六年级数学比和比例问题一题多解训练

合集下载

六年级下学期数学小升初比和比例专项练习及一套完整答案及答案参考

六年级下学期数学小升初比和比例专项练习及一套完整答案及答案参考

六年级下学期数学小升初比和比例专项练习一.选择题(共20题,共40分)1.如图,把三角形A按1∶2缩小后,得到三角形B。

三角形B三条边的长分别是()。

A.14cm、10cm、8cmB.3.5cm、2.5cm、4cmC.3.5cm、2.5cm、2cm2.班级人数一定,每行站的人数和站的行数()。

A.成正比例B.成反比例C.不成比例3.解比例。

=,x= ()A.4B.2.4C.4.2D. 54.分子一定,分母和分数值()。

A.成正比例B.成反比例C.不成比例D.不成反比例5.正方体的表面积与它的棱长成()关系。

A.反比例B.正比例C.没有比例6.120克盐水中含盐30克,盐与水的比是( )。

A.1∶3B.1∶4C.1∶57.第二实验小学新建一个长方形游泳池,长50米,宽30米。

选用比例尺________ 画出的平面图最大;选用比例尺________ 画出的平面图最小。

A.1:1000B.1:1500C.1:500D.1:1008.x=是比例()的解。

A.2.6∶x=1∶8B.3∶6=x∶8C.∶x=∶9.和一定,加数和另一个加数()。

A.成正比例B.成反比例C.不成比例10.分母一定,分子和分数值()。

A.成正比例B.成反比例C.不成比例D.不成正比例11.互为倒数的两个数,他们一定成()。

A.正比例B.反比例C.不成比例12.解比例。

=,x=()A.2B.8C.2.25D.4 013.上操学生总人数一定,站的排数和每排站的人数()。

A.成正比例B.成反比例C.不成比例D.不成反比例14.在一定的距离内,车轮的周长与转动的圈数()。

A.成正比例B.成反比例C.不成比例15.订购练习册总数一定,学生的人数和每位学生分得练习册的数量。

()A.成正比例B.成反比例C.不成比例16.下题中的两种量成什么比例?在小明家的客厅里铺地砖,每块地砖的面积和所需要的块数。

()A.成正比例B.成反比例C.不成比例17.解比例。

六年级下册数学试题-专题10比和比例 全国通用 有答案

六年级下册数学试题-专题10比和比例  全国通用 有答案

10.比和比例知识要点梳理一、比的意义和性质1.比的意义两个数相除又叫做两个数的比。

比的写法和读法:表示数a与数b(b不能为零)的比,写作a:b,也可以写作。

“:”是比号,读作“比”,所以a:b读作a比b。

比的前项和后项:比号前面的数叫做比的前项,比号后面的数叫做比的后项。

前项除以后项所得的商是比的结果,叫做比值。

例如:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值2.比的基本性质比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

二、比、分数和除法比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线。

比可以写成分数形式,如7:4可读作:七比四。

比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。

比、分数和除法之间的联系与区别如下表所示:三、求比值与化简比1.求比值前项除以后项所得的商是比的结果,叫比值。

同类量的比,其比值没有单位名称;不同类量的比,其比值有单位名称。

例如:100千米:5时=20千米/时2.化简比比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

把两个数的比化成最简整数比的,称为化简比或比的化简。

四、比例的意义和性质1.比例的意义表示两个比相等的式子叫做比例。

组成比便的四个数,叫做比例的项,两端的两项叫做比例配外项,中间的两项叫做比例的内项。

例如:2.比例的基本性质在比例单,两个外项的积等于两个内项的积,这叫做比例的基本性质。

例如:15:60=12:48可得:60×12=15×48如果把比例写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积相等。

五、比和比例的区别六、解比例根据比例的基本性质,如果已经知道比例中的任何三项,就可求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

解比例时,先根据比例的基本性质把原比例改写成两个外项乘积与两个内项乘积相等形式的方程,再用已知的两项的乘积除以另一个已知项求出未知项。

苏教版数学六年级下册应用题特训~比和比例(专项训练)【含答案】

苏教版数学六年级下册应用题特训~比和比例(专项训练)【含答案】

苏教版数学六年级下册应用题特训:比和比例(专项训练)1.在比例尺是1∶500的一幅地图上,量得一块长方形菜地的周长是28厘米,已知这块菜地的长和(1)第一天和第二天行驶的路程分别与时间的比能组成比例吗?为什么?如能组成比例,请写出来.(2)两天行驶路程的比和两天行驶时间的比能组成比例吗?为什么?如能,把组成的比例写出来.9.按要求完成问题.比例尺1:20000(1)如果要从小区修一条通向学校和医院之间的公路的小路,怎样修才能使小路最短?请在途中用线段画出来.(2)医院大约在学校的()方向,它们之间的实际距离约是()米.10.甲、乙、丙三人进行200米的赛跑,甲跑到终点时,乙还剩20米未跑完,丙还剩25米未跑完.问,当乙跑到终点时,丙还剩多少米未跑完?11.在1:1800000的地图上一段6cm长的公路,在另外一幅地图上同样的这条公路长8cm,求另外这幅地图的比例尺.12.张老师到京东文具店买28支同样的钢笔,要付448元.照这样计算,如果陈老师想再多买同样的钢笔30支,他一共带了900元,够吗?13.在比例尺是1∶25000000的地图上标出甲、乙两地.已知甲、乙两地的实际距离是4500千米,图上两地相距多少厘米?14.把左边的长方形按比放大后得到右边的长方形,请写出比例,并求出x的值。

(单位:cm)15.淘气和笑笑收集的邮票张数的比是3∶5,淘气收集了36张邮票,笑笑收集了多少张邮票?【用比例解】16.学校图书馆科技书本数与故事书本数的比是3∶2,故事书有180本,科技书有多少本?(用比例方法解)17.在标有的地图上,量得甲、乙两地相距9厘米.一参考答案:9.(1);(2)18【详解】圆内正方形图上对角线表示6cm,则实际长度为6m,实际面积为18m2.19.2.5小时【详解】略20.12天【详解】解:设x天可以完成任务.10x=8×15解得x=12答:12天可以修完.。

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析1.从6、24、20、18与5这五个数中选出四个数组成一个比例是( )。

【答案】24:4=20:5【解析】此题为一个开放题,有多种答案。

首先确定选哪4个数,根据比例的基本性质,发现:24×5=20×6,可以用24和5同时做内项或外项,20和6做另外两项,写出不同的比例。

如24:4=20:52.把1克盐放入100克水中,盐与盐水的比是1:100。

()【答案】×【解析】要求盐和盐水的比,就要先求出盐水的重量,1+100=101,所以盐和盐水的比是1:101,题目错误。

3.请在下图中画出一个钝角三角形,并用阴影表示,使得阴影部分的面积与空白部分的面积比是2:3。

【答案】只要画出的钝角三角形底和高的乘积是12,面积是6,即为正确。

答案不唯一。

【解析】本题需先计算出钝角三角形的面积是多少。

假设每个小正方形的边长为1,那么整个长方形的面积就是15,阴影面积与空白的比是2:3,说明阴影与整个图形面积的比是2:5,整个图形面积为15,钝角三角形的面积就是6。

