全国卷3理科数学试题及参考答案(word版)

合集下载

2018年高考全国卷新课标III卷(含答案)(Word精校版)

2018年高考全国卷新课标III卷(含答案)(Word精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(新课标III卷)英语注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳答案。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A.£19.15.B.£9.18.C.£9.15.1.What does John find difficult in learning German?A .Pronunciation.B.V ocabulary.C. Grammar.2.What is the probable relationship between the speakers?A. Colleagues.B. Brother and sister.C. Teacher and student.3.Where does the conversation probably take place?A. In a bank.B. At a ticket office.C. On a train.4. What are the speakers talking about?A.A restaurant.B.A street.C.A dish.5.What does the woman think of her interview?A. It was tough.B. It was interesting.C. It was successful.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白,每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

2012年高考真题——理科数学(全国卷)Word版含答案

2012年高考真题——理科数学(全国卷)Word版含答案

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD = (A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

高中高考全国卷Ⅲ理科数学包括答案.docx

高中高考全国卷Ⅲ理科数学包括答案.docx

WORD格式2019 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改,用橡动皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A{x|1 ,0,1,2} ,2B{x|x ≤ 1},则 A∩B=A.{ - 1, 0, 1}B . {0 , 1}C. { - 1, 1}D . {0 , 1, 2}2.若 z(1i)2i,则zA.- 1- iB .- 1+ iC . 1- iD . 1+ i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机了查调100 位学生,其中阅读过《西游记》和《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的计估为值A.0.5B . 0.6C . 0.7D . 0.84.243(12x)(1x)的展开式中x 的系数为A.12B. 16C. 20D. 245.已知各项为正数的等比数列 { a n} 的前 4 项和为 15,且 a53a34a1,则 a3 A.16B. 8C. 4D. 2x6.已知曲线yaexlnx 在点 (1 , ae) 处的切线方为程y2xb ,则A.ae, b1B.ae, b1专业资料整理WORD格式理科数学试题第 1 页(共 4 页)专业资料整理WORD格式-1-1 C.ae, b1D.ae, b137.函数2xy 在 [6,6]的图象大致为xx228.如图,点N 为正方形ABCD的中心,△ ECD为正三角形,平面ECD⊥平面 ABCD, M是线段 ED的中点,则A. BM= EN,且直线 BM, EN是相交直线B. BM≠EN,且直线BM, EN是相交直线C. BM= EN,且直线 BM, EN是异面直线D. BM≠EN,且直线BM, EN是异面直线9.执行右边的程序框图,如果输入的为0.01 ,则输出s 的值为A.21 4 2B. 21 5 2C. 21 6 2D. 21722210.双曲线 C:xy1 的右焦点为 F,点 P 在 C 的一条渐近线上, O为42坐标原点.若 |PO||PF|,则△ PFO的面积为A.32. 32 42C . 22D . 3211.设 f(x)是定义域为 R 的偶函数,且在 (0 ,+) 单调递减,则3223A .11 2332f(log)f(2)f(2)B . f(log)f(2)f(2).3 3 44 C 32 2323 1132 f(2)f(2)f(log)D . f(2)f(2)f(log)3 34 412.设函数 ()sin()(0)fxx ,已知 f(x) 在 [0 ,2] 有且仅有 5 个零点,下列四个结论: 5① f (x) 在 (0 ,2) 有且仅有 3 个极大值点②f(x) 在 (0 ,2) 有且仅有 2 个极小值点专业资料整理WORD格式③f(x) 在 (0 ,) 单调递增101229④在取值范围是[ , )510理科数学试题第 2 页(共 4 页)专业资料整理WORD格式其中所有正确结论的编号是A.①④ B.②③ C.①②③ D.①③④二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

全国卷Ⅲ理综高考试题word版含答案(2).doc

全国卷Ⅲ理综高考试题word版含答案(2).doc

绝密★启用前2018 年一般高等学校招生全国一致考试理科综合能力测试注意事项:1.答卷前,考生务势必自己的姓名、准考据号填写在答题卡上。

2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32 Cr 52 Zn 65I 127一、选择题:此题共13个小题,每题 6 分,共 78 分。

在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

1.以下研究工作中由我国科学家达成的是A.以豌豆为资料发现性状遗传规律的实验B.用小球藻发现光合作用暗反响门路的实验C.证明 DNA 是遗传物质的肺炎双球菌转变实验D.首例拥有生物活性的结晶牛胰岛素的人工合成2.以下对于细胞的构造和生命活动的表达,错误的选项是A.成熟个体中的细胞增殖过程不需要耗费能量B.细胞的核膜、内质网膜和细胞膜中都含有磷元素C.两个相邻细胞的细胞膜接触可实现细胞间的信息传达D.哺乳动物造血干细胞分化为成熟红细胞的过程不行逆3.神经细胞处于静息状态时,细胞内外K+和 Na+的散布特点是A .细胞外K+和 Na+浓度均高于细胞内B .细胞外K+和 Na +浓度均低于细胞内C.细胞外K+浓度高于细胞内,Na+相反D .细胞外K+浓度低于细胞内,Na+相反4.对于某二倍体哺乳动物细胞有丝分裂和减数分裂的表达,错误的选项是A.有丝分裂后期与减数第二次分裂后期都发生染色单体分别B.有丝分裂中期与减数第一次分裂中期都发生同源染色体联会C.一次有丝分裂与一次减数分裂过程中染色体的复制次数同样D.有丝分裂中期和减数第二次分裂中期染色体都摆列在赤道板上5.以下对于生物体中细胞呼吸的表达,错误的选项是A.植物在黑暗中可进行有氧呼吸也可进行无氧呼吸B.食品链上传达的能量有一部分经过细胞呼吸消散C.有氧呼吸和无氧呼吸的产物分别是葡萄糖和乳酸D .植物光合作用和呼吸作用过程中都能够合成ATP6.某同学运用黑光灯诱捕的方法对农田中拥有趋光性的昆虫进行检查,以下表达错误的选项是A.趋光性昆虫是该农田生态系统的花费者B.黑光灯传达给趋光性昆虫的信息属于化学信息C.黑光灯诱捕的方法可用于检查某种趋光性昆虫的种群密度D.黑光灯诱捕的方法可用于研究该农田趋光性昆虫的物种数目7.化学与生活亲密有关。

