第三章-扫描电子显微镜

合集下载

扫描电子显微镜ppt课件

扫描电子显微镜ppt课件
信号的收集效率和相应检测器的安放位置有很大关系,如果 安微镜的样品室内还配有多种附 件,可使样品在样品台上能进行加热、冷却、拉伸等试验, 以便研究材料的动态组织及性能。
二、信号的收集和图像显示系 统
信号收集和显示系统包括各种信号检测器,前置放大 器和显示装置,其作用是检测样品在入射电子作用下 产生的物理信号,然后经视频放大,作为显像系统的 调制信号,最后在荧光屏上得到反映样品表面特征的 扫描图像。
12-0引言
2、 图像景深大,富有立体感。可直接观察起 伏较大的粗糙表面(如金属和陶瓷的断口等)
3、试样制备简单。只要将块状或粉末的、导 电的或不导电的试样不加处理或稍加处理,就 可直接放到SEM中进行观察。一般来说,用 SEM观察断口时,样品不必复制,可直接进行 观察,这给分析带来极大的方便。比透射电子 显微镜(TEM)的制样简单,且可使图像更近 于试样的真实状态。
二次电子、背散射电子和透射电子的信号都可采用闪 烁计数器来进行检测。信号电子进入闪烁体后即引起 电离,当离子和自由电子复合后就产生可见光。可见 光信号通过光导管送入光电倍增器,光信号放大,即 又转化成电流信号输出,电流信号经视频放大器放大 后就成为调制信号。
二、信号的收集和图像显示系 统
如前所述,由于镜筒中的电子束和显像 管中电子束是同步扫描,而荧光屏上每 一点的亮度是根据样品上被激发出来的 信号强度来调制的,因此样品上各点的 状态各不相同,所以接收到的信号也不 相同,于是就可以在显像管上看到一幅 反映试样各点状态的扫描电子显微图像。
俄歇电子特点:
(1)俄歇电子的能量很低,能量有特征值, 一般在50eV-1500eV范围内。
(2)俄歇电子的平均自由程很小(1nm左 右).因此在较深区域中产生的俄歇电子 在向表层运动时必然会因碰撞而损失能 量,使之失去了具有持征能量的特点.

扫描电子显微镜(SEM)-PPT课件

扫描电子显微镜(SEM)-PPT课件

特征X射线发射
五、特征X射线 (characteristic X-ray)
• 若这一能量以X射线形式放出,这就是该元素的K辐射, hc 此时X射线的波长为: K EK EL2 式中,h为普朗克常数,c为光速。对于每一元素,EK、EL2 都有确定的特征值,所以发射的X射线波长也有特征值, 这种X射线称为特征X射线。 K • X射线的波长和原子序数之间服从莫塞莱定律: 2 Z
三、吸收电子 (absorption electron)
• 入射电子进入样品后,经多次非弹性散射,能量 损失殆尽(假定样品有足够厚度,没有透射电子 产生),最后被样品吸收。 • 若在样品和地之间接入一个高灵敏度的电流表, 就可以测得样品对地的信号,这个信号是由吸收 电子提供的。 • 入射电子束与样品发生作用,若逸出表面的背散 射电子或二次电子数量任一项增加,将会引起吸 收电子相应减少,若把吸收电子信号作为调制图 像的信号,则其衬度与二次电子像和背散射电子 像的反差是互补的。
• 背散射电子是指被固体样品中的原子反弹回来的一部分入 射电子。 • 其中包括弹性背散射电子和非弹性背散射电子。 • 弹性背散射电子是指被样品中原子核反弹回来的散射角大 于90的那些入射电子,其能量基本上没有变化。 • 弹性背散射电子的能量为数千到数万电子伏。 • 非弹性背散射电子是入射电子和核外电子撞击后产生非弹 性散射而造成的,不仅能量变化,方向也发生变化。 • 如果有些电子经多次散射后仍能反弹出样品表面,这就形 成非弹性背散发固体产生的 四种电子信号强度与入射电子强度之间必然满足以下 关系: i0=ib+is+ia+it 式中:ip ib is ia it 是透射电子强度。
将上式两边同除以i0 η+δ+a+τ =1 式中:η= ib/i0 δ= is/i0,为二次电子发射系数; a = ia/i0 τ = it/i0,为透射系数。