根据三角形面积公式可知,底和高的乘积是12,所以只要画出的钝角三角形底和高的乘积是12,面积是6,即为正确。

答案不唯一。

4.有一块正方形铁片(如图),沿一边剪去底是6分米的一个三角形,剩下的铁片成了梯形(阴影部分),这个梯形的上底与下底的比是1:4,求梯形的面积。

【答案】9平方分米【解析】本题的关键是理解6分米对应的份数。

因为梯形的上底和下底的比是1:4,也就是说梯形的上底是1份,正方形的边长是4份,从而得到,空白三角形的底是3份。

6÷3=2(分米),说明1份表示2分米。

梯形上底:2×1=2(分米),梯形下底:2×4=8(分米),因为是正方形,所以梯形的高也是8分米。

(2+8)×8÷2=9(平方分米),梯形面积是9平方分米。

5.小王、小李、小刘三家共同在莲花村租了一套房子,共有三房一厅,每月要交物业管理费210元。

六年级解比例及解方程练习题

六年级解比例及解方程练习题

六年级解比例及解方程练习题六年级解比例及解方程练习题篇一:人教版小学解比例及解方程练习题8:x=: :=x:453458161 12110.61.50.6∶4=2.4∶x6∶x=∶=5334∶12=x∶451112∶45=2536∶x10∶50=x∶40 1.3∶x=5.2∶2013∶120=169∶ x 4.680.2=x解方程X- 2323742X + 5 = 512xx∶114=0.7∶12 ∶3.6=6∶18 38=x64xX×=20× 25% + 10X = X - 15%X = 68X+X=121 5X-3×35215=X÷=12 35144586X+5 =13.4 X÷2=7716X1235÷X=10X÷ 6261335=45×25217343134X?4?83X=38 +78X=34 4X-6×2 3=2 35 X = 2572 81169 X = 6×51 x-3 ×9 = 29 112x + 6x = 44321X-21×=4 x?x?202(x?2.6)?8 1034 2136X+5 =13.4 X=χ-6=385X=151923X÷14=12 X÷6261335=45÷254+0.7X=10253108421X=15X3255X=72 142X+132X=42X+÷4155=28 89X=16×16 51X4=30%14X=105 X-0.25=X-X=400X-0.125X=8 3336=8X+313137 X=18 X×( 6 + 812xx×2+1=4×3X-33287X=120.36×5- 3324 x = 5 3 (x- 4.5) = 7 x- 0.8x = 16+6 20 x– 8.5=1.5X4-0.375x=56 5 X-2.4×5=8 12453823X+25%X=90X- X-797423312X + ×=20×5525% + 10X = 455X-3×5521=734X?134?8 3X=X+738X=44X23X÷14=126X38 X-6×23=254+38X=121 +5 =13.4 ÷27=716 125 ÷X=310X - 15%X = 68 X篇二:2015年小学六年级数学总复习解比例解方程专项练习解方程331223X-X= 2X + =70%X + 20%X = 3.6 X×=20×75545425% + 10X =331223X-X= 2X + =70%X + 20%X = 3.6 X×=20×75545425% + 10X =4355X - 15%X = 68X+X=121 X-3×= 582174355X - 15%X = 68X+X=121 X-3×= 5821731321X?? 3X=3 X÷=12 6X+5 =13.444834827732123= X+X=4X-6×=2 ÷X=X÷31321X?? 3X=3 X÷=12 6X+5 =13.4 448348 27732123= X+X=4X-6×=2 ÷X=510716843X÷71635 X = 2572 12x + 16x = 4 6X+5 =13.4解比例:x:10=14:130.4:x=1.2:20.8:4=x:8 36x=543x: 2.8:4.2=x:9.68:x=435:40.61.512x10∶50=x∶40 解方程84351089 X = 16×1651X÷ 635=2645×1325 4x-3 ×9 = 29 310X -21×23=4 x?14 x?202(x?2.6)?8 25 X-13 X=3104χ-6=38 5X=158419 21X=151231112.4=x2:5=4:x 34:x=3:121.25:0.25=x:1.629=8x24.563=6: 2425 x=2.2 45:x=18:26110:x=18:13142.8:4.2=x:9.6x:24= 4:358:16=x: 1120.6∶4=2.4∶x6∶x=115331442x∶51112452536∶x x∶1114=0.7∶21.3∶x=5.2∶20 x∶3.6=6∶18 11163209∶ x35 X = 257212x + 16x = 4 6X+5 =13.4解比例:x:10=14:130.4:x=1.2:20.8:4=x:8 3654x=3x: 2.8:4.2=x:9.68:x=435:40.61.512x 10∶50=x∶40 解比例:89 X = 16×1651X÷ 635=2645×1325 4x-3 ×9 = 29 3210X-21×3=4 x?14x?202(x?2.6)?8 25X-13 X=310 4χ-6=38 5X=158419 21X=15122.4=312:115=4:x 34:x=3:121.25:0.25=x:1.6289=x23=6: 2425 4.56x=2.2 45:x=18:261110:x=8:142.8:4.2=x:9.6x:24= 34:135118:6=x: 120.6∶4=2.4∶x6∶x=11533141142=x∶5 12452536∶x x∶11 14=0.7∶21.3∶x=5.2∶20 x∶3.6=6∶18 11163209∶ x11111123:0.4:x=1.2:2= :=:x 432542.4x3280.8:4=x:8 :x=3:121.25:0.25=x:1.6=49x4.562243654=x: =6: = 45:x=18:26325x2.2x3113112.8:4.2=x:9.6:x=:2.8:4.2=x:9.6x:24= :84431043511118:x=: :=x:0.6∶4=2.4∶x6∶x=x:10=11111123:0.4:x=1.2:2= :=:x 432542.4x3280.8:4=x:8 :x=3:121.25:0.25=x:1.6=4.562243654=x: =6: = 45:x=18:26325x2.2x3113112.8:4.2=x:9.6:x=:2.8:4.2=x:9.6x:24= :84431043511118:x=: :=x:0.6∶4=2.4∶x6∶x=x:10=540.6121.5x10∶50=x∶40解方程X- 237X=425% + 10X =4523X÷14=12 6XX÷277=16 35 X = 2572 12x + 16x = 4 6X +5 =13.4 解比例: 8612533412x∶451112452536∶x x∶1114=0.7∶21.3∶x=5.2∶20 x∶3.6=6∶18 11163209∶ x2X + 25 = 35 70%X + 20%X = 3.6 X×315=20×4+38X=121 X-3×5521=7 +5 =13.43X?134?8 3X=348X+7321238X=44X-6×3=2 5 ÷X=10811669 X = 6×51X÷ 35=2645×1325 4x-3 ×9 = 29 310X-21×23=4 x?14 x?202(x?2.6)?8 25 X-1315843 X=104χ-6=38 5X=19 21X=15548612530.6121.5x 3412=x∶45 111245251136∶x x∶14=0.7∶210∶50=x∶40 1.3∶x=5.2∶20 x∶3.6=6∶18 11163209∶ x解方程X- 27X=34 2X + 25 = 35 70%X + 20%X = 3.6 X×315=20×425% + 10X =45 X - 15%X = 68X+38X=121 X-3×521=5723X÷14=12 6X+5 =13.434X?134?8 3X=38X÷27=716 X+78X=344X-6×23=2 1235 ÷X=1035 X = 2572 89 X = 16×1651X÷ 6261335=45×25 4x-3 ×9 = 29 1122x + 6x = 4310X -21×3=4 x?14x?202(x?2.6)?8 6X+5 =13.4 21315845X-3 X=10 4χ-6=38 5X=19 21X=15X - 15%X = 68X篇三:最新人教版六年级解方程及解比例练习题人教版六年级解方程及解比例练习题学生姓名解比例:0.61.5113654123x:10=:= = x1243x32.4x11111283:=:x= :x=3:12 6∶x=∶2549x41.25:0.25=x:1.6 0.8:4=x:8 0.4:x=1.2:2x: 2244.563=6: 25x=2.245:x=18:262.8:4.2=x:9.6 1.3∶x=5.2∶20 2.8:4.2=x:9.6x:24= 34:138:x=435115:4 8:6=x: 12 3142x∶451112452536∶x x∶114=0.7∶1 211164.63209x 0.2=8x 3x8=64解方程X- 23237 X=45 = 5530.6∶4=2.4∶x x∶3.6=6∶1810∶50=x∶40 110:x=18:146∶1114=x∶2X-0.125X=8 X - 15%X = 68 4χ-6=38 4x-3 ×9 = 2935521325X+X=1215X-3×=X÷=12 X =834572217327736X+5 =13.4 3X= X÷=X+X=125 ÷X=310 X÷ 6261335=45×25310X-21×23=45X=15193255X=724+0.7X=102X×( 13136812 x889 X = 16×1651 4X12x + 16x = 4 25% + 10X = 21353 X=108 21X=415X89X=16×1651 X-0.25=23X+12X=42 X+-0.375x=56 x716-6×23=2 45 X×315=20×4 X+÷45=1528 14X-14X=105 ×23+132=4×8 X84X4=30% ÷635=2645÷132537 X=18213X÷4=1238X=400 363X= 4-37X=12人教版六年级解方程练习题学生姓名33215 X-2.4×5=8 0.36×5- 4532x- 0.8x = 16+620 x– 8.5= 1.56X+5 =13.4 70%X + 20%X = 3.6 X+25%X=90 XX×315=20×4 25% + 10X =23X÷14=126X3X=38X125÷X=3104x-3 ×9 = 29 X - 15%X = 686X2153310-387 X= 9X45 X+5 =13.4 x- ÷277=16 X3255 X = 72 1519 - 27 X=342X + +38X=121 5X45 x -4= 21 +738X=4 4X89 X = 16×1651 X+5 =13.44821X=4152535-3×521=5712x + 16x = 4-6×23=2÷ 6261335=45×25 χ-6=38 3210X-21×3=4X÷415213258116= X÷=12X= X=× 528345729651X÷3131X626=÷ X-0.25= =30% X+ X=1835452523X+12X=42X+X-0.125X=8 4+0.7X=102 5 XX×16 + 381312x0.36×5- 3345x- 0.8x = 16+6 20 xX-37 X= 89X×315=20×425% + 10X =414X=105 X--0.375x=56x23– 8.5= 1.570%X + 20%X = 3.6 x- 0.8x = 16+6 -23 7 X=42X + 45 X438X=400 -2.4×5=8 X×23+12=4×38 X1225 = 35+38X=1215X7363X = 4+25%X=90 -37X=1245 x -4= 21-3×5521=7人教版六年级练习题学生姓名一、计算下面各题,能简算的要简算. 2143233××3 5× ×× 4 × (3575545 + 7 )× 25 2184273132(20+ 5 )× 5 (9 +27)×27 6 ×(18×30)4×2+ 4 × 5 (3368- 8)× 1529×34+5327 × 4(24 + 8)× 13241-5 2114×2512×(75324+ 6 + 4 )二、解方程125÷X=310X÷ 635=2645×13251 ×(7 -2 5551663 )6 ×9 + 9 × 677 × 78 613 ×75 -613 × 25 75612 ×6 -12 × 6 25 × 24 21× 335 4520 37× 357-9× 71 + 6415 -2191924 × 66 ×(3 )20 × 199 × 20 4 34)(1317 ×(125 ×5 + 7)×7 ×53252135 X = 72 89 X = 16×165153 X=10 12x + 16x = 4 310X-21×213=4 x?4x?20。

2019-2020年六年级数学比和比例问题一题多解训练(I)

2019-2020年六年级数学比和比例问题一题多解训练(I)

2019-2020年六年级数学⽐和⽐例问题⼀题多解训练(I)2019-2020年六年级数学⽐和⽐例问题⼀题多解训练(I)1.在⽐例尺是1:6000000的地图上,量得两地之间的距离是3厘⽶,这两地之间的实际距离是多少千⽶(3种解法)2.甲、⼄、丙三个数的平均数是84,甲、⼄、丙三个数的⽐是3:4:5,甲、⼄、丙三个数各是多少?(2种解法)3.⼀个车间⼥职⼯⼈数⽐男职⼯⼈数少30⼈,男⼥职⼯⼈数之⽐是5:3,⼥职⼯有多少⼈?(3种解法)4.甲、⼄两列⽕车同时由相距765千⽶的两地相对⾏驶,甲、⼄两列⽕车速度的⽐是9:8,经过9⼩时相遇。

相遇时,甲车⾏了多少千⽶?(2种)5.五年级原有学⽣42⼈,男⽣和⼥⽣的⽐时4:3,后来⼜转来⼥⽣若⼲⼈,这时男⽣和⼥⽣的⽐是6:5,转来的⼥⽣有多少⼈?(2种)6.⼀辆汽车从甲城开往⼄城,3⼩时⼩时105千⽶,同样的速度⼜⾏了4⼩时才到达⼄城,甲城到⼄城有多少千⽶?(3种)7.甲做⼀个零件⽤5分钟,⼄做同样⼀个零件⽤9分钟,⼆⼈合做⼀段时间,共做84个零件,这时⼄做了多少个零件?(3种)8.第三机床⼚原计划8天⽣产⼀批零件,由于改进操作技术,每天⽐原计划多做5个,结果6天完成了任务,这批零件⼀共有多少个?(4种)9.右图是⼀个梯形地平⾯图(单位:厘⽶),求它的实际⾯积。

(2种)10.已知右上图梯形⾯积是12平⽅厘⽶,求阴影部分的⾯积。

(单位:厘⽶)(2种)11.某班共有学⽣49⼈,男⽣的65等于⼥⽣的54,男、⼥⽣各有多少⼈?(三种)12.甲、⼄、丙三⼈共做零件900个,甲做总数的30%,⼄⽐丙多做31,三⼈各做多少个?(2种)附送:2019-2020年六年级数学⽐的应⽤练习题⼀、细⼼填写:1、汽车商店销售⼩轿车140辆,⾯包车40辆。