高考全国卷3理科数学精校含答案

高考全国卷3理科数学精校含答案

2021 年普通高等学校招生全国统一考试理科数学考前须知:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.答复选择题时,选出每题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答复非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:此题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项是符合题目要求的.1.集合 A x | x 1≥ 0 , B 0 ,1,2 ,那么AIBA . 0 B. 1 C. 1,2 D. 0,1,2 2. 1 i 2 iA . 3 i B. 3 i C. 3 i D. 3i 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出局部叫榫头,凹进局部叫卯眼,图中木构件右边的小长方体是榫头.假设如图摆放的木构件与某一带卯眼的木构件咬合成长方体,那么咬合时带卯眼的木构件的俯视图可以是4.假设sin 1,那么 cos2 3A .8B.7C.7 D.8 9 9 9 92 55.x2 的展开式中x4的系数为xA .10 B. 20 C. 40 D. 80.直线x y 2 0 分别与 x 轴,y 轴交于A,B两点,点P在圆2 22上,那么6 x 2 y△ABP 面积的取值范围是A. 2,6 B. 4,8 C. 2,3 2 D.22,32 7.函数 y x4 x2 2 的图像大致为8p ,各成员的支付方式相互独立,设X为.某群体中的每位成员使用移动支付的概率都为该群体的10 位成员中使用移动支付的人数,,PX 4 P X 6 ,那么 pA .B.C.D.9.△ABC的内角 A ,B ,C 的对边分别为 a ,b, c ,假设△ABC的面积为a2 b2 c2 ,4那么 CA .πB.πC.πD.π2 3 4 610.设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点,△ ABC为等边三角形且其面积为 9 3 ,那么三棱锥D ABC 体积的最大值为A.12 3B.18 3C.24 3D.54 311.设 F1,F2x2 y21〔a 0,b 0〕的左、右焦点,O是坐标原点.过F2 是双曲线 C: 2b2a作 C 的一条渐近线的垂线,垂足为P .假设PF1 6 OP ,那么C的离心率为A . 5 B. 2 C. 3 D . 2 12.设 a log 0.3 , b log 2,那么A . a b ab 0 B. ab a b 0C. a b 0 ab D. ab 0 a b二、填空题:此题共 4 小题,每题 5 分,共 20 分.13.向量 a= 1,2 , b= 2, 2 , c= 1,λ .假设 c∥2a + b,那么________..曲线 y ax 1 e x在点0 ,处的切线的斜率为2,那么a ________.14 115.函数f xπ0 ,π 的零点个数为 ________.cos 3x 在616.点 M 1,1 和抛物线 C:y 2 4x ,过 C 的焦点且斜率为k 的直线与 C 交于A,B 两点.假设∠AMB 90 ,那么 k ________.三、解答题:共 70 分.解容许写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、 23 题为选考题,考生根据要求作答.学科.网〔一〕必考题:共60 分.17.〔 12 分〕等比数列 a n 中, a1 1,a5 4a3.〔 1〕求 an 的通项公式;〔 2〕记n为 an的前n项和.假设m63,求m.S S18.〔 12 分〕某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比拟两种生产方式的效率,选取 40 名工人,将他们随机分成两组,每组20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间〔单位: min 〕绘制了如下茎叶图:〔 1〕根据茎叶图判断哪种生产方式的效率更高?并说明理由;〔 2〕求 40 名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过 m 和不超过m 的工人数填入下面的列联表:超过m 不超过m第一种生产方式第二种生产方式〔 3〕根据〔 2〕中的列联表,能否有99%的把握认为两种生产方式的效率有差异?n ad 2附: K2 bc ,b c d a ca b dP K 2≥ kk19.〔 12 分〕如图,边长为2 的正方形ABCD所在的平面与半圆弧CD 所在平面垂直,M是CD 上异于 C ,D 的点.〔 1〕证明:平面AMD ⊥ 平面BMC;〔 2〕当三棱锥MABC体积最大时,求面MAB 与面MCD所成二面角的正弦值.2220.〔 12 分〕斜率为 k 的直线 l 与椭圆 C :xy1 交于 A , B 两点,线段 AB 的中43点为 M 1,m m 0 .〔 1〕证明: k1 ;2uuuruuur uuuruuur uuur uuur〔2〕设 F 为 C 的右焦点, P 为 C 上一点 ,且 FP FA FB 0.证明: FA ,FP ,FB成等差数列,并求该数列的公差.21.〔 12 分〕函数 f x 2 x ax2 ln 1 x 2x .〔 1〕假设a 0 ,证明:当 1 x 0 时, f x 0 ;当 x 0 时, f x 0 ;〔 2〕假设x 0 是 f x 的极大值点,求 a .〔二〕选考题:共10 分,请考生在第22、23 题中任选一题作答,如果多做,那么按所做的第一题计分.22. [选修 4—4:坐标系与参数方程] 〔 10 分〕x cos ,在平面直角坐标系xOy 中,⊙O 的参数方程为〔为参数〕,过点y sin0 , 2 且倾斜角为的直线 l 与⊙O 交于 A,B 两点.〔 1〕求的取值范围;〔2〕求AB中点P的轨迹的参数方程.23. [选修 4—5:不等式选讲]〔 10 分〕设函数 f x 2 x 1 x 1 .〔 1〕画出y f x 的图像;〔 2〕当 x∈ 0 ,,f x ≤ ax b ,求 a b 的最小值.参考答案:1 2 3 4 5 6 7 8 9 10 11 12 CD ABCA DBCBCB114.315. 313.217.(12 分 )解:〔 1〕设 { a n } 的公比为 q ,由题设得 a n q n 1 .由得 q 44q 2 ,解得 q0 〔舍去〕, q2 或q2.故 a n( 2)n 1 或 a n 2n 1 .〔 2〕假设a n(2)n 1 ,那么S n 1 (2)n .由 S m 63得(2)m188 ,此方程没有正3整数解 .假设an 1,那么 S 2 n1 .由得m,解得 m6 .n2S m 63 2 64n综上, m6 .18.〔 12 分〕解:〔 1〕第二种生产方式的效率更高.理由如下:〔 i 〕由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少 80 分钟,用第二种生产方式的工人中,有75% 的工人完成生产任务所需时间至多 79 分钟 .因此第二种生产方式的效率更高.〔 ii 〕由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5 分钟 .因此第二种生产方式的效率更高.〔 iii 〕由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80 分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80 分钟,因此第二种生.〔 iv 〕由茎叶图可知: 用第一种生产方式的工人完成生产任务所需时间分布在茎8 上的最多,关于茎 8 大致呈对称分布; 用第二种生产方式的工人完成生产任务所需时间分布在茎 7 上的最多, 关于茎 7 大致呈对称分布, 又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科*网以上给出了 4 种理由,考生答出其中任意一种或其他合理理由均可得分.〔 2〕由茎叶图知m 79 8180 . 2列联表如下:超过 m 不超过 m 第一种生产方式15 5第二种生产方式 5 15〔3〕由于K2 40(15 15 5 5)2 10 6.635 ,所以有99%的把握认为两种生产方20 20 20 20式的效率有差异.19.〔 12 分〕解:〔 1〕由题设知 ,平面 CMD ⊥平面ABCD ,交线为 CD.因为 BC ⊥CD,BC 平面 ABCD , 所以BC ⊥平面 CMD ,故 BC⊥DM .?因为 M 为CD上异于 C, D 的点 ,且 DC 为直径,所以DM ⊥ CM .又 BC I CM =C,所以 DM ⊥平面 BMC.而 DM 平面 AMD ,故平面 AMD ⊥平面 BMC .uuur〔 2〕以 D 为坐标原点 , DA的方向为 x 轴正方向 ,建立如下图的空间直角坐标系 D - xyz.当三棱锥M- ABC 体积最大时,?M为CD的中点.由题设得 D (0,0,0), A(2,0,0), B(2,2,0), C (0,2,0), M (0,1,1) ,uuuur( uuur uuurAM 2,1,1), AB (0, 2,0), DA (2,0,0)( x, y, z)是平面 MAB 的法向量 ,那设n么n uuuur 0, 2x y z 0,AM n uuur 0.即0.AB2y可取 n(1,0,2) .uuurDA 是平面 MCD 的法向量 ,因此uuuruuur 5n DAcos n, DAuuur,| n || DA |5sin uuur 2 5 ,n, DA5所以面 MAB 与面 MCD 所成二面角的正弦值是2 5 .520.〔 12 分〕解:〔 1〕设 A( x 1 , y 1 ), B( x 2, y 2 ) ,那么x 12y 1 21,x22y 2 2 1 .434 3两式相减,并由y 1y 2k 得x 1 x 2x 1 4 x 2 y 1y 2k 0 .3 由题设知x 1x 21,y 1y2m ,于是22k3.①4m由题设得 0m3,故 k1 .22( 2〕由题意得 F (1,0) ,设 P( x 3 , y 3 ) ,那么( x 3 1, y 3 ) ( x 1 1, y 1 ) ( x 2 1, y 2 ) (0,0) .由〔 1〕及题设得 x 33 (x 1 x 2 ) 1, y 3 ( y 1y 2 ) 2m 0 .又点 P 在 C 上,所以 m3,从而 P(1,uuur33),|FP |.422于是uuur2( x 1 1)221)2x1)x1.| FA|y 1( x 1 3(124 2uuur2x2.同理 | FB|2uuuruuur1 x2 ) 3.所以|FA| |FB| 4( x 12uuur uuuruuur uuur uuur uuur 故 2|FP | |FA|| FB | ,即 | FA |,| FP |,| FB | 成等差数列 .设该数列的公差为 d ,那么uuur uuur1| x 1 x 21x 2 ) 22 | d | || FB | | FA ||| ( x 1 4x 1x 2 .②2 2将 m3 1 .代入①得 k4所以 l 的方程为 yx7,代入 C 的方程,并整理得7x 2 14x1 0 .44故 x 1x 2 2, x 1 x 21 ,代入②解得 | d | 3 21 .28 28所以该数列的公差为 3 21 或 3 21 .282821.(12 分 )解:〔 1〕当 a0 时, f ( x) (2x)ln(1 x) 2x , f ( x)ln(1 x)x 1 .x设函数 g ( x)f ( x) ln(1 x)x ,那么 g ( x) x .1x)2x(1当 1x 0 时, g ( x) 0;当 x 0 时, g ( x) 0 .故当 x 1 时, g( x) g (0) 0 ,且仅当 x 0 时, g( x) 0 ,从而 f (x)0 ,且仅当 x 0 时, f ( x) 0 .所以 f ( x) 在 ( 1, ) 单调递增 .学 #科网又 f (0) 0 ,故当 1 x 0 时, f ( x) 0 ;当 x 0 时, f ( x) 0 .〔 2〕〔 i 〕假设a0 ,由〔 1〕知,当 x 0 时, f ( x)(2 x)ln(1 x) 2xf (0) ,这与 x0 是 f (x) 的极大值点矛盾 .〔 ii 〕假设a0 ,设函数 h( x)f (x) ln(1x)2x.2 x ax 22 xax 2由于当 | x | min{ 1,1}时,2x ax2,故h(x) 与f ( x)符号相同.| a|又 h(0) f (0) 0 ,故 x0 是 f ( x) 的极大值点当且仅当 x 0是 h(x) 的极大值点 .h ( x)12(2 x ax 2 ) 2x(1 2ax)x 2 ( a 2 x 2 4ax 6a 1) .x(2x ax 2 )2(x 1)(ax 2 x 2) 21如果 6a1 0 ,那么当x6a 1,且 | x | min{ 1,1 } 时, h (x) 0 ,故 x 04a| a|不是 h(x) 的极大值点 .如 果 6a1 0 , 那么 a2 x 24ax 6a 1 0 存 在 根 x 1 0 , 故 当 x (x 1,0) , 且| x | min{ 1,1} 时, h ( x) 0 ,所以 x 0 不是 h( x) 的极大值点 .| a|如果 6a1 0 ,那么 h (x)x 3 (x 24).那么当 x ( 1,0) 时,h ( x) 0 ;当(x 1)(x 26x12)2x (0,1) 时, h ( x)0 .所以 x 0 是 h( x) 的极大值点,从而x 0 是 f ( x) 的极大值点综上, a1 .622. [选修 4—4:坐标系与参数方程 ]〔10 分〕【解析】〔1〕 e O 的直角坐标方程为 x 2 y 2 1 .当 时, l 与 e O 交于两点.2当时,记 tank ,那么 l 的方程为 y kx2 . l 与 e O 交于两点当且仅当22 | 1,解得 k1 或 k 1 ,即( , ) 或( , ) .|1 k 24 2 2 4综上,的取值范围是 ( , ) .4 4x t cos ,〔 2〕 l 的参数方程为2 (t 为参数,) .yt sin 44设 A , B , P 对应的参数分别为 t A , t B , t P ,那么t Pt A t B,且 t A , t B 满足2t 2 2 2t sin1 0.于是 t A t B2 2 sin,t P2 sin. 又 点 P 的 坐 标 ( x, y)满 足x t P cos ,y2 t P sin .x2 ,sin 2所以点 P 的轨迹的参数方程是2( 为参数,) .2 4y242cos2223. [选修 4—5:不等式选讲 ]〔 10 分〕3x, x1,2【解析】〔1〕 f (x)x 2, 1 x 1, yf (x) 的图像如下图.23x, x 1.〔 2〕由〔 1〕知, y f (x) 的图像与 y 轴交点的纵坐标为2 ,且各局部所在直线斜率的最大值为 3 ,故当且仅当 a 3 且 b 2 时, f ( x) ax b 在 [0,) 成立,因此a b 的最小值为 5 .。

