人教版六年级数学上册比和比例练习题
新人教版数学教材六年级上册《比》练习题
比和比例练习题一、 填空:1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)()(。
甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的)()(。
2. 某班男生人数与女生人数的比是43,女生人数与男生人数的比是( ),男生人数和女生人数的比是( )。
女生人数是总人数的比是( )。
3. 一本书,小明计划每天看72,这本书计划( )看完。
4. 一根绳长2米,把它平均剪成5段,每段长是)()(米,每段是这根绳子的)()(。
5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( ),这个比的比值的意义是( )。
6. 一个正方形的周长是58米,它的面积是( )平方米。
7. 89吨大豆可榨油31吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。
8. 甲数的32等于乙数的52,甲数与乙数的比是( )。
9. 把甲数的71给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。
10. 甲数比乙数多41,甲数与乙数比是( )。
乙数比甲数少)()(。
11. 在6 :5 = 1.2中,6是比的( ),5是比的( ),1.2是比的( )。
在4 :7 =48 :84中,4和84是比例的( ),7和48是比例的( )。
12. 4 :5 = 24÷( )= ( ) :1513. 一种盐水是由盐和水按1 :30 的重量配制而成的。
其中,盐的重量占盐水的(—),水的重量占盐水的(—)。
图上距离3厘米表示实际距离180千米,这幅图的比例尺是( )。
一幅地图的比例尺是图上6厘米表示实际距离( )千米。
实际距离150千米在图上要画( )厘米。
14. 12的约数有( ),选择其中的四个约数,把它们组成一个比例是( )。
写出两个比值是8的比( )、( )。
15. 加工零件的总个数一定,每小时加工的零件个数的加工的时间( )比例;订数学书的本数与所需要的钱数()比例;加工零件的总个数一定,已经加工的零件和没有加工的零件个数()比例。
六年级数学比和比例试题答案及解析
六年级数学比和比例试题答案及解析1.从6、24、20、18与5这五个数中选出四个数组成一个比例是( )。
【答案】24:4=20:5【解析】此题为一个开放题,有多种答案。
首先确定选哪4个数,根据比例的基本性质,发现:24×5=20×6,可以用24和5同时做内项或外项,20和6做另外两项,写出不同的比例。
如24:4=20:52.把1克盐放入100克水中,盐与盐水的比是1:100。
()【答案】×【解析】要求盐和盐水的比,就要先求出盐水的重量,1+100=101,所以盐和盐水的比是1:101,题目错误。
3.请在下图中画出一个钝角三角形,并用阴影表示,使得阴影部分的面积与空白部分的面积比是2:3。
【答案】只要画出的钝角三角形底和高的乘积是12,面积是6,即为正确。
答案不唯一。
【解析】本题需先计算出钝角三角形的面积是多少。
假设每个小正方形的边长为1,那么整个长方形的面积就是15,阴影面积与空白的比是2:3,说明阴影与整个图形面积的比是2:5,整个图形面积为15,钝角三角形的面积就是6。
根据三角形面积公式可知,底和高的乘积是12,所以只要画出的钝角三角形底和高的乘积是12,面积是6,即为正确。
答案不唯一。
4.有一块正方形铁片(如图),沿一边剪去底是6分米的一个三角形,剩下的铁片成了梯形(阴影部分),这个梯形的上底与下底的比是1:4,求梯形的面积。
【答案】9平方分米【解析】本题的关键是理解6分米对应的份数。
因为梯形的上底和下底的比是1:4,也就是说梯形的上底是1份,正方形的边长是4份,从而得到,空白三角形的底是3份。
6÷3=2(分米),说明1份表示2分米。
梯形上底:2×1=2(分米),梯形下底:2×4=8(分米),因为是正方形,所以梯形的高也是8分米。
(2+8)×8÷2=9(平方分米),梯形面积是9平方分米。
5.小王、小李、小刘三家共同在莲花村租了一套房子,共有三房一厅,每月要交物业管理费210元。
六年级数学上册比和比例测试卷
六年级数学上册比和比例测试卷比和比例姓名()分数()一、填空:1.a和B的比例是11:9,a的数量占a和B的总和()(),乙数占甲、乙两数和的。
()()()。
()甲、乙两数的比是3:2,甲数是乙数的()倍,乙数是甲数的2.某班男生人数与女生人数的比是3.女孩人数与男孩人数之比为(),男孩人数与女孩人数之比为()。
女孩人数占总人数的比例是()。
3.王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是(),这个比率之比的含义是()。
224.甲数的等于乙数的,甲数与乙数的比是()。
355.输入A的号码1()()给乙,甲、乙两数相等,甲数是乙数的,甲数比乙数多。
7()()1(),甲数与乙数比是()。
乙数比甲数少。
4()6.甲数比乙数多7.在6:5=1.2时,6是比率(),5是比率(),1.2是比率()。
在4:7=48:84中,4和84是比例的(),7和48是比例的()。
8.4:5=24÷()=():159.一种盐水是由盐和水按1:30的重量配制而成的。
其中,盐的重量占盐水的(―),水的重量占盐水的重量。
12的除数有(),其中四个除数构成()的比率。
写出两个比率(),(),其比率为8。
10.加工零件的总个数一定,每小时加工的零件个数的加工的时间()比病例;订购图书数量与所需金额之间的比率;加工件总数是确定的,加工件和非加工件的数量比例是确定的。
11.如果x÷y=712×2,那么x和y成()比例;如果x:4=5:y,那么x与y.2、判断1成正比。
由两个比率组成的公式称为比例。
()2.正方形的面积一定,它的边长和边长不成比例。
()3.如果8a=9b那么b:a=8:精品word文档。
2021-2022学年人教版六年级数学上册《比》同步练习(含解析)
2021-2022学年人教版六年级数学上册《比》同步练习(含解析)一.选择题(共5小题)1.加工一个零件,李师傅用小时完成,王师傅用小时完成,李师傅和王师傅两人的工作效率比为()A.2:3B.:3C.3:2D.2:52.五年级男、女生人数比是7:6,女生人数占五年级的()A.B.C.D.3.一个比是7:8,如果把它的前项扩大3倍,要使比值不变,后项应该()A.不变B.增加16C.除以34.一个用木条制成的长方形框架,长与宽的比是5:3,以长边为底,把长方形拉成平行四边形,则拉成的平行四边形的底与高的比可能是()A.5:2B.5:3C.5:45.当一个女性的下肢长与身高比的比值接近0.618时,看上去她的身材最美。
明明妈妈的上身长65厘米,下肢长100厘米,明明妈妈总觉得她的下肢短了些,因而她外出总是穿高跟鞋。
明明妈妈穿的高跟鞋高度约是()时,看上去身材最美。
A.2厘米B.5厘米C.10厘米D.15厘米二.填空题(共5小题)6.我们将10克盐溶于100克水中,水与盐的质量比是,盐与盐水的质量比是。
7.给甲、乙、丙三个小朋友分苹果,分得的苹果数,甲和乙的比是5:4,乙和丙的比是6:5,这样甲比丙就多10个,甲得到苹果个。
8.一道减法算式,被减数、减数、差一共是96,减数与差的比是7:5,减数是,差是。
9.一个比的前项是,比值是8,它的后项是。
10.=÷=:=%.三.判断题(共5小题)11.A、B两数的平均数是60,A:B=1:5,则A=20..12.一段路程,甲用8分钟走完,乙用6分钟走完,甲、乙的速度之比是4:3.(判断对错)13.除数不能为0,但比的后项可以为0.(判断对错)14.比的前项和后项都同时加上一个相同的数,比值不变.(判断对错)15.2:3写作,读作三分之二..(判断对错)四.应用题(共5小题)16.仓库里有一批货物,运走的货物与剩下的货物的重量比是3:5,如果运走了54吨,仓库原有货物多少吨?17.一堆围棋子有黑、白两种颜色,拿走5枚白棋子后,黑子与白子的个数之比为2:1;再拿走30枚黑棋子后,黑子与白子的个数比为1:3,求开始时黑棋子、白棋子各有多少枚?18.配制一种农药,其中药与水的质量比为1:150,有525kg水,需要放进多少千克的药才能配制成这种农药?19.甲乙丙的平均数是7.2,它们的比是4:2:3,甲乙丙三个数各是多少?20.甲厂有工人900人,乙厂有工人700人,从这两个厂选同样多的人参加植树活动,两个厂剩下的人数之比是3:2,从这两个厂各选了多少人去参加植树活动?五.解答题(共3小题)21.王老师看一本书,第一天看完后,已看的页数与剩下的页数比是1:4,第二天又看了120页,正好看了全书的80%。
人教版六年级数学总复习《比和比例》练习题
人教版六年级数学总复习《比和比例》练习题一、填空:1、在比例中,两个内项的积是6,其中一个外项是23 ,另一个外项是( )。
2、路程和时间的比的比值是( ),如果它一定,那么路程和时间成( )比例。
3、在工作效率、工作时间、工作总量这三个数量中,当( )一定时,( )和( )正成比例。
4、如果y=5x ,那么x 和y 成( )比例。
5、一幅地图上用5厘米表示实际距离20千米,这幅地图的比例尺是( )。
6、1.2千克∶250克化成最简整数比是( ),比值是( )。
7、一个三个角形三个内角度数的比是1∶4∶1,这是一个( )三角形 8、如果7x=8y ,那么x ∶y=( )∶( )9、大圆的半径与小圆半径的比是3∶1,则大圆的面积是小圆的面积的( )倍。
10、五个完全相同的小长方形刚好可以拼成一个如图的大长方形,,那么小长方形的长与宽的比是( ),大长方形的长与宽的比是( )11、小华身高1.6米,在照片上她的身高是5厘米。
这张照片的比例尺是( )。
12、甲数是乙数的2.4倍,乙数是甲数的( )( ) ,甲数与乙数的比是 ( )∶( ),甲数占两数和的( )( ) 。