扫描电镜讲义

扫描电镜讲义
2. 即使使用x-射线能量色散谱技术,仍定量分析了原 子序数为6的轻元素(C)的含量(图2)。为什 么可以做到这一点?在图2中,C的峰为什么比较 弱?原子序数较大的W的峰为什么跑到了原子序 数较小的V的左侧?
x-射线波谱:光电倍增管
瞬间只接收一能量(波长)的x-射线,简称波谱

W、Si的波谱线扫描结果
断面背散射电子象和C、W、Si的波谱象 W
C
Si
SEM的新附件: EBSD 技术
(电子背散射衍射技术)
EBSD系统附件的构成
EBSD分析系统的构成
SEM所获得的EBSD花样
冷轧铝箔在再结晶初期的EBSD分析结果
(上图) 晶粒取向图(彩图) (下图) [111]方向极图
荷兰FEI公司 Sirion 扫描电子显微镜
日本电子 JSM-6700F 扫描电子显微镜
扫描电子显微镜的结构示意图
扫描电子显微镜的扫描成象方式
象电视的工作方式一样
扫描电子显微镜探测的三种主要分析模式
* 电子: 二次电子(SE) 背散射电子 (BE)(以及俄歇电子)
* x-射线: 特征x-射线
0.1m
* 不能分析化学成分
扫描电子显微镜解决问题的方法
* 用波长较短的电子束为光源 (25kV时,波长 =0.007nm ),分辨率可达 5nm,放大倍数
10-100000 * 扫描方式导致长物距
数十 m (1000 时) 不再要求金相准备
* 以电子束诱发原子内层电子跃迁,产生一定波长 的特征x-射线,测量其能量或波长分布,将微 区图象分析与成分分析相结合
(以及x-射线连续谱)
* 以及其他信号
如样品电流、电子磁场 偏转、通道花样、感生 电流、阴极荧光等

扫描电镜(SEM)精品课件-3

扫描电镜(SEM)精品课件-3
如果样品的厚度比入射电子的有效穿透深度(或 全吸收厚度)小得多,将有相当数量的入射电子能 够穿透样品而被装在样品下方的电子检测器检测到, 叫做透射电子。
必须指出,这里所讲的透射电子是指由直径很 小(通常小于100Å)的高能入射电子束照射样品微 区时产生的,因此,这一信号的强度仅取决于样品 微区的厚度、成分、晶体结构和位向。
3.1.5 等离子激发
入射电子

++


++


++


++


++


++


++


++


++


++

入射电子引起价电子云集体振荡
3.1.5 等离子激发
入射电子导致晶体的等离子激发也会伴随能量的 损失。由于等离子体振荡的能量也是量子化的,并有 一定的特征能量值,因此,在等离子体激发过程中, 入射电子的能量损失也具有一定的特征值,并随元素 和成分的不同而异,如下表所示。
3.2.3 二次电子
由于价电子结合能很小,对于金属来说大致在 10eV左右。内层电子结合能则高得多(有的甚至高 达10keV以上),相对于价电子来说,内层电子电 离几率很小,越是内层越小。一个高能入射电子被 样品吸收时,可以在样品中产生许多自由电子,其 中价电子电离约占电离总数的90%。
所以,在样品表面上方检测到的二次电子绝大都 分是来自价电子电离。
3.1.3 非弹性散射
非弹性散射机制
单电子激发 等离子激发 声子激发 韧致辐射
3.1.4 单电子激发
样品内原子的核外电子在受到入射电子轰击时,有可能 被激发到较高的空能级甚至被电离。价电子与原子核的结合 能很小,被激发时只引起入射电子少量的能量损失和小角度 散射。芯电子的结合能较大,受到入射电子激发时需要消耗 它较多的能量,并发生大角度散射。