2012年高考真题——理科数学(全国卷)Word版(附答案)

2012年高考真题——理科数学(全国卷)Word版(附答案)

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =U ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =u u u r r ,CA b =u u u r r ,0a b ⋅=r r ,||1a =r ,||2b =r ,则AD =u u u r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2019年全国卷3理科数学试题及参考答案(WORD版含部分选填详解)

2019年全国卷3理科数学试题及参考答案(WORD版含部分选填详解)

理科数学全国丙卷理科数学理科数学120一、单选题 (本大题共12小题,每小题5分,共60分) 1.已知集合(){}(){}22,|1,,A x y x y B x y y x =+===,则AB 中元素的个数为( )A . 3B . 2C . 1D . 02.设复数z 满足(1+i )z =2i ,则z = ( )A .12 B C D . 2 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A . 月接待游客量逐月增加B . 年接待游客量逐年增加C . 各年的月接待游客量高峰期大致在7,8月份D . 各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.()()52x y x y +-的展开式中33x y 的系数为 ( )A . -80B . -40C . 40D . 805.已知双曲线()2222:10,0x y C a b a b -=>>的一条渐近线方程为y ,且与椭圆221123x y +=有公共焦点,则C 的方程为( ) A . 221810x y -= B . 22145x y -= C . 22154x y -= D . 22143x y -=6.设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A . f (x )的一个周期为−2πB . y =f (x )的图像关于直线83x π=对称 C . f (x +π)的一个零点为6x π=D . f (x )在,2ππ⎛⎫⎪⎝⎭单调递减 7.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A . 5B . 4C . 3D . 28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A . πB .34π C . 2π D . 4π 9.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( )A . -24B . -3C . 3D . 810.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )ABCD . 1311.已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则a =( )A . 12-B . 13C . 12 D . 112. 在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为( )A . 3 B.CD . 2二、填空题 (本大题共4小题,每小题5分,共20分)13. 若,x y 满足约束条件0200x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则34z x y =-的最小值为__________.14. 设等比数列{}n a 满足12131,3a a a a +=--=-,则4_______.a = 15.设函数()1,02,0x x x f x x +≤⎧=⎨>⎩则满足()112f x f x ⎛⎫+-> ⎪⎝⎭的x 的取值范围是_________。

(word完整版)历年高考数学真题(全国卷整理版)43964.doc

(word完整版)历年高考数学真题(全国卷整理版)43964.doc

实用文档参考公式:如果事件 A、B互斥,那么P( A B) P( A)P( B)如果事件 A、B相互独立,那么P(AgB)P( A)gP( B)如果事件 A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件 A 恰好发生 k 次的概率P n (k ) C n k p k (1 p)n k (k 0,1,2,⋯n) 球的表面积公式S 4R2其中 R 表示球的半径球的体积公式V 3 R34其中 R表示球的半径普通高等学校招生全国统一考试一、选择题1、复数 1 3i =1 iA 2+IB 2-IC 1+2iD 1- 2i2、已知集合 A= {1.3. m },B={1,m} ,A U B=A, 则 m=A 0 或3B 0 或 3C 1或3D 1 或 33 椭圆的中心在原点,焦距为4 一条准线为 x=-4 ,则该椭圆的方程为A x2 + y2 =1B x2 + y2 =116 12 12 8C x2 + y2 =1D x2 + y2 =18 4 12 44 已知正四棱柱ABCD- A1B1C1D1中, AB=2, CC= 2 2 E 为 CC的中点,则直线AC与平面1 1 1 BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n} 的前 n 项和为 S n,a5=5, S5=15,则数列的前100项和为(A) 100(B)99(C)99(D)101 101101100100(6)△ ABC中, AB边的高为 CD,若a· b=0, |a|=1 , |b|=2 ,则(A)( B)(C)(D)3(7)已知α为第二象限角, sin α+ sin β =3,则 cos2α =555 5--9(D) 3(A) 3 (B ) 9 (C)(8)已知 F1、 F2 为双曲线 C : x2 -y 2 =2 的左、右焦点,点 P 在 C 上, |PF1|=|2PF2| ,则 cos ∠ F1PF2=1 334(A) 4( B ) 5(C)4(D)51( 9)已知 x=ln π, y=log52 , z=e 2,则 (A)x < y < z ( B ) z < x <y (C)z < y < x (D)y< z < x(10) 已知函数 y = x2 -3x+c 的图像与 x 恰有两个公共点,则 c =(A ) -2 或 2 ( B ) -9 或 3 (C ) -1 或 1 ( D )-3 或 1( 11)将字母 a,a,b,b,c,c, 排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有( A ) 12 种( B ) 18 种( C ) 24 种( D ) 36 种7(12)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF = 3。

2019年高考理科数学全国卷Ⅲ理数(附参考答案和详解)

2019年高考理科数学全国卷Ⅲ理数(附参考答案和详解)

绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(全国卷Ⅲ)数学(理工农医类)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。

2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸、答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。