13、男生人数比女生多20%,男生人数是女生人数的( )( ) ,女生人数与男生人数的比是( )∶( ),女生比男生少( )( )。
14*、已知甲数的16 相当于乙数的15 ,那么甲数的一半相当于乙数的( )二、判断题:1、小红的身高和体重总是成比例。
……………………………( )2、成正比例的量,在图像上描的点连接起来是一条曲线。
…( )3、比例尺是一个比。
……………………………………………( )4、实际距离一定比相对应的图上距离要大。
…………………( )5、21∶7不论是化简还是求比值,它的结果都是等于3。
… ( )三、选择题:1、不能与3,6,9组成比例的数是( )(1) 2 (2) 12 (3) 182、把1.2吨∶300千克化成最简整数比是( )(1)1∶250 (2)1200∶300 (3)4∶1 (4)43、把5克盐放入50克水中,盐和水的比是( )。
人教版六年级数学总复习《比和比例》练习题
人教版六年级数学总复习《比和比例》练习题一、填空 :21、在比例中,两个内项的积是 6,其中一个外项是 3 ,另一个外项是 ( )。
2、路程和时间的比的比值是 (),如果它一定,那么路程和时间成( )比例。
3、在工作效率、工作时间、工作总量这三个数量中, 当()一定时,( )和( )正成比例。
4、如果 y=5x ,那么 x 和 y 成( )比例。
5、一幅地图上用 5厘米表示实际距离 20 千米,这幅地图的比例尺是 ( )。
6、1.2千克∶ 250 克化成最简整数比是(),比值是( )。
7、一个三个角形三个内角度数的比是 1∶4∶1,这是一个( )三角形8、 如果 7x=8y ,那么 x ∶y=( )∶ () 9、大圆的半径与小圆半径的比是 3∶1,则大圆的面积是小圆的面积的 ( )10、五个完全相同的小长方形刚好可以拼成一个 如图的大长方形,,那么小长方形的长与宽的比是 ( ),大长方形的长与宽的比是( )、判断题:1、小红的身高和体重总是成比例11、小华身高 1.6米,在照片上她的身高是 5 厘米 12、甲数是乙数的 2.4 倍,乙数是甲数的(( ))( )∶( ),甲数占两数和的(())13、男生人数比女生多 20%,男生人数是女生人数的)∶( ),女生比男生少(())11这张照片的比例尺是( ,甲数与乙数的比是 )。
),女生人数与男生人数的比是(14*、已知甲数的 6 相当于乙数的 5 ,那么甲数的一半相当于乙数的( )2、成正比例的量,在图像上描的点连接起来是一条曲线。
⋯( )3、比例尺是一个比。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯() 4、实际距离一定比相对应的图上距离要大。
⋯⋯⋯⋯⋯⋯⋯()5、21∶7 不论是化简还是求比值,它的结果都是等于 3。
⋯ ( ) 三、选择题: 1、不能与 3,6,9 组成比例的数是()(1) 2 (2) 12 ( 3) 182、把 1.2 吨∶300 千克化成最简整数比是()(1)1∶250 (2)1200∶300(3) 4∶ 1 (4)43、把 5 克盐放入 50 克水中,盐和水的比是()。
六年级数学比和比例试题答案及解析
六年级数学比和比例试题答案及解析1.(东山县)用一根长64厘米的铁丝,围成一个长与宽比是5:3的长方形框架,这个长方形框架围成的面积是多少?【答案】240平方厘米【解析】分析:根据“长方形的周长=(长+宽)×2”可得:先用“64÷2”求出长方形一条长和宽的和,再用按比例分配知识,求出长方形的长和宽,进而根据“长方形的面积=长×宽”进行解答即可.解答:解:64÷2=32(厘米),5+3=8,(32×)×(32×),=20×12,=240(平方厘米);答:这个长方形框架围成的面积是240平方厘米.点评:解答此题的关键是:根据按比例分配知识求出长方形的长和宽,进而根据长方形的面积计算公式进行解答.2.把20克农药放入到580克水中,农药和药水的比是..(判断对错)【答案】√.【解析】要明确农药放入水中变成药水,要求农药和药水的比是多少,只要求出药水的重量,根据题意,即可得出结论.解答:解:20:(20+580),=20:600,=1:30;故答案为:√.点评:此题做题的关键是先求出药水的重量,然后根据要求进行比,最后化成最简整数比即可.3.建筑工人用水泥、沙子、石子配成一种混凝土,水泥、沙子、石子的质量比是2:3:5。
要配制3000千克这样的混凝土,需要水泥、沙子、石子各多少千克?【答案】需要水泥600千克,需要沙子900千克,需要石子1500千克【解析】水泥、沙子、石子质量的比是2:3:5,那么水泥占2份,沙子占3份,石子占5份。
配成的混凝土一共是2+3+5=10(份)需要水泥的千克数列式为:3000×2/10=600(千克)。
需要沙子的千克数列式为:3000×3/10=900(千克)。
需要石子的千克数列式为:3000×5/10=1500(千克)。
解:2+3+5=10(份)3000×2/10=600(千克)3000×3/10=900(千克)3000×5/10=1500(千克)。
六年级数学比和比例试题答案及解析
六年级数学比和比例试题答案及解析1.甲、乙、丙三人分一箱苹果.若按3:2:5或1:2:3分配,两种分法()分得一样多.A.甲 B.乙 C.丙【答案】C【解析】根据两种分配方法,分别求出两种方案中甲、乙、丙各分得总数的几分之几,分数值相同的及时分得糖果相同的.解答:解:第一种:3+2+5=10甲占:乙占:=丙占:=第二种:1+2+3=6甲占:乙占:=丙占:=所以两次丙分得的一样多.故选:C.点评:本题的关键是求出两次甲、乙、丙各占总份数的几分之几.2.:==80%=÷40=折=小数.【答案】4,5,50,32,八,0.8【解析】分析:80%可以化成,根据分数的性质,的分子和分母同时乘10可化成;用的分子4做比的前项,分母5做比的后项也可转化成比为4:5;用的分子4做被除数,分母5做除数可转化成除法算式为4÷5,根据商不变的性质,把被除数和除数同时乘8可化成32÷40;80%也就是八折;把80%的百分号去掉,把小数点向左移动两位可化成0.8;由此进行转化并填空.解答:解:4:5==80%=32÷40=八折=0.8.故答案为:4,5,50,32,八,0.8.点评:此题考查小数、分数、比、除法和百分数之间的关系和转化,也考查了分数的性质和商不变性质的运用.3.用一根长120米的钢筋,围成一个长方体的房间框架,已知长、宽、高的比是3:2:1,房间的长宽高分别是多少?若粉刷屋顶和四面墙壁,除去门窗20平方米,粉刷的面积是多少平方米?【答案】房间的长是15米、宽是10米、高是5米,粉刷的面积是480平方米.【解析】用一根长120米的钢筋,围成一个长方体的房间框架,已知长、宽、高的比是3:2:1,首先求得一条长、宽、高的和:120÷4=30厘米,进而求出长、宽、高的总份数,再求得长、宽、高所占总数的几分之几,最后求得长方体的长、宽、高分别是多少,列式解答即可;粉刷的是四面墙壁和顶棚,根据长方体的表面积的计算方法,求出这5个面的总面积减去门窗和黑板面积即可.据此解答.解答:解:长:120÷4×=30×=15(米)宽:120÷4×=30×=10(米)高:120÷4×=30×=5(米)15×10+(15×5+10×5)×2﹣20=150+(75+50)×2﹣20=150+250﹣20=400﹣20=480(平方米)答:房间的长是15米、宽是10米、高是5米,粉刷的面积是480平方米.点评:此题解答的关键字在于求出长、宽、高的和,再运用按比例分配的方法解决,还要搞清粉刷的是哪几个面,然后根据长方体的表面积的计算方法进行解答.4. 4:3的后项加上12,要使比值不变,前项应加上.【答案】16.【解析】比的后项加上12,扩大了5倍,根据比的基本性质,要使比值不变,比的前项也应扩大5倍,即乘上5,据此解答即可.解答:解:3+12=15,15÷3=5比的后项变成15,扩大了5倍,要使比值不变,比的前项也应扩大5倍;即比的前项应乘上5,或加上4×5﹣4=16.故答案为:16.点评:此题主要考查了比的基本性质的灵活应用.5. 1.2:化成最简整数比是,比值是.【答案】2:1,2.【解析】化简比是根据比的基本性质(比的前项和后项同时乘上或除以一个相同的数(0除外),比值不变),把比的前项和后项同时乘上或除以一个相同的不为0的数,使比的前项和后项变成互质数.求比值是用比的前项除以后项,小数化成分数进行计算,结果最好用分数表示.解答:解:化成最简整数比是:1.2:=:=:=():()=6:3=(6÷3):(3÷3)=2:1比值是:1.2:=:===2.故填:2:1,2.点评:化简比是把一个比化成最简单的整数比(前项和后项是互质数)的形式,求比值是求出比的值的大小.6.画一个周长是24厘米,长与宽的比是3:1的长方形.【答案】24÷2=12(厘米)12×=9(厘米)12×=3(厘米)据此画图如下:【解析】解:24÷2=12(厘米)12×=9(厘米)12×=3(厘米)据此画图如下:【点评】依据长方形的周长公式,分别计算出长方形的长和宽的值,是解答本题的关键.7. 10克药溶解在100克水中,药和药水的比是()A.1:10 B.1:9 C.1:11【答案】C【解析】将10克药放入100克水中,即可配制成10+100=110克药水,那么药和药水的比是10:110,然后化简即可.解:10:(10+100)=10:110=1:11答:药和药水的比是1:11.故选:C.【点评】此题解题的关键是看所求的问题是谁与谁比,然后根据题意进行解答,继而得出结论.8.男生与女生的人数比是6:5,男生比女生多()A. B. C.【答案】C【解析】男生与女生人数的比是6:5,把男生人数看作6份,则女生人数就是5份,就是求男生比女生多的人数占女生人数的几分之几,用男生比女生多的人数除以女生人数即可解答.解:(6﹣5)÷5=1÷5=;故选:C.【点评】求一个数比另一个数多或少百分之几,用这两数之差除以另一个数.9.在一个比例中,两个外项的积是,一个内项是3,另一个内项是.【答案】.【解析】根据比例的性质“在比例里,两内项的积等于两外项的积”,先确定出两个內项的积也是,进而根据一个内项是3,用除法计算即可求得另一个內项的数值.