⾯包车辆数是⼩轿车的();⼩轿车和⾯包车辆数的⽐是(),⽐值是()。

2、药和⽔的⽐是1:100,药占药⽔的(),⽔占药⽔的()。

3、直⾓三⾓形,两个锐⾓度数⽐是1:2,这两个锐⾓的度数分别是()和()。

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析1.(东山县)用一根长64厘米的铁丝,围成一个长与宽比是5:3的长方形框架,这个长方形框架围成的面积是多少?【答案】240平方厘米【解析】分析:根据“长方形的周长=(长+宽)×2”可得:先用“64÷2”求出长方形一条长和宽的和,再用按比例分配知识,求出长方形的长和宽,进而根据“长方形的面积=长×宽”进行解答即可.解答:解:64÷2=32(厘米),5+3=8,(32×)×(32×),=20×12,=240(平方厘米);答:这个长方形框架围成的面积是240平方厘米.点评:解答此题的关键是:根据按比例分配知识求出长方形的长和宽,进而根据长方形的面积计算公式进行解答.2.把20克农药放入到580克水中,农药和药水的比是..(判断对错)【答案】√.【解析】要明确农药放入水中变成药水,要求农药和药水的比是多少,只要求出药水的重量,根据题意,即可得出结论.解答:解:20:(20+580),=20:600,=1:30;故答案为:√.点评:此题做题的关键是先求出药水的重量,然后根据要求进行比,最后化成最简整数比即可.3.建筑工人用水泥、沙子、石子配成一种混凝土,水泥、沙子、石子的质量比是2:3:5。

要配制3000千克这样的混凝土,需要水泥、沙子、石子各多少千克?【答案】需要水泥600千克,需要沙子900千克,需要石子1500千克【解析】水泥、沙子、石子质量的比是2:3:5,那么水泥占2份,沙子占3份,石子占5份。

配成的混凝土一共是2+3+5=10(份)需要水泥的千克数列式为:3000×2/10=600(千克)。

需要沙子的千克数列式为:3000×3/10=900(千克)。

需要石子的千克数列式为:3000×5/10=1500(千克)。

解:2+3+5=10(份)3000×2/10=600(千克)3000×3/10=900(千克)3000×5/10=1500(千克)。

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析1.甲、乙、丙三人分一箱苹果.若按3:2:5或1:2:3分配,两种分法()分得一样多.A.甲 B.乙 C.丙【答案】C【解析】根据两种分配方法,分别求出两种方案中甲、乙、丙各分得总数的几分之几,分数值相同的及时分得糖果相同的.解答:解:第一种:3+2+5=10甲占:乙占:=丙占:=第二种:1+2+3=6甲占:乙占:=丙占:=所以两次丙分得的一样多.故选:C.点评:本题的关键是求出两次甲、乙、丙各占总份数的几分之几.2.:==80%=÷40=折=小数.【答案】4,5,50,32,八,0.8【解析】分析:80%可以化成,根据分数的性质,的分子和分母同时乘10可化成;用的分子4做比的前项,分母5做比的后项也可转化成比为4:5;用的分子4做被除数,分母5做除数可转化成除法算式为4÷5,根据商不变的性质,把被除数和除数同时乘8可化成32÷40;80%也就是八折;把80%的百分号去掉,把小数点向左移动两位可化成0.8;由此进行转化并填空.解答:解:4:5==80%=32÷40=八折=0.8.故答案为:4,5,50,32,八,0.8.点评:此题考查小数、分数、比、除法和百分数之间的关系和转化,也考查了分数的性质和商不变性质的运用.3.用一根长120米的钢筋,围成一个长方体的房间框架,已知长、宽、高的比是3:2:1,房间的长宽高分别是多少?若粉刷屋顶和四面墙壁,除去门窗20平方米,粉刷的面积是多少平方米?【答案】房间的长是15米、宽是10米、高是5米,粉刷的面积是480平方米.【解析】用一根长120米的钢筋,围成一个长方体的房间框架,已知长、宽、高的比是3:2:1,首先求得一条长、宽、高的和:120÷4=30厘米,进而求出长、宽、高的总份数,再求得长、宽、高所占总数的几分之几,最后求得长方体的长、宽、高分别是多少,列式解答即可;粉刷的是四面墙壁和顶棚,根据长方体的表面积的计算方法,求出这5个面的总面积减去门窗和黑板面积即可.据此解答.解答:解:长:120÷4×=30×=15(米)宽:120÷4×=30×=10(米)高:120÷4×=30×=5(米)15×10+(15×5+10×5)×2﹣20=150+(75+50)×2﹣20=150+250﹣20=400﹣20=480(平方米)答:房间的长是15米、宽是10米、高是5米,粉刷的面积是480平方米.点评:此题解答的关键字在于求出长、宽、高的和,再运用按比例分配的方法解决,还要搞清粉刷的是哪几个面,然后根据长方体的表面积的计算方法进行解答.4. 4:3的后项加上12,要使比值不变,前项应加上.【答案】16.【解析】比的后项加上12,扩大了5倍,根据比的基本性质,要使比值不变,比的前项也应扩大5倍,即乘上5,据此解答即可.解答:解:3+12=15,15÷3=5比的后项变成15,扩大了5倍,要使比值不变,比的前项也应扩大5倍;即比的前项应乘上5,或加上4×5﹣4=16.故答案为:16.点评:此题主要考查了比的基本性质的灵活应用.5. 1.2:化成最简整数比是,比值是.【答案】2:1,2.【解析】化简比是根据比的基本性质(比的前项和后项同时乘上或除以一个相同的数(0除外),比值不变),把比的前项和后项同时乘上或除以一个相同的不为0的数,使比的前项和后项变成互质数.求比值是用比的前项除以后项,小数化成分数进行计算,结果最好用分数表示.解答:解:化成最简整数比是:1.2:=:=:=():()=6:3=(6÷3):(3÷3)=2:1比值是:1.2:=:===2.故填:2:1,2.点评:化简比是把一个比化成最简单的整数比(前项和后项是互质数)的形式,求比值是求出比的值的大小.6.画一个周长是24厘米,长与宽的比是3:1的长方形.【答案】24÷2=12(厘米)12×=9(厘米)12×=3(厘米)据此画图如下:【解析】解:24÷2=12(厘米)12×=9(厘米)12×=3(厘米)据此画图如下:【点评】依据长方形的周长公式,分别计算出长方形的长和宽的值,是解答本题的关键.7. 10克药溶解在100克水中,药和药水的比是()A.1:10 B.1:9 C.1:11【答案】C【解析】将10克药放入100克水中,即可配制成10+100=110克药水,那么药和药水的比是10:110,然后化简即可.解:10:(10+100)=10:110=1:11答:药和药水的比是1:11.故选:C.【点评】此题解题的关键是看所求的问题是谁与谁比,然后根据题意进行解答,继而得出结论.8.男生与女生的人数比是6:5,男生比女生多()A. B. C.【答案】C【解析】男生与女生人数的比是6:5,把男生人数看作6份,则女生人数就是5份,就是求男生比女生多的人数占女生人数的几分之几,用男生比女生多的人数除以女生人数即可解答.解:(6﹣5)÷5=1÷5=;故选:C.【点评】求一个数比另一个数多或少百分之几,用这两数之差除以另一个数.9.在一个比例中,两个外项的积是,一个内项是3,另一个内项是.【答案】.【解析】根据比例的性质“在比例里,两内项的积等于两外项的积”,先确定出两个內项的积也是,进而根据一个内项是3,用除法计算即可求得另一个內项的数值.解:在一个比例中,两个外项的积是根据比例的性质,可知两个内项的积也是,其中一个内项是3,则另一个内项为÷3=.故答案为:.【点评】此题考查比例性质的运用:在比例里,两内项的积等于两外项的积.10.a=b则a:b= :.【答案】16,15.【解析】逆用比例的基本性质:在比例里,内项的积等于外项的积.解:因为a=b,所以a:b=:==16:15;故答案为:16,15.【点评】本题主要是灵活利用比例的基本性质解决问题.11.先化简比,再求比值.:0.9:0.36吨:375千克.【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项即得比值.解:(1):=(×):(×)=9:2;:=÷=;(2)0.9:0.36=(0.9÷0.18):(0.36÷0.18)=5:2;0.9:0.36="0.9÷0.36"=2.5;(3)吨:375千克=(×1000千克):375千克=250千克:375千克=(250÷125):(375÷125)=2:3;吨:375千克=(×1000千克):375千克=250千克:375千克=250÷375=.【点评】此题考查化简比和求比值的方法,要注意区分:化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个数,可以是整数、小数或分数.12.某繁华街道上,停着小轿车、小客车、公共汽车共200辆,这三种车的辆数比是2:3:5,每种车各有多少辆?【答案】小轿车有40辆,小客车有60辆,公共汽车有100辆.【解析】首先求得小轿车、小客车、公共汽车的总份数,再求得三种汽车占总数的几分之几,最后求得各自的辆数,列式解答即可.解:小轿车:200×=40(辆);小客车:200×=60(辆);公共汽车:200×=100(辆).答:小轿车有40辆,小客车有60辆,公共汽车有100辆.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.13.学校合唱队人数在40至60人之间,男生与女生的人数比是7:6,合唱队共有人.【答案】52.【解析】由“男生与女生的人数比是7:6”可知,总人数相当于7+6=13份,也就是说总人数是13的倍数,那么在“40﹣60”之间只有52符合题意,由此可知总人数就是52.解:由男女生人数的比是7:6可知:总人数是7+6=13(份),即总人数是13的倍数;又因为合唱队人数在40至60人之间,那么合唱队的人数就应是52;故答案为:52.【点评】此题是考查比的应用,要把比理解为几份和几份的比.14.把下面各比化成最简整数比24:16=0.45:0.3=0.375:=:=【答案】3:2;3:2;3:1;1:5.【解析】根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比.解:24:16=(24÷8):(16÷8)=3:2;0.45:0.3=(0.45÷0.15):(0.3÷0.15)=3:2;0.375:=(0.375×8):(×8)=3:1;:=(×6):(×6)=1:5.故答案为:3:2;3:2;3:1;1:5.【点评】此题考查化简比的方法,注意化简比的结果仍是一个比,它的前项和后项都是整数,并且是互质数.15.﹦0.6﹦ ÷40﹦12:﹦:15.【答案】3,24,20,9.【解析】把0.6化成分数并化简是;根据分数与除法的关系=3÷5,再根据商不变的性质被除数、除数都乘8就是24÷40;根据比与分数的关系=3:5,再根据比的基本性质比的前、后项都乘3就是9:15;都乘4就是12:20.解:=0.6=24÷40=12:20=9:15.故答案为:3,24,20,9.【点评】此题主要是考查除法、小数、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.16. 3: =24 :8=0.5.【答案】,4.【解析】根据比值的含义:比的前项除以后项所得的商叫做比值;可知:比的后项=比的前项÷比值,比的前项=比的后项×比值;据此解答.解:①3÷24=,所以应填;②0.5×8=4,所以应填4;故答案为:,4.【点评】根据比的前项、后项和比值三者之间的关系进行解答.17.从学校走到电影院,小明用8分钟,小红用10分钟,小明和小红的速度之比是4:5 .(判断对错)【答案】×【解析】把从学校走到电影院的路程看作单位“1”,根据“路程÷时间=速度”分别求出小明和小红的速度,进而根据题意求比即可判断.解:(1÷8):(1÷10),=:,=(×40):(×40),=5:4;故答案为:×.【点评】解答此题用到的知识点:(1)比的意义;(2)路程、时间和速度三者之间的关系.18.把下面各比化成最简单的整数比.8:12=0.25:0.45==【答案】2:3,5:9,2:1.【解析】(1)根据比的性质:把8:12的前项和后项同时除以4即可化成最简整数比;(2)根据比的性质:把0.25:0.45的前项和后项同时乘20即可化成最简整数比;(3)根据比的性质:把:的前项和后项同时乘8即可化成最简整数比;据此进行化简并计算.解:(1)8:12=(8÷4):(12÷4)=2:3;(2)0.25:0.45=(0.25×20):(0.45×20)=5:9;(3):=(×8):(×8)=2:1.故答案为:2:3,5:9,2:1.【点评】此题考查化简比的方法,是根据比的基本性质进行化简的,最简比是指比的前项和后项是互质数的比;要注意区分:化简比的结果仍是一个比;求比值的结果是一个数,可以是小数、分数和整数.19.当0.3a=5b(a、b均不为0)时,则b:a= :.【答案】3、50.【解析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.解:因为0.3a=5b,则b:a=0.3:5=3:50;故答案为:3、50.【点评】此题主要考查比例的基本性质的灵活应用.20.=15÷20= :24== (填小数).【答案】3,18,36,0.75.【解析】解答此题的突破口是15÷20,根据分数与除法的有关系15÷20=,将分数化简是;根据分数的基本性质,分子、分母都乘9就是;根据比与分数的关系=3:4,再根据比的基本性质比的前、后项都乘6就是18:24;15÷20=0.75,解:=15÷20=18:24==0.75.故答案为:3,18,36,0.75.【点评】此题主要是考查除法、小数、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.21.一个最简整数比的比值是0.15,这个最简比是(:)【答案】3,20.【解析】根据比的意义和比值的意义:两个数相除又叫做两个数的比,比的前项除以后项所得的商,叫做比值;可得:假设比的后项是1,则比的前项为0.15×1=0.15,则比为0.15:1,化成最简整数比即可.解:0.15:1=(0.15×20):(1×20)=3:20;故答案为:3,20.【点评】此题应根据比的意义和比的性质进行解答.22. 3.2:0.24的最简整数比是,比值是.【答案】40:3,.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:(1)3.2:0.24,=(3.2×100):(0.24×100),=320:24,=(320÷8):(24÷8),=40:3;(2)3.2:0.24,=3.2÷0.24,=,故答案为:40:3,.【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.23. 1.8:化成最简单的整数比是,比值是.【答案】6:1,6.【解析】(1)化简整数比时,应根据比的性质“比的前项和后项同时乘或除以相同的数(0除外),比值不变”,进行化简.(2)求比值时,应根据比的意义“两个数相除,叫做两个数的比”去算,用比的前项除以后项得出答案.解:1.8:=(1.8×10):(×10)=18:3=6:1;1.8:=1.8÷=1.8×=6;故答案为:6:1,6.【点评】化简整数比最后的答案是一个比,而求比值最后的答案是一个比值,它可以表示为一个整数、分数或小数.24.一条公路长120千米,其中上坡路、下坡路和平路的比是2:3:5,上坡路、下坡路和平路各是多少千米?【答案】上坡路是24千米,下坡路是36千米,平路是60千米.【解析】分别把上坡路、下坡路和平路的长度看作2份、3份和5份,则总份数为2+3+5=10份,利用按比例分配的方法,即可求解.解:120×=24(千米),120×=36(千米),120×=60(千米);答:上坡路是24千米,下坡路是36千米,平路是60千米.【点评】此题主要考查按比例分配的方法的灵活应用.25.男生人数的等于女生人数的,则男、女生人数的比是()A.4:5 B.5:4 C.:【答案】B【解析】由题意可知:男生人数×=女生人数×,于是即可逆运用比例的基本性质,即两内项之积等于两外项之积,即可求出它们的比.解:因为男生人数×=女生人数×,则男生人数:女生人数=:=5:4;故选:B.【点评】此题主要考查比例的基本性质的灵活应用.26.一个三角形的三个内角度数比是3:4:5,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形【答案】A【解析】根据三角形的内角和是180°,按照比例计算出角的度数,再判断.解:180°÷(3+4+5)=15°,则15°×3=45°;15°×4=60°;15°×5=75°;三个角都是锐角,所以这个三角形是锐角三角形.故选:A.【点评】解答此题应明确三角形的内角度数的和是180°,求出三个角的度数,然后根据三角形的分类判定类型.27.大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比..【答案】对【解析】根据圆周率的含义可知:任何一个圆的周长和它的直径的比值都是一个常数,通常用π来表示.解:任何一个圆的周长和它的直径的比值都是一个常数,通常用π来表示,所以大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比.答:大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比.故填:对.【点评】此题主要考查的是圆周率含义的应用.28. 0.2:0.8化成最简整数比是,比值是.【答案】1:4,0.25【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项,即得比值.解:(1)0.2:0.8=(0.2×10):(0.8×10)=2:8=(2÷2):(8÷2)=1:4;(2)0.2:0.8=0.2÷0.8=2÷8=1÷4=0.25;故答案为:1:4,0.25.【点评】此题考查化简比和求比值的方法,要注意区分:化简比是根据比的基本性质进行化简的,结果仍是一个比;求比值是用比的前项除以后项所得的商,结果是一个数.29.解方程.x:1.2=3:4; 3.2x﹣4×3=52; x+x=.【答案】(1)0.9;(2)20;(3).【解析】(1)根据比例的基本性质,原式化成4x=1.2×3,再根据等式的性质,方程两边同时除以4求解;(2)先化简方程,再根据等式的性质,方程两边同时加上12,再两边同时除以3.2求解;(3)先化简方程,再根据等式的性质,方程两边同时除以求解.解:(1)x:1.2=3:44x=1.2×34x÷4=3.6÷4x=0.9;(2)3.2x﹣4×3=523.2x﹣12=523.2x﹣12+12=52+123.2x=643.2x÷3.2=64÷3.2x=20;(3)x+x=x=x=x=.【点评】解答方程的依据是等式的性质,同时应注意“=”号上下要对齐.30.甲、乙两地相距600千米,卡车和货车同时从两地相向开出。