4、考试结束后,将本试卷和答题卡一并上交。

第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2019全国卷Ⅲ·理)已知集合{1,0,1,2}A =-,2{|1}B x x =≤,则A B =I ()A.{1,0,1}-B.{0,1}C.{1,1}-D.{0,1,2}【解析】因为2{|1}{|11}B x x x x =≤=-≤≤,又{1,0,1,2}A =-,所以A B =I {1,0,1}-.故选A. 【答案】A2.(2019全国卷Ⅲ·理)若(1i)2i z +=,则z =()A.1i --B.1i -+C.1i -D.1i +【解析】由(1i)2i z +=,得2i 2i(1i)2i(1i)i(1i)1i 1i (1i)(1i)2z --====-=+++-.故选D 【答案】D3.(2019全国卷Ⅲ·理)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8【解析】设调查的100位学生中阅读过《西游记》的学生人数为x ,则806090x +-=,解得70x =,所以该校阅读过《西游记》的学生人数与该校总人数的比值的估计值为700.7100=,故选C.【答案】C4.(2019全国卷Ⅲ·理)24(12)(1)x x ++的展开式中3x 的系数为( )A.12B.16C.20D.24【解析】24(12)(1)x x ++的展开式中3x 的系数为31441C 2C 12⨯+=.故选A.【答案】A5.(2019全国卷Ⅲ·理)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =()A.16B.8C.4D.2【解析】设正数的等比数列{}n a 的公比为q ,则123111142111150,,,,340a a a q a q a q a q q a q a >⎧⎪++==>+⎨⎪+⎩解得11,2,a q =⎧⎨=⎩所以2314a a q ==.故选C.【答案】C6.(2019全国卷Ⅲ·理)已知曲线e ln x y a x x =+在点(1,e)a 处的切线方程为2y x b =+,则() A.e a =,1b =- B.e a =,1b =C.1e a -=,1b =D.1e a -=,1b =-【解析】e ln 1x y a x '=++,1|e 1x k y a ='==+,所以切线方程为e (e 1)(1)y a a x -=+-, 即(e 1)1y a x =+-.又因为切线方程为2y x b =+, 所以e 121a b +=⎧⎨=-⎩,,即1e a -=,1b =-.故选D.【答案】D7.(2019全国卷Ⅲ·理)函数3222x xx y -=+在[]6,6-的图象大致为( ) A. B.C. D.【解析】因为32(),[6,6]22x x x y f x x -==∈-+,所以332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,排除选项C.当4x =时,34424128(7,8)1221616y -⨯==∈++,排除选项A ,D.故选B.【答案】B8.(2019全国卷Ⅲ·理)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ABCD ⊥平面,M 是线段ED 的中点,则()A.BM EN =,且直线BM ,EN 是相交直线B.BM EN ≠,且直线BM ,EN 是相交直线C.BM EN =,且直线BM ,EN 是异面直线D.BM EN ≠,且直线BM ,EN 是异面直线【解析】取CD 的中点O ,连接EO ,ON .由ECD △是正三角形,平面ECD ⊥平面ABCD ,知EO ⊥平面ABCD ,所以EO ⊥CD ,EO ⊥ON .又N 是正方形ABCD 的中心,所以ON ⊥CD .以CD 的中点O 为原点,ON u u u r方向为x 正方向建立空间直角坐标系,如图所示. 不妨设2AD =,则E ,(0,1,0)N,12M ⎛ ⎝⎭,(1,2,0)B -,所以||2EN =,||BM =所以EN BM ≠. 连接BD ,BE ,因为点N 是正方形ABCD 的中心,所以点N 在BD 上,且BN DN =, 所以BM ,EN 是DBE △的中位线, 所以BM ,EN 必相交.故选B.【答案】B9.(2019全国卷Ⅲ·理)执行如图的程序框图,如果输入的ε为0.01,则输出s 的值等于()A.4122-B.5122-C.6122-D.7122-【解析】0.01ε=,11,0,011,,2x s s x x ε===+==<不成立;111,,24s x x ε=+=<不成立;1111,,248s x x ε=++=<不成立; 11111,,24816s x x ε=+++=<不成立; 111111,,2481632s x x ε=++++=<不成立; 1111111,,248163264s x x ε=+++++=<不成立; 11111111,,248163264128s x x ε=++++++=<成立, 此时输出6122s =-,故选C. 【答案】C10.(2019全国卷Ⅲ·理)双曲线C :22142x y -=的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若||||PO PF =,则PFO △的面积为( )C. D.【解析】双曲线22142x y -=的右焦点坐标为坐标为,一条渐近线的方程为y ,不妨设点P 在第一象限,由于||||PO PF =,则点P =PFO 的底边,所以它的面积为12=故选A. 【答案】A11.(2019全国卷Ⅲ·理)设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则()A.233231log 224f f f --⎛⎫⎛⎫⎛⎫ ⎪> ⎪> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B.233231log 224f f f --⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C.23323122log 4f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.23323122log 4f f f --⎛⎫⎛⎫⎛⎫ ⎪> ⎪> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【解析】因为()f x 是定义域为R 的偶函数,所以3331log (log 4)(log 4)4f f f ⎛⎫=-= ⎪⎝⎭,又因为23323(log 4)1220f -->>>>,且函数()f x 在(0,)+∞上单调递增减,所以23323122log 4f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C.【答案】C12.(2019全国卷Ⅲ·理)设函数πsin (0)5()x f x ωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[0,2π]有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点;②()f x 在(0,2π)有且仅有2个极小值点;③()f x 在π0,10⎛⎫ ⎪⎝⎭单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭.其中所有正确结论的编号是( )A.①④B.②③C.①②③D.①③④【解析】已知πsin (0)5()x f x ωω⎛⎫=+> ⎪⎝⎭在[0,2π]上有且仅有5个零点,如图,其图像的右端点的横坐标在区间[,)a b 上,此时()f x 在(0,2π)上有且仅有3个极大值点,()f x 在(0,2π)上可能有2或3个极小值点,所以①正确,②不正确;当[0,2π]x ∈时,πππ,2π555x ωω⎡⎤+∈+⎢⎥⎣⎦,由()f x 在[0,2π]上有且仅有5个零点可得ππ5π2π56ω≤+<,解得ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭,所以④正确;当π0,10x ⎛⎫∈ ⎪⎝⎭时,ππππ49ππ551051002x ωω<+<+<<,所以()f x 在π0,10⎛⎫⎪⎝⎭单调递增,所以③正确.故选D.【答案】D第Ⅱ卷二、填空题:本题共4小题,每小题5分。

2021全国卷Ⅲ高考理科数学试卷与答案(word版)(Word最新版)

2021全国卷Ⅲ高考理科数学试卷与答案(word版)(Word最新版)

2021全国卷Ⅲ高考理科数学试卷与答案(word版)通过整理的2021全国卷Ⅲ高考理科数学试卷与答案(word版)相关文档,希望对大家有所帮助,谢谢观看!2021年普通高等学校招生全统一考试理科数学第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合,,则(A) [2,3] (B)(- ,2] [3,+)(C) [3,+)(D)(0,2] [3,+)(2)若,则(A)(B)(C)(D)(3)已知向量BA,BC,则(A)30° (B)45° (C)60° (D)120° (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个(5)若,则(A)(B)(C)(D)(6)已知,,,则(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的,那么输出的(A)3 否是n=0,s=0 输入a,b 输出n 开始结束a=b-a b=b-a a=b+a s=s+a,n=n+1 s&gt;16 (B)4 (C)5 (D)6 (8)中,,边上的高等于,则(A)(B)(C)(D)(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)(B)(C)(D)(10)在封闭的直三棱柱内有一个体积为的球.若,,,,则的最大值是(A)(B)(C)(D)(11)已知为坐标原点,是椭圆:的左焦点,分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为(A)(B)(C)(D)(12)定义“规范01数列”如下:共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数 . 若m=4,则不同的“规范01数列”共有(A)18个(B)16个(C)14个(D)12个第Ⅱ卷本卷包括必考题和选考题两部分。