解:在一个比例中,两个外项的积是根据比例的性质,可知两个内项的积也是,其中一个内项是3,则另一个内项为÷3=.故答案为:.【点评】此题考查比例性质的运用:在比例里,两内项的积等于两外项的积.10.a=b则a:b= :.【答案】16,15.【解析】逆用比例的基本性质:在比例里,内项的积等于外项的积.解:因为a=b,所以a:b=:==16:15;故答案为:16,15.【点评】本题主要是灵活利用比例的基本性质解决问题.11.先化简比,再求比值.:0.9:0.36吨:375千克.【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项即得比值.解:(1):=(×):(×)=9:2;:=÷=;(2)0.9:0.36=(0.9÷0.18):(0.36÷0.18)=5:2;0.9:0.36="0.9÷0.36"=2.5;(3)吨:375千克=(×1000千克):375千克=250千克:375千克=(250÷125):(375÷125)=2:3;吨:375千克=(×1000千克):375千克=250千克:375千克=250÷375=.【点评】此题考查化简比和求比值的方法,要注意区分:化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个数,可以是整数、小数或分数.12.某繁华街道上,停着小轿车、小客车、公共汽车共200辆,这三种车的辆数比是2:3:5,每种车各有多少辆?【答案】小轿车有40辆,小客车有60辆,公共汽车有100辆.【解析】首先求得小轿车、小客车、公共汽车的总份数,再求得三种汽车占总数的几分之几,最后求得各自的辆数,列式解答即可.解:小轿车:200×=40(辆);小客车:200×=60(辆);公共汽车:200×=100(辆).答:小轿车有40辆,小客车有60辆,公共汽车有100辆.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.13.学校合唱队人数在40至60人之间,男生与女生的人数比是7:6,合唱队共有人.【答案】52.【解析】由“男生与女生的人数比是7:6”可知,总人数相当于7+6=13份,也就是说总人数是13的倍数,那么在“40﹣60”之间只有52符合题意,由此可知总人数就是52.解:由男女生人数的比是7:6可知:总人数是7+6=13(份),即总人数是13的倍数;又因为合唱队人数在40至60人之间,那么合唱队的人数就应是52;故答案为:52.【点评】此题是考查比的应用,要把比理解为几份和几份的比.14.把下面各比化成最简整数比24:16=0.45:0.3=0.375:=:=【答案】3:2;3:2;3:1;1:5.【解析】根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比.解:24:16=(24÷8):(16÷8)=3:2;0.45:0.3=(0.45÷0.15):(0.3÷0.15)=3:2;0.375:=(0.375×8):(×8)=3:1;:=(×6):(×6)=1:5.故答案为:3:2;3:2;3:1;1:5.【点评】此题考查化简比的方法,注意化简比的结果仍是一个比,它的前项和后项都是整数,并且是互质数.15.﹦0.6﹦ ÷40﹦12:﹦:15.【答案】3,24,20,9.【解析】把0.6化成分数并化简是;根据分数与除法的关系=3÷5,再根据商不变的性质被除数、除数都乘8就是24÷40;根据比与分数的关系=3:5,再根据比的基本性质比的前、后项都乘3就是9:15;都乘4就是12:20.解:=0.6=24÷40=12:20=9:15.故答案为:3,24,20,9.【点评】此题主要是考查除法、小数、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.16. 3: =24 :8=0.5.【答案】,4.【解析】根据比值的含义:比的前项除以后项所得的商叫做比值;可知:比的后项=比的前项÷比值,比的前项=比的后项×比值;据此解答.解:①3÷24=,所以应填;②0.5×8=4,所以应填4;故答案为:,4.【点评】根据比的前项、后项和比值三者之间的关系进行解答.17.从学校走到电影院,小明用8分钟,小红用10分钟,小明和小红的速度之比是4:5 .(判断对错)【答案】×【解析】把从学校走到电影院的路程看作单位“1”,根据“路程÷时间=速度”分别求出小明和小红的速度,进而根据题意求比即可判断.解:(1÷8):(1÷10),=:,=(×40):(×40),=5:4;故答案为:×.【点评】解答此题用到的知识点:(1)比的意义;(2)路程、时间和速度三者之间的关系.18.把下面各比化成最简单的整数比.8:12=0.25:0.45==【答案】2:3,5:9,2:1.【解析】(1)根据比的性质:把8:12的前项和后项同时除以4即可化成最简整数比;(2)根据比的性质:把0.25:0.45的前项和后项同时乘20即可化成最简整数比;(3)根据比的性质:把:的前项和后项同时乘8即可化成最简整数比;据此进行化简并计算.解:(1)8:12=(8÷4):(12÷4)=2:3;(2)0.25:0.45=(0.25×20):(0.45×20)=5:9;(3):=(×8):(×8)=2:1.故答案为:2:3,5:9,2:1.【点评】此题考查化简比的方法,是根据比的基本性质进行化简的,最简比是指比的前项和后项是互质数的比;要注意区分:化简比的结果仍是一个比;求比值的结果是一个数,可以是小数、分数和整数.19.当0.3a=5b(a、b均不为0)时,则b:a= :.【答案】3、50.【解析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.解:因为0.3a=5b,则b:a=0.3:5=3:50;故答案为:3、50.【点评】此题主要考查比例的基本性质的灵活应用.20.=15÷20= :24== (填小数).【答案】3,18,36,0.75.【解析】解答此题的突破口是15÷20,根据分数与除法的有关系15÷20=,将分数化简是;根据分数的基本性质,分子、分母都乘9就是;根据比与分数的关系=3:4,再根据比的基本性质比的前、后项都乘6就是18:24;15÷20=0.75,解:=15÷20=18:24==0.75.故答案为:3,18,36,0.75.【点评】此题主要是考查除法、小数、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.21.一个最简整数比的比值是0.15,这个最简比是(:)【答案】3,20.【解析】根据比的意义和比值的意义:两个数相除又叫做两个数的比,比的前项除以后项所得的商,叫做比值;可得:假设比的后项是1,则比的前项为0.15×1=0.15,则比为0.15:1,化成最简整数比即可.解:0.15:1=(0.15×20):(1×20)=3:20;故答案为:3,20.【点评】此题应根据比的意义和比的性质进行解答.22. 3.2:0.24的最简整数比是,比值是.【答案】40:3,.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:(1)3.2:0.24,=(3.2×100):(0.24×100),=320:24,=(320÷8):(24÷8),=40:3;(2)3.2:0.24,=3.2÷0.24,=,故答案为:40:3,.【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.23. 1.8:化成最简单的整数比是,比值是.【答案】6:1,6.【解析】(1)化简整数比时,应根据比的性质“比的前项和后项同时乘或除以相同的数(0除外),比值不变”,进行化简.(2)求比值时,应根据比的意义“两个数相除,叫做两个数的比”去算,用比的前项除以后项得出答案.解:1.8:=(1.8×10):(×10)=18:3=6:1;1.8:=1.8÷=1.8×=6;故答案为:6:1,6.【点评】化简整数比最后的答案是一个比,而求比值最后的答案是一个比值,它可以表示为一个整数、分数或小数.24.一条公路长120千米,其中上坡路、下坡路和平路的比是2:3:5,上坡路、下坡路和平路各是多少千米?【答案】上坡路是24千米,下坡路是36千米,平路是60千米.【解析】分别把上坡路、下坡路和平路的长度看作2份、3份和5份,则总份数为2+3+5=10份,利用按比例分配的方法,即可求解.解:120×=24(千米),120×=36(千米),120×=60(千米);答:上坡路是24千米,下坡路是36千米,平路是60千米.【点评】此题主要考查按比例分配的方法的灵活应用.25.男生人数的等于女生人数的,则男、女生人数的比是()A.4:5 B.5:4 C.:【答案】B【解析】由题意可知:男生人数×=女生人数×,于是即可逆运用比例的基本性质,即两内项之积等于两外项之积,即可求出它们的比.解:因为男生人数×=女生人数×,则男生人数:女生人数=:=5:4;故选:B.【点评】此题主要考查比例的基本性质的灵活应用.26.一个三角形的三个内角度数比是3:4:5,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形【答案】A【解析】根据三角形的内角和是180°,按照比例计算出角的度数,再判断.解:180°÷(3+4+5)=15°,则15°×3=45°;15°×4=60°;15°×5=75°;三个角都是锐角,所以这个三角形是锐角三角形.故选:A.【点评】解答此题应明确三角形的内角度数的和是180°,求出三个角的度数,然后根据三角形的分类判定类型.27.大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比..【答案】对【解析】根据圆周率的含义可知:任何一个圆的周长和它的直径的比值都是一个常数,通常用π来表示.