨、雪等也都发生于其中。
平流层:自对流层顶到大约55Km左右的大气层;3.虚温:在气压相等的条件下,具有和湿空气相等的密度时的干空气具有的温度。
4.单位气压高度差:指在垂直空气柱中气压相差一个单位值(通常指1百帕)所对应的高度差。
用它来表示气压随高度增加而降低的快慢程度5.位势高度:动力计算中由某参考[零]面(重力位势零面)至计算等压面之间的位势差6.等压面:空间各气压相等的点组成的面等高线:等高线是某一特定等压面(850hPa、700hPa、500hPa等)上高度相等的点的连线7.等高面:高度相等的点所组成的面等压线:等压线是同高度的水平面上气压相等的点的连线8.水汽压:大气中的水汽所产生的那部分压力称水汽压(e)。
单位也用hPa;饱和水汽压:一定温度、体积空气中的水汽含量达到最大时的水汽压称饱和水汽压(E),其大小随温度的升高而增大9.绝对湿度:单位体积空气中所含的水汽质量,即水汽密度相对湿度:实际水汽压(e)与同温度下的饱和水汽压(E)的比值(用百分数表示),10.比湿:在一团湿空气中,水汽的质量与该团空气总质量的比值。
其单位是g/g或g/kg混合比:一团湿空气中,水汽质量与干空气质量的比值即单位为g/g11.露点:在空气中水汽含量不变,气压一定下,使空气冷却达到饱和时的温度,称露点温度,简称露点(t d)。
其单位与气温相同12.风、风向、风速:空气的水平运动称为风;风向是指风的来向。
地面用16方位、高空用方位度表示,即0°(或360°)表示正北,90°表示正东,180°表示正南,270°表示正西等。
单位时间内空气在水平方向流动的距离就是风速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气象学与气候学复习资料1.气候系统的概念:气候系统是一个包括大气圈、水圈、陆地表面、冰雪圈和生物圈在内的,能够决定气候形成、气候分布和气候变化的统一的物理系统。
气候系统的五大子系统:大气圈、水圈、陆地表面、冰雪圈和生物圈2.大气的结构:大气结构是指大气在垂直方向上的分层和水平方向上气象要素分布的不均匀性。
3.对流层:对流层是大气的最下层,它的下界为地面,集中3/4大气,90%水汽,日常所见的大气现象均发生在此层,也是对人类生活、产生最有影响的层次。
(2)对流层特点①气温随着高度而降低②空气具有强烈的对流、乱流运动③气象要素水平分布不均匀:在对流层内,按气流和天气现象分布特点又可分为三层。
下层:又称摩擦层或扰动层。
它的范围自地面到2高度。
下层受地面强烈影响摩擦作用、湍流交换十分明显,各气象要素具有明显的日变化。
由于本层的水汽、尘粒含量多,因而低云、雾、霾、浮尘等出现频繁。
中层:从摩擦层顶到6左右高度。
这一层受地表影响较小,气流的状况基本上可以表征整个对流层空气运动的趋势。
大气中的云和降水现象大都产生在这一层。
上层:从6高度到对流层顶。
由于这一层离地面更远,受地表影响更小,水汽含量极少,气温常在0℃以下,各种云多由冰晶和过冷水滴组成。
在中、低纬度地区上层,常有风速>30的强风带出现。
此外,在对流层和平流层之间有一个厚度为数百米至1-2的过渡层,称为对流层顶。
此层主要特征是:气温随高度增加变化很小,甚至无变化。
这种温度的垂直分布抑制了对流作用的发展,上升的水汽、尘粒多聚集其下,能见度变坏。
对流层顶的温度在低纬度地区平均为-83℃,在高纬度地区约为-53℃。
思考题(供参考)一、基本概念:气象学气候学气候系统气象要素饱和水气压相对湿度露点一个大气压能见度二、基本问题:1、举例说明气象学与气候学和自然地理其它分支科学之间的关系2、大气上界的划分方法3、对流层的主要特征4、各种湿度表示法的意义5、地面、高空和地面天气图上风的表示方法第二章一、地面、大气的辐射和地面有效辐射(一)地面和大气辐射1. 辐射能量:δσT4 (δ′σT4 )式中:为地表面的辐射能量;δ为地表面的相对辐射率。