2018年全国卷3理科数学试题及参考答案

2018年全国卷3理科数学试题及参考答案

绝密★启用前试题类型:新课标Ⅲ2018年普通高等学校招生全国统一考试理科数学参考答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ( ) A .{}0 B .{}1 C .{}1,2 D .{}0,1,2 【答案】C【解析】:1A x ≥,{}1,2A B ∴= 【考点】交集2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i + 【答案】D【解析】()()21223i i i i i +-=+-=+【考点】复数的运算3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯眼,图中的木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B 答案能看见小长方体的上面和左面,C 答案至少能看见小长方体的左面和前面,D 答案本身就不对,外围轮廓不可能有缺失 【考点】三视图 4.若1sin 3α=,则cos 2α=( ) A .89 B .79 C .79- D .89- 【答案】B【解析】27cos 212sin 9αα=-= 【考点】余弦的二倍角公式5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80 【答案】C【解析】522x x ⎛⎫+ ⎪⎝⎭的第1r +项为:()521035522rr r r r r C x C x x --⎛⎫= ⎪⎝⎭,故令2r =,则10345240r r r C x x -=【考点】二项式定理俯视方向D.C. B.A.6.直线20x y ++=分别与x 轴、y 轴交于点,A B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]2,6B .[]4,8 C. D.⎡⎣【答案】A【解析】()()2,0,0,2A B --,AB ∴=,可设()2,P θθ+,则4P ABd πθ-⎛⎫==+∈ ⎪⎝⎭[]12,62ABP P AB P AB S AB d ∆--∴=⋅=∈ 注:P AB d -的范围也可以这样求:设圆心为O ,则()2,0O,故P AB O AB O AB d d d ---⎡∈+⎣,而O AB d -==,P AB d -∴∈ 【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数) 7.422y x x =-++的图像大致为( )【答案】DxxxxyyyyD.C.B.A.OO11OO111111【解析】()12f =,排除A 、B ;()32'42212y x x x x =-+=-,故函数在0,2⎛⎫⎪ ⎪⎝⎭单增,排除C【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势、单调性(导数)的顺序来考虑)8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10为成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.3 【答案】B【解析】由题意得X 服从二项分布,即()~10,X p ,由二项分布性质可得()101 2.4DX p p =-=,故0.4p =或0.6,而()()()()64446610104161P x C p p P x C p p ==-<==-即()221p p -<,故0.5p >0.6p ∴=【考点】二项分布及其方差公式9.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为2224a b c+-,则C =( )A .2πB .3πC .4πD .6π【答案】C 【解析】2221sin 24ABCa b c S ab C ∆+-==,而222cos 2a b c C ab+-= 故12cos 1sin cos 242ab C ab C ab C ==,4C π∴= 【考点】三角形面积公式、余弦定理10.设,,,A B C D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -的体积最大值为( )A .B .C .D .【答案】B【解析】如图,O为球心,F为等边ABC∆的重心,易知OF⊥底面ABC,当,,D O F三点共线,即DF⊥底面ABC时,三棱锥D ABC-的高最大,体积也最大. 此时:6ABCABCABS∆∆⎫⎪⇒==等边,在等边ABC∆中,233BF BE AB===,在Rt OFB∆中,易知2OF=,6DF∴=,故()max163D ABCV-=⨯=【考点】外接球、椎体体积最值11.设12,F F是双曲线()2222:10,0x yC a ba b-=>>的左,右焦点,O是坐标原点,过2F作C的一条渐近线的垂线,垂足为P.若1PF=,则C的离心率为( )AB.2CD【答案】C【解析】渐近线OP的方程为:by xa=,利用点到直线的距离公式可求得2PF b=,(此结论可作为二级结论来记忆),在Rt ABC∆中,易得OP a=,1PF∴=,在1POF∆中,由余弦定理可得:22216cos2a c aPOFac+-∠=,又2cosaPOFc∠= 22262a c a aac c+-∴+=,故cea==【考点】双曲线几何性质、余弦定理解三角形OF ECBAD12. 设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 【答案】B【解析】首先由0.2log y x =单调递减可知0.20.20.20log 1log 0.3log 0.21a =<=<=,同理可知21b -<<-,0,0a b ab ∴+<<,排除C 、D 其次:利用作商法:0.30.30.311log 0.2log 2log 0.41a b ab a b+=+=+=<(注意到0ab <) a b ab ∴+>【考点】利用对数函数单调性确定对数范围、作商法比较大小 二、填空题:本大题共4小题,每小题5分,共20分13. 已知向量()1,2a = ,()2,2b =- ,()1,c λ=. 若()//2c a b + ,则_______.λ= 【答案】12【解析】()24,2a b +=,故24λ=【考点】向量平行的坐标运算14. 曲线()1xy ax e =+在点()0,1处的切线斜率为2-,则______.a =【答案】3-【解析】()'1x xy ae ax e =++,12k a ∴=+=-【考点】切线斜率的计算方法15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0,π的零点个数为_________.【答案】3【解析】[]0,x π∈,3,3666t x ππππ⎡⎤=+∈+⎢⎥⎣⎦,由cos y t =图像可知,当35,,222t πππ=时cos 0t =,即()f x 有三个零点 或者:令362x k πππ+=+,则93k x ππ=+,当0,1,2k =时,[]0,x π∈,故3个零点【考点】换元法(整体法)、余弦函数的图像与性质16. 已知点()1,1M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与抛物线交于,A B 两点,若90AMB ∠= ,则_______.k =【答案】2 【解析】(1) 常规解法:设直线方程为1x my =+,联立214x my y x=+⎧⎨=⎩可求121244y y m y y +=⎧⎨=-⎩,由()()12121212110MB MA y y y y x x x x ⋅=-++++++= ,可得12m =,故2k =(2) 二级结论:以焦点弦为直径的圆与准线相切设AB 中点为N ,则由二级结论可知NM ⊥准线,1N M y y ∴==,故22A B N y y y +==,由点差法可得,42A B k y y ==+ 进一步可得二级结论:AB M k y p ⋅=【考点】直线与抛物线联立(二级结论、点差法)三.解答题:共70分. 解答应写出文字说明,证明过程或演算步骤.. 第17~21题为必考题,每个试题考生必须作答. 第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (12分)等比数列{}n a 中,1531,4a a a ==. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和. 若63m S =,求m . 【答案】(1)12n n a -=或()12n n a -=-;(2)6m =【解析】(1)25334a a a q ==,2q ∴=±,∴12n n a -=或()12n n a -=-(2) 当2q =时,()()112631mmS -==-,解得6m =当2q =-时,()()112633mm S --==,得()2188m-=-无解综上:6m =【考点】等比数列通项公式与前n 项和公式 18. (12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式. 为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:第一种生产方式第二种生产方式8655689 9 7 627012234 5 6 6 89 8 7 7 6 5 4 3 3281445 2 11 009(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥ 0.0500.010 0.001k3.8416.63510.828【答案】(1)第二组生产方式效率更高;(2)见解析;(3)有;【解析】(1)第二组生产方式效率更高;从茎叶图观察可知,第二组数据集中在70min~80min 之间,而第一组数据集中在80min~90min 之间,故可估计第二组的数据平均值要小于第一组数据平均值,事实上168727677798283838485868787888990909191928420E +++++++++++++++++++==同理274.7E =,21E E < ,故第二组生产方式效率更高 (2)由茎叶图可知,中位数7981802m +==,且列联表为:超过m 不超过m第一种生产方式15 5 第二种生产方式515(3)由(2)可知()22224015510 6.63520202020K -==>⨯⨯⨯,故有99%的把握认为两种生产方式的效率有差异 【考点】茎叶图、均值及其意义、中位数、独立性检验 19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在的平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积的最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析; 【解析】(1)ABCD CDM BC DCM BC DM DM BMC ADN BMC BC CD MC DM ⎫⊥⎫⇒⊥⇒⊥⎬⎪⇒⊥⇒⊥⊥⎬⎭⎪⊥⎭(这边只给出了证明的逻辑结构,方便大家阅读,考试还需要写一些具体的内容)(2)ABC S ∆ 恒定,故要使M ABC V -最大,则M ABC d -最大,结合图象可知M 为弧 CD中点时,M ABC V -最大. 此时取CD 的中点O ,则MO DC ⊥,故MO ⊥面ABCD ,故可建立如图所示空间直角坐标系 则:()0,0,1M ,()2,1,0A -,()2,1,0B ,()0,1,0C ,()0,1,0D -MBCDA()()0,2,0,2,1,1AB MA ==--,∴平面MAB 的法向量为()11,0,2n = ,易知平面MCD 的法向量为()21,0,0n =,故12cos ,5n n <>== , ∴面MAB 与面MCD【考点】面面垂直的判定、三棱锥体积最值、二面角的求法 20. (12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=. 证明,,FA FP FB 成等差数列,并求该数列的公差. 【答案】(1)见解析;(2)28d =±【解析】(1) 点差法:设()()1122,,,A x y B x y ,则22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩相减化简可得: 1212121234y y y y x x x x -+⋅=--+,34OM AB k k ⋅=-(此公式可以作为点差法的二级结论在选填题中直接用),34m k ∴=-,易知中点M 在椭圆内,21143m +<,代入可得12k <-或12k >,又0m >,0k ∴<,综上12k <-联立法:设直线方程为y kx n =+,且()()1122,,,A x y B x y ,联立22143x y y kx n⎧⎪+=⎨⎪=+⎩可得,()2224384120k x knx n +++-=,则122212284341243kn x x k n x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,()121226243ny y k x x n k +=++=+224143343M M kn x k n y m k -⎧==⎪⎪+∴⎨⎪==⎪+⎩,两式相除可得34m k =-,后续过程和点差法一样(如果用∆算的话比较麻烦)(2) 0FP FA FB ++= ,20FP FM ∴+= ,即()1,2P m -,214143m ∴+=,()304m m ∴=>∴71,4k n m k =-=-=,由(1)得联立后方程为2171404x x -+=,1,2114x ∴=±, ()22121223c a c a cFA FB x x a x x a c a c a ⎛⎫⎛⎫∴+=-+-=-+= ⎪ ⎪⎝⎭⎝⎭(此处用了椭圆的第二定义,否则需要硬算,计算量太大)而32FP =2FA FB FP ∴+=故,,FA FP FB成等差数列.221212214c a c a c d FA FB x x x x a c a c a ⎛⎫⎛⎫=±-=±---=±-=± ⎪ ⎪⎝⎭⎝⎭28d ∴=±【考点】点差法、直线与椭圆联立求解、等差数列、椭圆的第二定义21. (12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >,()0f x >; (2)若0x =是()f x 的极大值点,求a . 【答案】(1)见解析;(2)16a =-【解析】(1)常规方法:当0a =时,()()()()2ln 121f x x x x x =++->-,()()1'ln 111f x x x∴=++-+ ()()2''1xf x x ∴=+,当10x -<<时,()''0f x <;当0x >时,()''0f x >()'f x ∴在()1,0-上单调递减,在()0,+∞上单调递增,而()'00f =, ∴()'0f x ≥恒成立,()f x ∴单调递增,又()00f = ∴当10x -<<时,()0f x <;当0x >,()0f x >改进方法:若0a =,则()()()()()22ln 122ln 12x f x x x x x x x ⎡⎤=++-=++-⎢⎥+⎣⎦令()()2ln 12x g x x x =+-+,则()()()()22214'01212x g x x x x x =-=>++++ 所以()g x 在()0,+∞单增,又因为()00g = 故当10x -<<时,()()00g x g <=,即()0f x <; 当0x >时,()()00g x g >=,即()0f x >;方法对比:若直接求导,那么完全处理掉对数经常需要二次求导,而方法二提出()2x +之后对数单独存在,一次求导就可消掉对数(2) 方法一:极大值点的第二充要条件:已知函数y =()f x 在0x x =处各阶导数都存在且连续,0x x =是函数的极大值点的一个充要条件为前21n -阶导数等于0,第2n 阶导数小于0()()()22ln 12f x x ax x x =+++-()()()21'21ln 111ax f x ax x x +∴=+++-+,()'00f ∴=()()()2234''2ln 11ax ax xf x a x x ++∴=+++,()''00f ∴=()()232661'''1ax ax x a f x x +-++∴=+0x =是()f x 的极大值点,()'''0610f a ∴=+=,16a ∴=-,下证:当16a =-时,0x =是()f x 的极大值点,()()()3163'''1x x f x x -+=+,所以()''f x 在()1,0-单增,在()0,+∞单减 进而有()()''''00f x f ≤=,从而()'f x 在()1,-+∞单减,当()1,0x ∈-时,()()''00f x f >=,当()0,x ∈+∞时,()()''00f x f <= 从而()f x 在()1,0-单增,在()0,+∞单减,所以0x =是()f x 的极大值点.方法二: 0x =是()f x 的极大值点,所以存在0δ>,使得在()(),00,δδ- ,()()00f x f <=,即()()22ln 120x ax x x +++-<当()0,x δ∈时,()ln 10x +>,故()()()()2222ln 122ln 1ln 1xx x x x x a x x x +--+-++<=+,当(),0x δ∈-时,()ln 10x +<,故()()()222ln 1ln 1x x x a x x -++>+即()()()()()()()()()()()22000022ln 11ln 1limlimln 121ln 11ln 111lim lim 42642ln 144ln 141x x x x x x x x x x a x x x x x x x x x x x x x x →→→→-++-++==++++--++===-++++++++(洛必达法则,极限思想)【考点】导数的应用(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. 选修44-:坐标系与参数方程(10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于,A B 两点.(1) 求α的取值范围;(2) 求AB 中点P 的轨迹的参数方程.【答案】(1)3,44ππα⎛⎫∈ ⎪⎝⎭;(2)23,,44222x y αππαα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=-⎪⎩【解析】(1)当2πα=时,直线:0l x =,符合题意;当2πα≠时,设直线:l y kx =-1d =<,即()(),11,k ∈-∞-+∞ ,又tan k α=,3,,4224ππππα⎛⎫⎛⎫∴∈ ⎪ ⎪⎝⎭⎝⎭综上,3,44ππα⎛⎫∈ ⎪⎝⎭(2)可设直线参数方程为cos 3,44sin x t y t αππαα=⎧⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪=+⎝⎭⎪⎝⎭⎩,代入圆的方程可得:2sin 10t α-+=122P t t t α+∴==cos 3,44sin x y ααππααα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=+⎪⎩即点P的轨迹的参数方程为23sin 2,,244x y ππααα⎧⎛⎫=⎪⎛⎫∈⎨⎪ ⎪⎝⎭⎝⎭⎪=⎩(也可以设直线的普通方程联立去做,但是要注意讨论斜率不存在的情况) 【考点】参数方程、直线的斜率,轨迹方程23. 选修45-:不等式选讲(10分)已知函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值. 【答案】(1)见解析;(2)5【解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤≤⎨⎪>⎪⎪⎩,图象如下(2)由题意得,当0x ≥时,ax b +的图象始终在()f x 图象的上方,结合(1)中图象可知,3,2a b ≥≥,当3,2a b ==时,a b +最小,最小值为5, 【考点】零点分段求解析式、用函数图象解决恒成立问题xy21.531-0.5O。