解:任何一个圆的周长和它的直径的比值都是一个常数,通常用π来表示,所以大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比.答:大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比.故填:对.【点评】此题主要考查的是圆周率含义的应用.28. 0.2:0.8化成最简整数比是,比值是.【答案】1:4,0.25【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项,即得比值.解:(1)0.2:0.8=(0.2×10):(0.8×10)=2:8=(2÷2):(8÷2)=1:4;(2)0.2:0.8=0.2÷0.8=2÷8=1÷4=0.25;故答案为:1:4,0.25.【点评】此题考查化简比和求比值的方法,要注意区分:化简比是根据比的基本性质进行化简的,结果仍是一个比;求比值是用比的前项除以后项所得的商,结果是一个数.29.解方程.x:1.2=3:4; 3.2x﹣4×3=52; x+x=.【答案】(1)0.9;(2)20;(3).【解析】(1)根据比例的基本性质,原式化成4x=1.2×3,再根据等式的性质,方程两边同时除以4求解;(2)先化简方程,再根据等式的性质,方程两边同时加上12,再两边同时除以3.2求解;(3)先化简方程,再根据等式的性质,方程两边同时除以求解.解:(1)x:1.2=3:44x=1.2×34x÷4=3.6÷4x=0.9;(2)3.2x﹣4×3=523.2x﹣12=523.2x﹣12+12=52+123.2x=643.2x÷3.2=64÷3.2x=20;(3)x+x=x=x=x=.【点评】解答方程的依据是等式的性质,同时应注意“=”号上下要对齐.30.甲、乙两地相距600千米,卡车和货车同时从两地相向开出。
六年级数学比和比例试题答案及解析
六年级数学比和比例试题答案及解析1. a、b是两种相关联的量,如果a、b成正比例,那么“?”处应该填();如果a、b成反比例,那么“?”处应该填()。
【答案】2.4【解析】如果ab成正比例,那么它们的比值就是一定的,即3:4=5:?,解比例得到?=。
如果a、b成反比例,那么它们的乘积就是一定的,即3×4=5×?,得到?=2.4。
2.比例尺是()。
A.一把尺B.一个比例C.一个比D.一个分数【答案】C【解析】根据概念可知:比例尺是图上距离和实际距离的比。
它是一个比,所以选C。
3.先化简比再求比值。
(1)1.8:1.2 (2)2:(3):(4)60厘米:2.4米【答案】(1)3:2,1.5;(2)6:1,6;(3)(4)【解析】(1)先根据比就基本性质,把比的前项和后项同时扩大10倍,变为整数比18:12,再把这个整数比化简后得到3:2。
3:2=1.5,所以比值的1.5。
(2)先根据比就基本性质把这个比化为整数比,可以让前项和后项同时乘3,这样就化为6:1,这个比是最简比,即为最后结果。
6÷1=6,所以比值是6。
(3)若化成整数比,需要让比的前项和后项同时乘两个分母的公因数20,(×20):(×20)=24:15,再把24:15化简后得到8:5.8÷5=1.6,所以比值是1.6。
(4)先统一单位名称,可以都化成以厘米作单位的数是60厘米:240厘米,化简后是1:4。
1÷4=。
比值为。
需注意:在化简前统一单位名称;无论是化简比还是求比值都不带单位名称。
4.有一块正方形铁片(如图),沿一边剪去底是6分米的一个三角形,剩下的铁片成了梯形(阴影部分),这个梯形的上底与下底的比是1:4,求梯形的面积。
【答案】9平方分米【解析】本题的关键是理解6分米对应的份数。
因为梯形的上底和下底的比是1:4,也就是说梯形的上底是1份,正方形的边长是4份,从而得到,空白三角形的底是3份。
六年级上册数学比的练习题
六年级上册数学比的练习题同学们,今天我们来练习一些关于比的数学题目。
比是数学中的一个重要概念,它表示两个数之间的关系。
下面是一些练习题,希望你们能够认真完成。
练习题一:求比值1. 求比值 4:8。
2. 求比值 3:0.5。
3. 求比值 2.5:1.25。
练习题二:化简比1. 将比 20:40 化简。
2. 将比 36:18 化简。
3. 将比 1.2:0.6 化简。
练习题三:按比例分配1. 一个班级有60名学生,如果按照男女生比例3:2来分配,那么男生和女生各有多少人?2. 一个长方形的长是宽的4倍,如果宽是5厘米,那么长是多少厘米?练习题四:比的应用1. 一个工厂生产了两种颜色的球,红色球和蓝色球的比例是5:3。
如果工厂生产了120个红色球,那么蓝色球有多少个?2. 一个班级有40名学生,其中男生和女生的比例是3:2。
如果班级中增加了5名男生,那么男生和女生的比例变成了多少?练习题五:比的逆运算1. 如果一个比的前项是24,后项是3,求这个比的比值。
2. 如果一个比的比值是2.5,后项是10,求这个比的前项。
练习题六:比的混合运算1. 已知比 a:b = 3:4,比 c:d = 2:5,求比 (a+c):(b+d)。
2. 已知比 a:b = 2:3,比 b:c = 4:5,求比 a:c。
同学们,完成这些题目后,你们会对比的概念有更深入的理解。
记得检查你们的答案,确保每个步骤都是正确的。
如果有任何疑问,可以随时向老师提问。
现在,让我们开始练习吧!祝你们学习愉快!同学们,以上就是我们今天的练习题。
通过这些练习,你们可以更好地掌握比的概念和应用。
希望你们能够认真思考,仔细解答。
如果遇到困难,不要气馁,多尝试不同的方法,或者和同学们一起讨论。
记住,数学是一个需要不断练习和思考的学科。
加油,我相信你们都能做得很好!。
单元测试题:人教版小学六年级数学上册 第四单元《比和比例》
单元测试题:人教版小学六年级数学上册第四单元《比和比例》一、选择题(每题2分,共10分)1.下列哪个选项正确地表示了比的概念?A. 两个数的和叫做比B. 两个数相乘的结果叫做比C.两个数相除的结果叫做比D. 两个数的差叫做比2.如果a:b = 3:4,那么a/(a+b) = ?A. 3/7B. 4/7C. 3/4D. 4/33.下列哪组数成比例?A. 2, 3, 4, 5B. 1, 2, 3, 6C. 0.5, 1, 1.5, 3D. 4, 6, 8, 124.在比例尺为1:500的地图上,量得某学校操场的长为4厘米,则该操场在实际中的长度为多少米?A. 20米B. 100米C. 200米D. 500米5.如果4/5 = x/15,那么x = ?A. 9B. 12C. 16D. 20二、填空题(每题2分,共10分)6.如果6 是a 和4 的比例中项,那么a = _____.7.在比例a:b = c:d 中,如果a = 8,b = 6,d = 12,那么c = _____.8.把2:3 的前项加上4,要使比值不变,后项应加上_____.9.如果3a = 4b(a、b 均不为0),那么a:b = _____.10.在一幅地图上,量得甲、乙两地的距离为3 厘米,已知甲、乙两地的实际距离为18 千米,则这幅地图的比例尺为_____.三、计算题(每题3分,共15分)11.化简比:36:2412.解比例:5/(x+3) = 2/513.根据比例的基本性质,如果4:5 = x:10,求x 的值。
14.在比例尺为1:200 的图纸上,一个正方形的面积为9平方厘米,求这个正方形在实际中的面积。
15.如果a:b = 3:4,b:c = 2:3,求a:b:c。
答案:一、选择题1.C2. A3. C4. B5. B二、填空题6. 9(因为6² = 36 = a × 4)7. 16(因为8:6 = 16:12,满足比例关系)8. 6(因为(2+4)/(3+6) = 2/3,保持比值不变)9. 4:3(因为3a = 4b,所以a/b = 4/3)10. 1:600000(因为18 千米= 1800000 厘米,所以比例尺为3 厘米: 1800000 厘米= 1:600000)三、计算题11. 3:2(因为36 和24 的最大公约数是12,所以化简后为3:2)12.x = 11.5(因为5/(x+3) = 2/5,所以5 × 5 = 2 × (x +3),解得x = 11.5)13.x = 8(因为4:5 = x:10,所以4 × 10 = 5 × x,解得x= 8)14.7200 平方米(因为图纸上正方形的面积为9 平方厘米,比例尺为1:200,所以实际边长为3 厘米× 200 = 600 厘米= 6 米,面积为6 米× 6 米= 36 平方米× 200² = 7200 平方米)15.3:4:6(因为a:b = 3:4,设a = 3k,b = 4k;又因为b:c= 2:3,所以4k:c = 2:3,解得 c = 6k,所以a:b:c = 3k:4k:6k = 3:4:6)。
小学数学六年级《比和比例问题(一)》练习题
比和比例问题(一)【知识要点】比和比例的知识在日常生活和学习中经常出现,并有广泛的应用,把比同倍数、分数联系起来,在解决问题时,其方法是非常优越的。
两个数相除,又叫做两个数的比。
比的前项和后项都乘以或除以相同的不为0的数,比值不变。
表示两个比相等的式子叫做比例。
在比例里两个内项之积等于两个外项之积。
【例题选讲】例1.有两个相同瓶子装满酒精溶液,一个瓶中酒精与水的体积之比是3:1,而另一个瓶中酒精与水的体积之比是5:1,若把两个瓶中酒精溶液混合,混合中酒精与水的体积之比是多少?例2.甲数与乙数的比值是2720,甲数与丙数的比值是2516,求乙数与丙数的比值是多少?甲、乙、丙三数之比是多少?例3.图中大圆A 与小圆B 的一部分重叠,重叠部分的面积是A 的152,也是图B 的51。
求两个圆的面积的比。
例4.加工一批零件,甲、乙、丙所需时间之比为6:7:8。
现有3650个零件要加工,如果规定三人用同样的时间完成任务,各应加工多少个?例5.软糖每千克9.5元,硬糖每千克5元,要混合成每千克7.5元的什锦糖90千克,两种糖果各需多少千克?【课内练习】1.甲、乙、丙三个同学共有图书108本,乙比甲多18本,乙与丙的图书数之比是5:4,求甲、乙、丙三人所有图书之比是多少?2.一个分数,分子与分母之和是100,如果分子加上23,分母加上32,新的分数约分后是32,求原来的分数是多少?3.甲、乙两人上班,甲比乙多走51的路程,而乙比甲走的时间少111。