如地面温度为15℃,以δ=0.9,则可算得:=0.9×5.67×10-8×(288)4 =346.7㎡地面辐射:宇宙中的任何物质,只要它的温度高于绝对零度时都能放射能量,地面吸收太阳辐射后(45反射掉)转变为热能后,使地面增温,然后日夜不停的向外放射辐射,这就是地面辐射。
大气辐射:大气对太阳辐射的吸收很少(24%)但能强烈的吸收地面的辐射,大气主要靠吸收地面辐射后升温,它也日夜不停的向外放出辐射,叫大气辐射2、地面辐射与大气辐射的共同特点:根据斯蒂芬—波尔兹曼定律物体温度越高放射辐射的能力越强所以太阳辐射的能力远远高于地面和大气,白天高于夜晚,也可以通过公式具体计算出大气、地面在一定温度下的辐射能量。
根据维恩定律可以计算出大气、地面在自然温度幅度内的波长范围根据计算地面和大气的辐射波长范围大概在3——120微米属于红外辐射其辐射能最大的波段集中在10—15微米。
所以将地面大气的辐射称为长波辐射。
而将太阳辐射称为短波辐射。
地面有效辐射的变化规律:日变化:中午前后达到最大值以后逐渐变小,到早晨达到最小年变化:夏季大,冬季小,但由于水汽和云的影响,最大值出现在春季。
3.空气的增热和冷却:空气的冷热程度只是一种现象,它实质上是空气内能大小的表现。
空气内能变化有两种情况:一是由于空气与外界有热量交换而引起的,称为非绝热变化;二是由于外界压力的变化使空气膨胀或压缩而引起的,空气与外界没有热量交换,称为绝热变化。
气温的非绝热变化(几种与外界传递热量的方式)(1.)传导:就是依靠分子的热运动将热能从一个分子传递给另一分子,而分子本身并没有因此发生位置的变化。
空气与地面之间,空气团与空气团之间,当有温度差异时,就会因为传导作用而交换热量。
(2).辐射:物体之间不停地以辐射方式交换着热量。
大气主要依靠吸收地面的长波辐射而增热,同时,地面也吸收大气放出的长波辐射,这样它们之间就通过长波辐射的方式不停地交换着热量。
空气团之间,也可以通过长波辐射而交换热量。
(3).对流:当暖而轻的空气上升时,周围冷而重的空气便下降来补充,这种升降运动,称为对流。
通过对流、上下层空气互相混合,热量也就随之得到交换。
使低层的热量传递到较高的层次,这是对流层中的热量交换的重要方式。
(4).湍流:空气的不规则运动称为湍流,又称乱流。
湍流是空气层相互之间发生摩擦或空气流过粗糙不平的地面时产生的。
有湍流时,相邻空气团之间发生混合,热量也就得到了交换。
湍流是摩擦层中热量交换的重要方式。
(5).蒸发(升华)和凝结(凝华):水在蒸发(或冰在升华)时要吸收热量;相反,水汽在凝结(或凝华)时,又会放出潜热。
如果蒸发(升华)的水汽,不是在原处凝结(凝华),而是被带到别处去凝结(凝华),就会使热量得到传送。
例如,从地面蒸发的水汽,在空中发生凝结时,就把地面的热量传给了空气。
因此,通过蒸发(升华)和凝结(凝华),也能使地面和大气之间,空气团与空气团之间发生潜热交换。
由于大气中的水汽主要集中在5公里以下的气层中,所以这种热量交换主要在对流层下半层起作用。
4.干绝热和湿绝热直减率。
当一团干空气或未饱和的湿空气与外界没有任何热量交换做升降运动,且气块内没有任何水相变化时的温度变化过程叫干绝热变化。
干绝热直减率(γd )干空气或未饱和的湿空气,气块绝热上升(或下沉)单位距离时温度降低(或升高)的数值。
公式:γd =1º100m原因:(1)气温直减率是大气温度随着距离地面越来越远得到的热量越来越少。
(2)热直减率是干空气在绝热上升或绝热下降运动过程中由于做功气块本身的温度变化《2》、湿绝热变化与湿绝热直减率湿绝热变化过程:当饱和湿空气在做绝热上升(或下沉时)温度受到两方面的影响(1)气团中的干空气上升体积膨胀降温,也是每上升100米温度降低1ºC。
(2)水汽既已是饱和,它会因为上升冷却而发生凝结,凝结就要放热,所以放出的热量又使温度有所回升。
所以可以推论,因为有凝结放出热量的补给,降温要小于γd 。
这整个过程就是大气温度的湿绝热变化。
湿绝热直减率(γm ):饱和湿空气块上升单位距离使温度降低的数值。