2021年全国卷3理科数学试题及答案解析(Word最新版)

2021年全国卷3理科数学试题及答案解析(Word最新版)

2021年全国卷3理科数学试题及答案解析通过整理的2021年全国卷3理科数学试题及答案解析相关文档,希望对大家有所帮助,谢谢观看!绝密★启用前2021年普通高等学校招生全国统一考试全国卷3 理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A=,B=,则AB中元素的个数为A.3 B.2 C.1 D.0 2.设复数z满足(1+i)z=2i,则∣z∣= A.B.C.D.2 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2021年1月至2021年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(+)(2-)5的展开式中33的系数为A.-80 B.-40 C.40 D.80 5.已知双曲线C:(a>0,b>0)的一条渐近线方程为,且与椭圆有公共焦点,则C的方程为A.B.C.D.6.设函数f(x)=cos(x+),则下列结论错误的是A.f(x)的一个周期为−2π B.y=f(x)的图像关于直线x=对称C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减7.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.2 8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.B.C.D.9.等差数列的首项为1,公差不为0.若a2,a3,a6成等比数列,则前6项的和为A.-24 B.-3 C.3 D.8 10.已知椭圆C:,(a&gt;b&gt;0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A.B.C.D.11.已知函数有唯一零点,则a= A.B.C.D.1 12.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若= +,则+的最大值为A.3 B.2 C.D.2 二、填空题:本题共4小题,每小题5分,共20分。

2019年高考理科数学全国卷3(附参考答案和详解)

2019年高考理科数学全国卷3(附参考答案和详解)

!!请 考 生 在 第 $$$+ 题 中 任 选 一 题 作 答如 果 多 做则 按 所 做 的 第 一 题 计 分 !作 答 时 请 写 清 题 号 ! $$!$本 小 题 满 分 !# 分 %选 修 )2),坐 标 系 与 参 数 方 程
$ % 如 图#在 极 坐 标 系 3# 中#+ $$##%#0 槡$#) # $ % . 槡$#+) #5$$#%#弧+50#05 .!#.55所 在 圆 的 圆 心 分 别 是 $ % $!##%# !#$ #$!#%#曲 线 "! 是 弧+50#曲 线 "$ 是 弧
甲离子残留百分比直方图
乙离子残留百分比直方图 第 !7 题 图
记. 为事件,&乙离子残留在体内的百分比不低于"!"'#根 据直方图得到 1$.%的估计值为#!7#! $!%求 乙 离 子 残 留 百 分 比 直 方 图 中 '#( 的 值 $$%分别估计甲/乙离子残留 百 分 比 的 平 均 值$同 一 组 中 的 数 据 用 该 组 区 间 的 中 点 值 为 代 表 %!
记 2和 1红 楼 梦 2的 人 数 之 间 的 关 系 如 图 ,
易知调查的 !## 位 学 生 中 阅
读 过 1西 游 记 2的 学 生 人 数
为 7#!
所以该校阅读 过 1西 游 记2的
学生人数与该校学生总数比
值的估 计 值 为!7###*#!7!故
第(题图
选 %!
2!答 案 !;
解析!方法!,"!)"""#"!)"#2 的 展 开 式 中 "( 的 系 数 为 !
(!答 案 !% 解析!