《扫描电子显微镜》课件

《扫描电子显微镜》课件
《扫描电子显微镜》PPT 课件
欢迎来到本节课,本课程将为您介绍扫描电子显微镜(SEM)的发展历史、 工作原理、应用和操作技巧。
什么是扫描电子显微镜?
SEM是一种高分辨率的显微镜,能够对样品表面进行高清的成像和分析,是 材料科学、生命科学、环境科学和地球物理学等众多领域的研究必备工具。
SEM的工作原理
and applications [J]. Physics Reports, 2020, 891: 1-49. • Zhong B., Liu Y., Xie H., et al. Scanning electron microscopy techniques and
application to biological research [J]. Journal of Nanoscience and Nanotechnology, 2021, 21(3): 1443-1454.
电子束的生成和加速
SEM通过电子枪产生的电子束对样品表面进行 扫描,其中电子束的加速和缩聚使得SEM成像 的分辨率得到极大的提高。
样品表面的扫描和信号的采集
SEM扫描样品表面时需要从表面采集电子和信 号,经过放大和处理后形成图像。
图像的重建和显示
SEM的图像处理软件能够对采集到的信号进行 处理和重建,生成高质量的图像供研究员们进
SEM在地球物理学领域中可以用来 研究矿物形态、结构和物理化学性质
等问题。
SEM的操作注意事项
1 样品制备和处理
SEM样品的制备和处理是研究工作中必不可少的步骤,要保证样品表面平整、干净和稳 定。
2 SEM的操作和调试
SEM的使用经常进行调 试和保养。
生物学和医学
2
属、陶瓷、塑料和高分子等材料的成 分分析、微观结构观察和物理化学性

扫描电子显微镜工作原理

扫描电子显微镜工作原理

扫描电子显微镜工作原理
扫描电子显微镜(Scanning Electron Microscope,SEM)是一
种利用电子束与样品相互作用,通过控制电子束扫描样品来获得高分辨率图像的仪器。

其工作原理可以概括如下:
1. 电子枪和聚焦系统:SEM中的电子枪产生高能量的电子束,通常使用热阴极或冷阴极发射电子。

聚焦系统根据需要将电子束聚焦成细束。

2. 射线系统:聚焦后的电子束进入射线系统,经过一系列的电磁透镜和偏转磁铁来控制和定位电子束的位置。

3. 样品台和扫描系统:待观察的样品放置于样品台上,样品台可以进行高精度的位置调整。

电子束从顶部进入,并通过电磁透镜附近的扫描线圈来控制水平和垂直方向的束斑位置,从而实现对样品表面的扫描。

4. 信号检测和图像重建:当电子束与样品相互作用时,会产生多种不同的信号。

最常用的信号有二次电子(SE)和背散射
电子(BSE)。

二次电子是由被电子束激发的表面原子或分子
所发射的电子。

背散射电子是由高能电子与样品原子核的相互作用而散射产生的电子。

这些信号被探测器捕捉,并转换为电信号传输到图像处理系统。

通过组合并处理这些信号,最终形成高分辨率的样品图像。

5. 系统控制和图像显示:扫描电子显微镜通常配备有相应的系统控制软件,可以实时调整电子束的参数、样品扫描范围和扫
描速度等。

图像可以通过电子束的扫描和控制以及信号检测系统的输出,转化为显示在显示器上的图像。

总结起来,扫描电子显微镜通过利用电子束与样品相互作用并检测所产生的信号,通过电子束的扫描和控制,最终生成高分辨率的样品图像。

扫描电子显微镜的原理和应用

扫描电子显微镜的原理和应用

扫描电子显微镜的原理和应用扫描电子显微镜是一种利用电子束扫描样品表面并对扫描到的电子信号进行成像的高分辨率显微镜。

与光学显微镜不同,扫描电子显微镜利用电子束通过透镜和场控制技术非常高效地聚焦并成像,以获得超高分辨率的成像效果,以及大量的表面和物质信息。

扫描电子显微镜的原理扫描电子显微镜的核心是电子光源,它利用热发射、光电发射或场致发射等方式产生的电子束,经过一系列的焦距透镜、偏转线圈、探针控制和信号采集系统组成。

扫描电子显微镜的成像原理和传统光学显微镜略有不同。

它不是通过透镜去聚焦光线来成像,而是通过利用电子作用在样品表面的电磁场和电子-物质相互作用来实现的。

扫描电子显微镜利用电子束在样品表面扫描出一个小点,由电子-物质相互作用产生的电子信号被收集并转化成电子图像数据,然后利用计算机对数据进行图像处理,形成高分辨率的显微成像,以及其它相关物化信息。