求甲、乙两人的速度比是多少?4.学校把414棵树苗按各班人数分给六年级三个班。
一班和二班分得棵数比是2:3,二班和三班的棵数比是5:7。
求每个班各分得树苗多少棵?5.加工一个零件,甲、乙、丙分别需要3分,3.5分和4分钟,现有1852个零件需要加工。
如果规定三人同样的时间完成任务,那么各应加工多少个零件?6.大、小客车分别从甲、乙两地同时相向开出,大、小客车速度的比为4:5,两车开出221小时相遇,并继续前进,大客车比小客车晚几小时到达目的地?7.一段路分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3。
六年级数学比和比例试题
六年级数学比和比例试题1.(6分)求未知数x4.2+0.5x=5.6:=:x=.【答案】x=2.8;x=;x=6【解析】①依据等式的性质,方程两边同时减去4.2,再同除以0.5求解;②先根据比例的基本性质,把原式转化为x=×,然后根据等式的性质,在方程两边同时乘4求解;③先根据比例的基本性质,把原式转化为0.6x=4×0.9,然后根据等式的性质,在方程两边同时除以0.6求解.解:①4.2+0.5x=5.64.2+0.5x﹣4.2=5.6﹣4.20.5x÷0.5=1.4÷0.5x=2.8②:=:xx=×x×4=××4x=③=0.6x=4×0.90.6x÷0.6=3.6÷0.6x=6点评:本题主要考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.2.比例尺是()。
A.一把尺B.一个比例C.一个比D.一个分数【答案】C【解析】根据概念可知:比例尺是图上距离和实际距离的比。
它是一个比,所以选C。
3.小新、小志、小刚三人拥有的藏书数量之比为,三人一共藏书本,求他们三人各自的藏书数量.【答案】24【解析】根据题意可知,他们三人各自的藏书数量分别占三人藏书总量的、、,所以小新拥有的藏书数量为本,小志拥有的藏书数量为本,小刚拥有的藏书数量为本.4.(越城区)加工一批零件,甲需要10天完成,乙需要12天完成,甲与乙的工作效率比是5:6..【答案】错误【解析】把这批零件的总数看做单位“1”,则甲的工作效率是,乙的工作效率是,由此即可得出甲与乙的工作效率之比是::=6:5,由此即可判断.解答:解:根据题干分析可得甲的工作效率是,乙的工作效率是,所以甲与乙的工作效率之比是::=6:5,所以原题说法错误故答案为:错误.点评:此题也可以这样分析:工作时间×工作效率=工作总量,工作总量一定时,工作时间与工作效率成反比例,工作时间之比是:10:12=5:6,则工作效率之比就是6:5,由此判断原题说法错误.5.(平阳县)有一块菜地共600平方米,用它的种西红柿,其余的种黄瓜和茄子,已知黄瓜和茄子的种植面积的比是2:3.三种蔬菜的种植面积各是多少平方米?【答案】三种蔬菜面积分别是240平方米、144平方米、216平方米【解析】把菜地的总面积600平方米看作单位“1”,单位“1”是已知的,求种西红柿的面积就是求600的是多少,用乘法计算,再用总面积减去种西红柿的面积就是剩下的面积,把剩下的按2:3的面积比种黄瓜和茄子,再把剩下的面积看作单位“1”,先求出总份数2+3=5份,也就是黄瓜、茄子分别各占剩下面积的和,剩下面积已求出,就根据求一个数的几分之几是多少用乘法计算.解答:解:种西红柿的面积:600×=240(平方米),剩下的面积:600﹣240=360(平方米),总份数:2+3=5份,种黄瓜的面积:360×=144(平方米),种茄子的面积:360×=216(平方米);答:三种蔬菜面积分别是240平方米、144平方米、216平方米.点评:本题要先求出种黄瓜的面积,然后求出剩下的面积,再把剩下的面积按照2:3的比例分配求出即可.6.(2012•陕西)在比例尺是1:500,0000的中国地图上,量得上海到杭州的距离是3.4厘米.计算一下,上海到杭州的实际距离大约是多少千米?【答案】上海到杭州的实际距离大约是170千米【解析】图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出上海到杭州的实际距离.解答:解:3.4÷=17000000(厘米),17000000厘米=170千米;答:上海到杭州的实际距离大约是170千米.点评:此题主要依据图上距离、实际距离和比例尺的关系解决问题.7.水是由氢和氧按1:8的质量比化合成的.5.4千克的水含氢和氧各多少?【答案】5.4千克的水含氢0.6千克,氧4.8千克【解析】由水是由氢和氧按1:8的质量比化合成,可知:氢与水的比为1:9,氧与水的比为8:9,用5.4千克的水乘以氢和氧的比率即可解决问题.解答:解:5.4×=5.4×=0.6(千克),5.4×=5.4×=4.8(千克),答:5.4千克的水含氢0.6千克,氧4.8千克.点评:此题在解答时要先分别求出氢与水的比及氧与水的比,再分别列式解答即可.8.有一种手表零件长5毫米,在设计图纸上的长度是10厘米,图纸的比例尺是()A.1:20B.20:1C.2:1D.1:2【答案】B【解析】比例尺=图纸上距离:手表零件实际长度,根据题意代入数据可直接得出这张图纸的比例尺.解答:解:10厘米=100毫米,比例尺=100:5=20:1.故选B.点评:本题考查了比例尺的概念,注意单位要统一.9.如果,那么a:b=.【答案】1:6【解析】由可得6a=b,运用比例的基本性质,把6和a当做比例的外项,把b和1当做比例的内项,写出比例即可.解答:解:因为,所以6a=b,a:b=1:6.故答案为:1:6.点评:变化式子,然后运用比例的基本性质解决问题.10.走一段路,甲用4小时,乙用3小时,甲和乙行走的速度的最简比是.【答案】3:4【解析】把这段路看成单位“1”,甲的速度是,乙的速度是,由此做出比,然后再化简即可.解答:解:甲的速度:乙的速度=:=3:4.答:甲和乙行走的速度的最简比是3:4.故答案为:3:4.点评:本题也可以根据路程一定,速度和时间成反比例进行求解.11.比的前项乘以,比的后项除以2,比值缩小4倍..(判断对错)【答案】×【解析】比的前项乘以,比的后项除以2,即比的前项和后项同时除以2,根据比的基本性质“比的前项和后项同时乘以或除以相同的数(零除外),比值不变”可知这个比的比值不变.解:根据比的基本性质,比的前项乘以,比的后项除以2,这个比的比值不变.故答案为:×.点评:本题主要考查了比的基本性质.12.求未知数x的值:(1):x=15%:0.18(2)x﹣x﹣5=18【答案】(1)x=1.8(2)x=69【解析】(1)先根据比例的基本性质:两内项的积等于两外项的积,把方程转化为15%x=0.18×,再依据等式的性质,方程两边同除以15%求解;(2)先化简方程得x﹣5=18,再依据等式的性质,方程两边同加上5再同乘上3求解.解答:解:(1):x=15%:0.1815%x=0.18×15%x=0.2715%x÷15%=0.27÷15%x=1.8;(2)x﹣x﹣5=18x﹣5=18x﹣5+5=18+5x=23x×3=23×3x=69.13. a与b的比是1:4,b就是a的4倍. ()【答案】正确【解析】a:b=1:4,则b:a=4:1,4÷1=4,得出结论.解答:a:b=1:4,则b:a=4:1,4÷1=4,故答案为:√.14.圆的面积和半径成正比例..(判断对错)【答案】错误.【解析】判断圆的面积和半径是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.解答:解:因为圆的面积S=πr2,所以S:r2=π(一定),即圆的面积与半径的平方的比值一定,但圆的面积与半径的比值不是一定的,不符合正比例的意义,所以圆的面积和半径不成正比例;故答案为:错误.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断.15. 3x=5y,那么x与y与正比例..(判断对错)【答案】×.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:3x=5y,若x和y都不为0,则x:y=,是比值一定,x与y与正比例;但题干没有确定x和y是否不为0,所以原题说法错误.故答案为:×.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.16.真相大白.①x﹣x=②x:1.2=.【答案】x=3;x=1.5.【解析】(1)先算x﹣x,再在等号的两边同时除以(1﹣)的值即可求出x的值;(2)根据比例的基本性质作答,即在比例里两个内项之积等于两个外项的积,再根据等式的性质,在等号的两边同时除以4,即可求出x的值;解答:解:(1)x﹣x=,x=,x÷=,x=3;(2)x:1.2=,4x=1.2×5,x=,x=1.5.点评:此题主要考查了解方程的方法,即利用等式的性质,在等号的两边同时加上、或减去、或乘、或除以同一个不为0的数,等号的左右两边仍然相等;解比例的方法,即根据比例的基本性质,在比例里两个内项之积等于两个外项的积,再根据等式的性质作答.17.解比例的依据是.【答案】比例的基本性质.【解析】在解比例时,应根据比例的基本性质,即:比例的两内项之积等于两外项之积.解答:解:解比例的依据是比例的基本性质.故答案为:比例的基本性质.点评:此题考查了解比例的依据:比例的基本性质.18.下列各句中的两个量,()不成比例.A.单价一定,总价与数量B.路程一定,速度与时间C.圆面积与半径的平方D.直径一定,圆周长与圆周率【答案】D【解析】解:A、因为总价÷数量=单价(一定),即商一定,所以数量和总价成正比例;B、因为速度×时间=路程(一定)即乘积一定,所以速度与时间成反比例.C、圆的面积÷半径的平方=π(一定),是比值一定,圆的面积和半径的平方成正比例;D、因为圆的周长C=πd,在此题中圆的直径一定,圆周率也是一定的,所以周长也是一定的,即三个量都是一定的,不存在变量问题,所以圆的周长和圆周率不成比例;故选:D.19.