2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析

 2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题目时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B ∩中元素的个数为()A.2B.3C.4D.6【答案】C 【解析】【分析】采用列举法列举出A B ∩中元素的即可.【详解】由题意,A B ∩中的元素满足8y xx y ,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4),故A B ∩中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.复数113i的虚部是()A.310B.110C.110D.310【答案】D 【解析】【分析】利用复数的除法运算求出z 即可.【详解】因为1131313(13)(13)1010i z i i i i ,所以复数113z i 的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ,则下面四种情形中,对应样本的标准差最大的一组是()A.14230.1,0.4p p p pB.14230.4,0.1p p p pC.14230.2,0.3p p p pD.14230.3,0.2p p p p 【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为 140.1230.4 2.5A x ,方差为 222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s ;对于B 选项,该组数据的平均数为 140.4230.1 2.5B x ,方差为 222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s ;对于C 选项,该组数据的平均数为 140.2230.3 2.5C x ,方差为 222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s ;对于D 选项,该组数据的平均数为 140.3230.2 2.5D x ,方差为 222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s .因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】【分析】将t t 代入函数0.23531t KI t e结合 0.95I tK求得t即可得解.【详解】0.23531t KI t e∵,所以0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t,解得353660.23t .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B 【解析】【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4COx COx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x 与抛物线22(0)y px p 交于,C D 两点,且OD OE ,根据抛物线的对称性可以确定4DOx COx,所以(2,2)C ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a ,||6b ,6a b ,则cos ,= a a b ()A.3135B.1935C.1735 D.1935【答案】D 【解析】【分析】计算出a ab 、a b 的值,利用平面向量数量积可计算出cos ,a a b的值.【详解】5a ∵,6b ,6a b,225619a a b a a b .7a b,因此,1919cos ,5735a a b a a b a a b.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12 D.23【答案】A 【解析】【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC,即可求得答案.【详解】∵在ABC 中,2cos 3C,4AC ,3BC 根据余弦定理:2222cos AB AC BC AC BC C2224322433AB可得29AB ,即3AB 由∵22299161cos 22339AB BC AC B AB BC故1cos 9B .故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A.B. C.6+2 D.【答案】C 【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S△△△根据勾股定理可得:AB AD DB ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD△该几何体的表面积是:632 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tan θ–tan(θ+π4)=7,则tan θ=()A.–2 B.–1C.1D.2【答案】D 【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan 74∵,tan 12tan 71tan,令tan ,1t t ,则1271tt t,整理得2440t t ,解得2t ,即tan 2 .故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l 与曲线y =和x 2+y 2=15都相切,则l 的方程为()A.y =2x +1B.y =2x +12C.y =12x +1 D.y =12x +12【答案】D 【解析】【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y上的切点为 0x ,则00x ,函数y的导数为y,则直线l的斜率k,设直线l的方程为 0y x x,即00x x ,由于直线l 与圆2215x y,两边平方并整理得2005410x x ,解得01x ,015x(舍),则直线l 的方程为210x y ,即1122y x .故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A.1B.2C.4D.8【答案】A 【解析】【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】ca∵,c ,根据双曲线的定义可得122PF PF a ,12121||42PF F PF F S P△,即12||8PF PF ,12F P F P ∵, 22212||2PF PF c ,22121224PF PF PF PF c ,即22540a a ,解得1a ,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b【答案】A 【解析】【分析】由题意可得a 、b 、 0,1c ,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b ,得85b ,结合5458 可得出45b,由13log 8c ,得138c ,结合45138 ,可得出45c,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、0,1c ,222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b,a b ;由8log 5b ,得85b ,由5458 ,得5488b ,54b ,可得45b;由13log 8c ,得138c ,由45138 ,得451313c ,54c ,可得45c .综上所述,a b c .故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题目:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x,,则z =3x +2y 的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy ,易知截距2z 越大,则z 越大,平移直线32x y ,当322x zy 经过A 点时截距最大,此时z 最大,由21y x x,得12x y ,(1,2)A ,所以max 31227z 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x的展开式中常数项是__________(用数字作答).【答案】240【解析】【分析】写出622x x二项式展开通项,即可求得常数项.【详解】∵622x x其二项式展开通项:62612rrrr C xx T1226(2)r r r r x C x 1236(2)r r rC x 当1230r ,解得4r 622x x的展开式中常数项是:664422161516240C C .故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握na b 的展开通项公式1C r n r r r n T ab ,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM,故122S△A BC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r解得:2r =,其体积:3433V r .故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1sin sin x x有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x 可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f,152622f,则66f f,所以,函数 f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数 f x 的定义域为,x x k k Z ,定义域关于原点对称, 111sin sin sin sin sin sin f x x x x f x x x x,所以,函数 f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x∵,11sin cos 22cos sin 2f x x x x x,则22f x f x,所以,函数 f x 的图象关于直线2x对称,命题③正确;对于命题④,当0x 时,sin 0x ,则 1sin 02sin f x x x,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a ,37a ,21n a n ,证明见解析;(2)1(21)22n n S n .【解析】【分析】(1)利用递推公式得出23,a a ,猜想得出 n a 的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a ,32381587a a ,由数列 n a 的前三项可猜想数列 n a 是以3为首项,2为公差的等差数列,即21n a n ,证明如下:当1n 时,13a 成立;假设n k 时,21k a k 成立.那么1n k 时,1343(21)4232(1)1k k a a k k k k k 也成立.则对任意的*n N ,都有21n a n 成立;(2)由(1)可知,2(21)2nnn a n 231325272(21)2(21)2n n n S n n ,①23412325272(21)2(21)2n n n S n n ,②由① ②得:23162222(21)2nn n S n 21121262(21)212n n n1(12)22n n ,即1(21)22n n S n .【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43 100,等级为2的概率为510120.27100,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100(3)22 列联表如下:人次400人次400空气质量不好3337空气质量好228221003383722 5.820 3.84155457030K ,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点,E F 分别在棱11,DD BB 上,且12DE ED ,12BF FB .(1)证明:点1C 在平面AEF 内;(2)若2AB ,1AD ,13AA ,求二面角1A EF A 的正弦值.【答案】(1)证明见解析;(2)427.【解析】【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz ,利用空间向量法可计算出二面角1A EF A 的余弦值,进而可求得二面角1A EF A 的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D 中,//AD BC 且AD BC ,11//BB CC 且11BB CC ,112C G CG ∵,12BF FB ,112233CG CC BB BF 且CG BF ,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG 且1C E DG ,1//C E AF 且1C E AF ,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz ,则 2,1,3A 、 12,1,0A 、 2,0,2E 、 0,1,1F ,0,1,1AE , 2,0,2AF , 10,1,2A E , 12,0,1A F,设平面AEF 的法向量为 111,,m x y z,由0m AE m AF,得11110220y z x z 取11z ,得111x y ,则 1,1,1m ,设平面1A EF 的法向量为 222,,n x y z,由110n A E n A F,得22222020y z x z ,取22z ,得21x ,24y ,则 1,4,2n,cos ,7m n m n m n,设二面角1A EF A 的平面角为,则cos 7,sin 7.因此,二面角1A EF A的正弦值为7.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m 的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52.【解析】【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)∵222:1(05)25x y C m m 5a ,b m ,根据离心率154c e a ,解得54m或54m (舍), C 的方程为:22214255x y ,即221612525x y ;(2)∵点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N 根据题意画出图形,如图∵||||BP BQ ,BP BQ ,90PMB QNB ,又∵90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”,可得:PMB BNQ △△,∵221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时,故532MB ,∵PMB BNQ △△,||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图∵(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d,根据两点间距离公式可得:AQ,APQ面积为:15252;②当P 点(3,1) 时,故5+38MB ,∵PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8),画出图象,如图∵(5,0)A ,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y ,根据点到直线距离公式可得P 到直线AQ 的距离为:d ,根据两点间距离公式可得:AQAPQ面积为:1522 ,综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c ,曲线()y f x 在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b ;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1(02f ,解方程即可;(2)由(1)可得'2311()32()(422f x x x x ,易知()f x 在11(,22 上单调递减,在1(,)2 ,1(,)2 上单调递增,且111111(1),(),(,(1)424244f c f c f c f c ,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b ,由题意,'1()02f ,即21302b 则34b;(2)由(1)可得33()4f x x x c ,'2311()33()422f x x x x ,令'()0f x ,得12x 或21x ;令'()0f x ,得1122x ,所以()f x 在11(,22 上单调递减,在1(,2 ,1(,)2 上单调递增,且111111(1),(,(),(1)424244f c f c f c f c ,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f 或(1)0f ,即14c 或14c .当14c 时,111111(1)0,()0,()0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(4,1)c 上存在唯一一个零点0x ,即()f x 在(,1) 上存在唯一一个零点,在(1,) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c 时,111111(1)0,(0,(0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(1,4)c 上存在唯一一个零点0x ,即()f x (1,) 上存在唯一一个零点,在(,1) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)BAB;(2)由(1)可知12030(4)AB k ,则直线AB 的方程为3(4)y x ,即3120x y .由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bc bc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ∵,22212ab bc ca a b c .,,a b c ∵均不为0,则2220a b c , 222120ab bc ca a b c;(2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc ∵, 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c 时,取等号,a ,即max{,,}abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.祝福语祝你马到成功,万事顺意!。