扫描电子显微镜的应用扫描电子显微镜因其超高分辨率和强大的化学和物理分析功能而广泛应用于许多领域。

在材料科学领域,扫描电子显微镜广泛用于各种材料的表面和微结构分析,包括晶体结构、颗粒形貌、纳米结构、原子局部构型等。

其中,扫描透射电子显微镜(STEM)可以提供比常规扫描电子显微镜更高的结构分辨率,可用于对材料和生物样品的超高分辨率成像和分析。

在生物科学领域,扫描电子显微镜广泛应用于生物样品的形态与结构分析,如细胞器、膜结构、细胞外矩阵等。

同时,扫描电子显微镜也被用于对代谢过程和细胞凋亡等重要生物过程的研究。

在微电子制造和半导体工业中,扫描电子显微镜用于分析芯片表面的纳米结构和性能,以及其他半导体材料和器件的研究和开发。

在环境科学领域,扫描电子显微镜可用于分析环境污染物的化学成分和形态,如粉尘、气溶胶、烟尘等,有助于研究它们的来源、形成机制和生物毒性。

结论扫描电子显微镜是一种高分辨率的显微镜技术,具有广泛的应用前景和重要的科学意义。

不仅能够提高我们对材料、生物样品、半导体和环境的理解,而且也在未来的许多领域中发挥着重要的作用。

扫描电子显微镜原理

扫描电子显微镜原理

扫描电子显微镜原理扫描电子显微镜(Scanning Electron Microscope,SEM)是一种利用电子束来观察样品表面形貌和成分的高分辨率显微镜。

它的原理是利用电子束与样品表面发生相互作用,通过检测不同位置的散射电子、二次电子等来获取样品表面的形貌和成分信息。

SEM具有高分辨率、大深度聚焦范围、能够观察几乎所有材料等优点,因此在材料科学、生物学、医学、地质学等领域有着广泛的应用。

SEM的原理主要包括电子光学系统、样品台、探测器和图像处理系统。

首先是电子光学系统,它由电子源、准直系统和对焦系统组成。

电子源产生的电子束经过准直系统和对焦系统的调节,可以聚焦到极小的直径,从而实现高分辨率的成像。

样品台是样品放置的位置,它可以在X、Y、Z方向上进行微小的移动和调节,使得样品在电子束下可以被全方位地观察。

探测器用于检测样品表面的散射电子、二次电子等信号,不同的探测器可以获取不同的信息。

图像处理系统则对探测器获取的信号进行处理,形成最终的样品图像。

SEM的工作原理是通过电子束与样品表面的相互作用来获取样品表面的形貌和成分信息。

当电子束照射到样品表面时,会与样品原子发生相互作用,产生多种信号。

其中,包括样品表面的散射电子、二次电子、透射电子等。

这些信号被探测器捕获并转换成电信号,再经过放大、处理等步骤,最终形成样品的图像。

通过对这些信号的分析和处理,可以获取样品表面的形貌、结构和成分等信息。

SEM具有高分辨率的特点,其分辨率可以达到亚纳米甚至更高的级别。

这是因为电子具有波长极短的特点,可以克服光学显微镜的衍射极限,从而获得更高的分辨率。

此外,SEM还具有大深度聚焦范围的优点,能够观察不同深度的样品表面形貌。

因此,SEM在材料科学领域的表面形貌观察、纳米材料研究等方面有着重要的应用价值。

总的来说,扫描电子显微镜是一种利用电子束来观察样品表面形貌和成分的高分辨率显微镜。

它的原理是通过电子束与样品表面的相互作用,获取样品表面的形貌和成分信息。

2024年秋季学期新人教版生物七年级上册课件 第三章 微生物 2.3.2 细菌

2024年秋季学期新人教版生物七年级上册课件 第三章 微生物 2.3.2 细菌
100×28 = 25600
芽孢:不是细菌的生殖细胞,是细菌的休眠体 个体缩小、细胞壁增厚形成的 对不良环境有较强抵抗的能力
细菌的哪些特点与它们分布广泛有关?
细菌个体微小,极易被各种媒介携带;分裂生殖, 繁殖速度快;有些细菌在一定条件下会形成芽孢。 芽孢对不良环境有较强的抵抗能力;芽孢小而轻, 可以随风四处飘散,落在适当环境中,就能萌发为 细菌。这些特点都有利于细菌的广泛分布。
❖ 细菌、真菌与食品的制作 曲霉:淀粉→葡萄糖 酵母菌:葡萄糖→酒精和二氧化碳 (馒头、面包) 乳酸菌:葡萄糖→乳酸(酸奶、泡菜) 醋:醋酸菌 酱:多种霉菌
利用转基因技术, 让大肠杆菌生产胰岛素
个体微小
单细胞
球形、杆形、 螺旋形
分 裂 生 殖
生 殖 方 式
多数是朋友
形态 结构
具有细胞壁、细胞膜、细 胞质
细菌与人类的关系
• 对人类来说,大多数的细菌是有益的。例如:制酸牛奶要用乳 酸菌,制醋要用醋酸菌。根瘤菌是与豆科植物共生的细菌,它 能产生氮肥,就像化工厂一样,对农业和自然界都很重要。也 有一些细菌对人类不利,给我们的生活带来一些麻烦。例如: 腐生细菌可使食物腐败,一些致病菌可使人得病。但我们掌 握了细菌的有关知识,就可以控制细菌的活动,减少或避免细 菌给我们带来的麻烦。用物理、化学方法灭菌,在食品工业、 在医疗保健等方面都很重要。
无成形的细胞核有些有鞭毛、膜生活特点营养 方式
自养 异养
腐生 寄生
呼吸 类型
好氧性 厌氧性
与人类关系
少数有害