数学比和比例的应用试题答案及解析

数学比和比例的应用试题答案及解析

数学比和比例的应用试题答案及解析1.有两堆煤,原来第一堆和第二堆的比是15:7,从第一堆运走后,这时第二堆还比第一堆少3.5吨,第一堆原有煤多少吨?【答案】10.5【解析】原来第一堆与第二堆存煤量的比是15:7,从第一堆运走后,则两堆煤的比变为15×(1﹣):7=12:7,此时第二堆比第一堆少3.5吨,则第一堆煤中12份中的其中一份重3.5÷(12﹣7)=0.7吨,所以第一堆煤原有0.7×15=10.5吨.解:15×(1﹣):7=12:7,3.5÷(12﹣7)=0.7吨,0.7×15=10.5吨.答:第一堆原有煤10.5吨.点评:根据从第一堆运走后,第一堆煤与第二堆煤的比求出第一堆煤12份中的一份的重量,是完成本题的关键.2.食堂有一堆煤,烧掉的和剩下的煤的质量比是3:5,已知烧掉270千克,还剩多少千克?(用比例解)【答案】450【解析】由题意可知:烧掉的和剩下的煤的质量比是一定的,则烧掉的和剩下的煤的质量成正比例,据此即可列比例求解.解:还剩x千克,270:x=3:5,3x=270×5,3x=1350,x=450;答:还剩450千克.点评:解答此题的关键是,弄清楚哪两种量成何比例,列比例解答即可.3.幼儿园买来260块糖,分给大、中、小三个班.大班和中班分得糖果的比是3:4,中班和小班分得的比是2:3,大、中、小三个班的各分得糖果多少块?【答案】大班分60块,中班分80块,小班分120块糖果.【解析】大班和中班分得糖果的比是3:4,中班和小班分得的比是2:3,可知大、中、小三个班分的糖数的比是3:4:6,然后根据比与分数的关系,分别求出三个班各占糖数的几分之几,再根据分数乘法的意义列式解答.解:因中班和小班分得的比是2:3=4:6,所以大、中、小三个班分的糖数的比是3:4:6,大班分的糖果是:260×=60(块),中班分的糖果是:260×=80(块),小班分的糖果是:260×=120(块).答:大班分60块,中班分80块,小班分120块糖果.点评:本题的关键是求出三个班分的糖果数的比,然后再根据比与分数的关系,求出各班分的占总数的几分之几,再根据分数乘法的意义列式解答.4.某校男生占全校学生总数的60%还少63人,男生比女生多26人,六年级中男生与女生人数的比是35:31,男生比女生多8人,其他年级中女生有多少人?【解析】设全校女生为x人,男生比女生多26人,则全校男生有x+26人,全校人数有x+x+26人,又男生占全校学生总数的60%还少63人,(x+x+26)×60%﹣63也是男生人数,由此可得等量关系式:(x+x+26)×60%﹣63=x+26.解此方程即能求出全校女生人数.六年级中男生与女生人数的比是35:31,即男生是女生的,则男生比女生多﹣1,所以六年级女生有8÷(﹣1)人.求出全校女生人数与六年级女生人数后,即能求得其他年级女生有多少人.解:设全校女生为x人,可得方程:(x+x+26)×60%﹣63=x+26(2x+26)×60%﹣63=x+26,1.2x+15.6﹣63=x+26,0.2x=73.4,x=367.8÷(﹣1)=8,=62(人).367﹣62=305(人).答:其他年级中女生有305人.点评:首先通过设未知数,根据条件列出等量关系式求出全校女生人数是完成本题的关健.5.三种动物赛跑.已知狐狸的速度是兔子的,兔子的速度是松鼠的2倍,狐狸、兔子、松鼠的速度比是.若已知狐狸每分钟比松鼠多跑14米,那兔子半分钟比狐狸多跑米.【答案】4:6:3、14.【解析】(1)由题意可知:狐狸的速度=兔子的速度×,兔子的速度=2×松鼠的速度,利用等量代换的方法,即可求出狐狸、兔子、松鼠的速度比.(2)由“狐狸每分钟比松鼠多跑14米”可知,狐狸与松鼠的速度相差14米,再据兔子与狐狸的速度比,即可求出兔子半分钟比狐狸多跑的路程.解:(1)由题意知:狐狸的速度=兔子的速度,兔子的速度=2×松鼠的速度,所以:狐狸的速度:兔子的速度=2:3=4:6,兔子的速度:松鼠=的速度=2:1=6:3因此狐狸的速度:兔子的速度:松鼠的速度=4:6:3;(2)因为14÷(4﹣3)=14÷1,=14(米/分),则 14×(6﹣4)÷2,=28÷2,="14" (米);答:狐狸、兔子、松鼠的速度比是4:6:3;兔子半分钟比狐狸多跑14米.点评:(1)依据已知比,利用利用等量代换的方法,即可求出狐狸、兔子、松鼠的速度比.(2)依据三者的速度比,先求出狐狸与松鼠的速度差,再由兔子与狐狸的速度比,即可求解.6.某养兔专业户养了白、黑和灰三种颜色的兔、白兔和只数占总支数的,黑兔与灰兔只数的比是3:5,已知黑兔比灰兔少64只.三种兔各养了多少只?【答案】白兔有144只,黑兔有96只,灰兔有160只.【解析】因为黑兔与灰兔只数的比是3:5,所以黑兔比灰兔少5﹣3=2份,是64只,用64除以2就可以求出每一份的只数,再分别乘黑兔和灰兔的份数就可以求出灰兔和黑兔的只数;又因为白兔的只数占总只数的,则灰兔和黑兔共占总数的(1﹣),用黑兔和灰兔的总只数除以所占的分率即可求出兔的总只数,再乘就是白兔的只数.解:64÷(5﹣3),=64÷2,所以黑兔有:32×3=96(只);灰兔有:32×5=160(只);白兔有:(160+96)÷(1﹣)×,=256÷×,=144(只).答:白兔有144只,黑兔有96只,灰兔有160只.点评:解决本题的关键是根据黑兔和灰兔的数量差求出每一份的只数;再根据所占的总只数的分率求出总数.7.两个相同的瓶子里装满一种药水,一个瓶中药与水的体积之比是3:1,另一个瓶中药与水的体积之比是4:1,.如果把这两瓶药水混合,混合药水中药与水的体积之比是多少?【答案】31:9.【解析】根据题意,把两瓶溶液混合后,中药与水的体积之和没变,把两个瓶子的容积分别看作一个单位,求出中药和水各占瓶子容积的几分之几,然后再求混合溶液中中药和水的体积之比是多少即可.解:将一个瓶子容积看成一个单位,则在一个瓶中,中药占:,水占1﹣;另一瓶子中药占:,水占:1﹣=;于是在混合溶液中,中药和水的体积之比是:():(),=,=31:9;答:混合药水中药与水的体积之比是31:9.点评:解答此题关键是理解两瓶药水溶液混合后中药和水的体积没变.8.配制一种盐水,盐和水的质量比是1:25.(1)25克盐需要加水多少克?(2)1000克水需要加盐多少克?【答案】625,40.【解析】盐和水的质量比是1:25,就是1份质量的盐需要25份质量的水.(1)25克盐需要就需要25个25份质量的盐;(2)1000克水里面有多少个25克,就需要多少克盐.解:(1)25×25=625(克)答:25克盐需要加水625克.(2)1000÷25=40(克)答:1000克水需要加盐40克.点评:本题是考查比的应用,此种解答方法是比较简单的一种方法,也可根据盐、水在分别占这种盐水的几分之几,及给出的盐、水的质量,用分数除法解答9.五(1)班男、女生人数比是12:11,又转来4名女生后,全班共有50人.求现在男、女生的人数比.一杯盐水200克,其中盐与水的比是1:24,如果放入4克盐,这时盐与水的比是多少?【答案】男、女生的人数比是12:13.盐与水的比是1:16.【解析】(1)因为五(1)班男、女生人数比是12:11,所以男生占原来全班人,50﹣4=46人的,用乘法即可求出男生人数,用50减去男生人数就是女生人数,进而用除法即可求出男、女生人数之比;(2)因为原来盐与水的比是1:24,所以盐是200克盐水的,用乘法即可求出原来盐的质量,进而加4就是现在水的重量;用原来盐水的重量减去原来盐的质量就是水的重量,用除法即可求比.解:(1)男生有:(50﹣4)×,=46×,=24(人);女生有:50﹣24=26(人);男生、女生的比为:24:26=12:13.答:现在男、女生的人数比是12:13.(2)原来盐的重量:200×=8(克);水的重量:200﹣8=192(克);现在盐与水的比是:(8+4):192=12:192=1:16.答:这时盐与水的比是1:16.点评:此题主要考查比的灵活运用,将比转换成分数,再用按比例分配的方法解答.10.甲乙两车间要加工一批面粉,实际完成计划的130%甲乙两车间完成任务的比为8:5,乙车间比甲车间少加工面粉13.5吨.原计划加工的面粉是多少吨?【答案】45【解析】因为甲乙两车间完成任务的比为8:5,那么乙车间就比甲车间多完成8﹣5=3份,又因为乙车间比甲车间少加工面粉13.5吨,所以用13.5吨除以3就可以求出一份是多少,再乘总共完成的份数8+5=13份就是实际完成的总数,又因为实际完成的总数=原计划×130%,求原计划加工数量用除法解答即可.解:13.5÷(8﹣5)×(8+5),=13.5÷3×13,=4.5×13,=58.5(吨);原计划:58.5÷130%=45(吨).答:原计划加工的面粉是45吨.点评:解决本题的关键是通过比得出每一份是多少,进而求出实际总数量是多少.11.