下列各数中,()不能与2、8、10组成比例.A.B.C.D.40【答案】A【解析】解:A、因为在、2、8、10这四个数中,任何两个数的积都不等于其它两个数的积,所以不能组成比例;B、因为×10=2×8,所以、2、8、10四个数能组成比例;C、因为×8=2×10,所以、2、8、10四个数能组成比例;D、因为8×10=2×40,所以40、2、8、10四个数能组成比例.故选:A.20.甲乙两车同时从东、西两城出发,甲车在超过中点20千米的地方与乙车相遇,已知甲车所走的路程与乙车所行路程的比是7:6,东西两城相距多少千米?【答案】520【解析】解:设东西两城相距为x千米,由题意得,x+20=x,x﹣x=20,x=20,x=520;答:东西两城相距为520千米.21.在比例中,两个内项互为倒数,一个外项是0.6,另一个外项是.【答案】【解析】解:根据比例的性质可知两个内项互为倒数,那么两个外项也互为倒数,0.6的倒数是:1÷0.6=1÷=故答案为:.【点评】此题考查比例性质的运用:在比例里,两个内项的积等于两个外项的积;也考查了倒数的意义.22.将日:12时化成最简单的整数比是,比值是.【答案】4:3;.【解析】解:日:12时=16时:12时=(16÷4):(12÷4)=4:3日:12时=16时:12时=16÷12=故答案为:4:3;.【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.23.一个三角形三个内角度数的比是1:2:3,这个三角形一定是()三角形.A.锐角 B.直角 C.钝角【答案】B【解析】解:因为1+2+3=6180°×=90°因为这个三角形里最大的角是直角,所以这个三角形是直角三角形.故选:B.【点评】此题考查了根据角对三角形分类的方法:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.24.华锋水泥厂往某大型建筑工地运送水泥,第一次从仓库里运走,第二次又运走了33吨,这时运出的和剩下的比是2:3,华峰水泥厂仓库原有水泥多少吨?【答案】220【解析】解:33÷()=33÷()=33÷=220(吨),答:华峰水泥厂仓库原有水泥220吨.【点评】本题考查了分数四则复合应用题,首先根据运了两次后,已运的与未运的比求出运走的占总数的分率是完成本题的关键.25.下列各式中(a、b均不为0),a和b成反比例的是()A.a×8=B.9a=6b C.a×﹣1÷b=0D.=b【答案】C【解析】要想判定a和b成什么比例关系,必须根据式子,进行推导.然后根据正反比例的意义,分析数量关系,找出一定的量,然后看那两个变量是比值一定还是乘积一定,从而判定哪一个选项a与b成反例关系.解:A选项:a×8=,所以b:a=40(一定),a与b成正比例;B选项:因为9a=6b,所以a:b=(一定),a与b成正比例;C选项:因为a×﹣1÷b=0,所以a×b=3(一定),a与b成反比例;D选项不成正比例也不成反比例.故选:C【点评】此题重点考查正比例和反比例的意义.26.小林的身高是160厘米,表弟的身高是1米,小林和表弟身高的比是160:1.(判断对错)【答案】×【解析】先把小林身高1m化成100cm,进而写出小林和表弟身高的比并化简比.解:1m=100cm小林身高:表弟身高=160cm:100cm=8:5.故答案为:×.【点评】此题考查比的意义,要注意把单位名称化统一后再写比.27.解方程.45:x=0.3:2.4x+80%=1.4.【答案】50;0.25【解析】(1)首先根据比例的基本性质,可得0.3x=45×,然后根据等式的性质,两边同时除以0.3即可.(2)首先根据等式的性质,两边同时减去0.8,然后两边再同时除以2.4即可.解:(1)45:x=0.3:0.3x=45×0.3x=150.3x÷0.3=15÷0.3x=50(2)2.4x+80%=1.42.4x+0.8﹣0.8=1.4﹣0.82.4x=0.62.4x÷2.4=0.6÷2.4x=0.25【点评】(1)此题主要考查了解比例的方法,要熟练掌握,注意比例的基本性质的应用.(2)此题还考查了根据等式的性质解方程的能力,即等式两边同时加上或同时减去、同时乘以或同时除以一个数(0除外),两边仍相等.28.圆的周长与半径成正比例..(判断对错)【答案】√【解析】圆的周长与半径是两种相关联的量,圆的周长÷半径=2π,2π一定,也就是这两种量的比值一定,所以成正比例,解:圆的周长÷半径=2π,2π一定,也就是这两种量的比值一定,所以成正比例;故答案为:√.【点评】此题考查辨识成正比例的量,只要两种相关联的量比值一定,就成正比例.29. X和Y表示两种相关联的量,同时5X﹣7Y=0,X和Y成正比例..(判断对错)【答案】√【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:X和Y表示两种相关联的量,同时5X﹣7Y=0,则5X=7Y,即Y:X=5:7=(一定),所以Y和X成正比例;故答案为:√.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.30.甲乙丙三人共同植树360棵,他们植树棵数的比是4:3:2.每个人植树多少棵?【答案】甲植了160棵、乙植了120棵、丙植了80棵.【解析】解:4+3+2=9(份),360×=160(棵),360×=120(棵),360×=80(棵),答:甲植了160棵、乙植了120棵、丙植了80棵.31.下列各式中,a和b成反比例的是()A.a+b=8 B.a×b=12 C.a:b=3【答案】B【解析】判断两种相关联的量成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例;据此逐项分析后再选择.解:A、a+b=10,是和一定,所以a和b不成比例;B、a×b=12,是a和b的乘积一定,所以a和b成反比例;C、a:b=3,是a、b的比值一定,所以a和b成正比例.故选:B.【点评】此题考查了判断两种量成正比例还是成反比例关系的方法.32.周长相等的正方形和圆,边长与半径的比是:,面积之比是:.【答案】π:2,π:4.【解析】周长公式可得:周长C相等时,正方形边长=,圆的半径=由此即可解决.解:边长与半径之比为:÷=×=,面积的比为:÷【π×】=÷【π×】=÷=×=,答:边长与半径的比是π:2,面积之比是π:4.故答案为:π:2,π:4.【点评】此题考查了圆与正方形面积公式的灵活应用.33.在一幅比例尺为1:500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米.求这间教室的实际面积.【答案】150【解析】图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”,代入数据即可求出这间教室的实际的长和宽,然后根据长方形的面积公式即可求出实际的面积.解:长:3÷,=1500(厘米),=15(米);宽:2÷,=1000(厘米),=10(米);面积:15×10=150(平方米);答:这间教室的实际面积是150平方米.【点评】此题主要考查图上距离、实际距离和比例尺的关系,关键是求出实际的长和宽,解答时要注意单位的换算.34.出租车司机叔叔从甲地到乙地,前3个小时行了150千米.照这样的速度,再行5小时到达乙地,甲乙两地相距多远?(用比例解)【答案】400千米【解析】照这样的速度,也就是速度一定,根据速度一定,路程与时间成正比例,由此列出比例解决问题.解:设甲乙两地相距x千米.150:3=x:(5+3)3x=150×(5+3)3x=1200x=400;答:甲乙两地相距400千米.【点评】解答此题的关键是,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.35.程或比例3.2x﹣4×3=52x:1=5:313﹣4x=5.【答案】20;2;2.【解析】(1)先计算4×3=12,根据等式的性质,等式两边同时加上12,然后等式两边同时除以3.2;(2)根据比例的基本性质,把原式化为3x=1×5,然后等式的两边同时除以3;(3)根据等式的性质,等式两边同时加上4x,把原式化为4x+5=13,等式两边同时减去5,然后等式两边同时除以4.解:(1)3.2x﹣4×3=523.2x﹣12=523.2x﹣12+12=52+123.2x=643.2x÷3.2=64÷3.2x=20;(2)x:1=5:33x=1×53x÷3=1×5÷3x=2;(3)13﹣4x=513﹣4x+4x=5+4x4x+5=134x+5﹣5=13﹣54x=84x÷4=8÷4x=2.【点评】解方程是利用等式的基本性质,即等式的两边同时乘或除以同一个数(0除外),等式的两边仍然相等;等式的两边同时加或减同一个数,等式的两边仍然相等;解比例是利用比例的基本性质,即比例的两个内项的积等于两个外项的积.36.圆的面积和半径成正比例..(判断对错)【答案】×【解析】判断圆的面积和半径是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.解:因为圆的面积S=πr2,所以S:r2=π(一定),即圆的面积与半径的平方的比值一定,但圆的面积与半径的比值不是一定的,不符合正比例的意义,所以圆的面积和半径不成正比例;故答案为:×.【点评】此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断.37.汽车行驶的速度一定,行驶的时间和行驶的路程成反比例..(判断对错)【答案】×【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:汽车行驶的路程÷行驶的时间=速度(一定),是比值一定,所以,汽车行驶的速度一定,行驶的时间和行驶的路程成正比例.故答案为:×.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.38.把3:8的前项加上12,要使比的比值不变,后项应()A.乘4 B.增加40 C.