细胞膜5
细胞4壁
荚3

细 胞2

细胞膜 细胞核 细胞质
细菌的结构特点: 具有_细胞_壁 、_细胞_膜 、_细胞质_。 没有 成形细胞核 、 叶绿体 。 有遗传物质——DNA。

扫描电子显微镜

扫描电子显微镜

31
扫描电子显微镜
昆虫的扫描电镜照片
32
扫描电子显微镜
三氧化钼晶体
33
扫描电子显微镜
树枝状晶体
34
参考文献
[1]王龙龙.扫描电子显微镜[J].工业技术. [2]A. A. ing SEM to Design a New Generation of Drug Forms[J].2014,78(9):11071113. [3]王绍清,等.扫描电子显微镜原位观察可食用淀 粉颗粒的超微形貌[J].食品科学.2013,34(1):6164. [4]方国珊,等.3种马铃薯改性淀粉的理化性质及 结构分析[J].食品科技.2013,34(1):109-113. [5]黎兵,等.扫描电子显微镜在水性聚氨酯材料性 能分析中的应用[J].PU技术.2009,89(10):58-62. 35
8
扫描电镜图象原理

二次电子像

背散射电子像
9
二次电子
入射电子与样品相互作用后,使样品原子 较外层电子(价带或导带电子)电离产生 的电子,称二次电子。二次电子能量比较 低,习惯上把能量小于50eV电子统称为 二次电子,仅在样品表面5nm-10nm的 深度内才能逸出表面,这是二次电子分辨 率高的重要原因之一。
13
形貌衬度原理
图中为根据上述原理 画出的造成二次电子 形貌衬度的示意图 图中样品B面的倾斜 度最小,二次电子的 产额最少,亮度最低; 反ห้องสมุดไป่ตู้,C面的倾斜度 最大,亮度也最大
14
背散射电子像
背散射电子 是指入射电子与样品相互作 用 ( 弹性和非弹性散射 ) 之后,再次逸出样 品表面的高能电子,其能量接近于入射电 子能量 ( E。)。背射电子的产额随样品的 原子序数增大而增加,所以背散射电子信 号的强度与样品的化学组成有关,即与组 成样品的各元素平均原子序数有关。

扫描电子显微镜

扫描电子显微镜

基本结构
结构示意图
1-镜筒;2-样品室;3-EDS探测器;4-监控器;5-EBSD探测器;6-计算机主机;7-开机/待机/关机按钮;8底座;9-WDS探测器。
基本原理
扫描电子显微镜电子枪发射出的电子束经过聚焦后汇聚成点光源;点光源在加速电压下形成高能电子束;高 能电子束经由两个电磁透镜被聚焦成直径微小的光点,在透过最后一级带有扫描线圈的电磁透镜后,电子束以光 栅状扫描的方式逐点轰击到样品表面,同时激发出不同深度的电子信号。此时,电子信号会被样品上方不同信号 接收器的探头接收,通过放大器同步传送到电脑显示屏,形成实时成像记录(图a)。由入射电子轰击样品表面激 发出来的电子信号有:俄歇电子(Au E)、二次电子(SE)、背散射电子(BSE)、X射线(特征X射线、连续X射 线)、阴极荧光(CL)、吸收电子(AE)和透射电子(图b)。每种电子信号的用途因作用深度而异。
2021年,全数字化扫描电子显微镜新品在无锡惠山发布。
类型
扫描电子显微镜类型多样,不同类型的扫描电子显微镜存在性能上的差异。根据电子枪种类可分为三种:场 发射电子枪、钨丝枪和六硼化镧 。其中,场发射扫描电子显微镜根据光源性能可分为冷场发射扫描电子显微镜 和热场发射扫描电子显微镜。冷场发射扫描电子显微镜对真空条件要求高,束流不稳定,发射体使用寿命短,需 要定时对针尖进行清洗,仅局限于单一的图像观察,应用范围有限;而热场发射扫描电子显微镜不仅连续工作时 间长,还能与多种附件搭配实现综合分析。在地质领域中,我们不仅需要对样品进行初步形貌观察,还需要结合 分析仪对样品的其它性质进行分析,所以热场发射扫描电子显微镜的应用更为广泛。
图 a.扫描电子显微镜原理图;b.扫描电子显微镜电子信号示意
图 a.扫描电子显微镜原理图;b.扫描电子显微镜电子信号示意图。