盐与水的质量比是2:13,其中盐有6克,一共配制多少克盐水?【答案】45【解析】因为盐与水的质量比是2:13,所以配制成的盐水一共是2+13=15份,用盐的质量除以2就是每一份的质量,再乘15就是盐水的质量.解:6÷2×(2+13),=3×15,=45(克).答:一共配制45克盐水.点评:解决本题的关键是用盐的质量除以盐的份数求出每一份的质量.12.鸡有210只,鸡的只数和鸭的只数比是2:5.鸭有多少只?【答案】525【解析】已知“鸡的只数和鸭的只数比是2:5,鸡的只数是鸭的只数,用除法解答即可.解:210÷,=210×,=525(只);答:鸭有525只.点评:关键是把比转化为分数,再根据基本的数量关系解决即可.13.小明读一本故事书,已读页数和未读页数的比是3:5,他已经读完21页,还有多少页没有读?【答案】35【解析】”已读页数和未读页数的比是3:5“,未读的页数就是已读页数的,已读的页数是21,没读的页数就是21页的.据此解答.解:21×=35(页);答:还有35页没有读.点评:本题的关键是根据比与分数的关系求出未读的页数就是已读页数的几分之几,再根据分数乘法的意义列式解答.14.三个同学跑步,甲、乙、丙的速度比是4:3:2.甲跑了600米,乙比丙多跑多少米?【答案】150【解析】用甲跑的米数除以甲的份数求得一份的米数,再求出乙比丙多跑的份数,继而求出乙比丙多跑的米数.解:600÷4×(3﹣2),=150×1,=150(米);答:乙比丙多跑150米.点评:此题解答关键是把比转化为份数,先求一份的数,再求几份的数.15. 19世纪初的法国数学家拉普拉斯经过研究发现,在不同的地区男婴和女婴的出生人数比大致是相同的.下表是去年我国A、B、C三座城市的男女婴出生人数比.哪个城市男女婴出生人数的差异最大?哪个城市男女婴出生人数的差异最小?【答案】A城市男女婴出生人数的差异最大,C城市男女婴出生人数的差异最小.【解析】要求男女婴出生人数的差异大小,用比的前项除以后项,看比值的大小即可.解:A城市:113÷100=1.13,B城市:27÷25=1.08,C城市:43÷40=1.075,1.13>1.08>1.075;答:A城市男女婴出生人数的差异最大,C城市男女婴出生人数的差异最小.点评:此题采用了求比值的方法,通过比较比值的大小,解决问题.16.有两根绳子,较长的一根为10米.两根绳子都剪掉同样的长度后,剩下部分的长度比为2:1,两根绳子再次剪掉与上次剪掉的同样长度,剩下部分的长度比为3:1.问:较短的那根绳子原来长多少米?【答案】6【解析】两根绳子都剪掉同样的长度,并且两次剪的长度也相同,我们可以把每次剪掉的部分看作已知的,用数a来表示,根据题中告诉我们的第一次剪完后剩下的长度比是2:1可以算a的值,将a的值代入第二次剪后剩下的长度比是3:1即可求短的那根绳子原来长多少米.解:设较短的那根绳子原来长x米,由题意得:(10﹣a ):(x﹣a )=2:1,10﹣a=2x﹣2a,a=2x﹣10,将a=2x﹣10代入(10﹣2a ):(x﹣2a)=3:1,可得:[10﹣2(2x﹣10)]:[x﹣2(2x﹣10)]=3:1,[10﹣4x+20]:[x﹣4x+20]=3:1,(30﹣4x):(20﹣3x)=3:1,30﹣4x=60﹣9x,5x=30,x=6;答:较短的那根绳子原来长6米.点评:解答这类题目,关键是把中间量看作已知数参与计算,根据题中的数量关系列出比例进行解答即可.17.一辆汽车从甲城开往乙城,3小时行驶105km.用同样的速度又行驶了1.2小时到达乙城,甲城到乙城有多少千米?(用比例解)【答案】147【解析】根据速度一定,路程与时间成正比例,由此列出比例解决问题.解:设甲、乙两地相距x千米,105:3=x:(3+1.2),3x=105×(3+1.2),3x=441,x=147;答:甲城到乙城有147千米.点评:解答此题的关键是,根据题意及路程、速度与时间的关系,判断路程与时间成正比例,注意1.2小时是在前面3小时行驶后又行驶的时间,不是总路程对应的时间.18.一辆快车和一辆慢车从甲地到乙地所用的时间比是3:5,现在快车和慢车分别同时从两地相向而行,经过2时相遇.已知慢车每小时行60千米,甲乙两地相距多少千米?【答案】320【解析】快车和慢车从甲地到乙地所用的时间比是3:5,依据路程一定,时间和速度成反比,可得快车和慢车的速度比是5:3,先求出快车的速度,再根据路程=速度×时间即可解答.解:(60÷3×5+60)×2,=(100+60)×2,=160×2,=320(千米),答:甲乙两地相距320千米.点评:等量关系式:路程=速度×时间,是解答本题的依据,关键是求出快车的速度.19.甲乙两队共210人,如果从乙队调出的人去甲队,那么现在甲乙两队人数比是4:3,甲队原有多少人?【答案】110【解析】设乙队原有x人,甲队就有210﹣x人,从乙队调出的人去甲队后,乙队就有x﹣x 人,甲队就有210﹣x+x人,此时甲乙两队人数比是4:3,也就是说乙队人数是甲队人数的,据此可列方程:(x﹣x)=(210﹣x+x)×,依据等式的性质,求出乙队原来人数,最后用总人数减乙队原有人数即可解答.解:设乙队原有x人,x﹣x=(210﹣x+x)×,x=﹣x,x+x=﹣x x,x=,x=100,210﹣100=110(人),答:甲队原有110人.点评:解答本题用方程比较简便,只要设其中一个量是x,再用x表示出另一个量,依据数量间的等量关系列方程即可解答.20.她俩各剪了多少朵?【答案】王芬剪了15朵花,张洁剪了24朵花.【解析】先求出王芬和张洁剪花的数量各占总数量的几分之几,再用乘法解答.解:39×=15(朵),39×=24(朵);答:王芬剪了15朵花,张洁剪了24朵花.点评:本题关键是先通过它们的比求出各占总数的几分之几.21.甲、乙两车从相距560千米的两地同时出发,相向而行,已知甲、乙两车的速度比是4:3,4小时后两车相遇.甲车每小时行多少千米?【答案】80【解析】根据题意,两车的速度和为每小时560÷4=140千米,然后根据甲、乙两车的速度比,解决问题.解:560÷4×,=140×,=80(千米/小时);答:甲车每小时行80千米.点评:先求出速度和,再据速度比,运用按比例分配的方法解决问题.22.三个中队的少先队员拾废钢铁,第一中队拾的占总数的25%,第二中队拾的与第三中队拾的千克数的比是7:8,第一中队比第三中队少拾45千克,第三中队拾了多少千克?【答案】120【解析】根据题意,把总数看作单位“1”,第二中队与第三中队拾的千克数占总数的1﹣25%=75%=,由“第二中队拾的与第三中队拾的千克数的比是7:8”,则第三中队拾总数的×=.由此可知第一中队比第三中队少拾总数的﹣25%,即﹣=,正好少拾45千克,因此总数为45÷=300千克,则第三中队拾了300×千克,解决问题.解:第三中队拾总数的(1﹣25%)×,=×,=;三个中队共拾废钢铁:45÷(﹣25%),=45÷(﹣),=45÷,=45×,=300(千克);第三中队拾了:300×=120(千克);答:第三中队拾了120千克.点评:此题关系较复杂,解答此题,首先找清单位“1”,进一步理清解答思路,列式的顺序,从而较好的解答问题.23.小玲参加数学竞赛,全卷总题数是36题,小玲做对题数与做错题的比是7:2.小玲做错了多少题?【答案】8【解析】把全部的题目看成单位“1”,那么做错的题目就是全部题目的,它的数量用乘法求解.解:36×=8(题);答:小玲做错了8题.点评:解答此题关键找出单位“1”,分析出数量关系,再根据已知选择合适的解法解决问题.24.六一班男生人数与女生人数比是4:5,已知女生比男生多3人,男女生各多少人?【答案】男生12人,女生15人.【解析】男女生人数的比是4:5,全班总人数看作单位“1”,把全班总人数平均分成4+5=9(份),男生占4份,即男生占总人数的,女生人数占5份,即女生占总人数的,又知女生比男生多3人,由此可求出3人占全班总人数的(﹣),根据已知一个数的几分之几是多少,求这个数,用除法计算,求出全班总人数,进而求出男女生各多少人.解:4+5=9(份)3÷(﹣)=3÷=3×9=27(人),27×=12(人),27﹣12=15(人),答:男生12人,女生15人.点评:此题解答关键是把全班人数看作单位“1”,把比转化为份数,求出女生占全班人数的几分之几,用除法列式解答求出全班总人数.25.甲、乙两个仓库货物的重量比是7:5,如果甲仓给乙仓26吨,那么甲、乙两个仓库货物的重量比是3:4.甲仓原来有多少吨货物?【答案】98【解析】根据题意得出:原来甲占两仓总数的:7÷(7+5)=,现在甲占总数的:3÷(3+4)=,甲减少的26吨占总数的(),用除法即可求出原来两个仓库货物的总重量,进而用总重量×即可求出甲仓原有的货物重量.解:原来甲占总数的:7÷(7+5)=,现在甲占总数的:3÷(3+4)=,原来甲仓有:26÷()×,=26÷×,=98(吨).