(下沉升高)γm<1ºC 是一个变数=d γ1℃/100m异同 干绝热直减率 气温直减率m C 100/65.00=γ(3)湿绝热直减率是一个变数,它的大小是气压和温度的函数在体积、气压相等的情况下,温度高的饱和空气含水量大,降低同样的温度,要比温度低的饱和空气凝结出更多的水分,意味着放出更多的热量来。
例如: 20ºC—19ºC 饱和空气凝结出1克水/立方米0ºC— -1ºC 饱和空气凝结出0.33克水/立方米高温 凝结水多 放热多(ΔT 大)γ1º ΔT γm 小 低温 凝结水少 放热少(ΔT 小)γ1º ΔT γm 大结论:当两块饱和空气气压相同,容积相等而气温不同时,气温高的γm 小,温度变化不大。
气温低的γm 大,温度变化较大。
3、干湿绝热线的比较:1)干绝热直减率γd 近似于常数,故是一直线。
(2) γm 是一个变量,所以是一个曲线。
①湿绝热直减率曲线始终在干绝热线的右方。
γm< γd ,上升同样的高度始终是T(湿)>T (干)② γm 不是恒定的,因而不是一个直线,而且是一条下陡上缓的曲线。
因为大气层下层温度高,γm 小,随高度上升温度下降慢;大气层上部温度低,γm 大,随着高度上升温度下降快。
T(干) T(湿) < 0(3)到了高层,两条线近于平行。
温度越降越低,水汽凝结越来越多,空气团中的水汽含量越来越少,当水汽为零时,饱和空气也就变为干空气,则γγd ,从而使两条线近于平行。
三、大气的稳定度许多天气现象的发生都和大气稳定度有密切关系,大气稳定度是指气块受到任意方向的扰动后返回或远离平衡位置的趋势和程度。
也即表示空气是否安于原来的层次,是否易于发生垂直运动(对流)。
如果容易就不稳定,不容易就稳定。
判定大气稳定度的基本方法:(1)γ越小越稳定,越大越不稳定。
γ=0 随高度升高温度不变是同温层。
γ<0时随高度的升高温度反而增加叫逆温层,稳定到了对流不能进行的程度,也叫阻挡层。
(2)当γ<γm时,就肯定γ<γd,无论干空气还是饱和空气,大气总是处于稳定状态叫绝对稳定。
当γ> γd时就肯定γ> γd > γm,无论干空气还是饱和空气,大气总是处于不稳定状态,叫绝对不稳定。
(3)γm < γ< γd,对于作垂直运动的饱和空气来讲,层结是不稳定的,对于作垂直运动的不饱和空气来讲,层结是稳定的,例题:一温度为12 ° c 的未饱和气块在γ= 0.9 ° c /100m 的气层中作向上运动,其温度按干绝热直减率变化,问气块上升300m 后的温度是多少,这时它周围空气的温度呢,并说明此气块的运动趋势,这时的气层的稳定情况如何?《2》最高温为什么在14点左右?答:这是因为大气的热量主要来源于地面。
一方面又向大气输送热量而失热。
若净热量,则温度升高。
若净失热量,则温度降低。
这就是说地温的高低并不直接决定于地面当时吸收太阳辐射的多少,而决定于地面储存热量热量的多少.书后的思考题(供参考)光见一、基本概念可谱长波辐射短波辐射黑体太阳常数蕾利(分子)散射米散射(漫射)1个大气质量大气之窗大气逆辐射地面以与地气系统辐射差额干(湿)绝热直减率大气稳定度气温年较差逆温(各种逆温类型)二、基本问题1、什么是地面总辐射,与大气上界的太阳辐射相比有什么变化?2、太阳辐射在大气中的减弱方式与具体过程,由此可得出什么结论?3、地面辐射差额的含义与其对气温日变化的影响。
4、海陆之间的热力差异。
5、大气稳定度的含义与判断方法。
第四章大气中的水分1饱和水汽压(E):定义:饱和湿空气中水汽的分压强。
反映空气的最大水汽容纳能力饱和水汽压取决于温度(马格奴斯半经验公式2.影响饱和水汽压的因子;因子的变化怎样影响它.影响因子:温度TÛEÛ蒸发面性质E过冷却水>E冰蒸发面形状E凸面>E平面>E凹面液体含盐度含盐度ÛEÜ注:E为饱和水汽压,T为绝对温度3.影响水面蒸发的因子,重点道尔顿公式。
温度:TÛ温度TÛEÛ蒸发面性质E过冷却水>E冰蒸发面形状E凸面>E平面>E凹面液体含盐度含盐度ÛEÜ EÛ dÛ WÛ气压:PÛ WÜ风:风速Û WÛ湿度:eÛ dÜ WÜ<2>道尔顿蒸发公式:d>0 时,W>0d=0 时,W=0d<0 时,W<0,凝结过程道尔顿定律:W(蒸发速度)、饱和差()与分子扩散系数(A)成正比,气压(P)成反比。