第三章-扫描电子显微镜

第三章-扫描电子显微镜
23
5.1 二次电子像
入射 电 子束
产率
提供表面形貌衬度。二次电子来自试样表面层,发射率受表面
形貌影响大。二次电子产额(发射率)δ与入射电子束与试样表面
法向夹角有关,δ∝1/cos 。因此,试样表面凹凸不平的部位产生
的二次电子信号强度比在其他平坦部分产生的信号强度大,从而形
成表面形貌衬度。
24
28
成分像
形貌像
背散射电子像
(a)
(b)
背散射电子探头采集的成分像(a)和形貌像(b)
29
6. 扫描电子显微镜的主要性能 ❖ 分辨率 ❖ 放大倍数 ❖ 景深
30
6.1 分辨率
对形貌观察而言,指能分辨两点之间的最小距离;对微 区成分分析而言,它是指能分析的最小区域。
❖ 扫描电镜分辨率的极限:入射电子束束斑直径;
多孔硅:可见光发光材料。 6
多孔硅的扫描 电镜图像
2. 电子束与固体样品作用时产生的信号 (重点)
2.1 弹性散射和非弹性散射 2.2 电子显微镜常用的信号 2.3 各种信号的深度和区域大小
7
2.1 弹性散射和非弹性散射
一束聚焦电子束沿一定方向入射到试样内时,由于晶格 位场和原子库仑场的作用,其入射方向会发生改变的现象称 为散射。
8.2 纳米材料形貌分析
多孔氧化铝模板制备的金纳米线的形貌
低倍像
39
高倍像
8.2 纳米材料形貌分析
ZnO纳米线的二次电子图像 40
8.2 纳米材料形貌分析
有机低分子凝胶因子在不同溶剂中的自组装形貌
水中
三氯甲41烷中
甲苯中
J. Cui et al., J. Colloid Interface Sci. 326, 267274 (2008)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光栅扫描、逐点成像
光栅扫描:入射电子束在样品表面 上作光栅式逐行扫描,同时,控制 电子束的扫描线圈上的电流与荧光 屏相应偏转线圈上的电流同步。每 一个物点均对应一个像点。
逐点成像:电子束所到之处,每个
物点都会产生相应的信号(如二次
电子等),信号被接收放大后用来
调制像点的亮度,信号越强,像点
越亮。这样,就在荧光屏上得到与
.
成分像
形貌像
背散射电子像
(a)
(b)
背散射电子探头采集的成分像(a)和形貌像(b)
.
6. 扫描电子显微镜的分辨率
对形貌观察而言,指能分辨两点之间的最小距离;对微 区成分分析而言,它是指能分析的最小区域。
扫描电镜分辨率的极限:入射电子束束斑直径;
第 1 篇 组织形貌分析
第三章 扫描电子显微镜
.
第三章 扫描电子显微镜(SEM)
➢ 简称扫描电镜。
➢ 它不用透镜放大成 像,而是以类似电 视的成像方式,用 聚焦电子束在样品 表面扫描时激发产 生的某些物理信号 来调制成像。
.
花蕊的柱头 茉莉花花粉 .
花粉 菊花花粉
第三章 扫描电子显微镜(SEM)
成分衬度 ——反映样品微区的原子序数或化学成分的差异。 背散射电子大部分是受原子核反射回来的入射电子。发射
系数()随原子序数(Z)的增大而增加。
lnZ1 (Z10)
64
样品中重元素区域在图像上较.亮,而轻元素在图像上较暗。
背散射电子像与二次电子像的比较
(a)
(b)
铅 锡
锡铅镀层的表面图像 (a)二次电子图像(b)背散射电子图像
.
6.2 放大倍数
荧光屏上图像边长与电子束在样品上扫 描振幅的比值。目前大多数商用扫描电镜放 大倍数为20—20,000倍。
.
6.3 景深
景深是指一个透镜对高低不平的试样各部位能同时聚焦成像 的一个能力范围。
扫描电镜的景深为比一般光学显微镜景深大100-500倍,比 透射电镜的景深大10倍。