答:甲仓原来有98吨货物.点评:解答此题的关键是,根据甲、乙两个仓库存粮总吨数不变,将单位“1”统一,再找出对应量,列式解决问题.26.甲乙两地距离是120千米,甲乙两地之间有一个加油站,加油站距甲乙两地的距离比是1﹕5,乙地和加油站之间的距离是多少千米?【答案】100【解析】根据题意,把甲乙两地的距离平均分成5+1=6份,那么甲地到加油站的距离占了1份,乙地到加油站的距离占了5份,可用120除以6计算出每份的距离,然后再乘5即可得到乙地和加油站的距离.解:5+1=6,120÷6×5=20×5,=100(千米),答:乙地和加油站之间的距离是100千米.点评:本题的关键是根据按比例分配的知识,求出甲乙两地共平均可以分的份数,计算出每份的距离,然后再乘5即可解答.27.一对互相咬合的齿轮,主动轮有80个齿,每分钟转60圈,要使从动轮每分钟转200圈,从动轮应有多少个齿?(用比例解)【答案】24【解析】由于两齿轮啮合时它们必须在相同时间内转过相等的齿数,设从动齿轮有X个齿,则有:80×60=X×200,就可解答此题.解:设从动轮应有X个齿.X×200=80×60200X=4800,X=24.答:从动轮应有24个齿.点评:此题应先判断齿轮的齿数与每分钟转的圈数是成什么比例的量,列比例解答.28.甲、乙两城相距486千米,一列客车和一列货车同时由两地相对开出,4.5小时相遇.已知客车的速度和货车速度的比是2:1.客车和货车的速度各是多少千米?【答案】36【解析】“客车的速度和货车速度的比是2:1”,客车速度就占了两车速度和的,货车速度占了两车速度和的,两车的速度和可根据速度=路程÷时间求出.据此解答.解:客车的速度486÷4.5×,=108×,=72(千米/小时),货车的速度486÷4.5×,=108×,=36(千米/小时),答:客车的速度是72千米/小时,货车的速度是36千米/小时.点评:本题的重点是求出两车的速度和,再根据按比例分配的知识进行解答.29.请按3:1的比画出A放大后的图形,再按1:2画出B缩小后的图形.【答案】(1)按3:1的比将A放大后的图形:(2)按1:2将B缩小后的图形:(阴影部分)【解析】(1)将图A的底和高同时扩大3倍,即能得到3:1的比画出A放大后的图形;(2)图B的底和高同时缩小2倍,即能得到按1:2画出B缩小后的图形.由此作图即可.点评:完成本题要进行实际测量.30.一块长方形的土地,长与宽的比是7:3,宽比长少24米,这块土地的面积是多少平方米?【答案】756平方米.【解析】“长和宽的比是7:3”,每份的长为24÷(7﹣3)=6(米);则长为6×7=42(米),宽为6×3=18(米).面积为:42×18=756(平方米).解:24÷(7﹣3)=6(米);6×7=42(米),6×3=18(米).42×18=756(平方米).答:这块土地的面积是756平方米.点评:此题考查了学生按比例分配的知识,以及长方形的面积等方面的知识.31.老师用一根长72厘米的铁丝围了一个三角形,这个三角形三条边长度的比是5:4:3,这个三角形三条边各是多少厘米?【答案】各是30厘米,24厘米,18厘米.【解析】本题要先根据边长的比求出各边占三角形周长的几分之几,然后再求出各边的长度.解:72×=72×=30(厘米),72×=72×=24(厘米),72×=72×=18(厘米),答:这个三角形三条边各是30厘米,24厘米,18厘米.点评:本题的关健是根据三条边的比求出它们各占周长的分率.32.水果店运来苹果和梨,苹果和梨的比是7:2,苹果比梨多35千克,运来苹果和梨各多少千克?【答案】苹果49千克,梨14千克.【解析】分别把苹果和梨的重量看作7份和2份,则苹果比梨多7﹣2=5份,又因苹果比梨多35千克,所以可以求出1份是多少,进而就可以求出苹果和梨的重量.解:35÷(7﹣2)=7(千克);7×7=49(千克),2×7=14(千克);答:运来苹果49千克,梨14千克.点评:解答此题的关键是利用份数解答,求出苹果比梨多的份数,即可求出1份的量,从而问题得解.33.一种喷洒果树的药水,农药和水的质量比是2:75.现有300克农药,能配这种药水多少千克?【答案】11.55【解析】首先求得农药和水的总份数,再求得农药占药水总数的几分之几,最后求得药水多少千克,列式解答即可.解:2+75=77(份),300÷=11550(克),11550克=11.55千克;答:能配这种药水11.55千克.点评:此题主要考查按比例分配应用题的特点:已知两个数的比,和其中一个数,求这两个数的和,用按比例分配解答.34.小雅读一本名著,第一天读了一部分后,已读的页数与未读页数的比是5:7,第二天又读了92页,这时已读的页数是未读页数的4倍.第一天读了多少页?【答案】192【解析】把这本书看作单位“1”,由“已看页数与未看页数的比为5:7”可知,第一天看了全部的再由“第二天又看了92页,这时已看的页数是未看页数的4倍”得到,第二天看了全部的,92页对应得分率就是(﹣),用对应量,92除以对应分率,就是这本书的总页数,进而求出第一天读的页数.解:92÷(﹣)×,=92÷×,=192(页);答:第一天读了192页.点评:解决此题的关键是把比转化为分数,统一单位“1”,求出92页的对应分率,用对应量除以对应分率就是这本书的总页数.35.装一批电杆,每天装12根,30天装完,如果每天装15根,只要多少天装完?【答案】24【解析】根据题意可知,这批电杆的总根数一定,也就是每天装的根数与所用时间的积一定,因此每天装的根数和所用天数成反比例.由此解答即可.解:设只要x天装完,15x=12×30,15x=360,x=24;答:只要24天装完.点评:此题属于比例应用题,解答关键是判断题中的两种相关联的量成什么比例,如果两种相关联的量对应的积一定,那么这两种相关联的量就成反比例;如果两种相关联的量对应的比值一定,那么这两种相关联的列就成正比例;由此解答.36.列式计算.(1)一堆重200吨的煤分两天运完,第一天运了这堆煤的45%,第二天还应运多少吨?(2)教室长8米,宽6米,高4米.要粉刷教室的屋顶和四壁(除去门窗和黑板面积25.4平方米),粉刷的面积是多少?(3)一堆货物80吨,3天运走这堆货物的75%,照这样计算,运走这堆货物共需要多少天?(4)一个正方体的玻璃容器,往里面倒入5升的水,水面高8厘米,再把一块石头放入水中,这时量的容器内的水深15厘米.求石头的体积.【答案】(1)200×(1﹣45%);(2)8×6+8×4×2+6×4×2﹣25.4;(3)1÷(75%÷3);(4)5升=5000立方厘米,5000÷8×(15﹣8).【解析】(1)把煤的总重量看成单位“1”,第二天运的重量是总重量的(1﹣45%),由此用乘法求出第二天运的吨数;(2)把这个教室看成长方体,要粉刷的是面积是这个长方体5个面的面积,缺少下底面,求出这5个面的面积和,然后减去门窗和黑板的面积即可;(3)把这堆货物看成单位“1”,3天运走了75%,先求出每天运这堆货物的百分之几;然后用总量1除以每天运走的百分数就是需要的天数;(4)放入石头后,上升部分的水的体积就是石块的体积;先根据原来的体积求出正方体的底面积,然后再求出上升的水面的高度,进而求出这部分的体积.解:(1)200×(1﹣45%);(2)8×6+8×4×2+6×4×2﹣25.4;(3)1÷(75%÷3);(4)5升=5000立方厘米,5000÷8×(15﹣8).点评:这类型的题目要分清楚数量之间的关系,先求什么再求什么,找清列式的顺序,列出算式求解.37.甲、乙两人原来的钱数的比是3:4,后来甲给乙50元,这时甲的钱数是乙的.甲、乙原来各有多少元钱?【答案】甲原来有225元,乙原来有300元【解析】甲乙原先的钱数比是3:4,现在甲的钱数是乙的;甲原先的钱数占甲乙两人总钱数的,甲现在的钱数占甲乙两人总钱数的;那么50元占甲乙两人总钱数的﹣=,前后甲乙两人总钱数不变,为50÷=525(元).那么,甲原有钱数为525×=225(元),乙的钱数就好求了.解:甲乙总钱数:50÷(﹣),=50÷,=525(元);甲原有钱数:525×,=525×,=225(元);乙原有钱数:525﹣225=300(元).答:甲原来有225元,乙原来有300元.点评:此题解答的关键在于先求出甲、乙两人的总钱数,然后用按比例分配的方法,解决问题.38.一台磨粉机6小时磨面粉750千克.照这样计算,磨3000干克面粉,需要多少小时?【答案】磨3000干克面粉,需要24小时【解析】根据工作总量÷工作时间=工作效率,可算出这台磨粉机的工作效率,再由工作总量÷工作效率=工作时间,直接列式解决问题.解:750÷6=125(千克),3000÷125=24(小时),答:磨3000干克面粉,需要24小时.点评:此题考查了工作效率、工作时间、工作总量之间的数量关系.39.学校把植树任务按3:5分配给四、五两个年级.五年级栽了108棵,超过了原分配任务的,四年级原来要植树多少棵?。