增加32【答案】C【解析】根据比的性质,比的前项和后项同时乘或除以相同的数(0除外),比值不变.首先观察前项的变化,由3变成3+12=15,前项扩大了5倍,所以后项也应该扩大5倍.解:前项由3变成3+12=15,前项扩大了5倍,所以后项也应该扩大5倍.即8×5=40,40=8+32,答:后项应增加32.故选:C.【点评】此题考查的目的是理解掌握比的性质及应用.39.写出两个比值是3的比,再组成比例是.【答案】6:2=12:4.【解析】任意写出比值是3的两个比,再组成比例即可.解:因为6:2=3;12:4=3;所以可得比例式:6:2=12:4.故答案为:6:2=12:4.【点评】此题考查比例的意义:表示两个比相等的式子;解决此题只要任意写出两个比值为3的比,即可组成比例.40. 4:5的后项增加10,要使比值不变,前项应增加()A.10B.15C.8D.12【答案】C【解析】比的性质是指比的前项和后项同时乘或除以相同的数(0除外),比值不变;据此分析解答.解:4:5的后项增加10,可知比的后项由5变成15,相当于后项乘3;要使比值不变,前项也应该乘3,由4变成12,也可以认为是前项增加:12﹣4=8.故选:C.【点评】此题也可以这样解答:根据4:5的后项增加10,是后项增加了后项的2倍,要使比值不变,前项也应增加前项的2倍,即增加4×2=8.41.把改写成数值比例尺是.【答案】1:4000000【解析】图上距离和实际距离已知,依据“比例尺=”即可将线段比例尺改为数值比例尺;解答即可.解:图上距离1厘米表示实际距离是40千米,又因40千米=4000000厘米,则改成数值比例尺为1厘米:4000000厘米=1:4000000;故答案为:1:4000000.【点评】本题主要考查了比例尺的意义,注意图上距离与实际距离的单位要统一.42.已知两个比值是0.8,它们组成的比例的两个外项是1.2和5,这个比例是.【答案】1.2:1.5=4:5【解析】假设第一个外项为1.2,则第二个外项为5,则第一个内项为1.2÷0.8=1.5,则第二个内项为5×0.8=4;然后写出比例式即可.解:解:1.2÷0.8=1.5,5×0.8=4,比例式1.2:1.5=4:5,故答案为:1.2:1.5=4:5.【点评】解答此题的关键是运用比的知识及比例的基本性质的应用,做题时应认真分析,找出内、外项即比值的关系,进而得出结论.43.把2.4:1.5化成最简单的整数比是,这个比的比值是.【答案】8:5,1.6【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)求比值,用比的前项除以后项即可.解:2.4:1.5=(2.4×10÷3):(1.5×10÷3)=8:5;2.4:1.5=2.4÷1.5=1.6;故答案为:8:5,1.6.【点评】此题主要考查了化简比和求比值的方法,要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.44.如果7A=8B,那么A:B= .【答案】8:7.【解析】根据比例的基本性质,在比例里,两外项之积等于两内项之积.据此解答即可.解:因为,7A=8B,所以,A:B=8:7,故答案为:8:7.【点评】此题考查的目的是理解掌握比例的基本性质及应用.45.化简下面各比.0.07:0.21 ::8.【答案】1:3;4:3;1:10.【解析】根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比.解:(1)0.07:0.21,=(0.07×100):(0.21×100),=7:21,=1:3;(2):,=(×16):(×16),=12:9,=4:3;(3):8,=(×5):(8×5),=4:40,=1:10.【点评】此题考查化简比的方法,注意化简比的结果仍是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果才是一个数.46.解比例.56:X=7:8 :X=: 3.2:0.6=X:4.5.【答案】64;;24.【解析】(1)根据比例的基本性质,两内项之积等于两外项之积,把原式改写成7X=56×8,然后等式的两边同时除以7即可;(2)根据比例的基本性质,两内项之积等于两外项之积,把原式改写成X=×,然后等式的两边同时除以即可;(3)根据比例的基本性质,两内项之积等于两外项之积,把原式改写成0.6X=3.2×4.5,然后等式的两边同时除以0.6即可.解:根据题意可得:(1)56:X=7:8,7X=56×8,7X=448,7X÷7=448÷7,X=64;(2):X=:,X=×,X=,X÷=÷,X=;(3)3.2:0.6=X:4.5,0.6X=3.2×4.5,0.6X=14.4,0.6X÷0.6=14.4÷0.6,X=24.【点评】本题主要考查解比例,根据比例的基本性质和等式的性质进行解答即可.47.一个三角形三个内角度数比是1:1 : 2,这个三角形按角分是一个()三角形,按边分是一个()三角形。
人教版六年级数学小升初专题练习:比和比例
(人教新课标)小升初数学模拟试题 比和比例班级 姓名 分数5.比和比例一、填空。
(18分)1.将2、5、8再配上一个数组成比例,这个数可以是( )。
2.把0.5×80=4×10改写成一个比例是( )。
3.A 除以B 的商是2.5,A 与B 的最简整数比是( ),比值是( )。
4.圆的周长和它的半径成( )比例。
在一定的路程内,车轮的周长和它的转数成( )比例。
分数值一定,分数的分子和分母成( )比例。
如果8X =Y ,那么X 与Y 成( )比例;如果8X=Y ,那么X 与Y 成( )比例。
5.在一个比例中,两个内项互为倒数,其中一个外项是1.2,另一个外项是( )。
6.甲数与乙数的比是2∶5,甲数占乙数的()(),乙数占甲、乙两数和的()()。
7.甲数的23等于乙数的25,甲数与乙数的比是( )。
8.把甲数的17给乙,则甲、乙两数相等,甲数和乙数的比是( )。
9.盐水的浓度是20%,盐和水的质量比是( ),50千克这样的盐水含盐( )千克。
10.把长30 m 的钢管按7∶8分成两段,较长的一段是( )m 。
11.一个长方体的棱长和是108 cm ,长、宽、高的比是3∶4∶2,它的体积是( )cm 3。
12.小圆的半径是2 cm ,大圆的半径是3 cm ,小圆和大圆的周长比是( ),面积比是( )。
二、判断。
(8分)1.组成比例的两个比一定是最简整数比。
················· ( )2.同一圆内,圆的周长与直径的比是π∶1。
··············· ( )3.比的前项乘7,同时再把比的后项除以17,比值不变。
六年级(上)数学第三章 比和比例
第三章 比和比例3.1比的意义-3.2比的基本性质一、填空题(每题3分,3×10=30分)1.一个比的前项是10,后项是9,则这个比是 .2.两个正方形的边长分别为3cm 和1dm,则这两边长的比是 .3.比的前项是43,比的后项是217,它们的比值是 .4.15cm ∶1.3m 的比值是 .6.把22∶0.25化成后项为100的比 . 7()=819∶5,()++=34232.9. 把连比化为最简整数比:2∶4∶8= ;21∶31∶61= ; 0.3∶0.15∶0.45= ;10. 化简比:120分∶1.2小时∶1小时20分钟= .二、选择题(每题3分,3×4=12分)11.下列各数中,与3∶2不相等的是…………………………………( ) (A )1.5 (B )32 (C )23 (D )81212.一段绳子,原长14米,一次用去了2.8米,余下的绳子长与原来的绳长的最简整数比是…………………………………( )(A )5∶1 (B )1∶5 (C )4∶5 (D )5∶4 13.一项工程甲队单独做3天完成,乙队单独做5天完成,丙队单独做6天完成,那么 甲、乙、丙三队的工作效率比是………………………………( )(A )3∶5∶6 (B )1∶5∶2 (C )10∶6∶5 (D )31∶51∶6114.若三角形三个内角之比为2∶3∶1,则其中最大的角为 ……( ) (A )︒60 (B )︒90 (C )︒120 (D )︒150 三、解答题(满分58分)15.求下列各比的比值. (每小题4分,4×4=16分) (1) 4∶36 (2) 21∶31(3) 211 ∶ 322 (4)211 ∶ 2316.求下列各比的比值. (每小题4分,4×4 =16分)(1) 1g ∶0.3kg (2) 30分钟∶1小时45分钟(3) 5天∶72小时 (4) 375毫升∶1.25升17.利用已知条件,求a ∶b ∶c (每小题5分,2×4=8分)(1). a ∶b =2∶3,b ∶c =6∶5; (2). a ∶b =2∶3,b ∶c =4∶318. 甲、乙两人加工300个同样的零件甲10分钟内完成6个,乙在5分钟内完成6个,求 :(1)甲、乙两人完成300个零件的速度比;(2)甲、乙两人完成300个零件的时间比.(6分+6分)19. 在一次植树活动中,甲组植树256棵,乙组植树320棵,丙组植树216棵.求甲乙丙植树的最简整数连比.(6分)四、拓展题(每小题5分,2×5=10分)20. 六年级有230人参加电脑、美术、健美操三个兴趣小组,已知参加电脑班的人数∶参加美术班的人数=2∶3,参加电脑班的人数∶参加健美班的人数=3∶4,问参加电脑、美术、健美操三个兴趣小组的人数各是多少?21.如图是某公园的设计图,其中正方形的43是草地,圆的76是竹林,求正方形与圆的面积比.3.3比例-3.4百分比的意义一、填空题(每题3分,3×10=30分)根据比例的基本性质,写成乘法形式是 .,比例外项是 . 3. 写出外项是1和3,内项是6和2的一个比例: ..5. 一辆汽车2小时行驶130米,照这样的速度,从甲地到乙地共驶3.5小时,甲、乙两地间的公路长 千米6. 养鸡场的公鸡与母鸡的只数比是3∶2,已知公鸡有450只,母鸡有 只.7. 在1.34,⋅31.,10031,131%四个数中最大的数是 ., 最小的数是 . 8. 把431化成百分数是 ,把25%化成小数是 . 9. 比较大小::0.34 0.34%;0.24% 241.10. 