多孔氧化铝模板制备的金纳米线的形貌
低倍像
.
高倍像
8.2 纳米材料形貌分析
ZnO纳米线的二. 次电子图像
8.2 纳米材料形貌分析
有机低分子凝胶因子在不同溶剂中的自组装形貌
水中
.
三氯甲烷中
甲苯中
J. Cui et al., J. Colloid Interface Sci. 326, 267274 (2008)
放大倍数高:20-20万倍之间连续可调。
景深大:视野大,成像富有立体感,可直接观察各种 试样凹凸不平表面的细微结构。比光学显微镜大几百 倍。
试样制备简单。
配有X射线能谱仪装置,这样可以同时进行显微组织 形貌的观察和微区成分分.析。
光学显微镜 VS 扫描电镜
多孔硅的光学显 微镜图像
.
多孔硅:可见光发光材料。
入射电子束在样品中的扩展效应:提高电子束能量在一 定条件下对提高分辨率不利;
成像方式及所用的调制信号:二次电子像的分辨率约等 于束斑直径(几个nm),背反射电子像的分辨率约为50200nm。X射线的深度和广度都远较背反射电子的发射范 围大,所以X射线图像的分辨率远低于二次电子像和背反 射电子像。
.
三种主要信号的产生过程
弹性背散 射电子
入射电子
非弹性背 散射电子
特征X射线
二次电子
.
其他信号
俄歇电子:入射电子在样品原子激发内层电子后,外层电 子跃迁至内层时,多余能量转移给外层电子,使外层电子 挣脱原子核的束缚,成为俄歇电子。详细的介绍见本书第 三篇第十三章俄歇电子能谱部分。
透射电子 :电子穿透样品的部分。用于透射电镜的明场像 和透射扫描电镜的扫描图像, 以揭示样品内部微观结构的 形貌及物相特征。详细的介绍见本书第二篇第九章电子衍 射和显微技术部分。
Flash 短片
.
10. SEM演示录像
.
思考题:
1.扫描电镜中三种主要信号分别是什么?如 何产生?可以分别用来进行哪些方面的材 料分析?三种信号分辨率的高低如何?
2.简述扫描电镜的工作原理。 3.为什么二次电子像可以提供样品表面形貌
信息? 4. 扫描电镜制样中需要注意的问题是什么?
.
.
梨形作用体积
2.3 各种信号的深度和区域大小
③ 改变电子能量只引起 作用体积大小的变化, 而不会显著的改变形 状。
电. 子束能量与作用体积的关系
2.3 各种信号的深度和区域大小
有效作用区:可以产生信号的区域。 电子有效作用深度:有效作用区的最深处。 有效作用区内的信号并不一定都能逸出材料表面、成为有效
的可供采集的信号。 随着信号的有效作用深度增加,作用区范围增加,信号产生
的空间范围也增加,信号的空间分辨率降低。
入射电子束
俄歇电子(0.4~2 nm) 二次电子 (5~10 nm) 背散射电子(100 nm~1 m)
特征X射线 连续X射线
SEM的分辨率指的是二次 . 电子的分辨率。
3.1 扫描电镜的工作原理(重点)
第一、二聚光镜 扫描线圈 物镜
样品.室
电子枪发展三个阶段
场发射电子枪
钨灯丝
热阴极电子枪
200 m
3~5kV
六硼化镧灯丝
几十~几百kV
电子束亮度.较低; 电子束直径:10 nm 束斑尺寸较大。
4.2 信号收集及显示系统
检测样品在入射电子作用下产生的物理信号,经视频放大作为显 像系统的调制信号。二次电子、背散射电子通常采用闪烁计数器, 由法拉第网杯、闪烁体、光导管和光电倍增器组成。
F d0 0.2mm
tgc Mtgc
d0 : 临界分辨本领
c : 电子束的入射半角
.
电子束入射半角的影响 工作距离的影响
7. 样品制备
样品制备方法简单,对于导电性好的金属和陶瓷等块状样品, 只需将它们切割成大小合适的尺寸,用导电胶将其粘接在电镜 的样品座上即可直接进行观察。