2019年大纲版全国卷高考理科数学试卷及答案(word版)

2019年大纲版全国卷高考理科数学试卷及答案(word版)

2019年普通高等学校统一考试(大纲)理科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设103i z i=+,则z 的共轭复数为( ) A .13i -+ B .13i -- C .13i + D .13i -2.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则MN =( ) A .(0,4] B .[0,4) C .[1,0)- D .(1,0]-3.设0sin 33a =,0cos55b =,0tan 35c =,则( )A .a b c >>B .b c a >>C .c b a >>D .c a b >>4.若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )A .2BC .1D 5.有6名男医生、5名女医生,从中选出2名男医生、1名女 医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种6.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F ,过2F 的直线交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y += 7.曲线1x y xe -=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .18.正四棱锥的顶点都在同一球面上,若该棱锥的高为4, 底面边长为2,则该球的表面积为( )A .814πB .16πC .9πD .274π 9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若12||2||F A F A =,则21cos AF F ∠=( )A .14B .13CD10.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .311.已知二面角l αβ--为060,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,0135ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14 BCD .1212.函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.8-的展开式中22x y 的系数为 . 14.设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .15.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .16.若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 . 三、解答题 (本大题共6小题,共70分.解答应写出文 字说明、证明过程或演算步骤.)17.(本小题满分10分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a C c A =,1tan 3A =,求B. 18. (本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影 D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B,求二面角1A AB C --的大小.20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率 分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.21. (本小题满分12分)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (1)求C 的方程;(2)过F 的直线与C 相交于A 、B 两点,若AB 的 垂直平分线'l 与C 相较于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求的方程.22. (本小题满分12分) 函数()ln(1)(1)ax f x x a x a=+->+. (1)讨论()f x 的单调性;(2)设111,ln(1)n n a a a +==+,证明:23+22n a n n <≤+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. 18 36 5 B. 54 18 5 C. 90D. 81 【答案】B 【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的 一半,各个侧面平行四边形,故表面积为
2 3 3 2 3 6 2 3 9 36 54 18 5 【考点】三视图、多面体的表面积
3 / 13
精品好资料——————学习推荐
精品好资料——————学习推荐
绝密★启封并使用完毕前
试题类型:新课标Ⅲ
2016 年普通高等学校招生全国统一考试 理科数学
本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,共 24 题,共 150 分,共 4 页。考试结束后,将本试卷 和答题卡一并交回。 注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.选择题必须使用 2B 铅笔填涂;非选择题必须使用 0.5 毫米黑字迹的签字笔书写,字体工整,笔迹清 楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答 题无效。 4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I卷
一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合 S x | (x 2)(x 3) 0, T x | x 0,则 S T=
A. 2, 3 B. , 2 3, C. 3, D. 0, 2 3,
【答案】D
【解析】易得 S , 2 3, ,S T 0, 2 3, ,选 D
1 3
BC
,则
cos
A
A
A.
3 10 10
B.
10 10
C.
10 10
D.
3 10 10
【答案】C
B
C
D
【解析】如图所示,可设 BD AD 1,则 AB 2 ,DC 2 ,
AC
5 ,由余弦定理知, cos A
259 2 2 5
10 10
【考点】解三角形
(9)如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视 图,则该多面体的表面积为
【考点】指数运算、幂函数性质
(7)执行右面的程序框图,如果输入的 a=4,b=6,那么输出的 n=
A. 3 B. 4 C. 5D. 6 【答案】B
【解析】列表如下
a 4 2 6 -2 4 2 6 -2 4
b64
6
4
6
s
0
6
10
16
20
n0
1
2
3
4
【考点】程序框图
(8)在 △ABC中,ຫໍສະໝຸດ Bπ 4,
BC
边上的高等于
(10)在封闭的直三棱柱 ABC-A1B1C1 内有一个体积为 V 的球.若 AB⊥BC,AB=6,BC=8,AA1=3,则 V 的最 大值是
A.
4π B.
9π C. 2
6π D.
32π 3
10
【答案】B 6
【解析】由题意知,当球为直三棱柱的内接球时,体积最
大,选取过球心且平行于直三棱柱底面的截面,如图所示, 8
A. 各月的平均最低气温都在 0 C 以上 B. 七月的平均温差比一月的平均温差大 C. 三月和十一月的平均最高气温基本相同 D. 平均最高气温高于 20 C 的月份有 5 个 【答案】D 【解析】从图像中可以看出平均最高气温高于 20 C 的月份有七月、八
月,六月为 20 C 左右,故最多 3 个
则由切线长定理可知,内接圆的半径为 2,

AA1
3
22
,所以内接球的半径为
3 2
,即V
的最大值为
4 3
R3
9 2
【考点】内接球半径的求法
(11)已知
O
为坐标原点,F
是椭圆
C:
x2 a2
y2 b2
1(a
b 0) 的左焦点,A,B
分别为
C
的左,右顶点.
P 为 C 上一点,且 PF⊥x 轴.过点 A 的直线 l 与线段 PF 交于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的
【考点】解一元二次不等式、交集 (2)若 z 1 2i ,则 4i
zz 1 A. 1 B. 1 C. i D. i 【答案】C 【解析】易知 z 1 2i ,故 zz 1 4 , 4i i ,选 C
zz 1 【考点】共轭复数、复数运算
1 / 13
精品好资料——————学习推荐
(3)已知向量
【考点】统计图的识别
(5)若
tan
3 4
,则 cos2
2sin 2
A.
64 25
B.
48 25
C. 1
16
D.
25
【答案】A
【解析】 cos2
2sin 2
cos2 4sin cos cos2 sin2
1 4 tan 1 tan2
64 25
【考点】二倍角公式、弦切互化、同角三角函数公式
BA
1 2
,
3 2

BC
=(
3 ,1 22
),则 ABC
A. 30° B. 45° C. 60°D.120° 【答案】A
3
【解析】法一: cos ABC
BA BC BA BC
2 11
3 2
,ABC
30
yA
C
B
x
法二:可以 B 点为坐标原点建立如图所示直角坐标系,易知 ABx 60 , CBx 30 , ABC 30 【考点】向量夹角的坐标运算 (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图 中 A 点表示十月的平均最高气温约为15 C ,B 点表示四月的平均最低气温约为 5 C .下面叙述不正确的是
4
2
1
(6)已知 a 23 , b 33 , c 253 ,则
A. b a c B. a b c C. b c a D. c a b 【答案】A
2 / 13
精品好资料——————学习推荐
4
2
2
1
2
【解析】 a 23 43 , b 33 , c 253 53 ,故 c a b
中点,则 C 的离心率为
A.
1 3
B.
1 2
C.
2 3
D.
3 4
【答案】A
【解析】易得
ON MF
OB BF
a
a
c
,
MF MF AF a c OE 2ON AO a
1 2
a
a
c
a
a
c
a a
c c
e
c a
1 3
【考点】椭圆的性质、相似
y
P E
M
N
B
A
F
O
x
(12)定义“规范 01 数列”{an}如下:{an}共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k≤2m,a1,a2,…, ak 中 0 的个数不少于 1 的个数,若 m=4,则不同的“规范 01 数列”共有( ) A.18 个 B.16 个 C.14 个D.12 个
相关文档
最新文档