(完整版)复杂的比和比例应用题(一题多解)(附答案)

(完整版)复杂的比和比例应用题(一题多解)(附答案)

时完成。

已知甲、乙的工作效率比是7:5,求甲每小时加工零件多少个?例2客车和货车分别从甲、乙两地同时相对开出,经过若干小时后在途中相遇,相遇后又行5小时货车到达甲地,这时客车到乙地后又掉头行了甲、乙两地距离的25%。

客车和货车从出发到相遇用了多少小时?解:客车和货车的速度比:(1+25%):1=5:4行完AB这段路程客车和货车所需的时间比:4:5相遇时间:5÷5×4=4小时练习21.甲、乙两车的速度比是5:8,两车同时从A、B两地相对出发,在距中点24千米处相遇。

两地相距多少千米?【提示:相遇时甲、乙两车所行路程比与其速度比相同。

】2.甲、乙两车同时从A、B两地相向而行,5小时相遇,相遇后甲车又行4小时到B地,这时乙车离A地还有60千米。

A、B两地相距多少千米?【提示:同一段路程,乙用5小时,甲用4小时,则甲和乙的速度比是5:4,即相同时间内所行路程比是5:4.】2.师、徒二人加工零件,师傅加工3000个零件比徒弟加工2400个零件多用2小时,又知师傅和徒弟的工作效率比是6:5。

徒弟每小时加工多少个零件?【提示:工作效率比是6:5,若都按徒弟加工完2400个零件的时间工作,其工作总量比也应是6:5】例3一把小刀售价3元。

如果小明买了这把小刀,那么小明剩下的钱数与小强的钱数之比是2:5;如果小强买了这把小刀,那么两人的钱数之比是8:13.小明原有多少元钱?【思路点拨】两人原有钱数和一定,所以谁无论买了小刀后二人的钱数和应不变。

2+5=7,8+13=21,21是7的3倍。

2:5=6:15,对比“6:15”和“8:13”可看出每把小刀的钱数是8-6=2份。

解:3/(8-2*3)*8=12(元)答:小明原有12元。

练习31.甲、乙两袋糖的质量比是4:1,从甲袋中取出13千克糖放入乙袋,这时两袋糖的质量比是7:5.求两袋糖的质量之和?2.兄弟两人共带200元钱去书店买参考书,回家后两人剩下的钱数正好相等。

小学六年级解比例练习题及答案

小学六年级解比例练习题及答案

小学六年级解比例练习题及答案精品文档小学六年级解比例练习题及答案解比例: x:10=: 0.4:x=1.2: =:=:x0.8:4=x:81.25:0.25=x:1.6x: =6:2.8:4.2= .8:4.2=x:9.60(6?4,2.4?x34?12,x?45== 5:x=18:2?x,15?131112?45,2536?x :x=3:1=0.612,1.5x人教版小学六年级比和比例单元测试一、想一想,填一填。

1、如果5a=4b,那么a?b=?如果a?0.5=8?0.2,那么a=2、?=24?1.5?3,?3.43、一个数与它的倒数成比例。

4、大圆的直径是4厘米,小圆的直径是2厘米,大圆和小圆面积最简单的整数比是。

5、白兔与灰兔只数的比是7?6,白兔56只,灰兔6、三角形的面积一定,它的底和高成比例。

1 / 8精品文档17、在一个比例中,两个外项互为倒数,其中一个内项是,则另一个内项是。

8、右边的比例尺表示图上1厘米相当于地面实际距离千米,把它改写成数值比例尺是?。

9、每台电视机的价格一定,购买电视机的台数和钱数成比例。

10、一幢楼的模型高度是7厘米,模型高度与实际高度的比是1?400,楼房的实际高度是米。

二、请你来当小裁判。

1、把一个比的前项扩大2倍,后项缩小2倍,这个比的比值不变。

2、由2、3、4、5四个数,可以组成比例。

3、汽车的速度一定,所行路程和时间成正比例。

4、每小时织布米数一定,织布总米数和时间成反比例。

5、圆的半径和它的面积成正比例。

三、选择正确答案的序号填在括号内。

1、一个长4cm,宽2cm的长方形按4?1放大,得到的图形的面积是cm。

A、3B、72C、128112、与 ? 能组成比例的是。

62 / 8精品文档111111 A、? 、 ?、 ?6432233、如果y=x,x和y比例。

A、成正B、成反C、不成只。

4、全班人数一定,出勤人数和出勤率比例。

A、成正B、成反C、不成5、铺地的面积一定,砖块的面积和用砖的块数。

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析1. a、b是两种相关联的量,如果a、b成正比例,那么“?”处应该填();如果a、b成反比例,那么“?”处应该填()。

【答案】2.4【解析】如果ab成正比例,那么它们的比值就是一定的,即3:4=5:?,解比例得到?=。

如果a、b成反比例,那么它们的乘积就是一定的,即3×4=5×?,得到?=2.4。

2.比例尺是()。

A.一把尺B.一个比例C.一个比D.一个分数【答案】C【解析】根据概念可知:比例尺是图上距离和实际距离的比。

它是一个比,所以选C。

3.先化简比再求比值。

(1)1.8:1.2 (2)2:(3):(4)60厘米:2.4米【答案】(1)3:2,1.5;(2)6:1,6;(3)(4)【解析】(1)先根据比就基本性质,把比的前项和后项同时扩大10倍,变为整数比18:12,再把这个整数比化简后得到3:2。

3:2=1.5,所以比值的1.5。

(2)先根据比就基本性质把这个比化为整数比,可以让前项和后项同时乘3,这样就化为6:1,这个比是最简比,即为最后结果。

6÷1=6,所以比值是6。

(3)若化成整数比,需要让比的前项和后项同时乘两个分母的公因数20,(×20):(×20)=24:15,再把24:15化简后得到8:5.8÷5=1.6,所以比值是1.6。