对于非导电样品,在电子束作用下会产生电荷堆积,影响入射 电子束斑和样品发射的二次电子运动轨迹,使图像质量下降。 这类试样在观察前要喷镀导电层进行处理,通常采用金、银或 碳膜做导电层,膜厚在20nm左右。
电源系统由稳压,稳流及相应的安全保护电路所 组成,其作用是提供扫描电镜各部分所需的电源。
.
5. 扫描电镜衬度像(重点)
扫描电镜衬度的形成:主要是利用样品表面 微区特征(如形貌、原子序数或化学成分、晶体 结构或位向等)的差异。 二次电子像:分辨率高,立体感强 背散射电子像:粗略反映轻重不同元素的分布
样品上扫描区域相对应但经过高倍
放大的图像,客观地反映样品上的
形貌(或成分)信息。
.
电子枪 照明透 镜系统
扫描线圈 末级透镜
样品
荧光屏 探测器 至真空泵
3.2 扫描电镜图像的放大倍数
扫描电镜图像的放大倍数定义为显像管中电子束在 荧光屏上的扫描振幅和电子光学系统中电子束在样品上 扫描振幅的比值,即:
M=L/l 式中,M:放大倍数,L:显像管的荧光屏尺寸;l:电子
扫描电镜制样技术中通常采用离子溅射镀膜法和真空蒸发。
.
离子溅射镀膜仪
Sputtering Machine
(100 V~1000 V)
阴极 阳极
.
8. 扫描电镜应用实例
8.1 断口形貌分析 8.2 纳米材料形貌分析
.
8.1 断口形貌分析
1018号钢在不同温度下的断口形貌
T > 295 K
T < 295 K
多孔硅的扫描 电镜图像
2. 电子束与固体样品作用时产生 的信号(重点)
2.1 弹性散射和非弹性散射 2.2 电子显微镜常用的信号 2.3 各种信号的深度和区域大小
.
2.1 弹性散射和非弹性散射
一束聚焦电子束沿一定方向入射到试样内时,由于晶格 位场和原子库仑场的作用,其入射方向会发生改变的现象称 为散射。
陶瓷烧结体的表面图像
多孔硅的剖面图
.
5.2 背散射电子像
背散射电子既可以用来显示形貌衬度,也可以用来显示成分衬度。 形貌衬度
样品表面形貌影响背散射电子的产率,但其分辨率远比二 次电子低。背反射电子时来自一个较大的作用体积。此外,背 反射电子能量较高,它们以直线轨迹逸出样品表面,对于背向 检测器的样品表面,因检测器无法收集到背散射电子,而掩盖 了许多有用的细节。
.
2.3 各种信号的深度和区域大小
① 入射电子束受到样品原子的散射 作用,偏离原来方向,向外发散。 随着电子束进入样品深度的不断 增加,入射电子的分布范围不断 增大,动能不断降低,直至动能 降为零,最终形成一个规则的作 用区域。
② 对于轻元素样品,电子束散射区 域的外形 ——“梨形作用体 积”;重元素样品——“半球形 作用体积” 。
8.2 纳米材料形貌分析
聚对苯二甲酸乙二酯 (PET)和乙丙橡胶(EPR)共混体系形貌
PET/EPR 80:20 w/w
.
PET/EPR 60:40 w/w
S. Al-Malaika et al., Polymer 46, 209-228 (2005)
9. 扫描电镜重点内容回顾
电子束与固体样品作用时产生的信号 扫描电镜的工作原理 扫描电镜衬度像( 二次电子像、背散射电子像)
背散射电子 探头
末级 透镜
.
光导管
法拉第网杯 (+200~+500 V) 闪烁体
光电倍增器
三种信号的探测器
X-ray Detector
Back Scatter Electron Detector
.
4.3 真空系统和电源系统
真空系统的作用是为保证电子光学系统正常工作, 防止样品污染提供高的真空度,一般情况下要求 保持 10-4-10-5 Torr( 10-2-10-3 Pa)的真空度。
相关文档
最新文档