(4)先统一单位名称,可以都化成以厘米作单位的数是60厘米:240厘米,化简后是1:4。

1÷4=。

比值为。

需注意:在化简前统一单位名称;无论是化简比还是求比值都不带单位名称。

4.有一块正方形铁片(如图),沿一边剪去底是6分米的一个三角形,剩下的铁片成了梯形(阴影部分),这个梯形的上底与下底的比是1:4,求梯形的面积。

【答案】9平方分米【解析】本题的关键是理解6分米对应的份数。

因为梯形的上底和下底的比是1:4,也就是说梯形的上底是1份,正方形的边长是4份,从而得到,空白三角形的底是3份。

六年级下学期数学小升初比和比例专项练习加解析答案精品加答案

六年级下学期数学小升初比和比例专项练习加解析答案精品加答案

六年级下学期数学小升初比和比例专项练习一.选择题(共20题,共44分)1.解比例。

=,x=( )A.1.5B.0.7C.5.7D.52.已知s÷t=r(1)当r一定时,s和t()。

A.成正比例B.成反比例C.不成比例D.不成正比例(2)当t一定时,s和r()。

A.成正比例B.成反比例C.不成比例D.不成正比例(3)当s一定时,t和r()。

A.成正比例B.成反比例C.不成比例D.不成反比例3.如果A×2=B÷3,那么A∶B=()。

A.2∶3B.6∶1C.1∶64.表示x和y成正比例关系的是()。

A.x-y=4B.xy=100C.x+y=24D.y=100x5.下面选项,()是比值。

A.篮球比赛记分牌上显示21:16B.比例尺C.圆周率 D.a:b6.下列三个比中,()能与0.3:1.2组成比例。

A.1:3B.1:C.:7.购置电脑的数量一定,电脑的单价和总价()。

A.成正比例B.成反比例C.不成比例8.在一幅地区图上附一条注有数目的线段如下:这幅图的比例尺是()。

A. B. C.9.订阅“新民晚报”的份数和钱数()。

A.成反比例B.成正比例C.不成比例D.不成正比例10.在一定的距离内,车轮的周长与转动的圈数()。

A.成正比例B.成反比例C.不成比例11.9x-=0(x、y均不为0),x和y成()。

A.正比例B.反比例C.不成比例12.下面各组的两个比不能组成比例的是()。

A.7∶8和14∶16B.0.6∶0.2和3∶1C.19∶110和10∶913.汽车总辆数一定,每排停放的辆数和停放的排数()。

A.成正比例B.成反比例C.不成比例D.不成反比例14.小明写字的个数一定,他写每个字的时间与写字的总时间()。

A.成正比例B.成反比例C.不成比例15.正方体的表面积与它的棱长成()关系。

A.反比例B.正比例C.没有比例16.下面说法不正确的是()。

A.小明的身高和体重不成比例B.等底等高的圆锥和长方体,圆锥的体积是长方体体积的三分之一C.在一个比例中,交换两个外项的位置仍然是比例D.圆柱的体积是圆锥体积的3倍,则圆柱和圆锥一定等底等高17.把9、3、21再配上一个数使这四个数组成一个比例式,这个数可能是()。

六年级下学期数学小升初比和比例专项练习及一套参考答案精品带答案

六年级下学期数学小升初比和比例专项练习及一套参考答案精品带答案

六年级下学期数学小升初比和比例专项练习一.选择题(共20题,共40分)1.把一个面积是72cm2的长方形按1∶2缩小,缩小后的长方形的面积是()。

A.18cm2B.36cm2C.72cm2D.144cm22.下面的说法中,正确的有()句。

①一个正方体的棱长扩大2倍,它的表面积扩大4倍,体积扩大8倍②把4:5的前项和后项同时增加5倍,比值不变③甲数的相当于乙数的,乙数与甲数的比值是④一根1米长的绳子,用去50%,还剩50%米⑤A=2×3×5,B=2×3×7,A和B的最小公倍数是210⑥时间一定,速度和路程成反比例关系A.2B.3C.4D.53.如果5a=3b,那么a和b的关系是()。

A.成正比例B.成反比例C.不成比例D.没有关系4.比例尺一定,实际距离扩大到原来的5倍,则图上距离()。

A.缩小到原来的B.扩大到原来的5倍 C.不变5.用地砖铺一间教室,地砖的块数和()成反比例。

A.每块地砖的边长B.每块地砖的面积C.每块地砖的周长6.把一个正方形接2:1的比例放大后,得到的图形与原来的图形相比较,()。

A.面积扩大到原来的2倍B.周长扩大到原来的2倍C.面积扩大到原来的D.周长缩小到原来的7.把1块饼平均分成若干份,每块饼的大小和份数()。

A.成正比例B.成反比例C.不成比例8.把一块三角形的地画在比例尺是1:500的图纸上,量得图上三角形的底是12厘米,高8厘米,这块地实际面积是()。

A.480平方米B.240平方米C.1200平方米9.下面选项,()是比值。

A.篮球比赛记分牌上显示21:16B.比例尺C.圆周率 D.a:b10.下列各题中,哪两种量不成比例()。

A.长方形的面积一定,长和宽B.征订《小学生周报》,征订的数量和总价C.收入一定,支出和结余11.下列各种关系中,成反比例关系的是()。

A.某人年龄一定,他的身高与体重。

B.平行四边形的面积一定,它的底和高。

复杂的比和比例应用题(一题多解) (附答案)

复杂的比和比例应用题(一题多解) (附答案)

复杂的比和比例应用题例 1一架飞机所带的燃料最多可以用 6 小时,飞机去时顺风,每小时可以飞行 1500 千米; 飞回时逆风,每小时可以飞行 1200 千米。

这架飞机最多飞出去多少千米就要往回飞? 解法 1: 抓住问题特点,用比例知识解答较简明。

飞出和飞回的路程一定,所以飞出 和飞回使用时间和其速度成为反比。

飞出时间和飞回时间的比: 1200: 1500=4: 54 9解法2: 用工程问题的思路解答。

飞出时, 每千米用 11500小时, 飞回时, 每千米用 11200小时, 返回 1 千米用 ( 11500+ 11200) 小时,返回多少千米用 6 小时?1 1 1500 1200解法3: 列比例解。

返回路程一定,速度与时间成反比例。

设:飞出 x 小时后返回。

1500x=1200 (6-x)8X=38 3解法 4: 利用时间和为 6 列方程。

设:飞出 x 千米后返回。

x x+= 6 1500 1200 X=4000解法5: 先求出平均速度,再求出飞出距离,假设飞出距离为“ 1”(1+1)÷( 1 + 1 ) = 4000 (千米/小时)1500 1200 340003 ×(6÷2) =4000 (千米)飞出距离: 1500×6× = 4000 (千米) 6÷( + ) =4000 (千米) 1500× =4000 (千米)练习:1,一架飞机所带的燃料最多可以用 6 小时,飞机去时逆风,每小时飞行 600 千米;返回时顺风,每小时飞行 750 千米。

这架飞机最多飞出去多少千米就需返航?2,小明上学时每分钟走 75 米,放学时每分钟走 90 米。

这样他上学和放学在路上共用了 22 分钟。

你能求出小明家到学校的路程吗?、3,甲、乙两人各加工 700 个零件,甲比乙晚 1.5 小时开工,结果比乙还提前 0.5 小时完成。

已知甲、乙的工作效率比是 7: 5,求甲每小时加工零件多少个?例 2客车和货车分别从甲、乙两地同时相对开出,经过若干小时后在途中相遇,相遇后又行5 小时货车到达甲地,这时客车到乙地后又掉头行了甲、乙两地距离的 25%。

六年级下册数学小升初比和比例专项练习加答案解析

六年级下册数学小升初比和比例专项练习加答案解析

六年级下册数学小升初比和比例专项练习一.选择题(共20题, 共40分)1.把一堆化肥装入麻袋, 麻袋的数量和每袋化肥的质量, ()。

A.成正比例B.成反比例C.不成比例2.把9、3.21再配上一个数使这四个数组成一个比例式, 这个数可能是()。

A.27B.63C.61D.723.下面各项中成反比例关系的是()。

A.工作总量一定, 工作时间和工作效率B.正方形的边长和面积C.长方形的周长一定, 长和宽D.三角形的高一定, 底和面积4.圆的周长和半径所成的比例是()。

A.正比例B.反比例C.不成比例5.茶叶的总重量一定, 每袋茶叶重量和袋数()。

A.成正比例B.成反比例C.不成比例D.不成反比例6.和一定, 加数和另一个加数()。

A.成正比例B.成反比例C.不成比例7.下面()中的四个数不能组成比例。

A.16, 8, 12, 6B.8, 3, 12, 42C.14, 2, ,D.0.6,1.5, 20, 508.一块长方形的菜地, 周长是240米, 长和宽的比是4∶2.这块地的面积是()。

A.6400平方米B.1600平方米C.3200平方米9.把一块三角形的地画在比例尺是1: 500的图纸上, 量得图上三角形的底是12厘米, 高8厘米, 这块地实际面积是()。

A.480平方米B.240平方米C.1200平方米10.解比例, 并验算。

6.4∶0.8=x∶1.5, x=()A.8B.12C.4.5D.1 011.甲、乙两车的速度比是5∶6, 如果路程一定, 两车所用的时间比是()。

A.5∶6B.6∶5C.1∶1D.2 5: 3612.下面成正比例的量是()。

A.差一定, 被减数和减数B.单价一定, 总价和数量C.互为倒数的两个数13.在一幅比例尺是40∶1的图纸上, 数得一个零件长8cm, 这个零件实际长是()。

A.320cmB.32cmC.5cmD.0.2c m14.甲乙两地的实际距离是100km, 在一幅地图上量得甲、乙两地的图上距离是2cm, 这幅地图的比例尺是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学比和比例问题一题多解训练(二)
1.一只轮船从甲港开往乙港,8小时行了全程的10
3,再行几小时可以到达乙港?(3种)
2.甲、乙两车的速度比是4:3,甲从东镇到西镇需15小时,乙从西镇到东镇要多少小时?(3种)
3.一个化工厂原来每天用水12.5吨,由于改进用水设备,每天可节约用水20%,原来24天的用水量现在可用多少天?(3种)
4.一个长方形(如图),被两条直线分成四个长方形,其中三个面积分别是20平方米、25平方米和30平方米。

阴影部分的面积是多少?(2种)
5.修一条公路,原计划15天完成。

实际每天修300米,结果提前3天完成。

实际每天比原计划多修多少米?(3种 )
6.生产一批零件,甲独做要6小时,乙每小时可以做36个。

现在甲、乙两人合做,完成任务时,甲、乙两人生产零件数的比是5:3。

这批零件一共有多少个?(2种)
7.小明上学时每分钟走60米,放学时每分钟走80米,这样他上学、放学走路共用去21分钟。

他家到学校的路程是多少米?(2种)
8.甲8天生产的机器零件数与乙7天生产的机器零件数相等。

他们在同一时间内,共同生产机器零件60件。

甲比乙少做几个零件?(3种)
9.一批零件,甲独做要12小时,乙独做要8小时。

如果甲、乙合做,完工时甲比乙少做140个。

这批零件共有多少个?(2种)
10.客车和货车同时从A 、B 两地相对开出。

客车每小时行60千米,货车每小时行全程的15
1,相遇时客车和货车所行的路程的比5:4。

A 、B 两地相距多少千米?(2种)
11.养鸡场养鸡2500只,公鸡与母鸡的只数比是1:4,公鸡与母鸡各养了多少只?(用分数、归一、整数、比例4种解)。

相关文档
最新文档