今年的房价比去年同期上涨了40%,今年的房价是去年房价的 %二、选择题(每题3分,3×4=12分)11.已知yx52=,下列各式成立的是…………………………………( )(A )2x =5y (B )xy =10 (C )25=xy (D )25=yx12.下列四组数中,不能组成比例的是…………………………………( ) (A )2,3,4,6 (B )1,2,2,4 (C )0.1, 0.3 ,0.5 ,1.5 (D )51,41,31,2113.两地的实际距离是500千米,地图上的距离是5厘米,则比例尺是( ) (A )5:500 (B )5:5000000(C )1:0000000 (D )1:10014.在832、221%、2.2、2.5%中,最大的数是…………………………………( )(A )832 (B )221% (C )2.2、 (D )2.5%三、解答题15.(每题5分,满分20分)求下列各式中的x (1) x ∶16=5∶12 (2) 6515=x (3) 3226=+x . (4) 2x ∶3=(x-1)∶4 .16.将15本厚度相同的书叠起来,他们的高度为33厘米,将40本同样的书叠起来,高度是多少厘米? (6分)17.如图,A 圆的52与B 圆的41重叠在一起,求B 圆面积与A 圆面积之比.(5分)18. 把下列各数化成百分数:(6分)(1)100 (2)0.05 (3)85219. 把下列百分数化成整数或小数: (6分)(1)3% (2)150% (3)1.75%20 .把百分数化成最简分数: (6分)(1)0.4% (2)12% (3)21.05%21. 求下列各题的商,并把所得的商化成百分比.(除不尽的保留一位小数) (9分) (1)240 ÷600 (2)2÷3.2 (3)5÷8.2四、附加题(10分)22.如果x 能与4,5,6,这三个数组成比例,求x 的值.。
六年级上册人教版比和比例练习题
六年级上册人教版比和比例练习题1、甲班有60人,乙班有75人,请比较两个班级学生数量之间的比例。
解答:甲班学生数量:60人乙班学生数量:75人甲班与乙班学生数量的比例可以表示为:甲班学生数量 : 乙班学生数量 = 60 : 752、小明在数学考试中得了85分,小红得了90分。
请比较小明和小红两人的考试成绩。
解答:小明的考试成绩:85分小红的考试成绩:90分小明和小红的考试成绩可以表示为:小明的考试成绩 : 小红的考试成绩 = 85 : 903、一辆汽车每小时行驶80公里,一辆自行车每小时行驶20公里。
请比较汽车和自行车的行驶速度。
解答:汽车的行驶速度:80公里/小时自行车的行驶速度:20公里/小时汽车和自行车的行驶速度可以表示为:汽车的行驶速度 : 自行车的行驶速度 = 80 : 204、甲班有男生40人,女生30人。
乙班有男生35人,女生25人。
请分别计算甲班和乙班男生与女生人数的比例。
解答:甲班男生数量:40人甲班女生数量:30人甲班男生与女生人数的比例可以表示为:男生数量 : 女生数量 = 40 : 30乙班男生数量:35人乙班女生数量:25人乙班男生与女生人数的比例可以表示为:男生数量 : 女生数量 = 35 : 255、一张地图上,实际距离和地图上的比例为1:1000000。
两个城市的实际距离为150公里,请计算地图上显示的距离。
解答:实际距离与地图上的比例:1 : 1000000实际距离:150公里地图上显示的距离可以表示为:地图上显示的距离 : 实际距离 = x : 150根据比例关系,可以得出:地图上显示的距离 = (实际距离 * 地图上的比例) = 150 * 1000000 = 150000000因此,地图上显示的距离为150000000。
通过以上的练习题,我们可以进一步加深对比和比例的理解。
比和比例在数学中具有重要的应用价值,在实际生活中也有广泛的应用。
通过掌握比和比例的概念和计算方法,我们可以更好地理解和解决各种与比例相关的问题。
小学六年级(上)数学 比和比例 单元测试卷(含答案)
小学六年级(上)数学比和比例单元测试卷(含答案)小学六年级(上)数学比和比例单元测试卷(含答案)小学六年级(上)数学比和比例单元测试卷一、单选题1.比的()不能为零。
A. 前项B. 后项C. 比值D. 无法确定2.根据“a是b的“可以写成()A. 3:a=5:bB. a:b=5:3C. a:b=3:53.夏日的一天.阳光明媚,淘气的身高为150cm,映在地面上约为75cm,那么,他旁边的影长为3.5米的教学楼高为()A. 3.5米B. 1.75米C. 7米D. 9米4.一份稿件,小丽需12分钟打完,小华需16分钟.小丽与小华工作效率的最简比是()A. 12:16B. 16:12C. 4:3 D. :5. 下面的比,能与组成比例的是()A. 0.6:0.7B. 0.7:C. :二、判断题6.判断对错.比的前项和后项都是整数的比,叫做最简整除比.7.把10克的农药溶入90克的水中,农药与农药水的比是1:9.(判断对错)8.(2015.河北张北)在比例中,两个外项的积与两个内项的积的比是1:1。
(判断对错)9.判断对错.甲、乙、丙三地编绘在同一幅地图上,由于甲乙之间的距离小于乙丙之间的距离,所以图上甲乙间的距离和甲乙间实际距离的比也小三、填空题10.解比例.x∶3.4=1.5∶3x=________11.一个比例里,两个外项正好互为倒数,其中一个内项是2.5,另一个内项是________.12.小丽有60张邮票,小华有40张邮票,小丽要给小华________张邮票才能使两人的邮票张数比为1∶4?13.已知甲、乙两数的比是,乙、丙两数的比是,甲数与丙数的比是________四、解答题14.下面一组的两个比能组成比例?把能组成的比例写出来.3∶15和1.2∶615.按照下面的条件列出比例用10以内的四个不同自然数组成比例,想想能写几个?五、综合题16.填空。
(1)3:________=________:12(2)24:9=8:________(3)________:12=15:________(4)________:3=8:________六、应用题17.修路队修一条公路,已修部分与未修部分的比是9:4,又知已修部分比未修部分长600米,这条路长多少米?参考答案一、单选题1.[答案]B[解析][解答]解:比的后项不能为零。
小学数学六年级比和比例习题
六年级数学比和比例专题训练题一、填空题1、在一个比例里,两个外项的积是最小的质数,一个内项是0.5,另一个内项是( )。
2、甲数×43=乙数×60%,甲:乙=( : )。
3、0.75:32化成最简整数比是( )。
4、一幅地图的线段比例尺是 它表示实际距离是图上距离的( )倍。
5、在10001的图纸上,一个正方形的面积为16平方厘米,它的实际面积是( )平方米。
6、甲数的53是甲乙两数和的41,甲乙两数的比是( )。
7、一个比例式,两个外项的和是37,差是13,比值是65,这个比例式可以是( )。
8、一车水果重1.8吨,按2:3:5的比例分配给甲、乙、丙三个水果店,乙水果店分得这批水果的( )。
9、)星期天,小丽看一本书用了2小时15分,小红同样一本书用了2.15小时,小丽和小红看书用的时间比是( )。
10、在一个比例式中。
两个外项都质数,它们的积是22,一个内项是这个积的101,这个比例式可以是( )。
11、两地相距80千米,画在比例尺是1:400000的地图上,应画( )厘米。
12、一杯糖水,糖与水的比是1:4,喝去21杯糖水后,又用水加满,这时糖与水的比是( )。
13、已知一个比例的两个外项分别是3和41,组成比例的两个比的比值是21,这个比例是( )。
14、甲数比乙数多32,甲数与乙数的比是( )。
15、甲、乙、丙三个数的平均数是15,甲、乙、丙三个数的比是2:3:4,甲数是( )。
16、一个比例的两个内项互为倒数,一个外项是81,另一个外项是( )。
17、圆柱的高一定,圆柱的底面积与体积( )比例。
18、东风小学六年级人数是五年级人数的98,五年级与六年级人数的比是( )。
19、学校购到一批书,按2:3:5借给四、五、六三个年级。
四年级借到这批书的( )%。
20、一个机器零件长2米,在设计图上这个零件长4厘米,这幅设计图的比例尺是( )。
21、把3克盐放入12克水中,盐与盐水重量的最简整数比是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比和比例
1、两个数相除,又叫做这两个数的比,“:”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值。
比的后项不能为0。
2、分数的基本性质:分数的分子和分母同时乘以或者除以相同的数(0除外),分数的大小不变。
乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
3、商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍(0除外),商不变。
4、比的基本性质:比的前项和后项同时乘以或者除以相同的数(0除外),它们的比值不变。
5、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
6、公因数只有1的两个数叫做互质数。
最简整数比:比的前项和后项是互质数。
7、比的化简:用商不变的性质、分数的基本性质或比的基本性质来化简。
8、比例:①表示两个比相等的式子叫做比例。
如:(3:4=9:12)。
比例有四个项,分别是两个内项和两个外项。
在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。
比例的四个数均不能为0。
9、比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。
10、比、比例、比例尺、百分数的后面不能带单位。
一.填空
1、0.6=3:()=()÷15=()成=()%
2、11
2
: 0.75的比值是(),把它化为最简的整数比是()
3、比例4:9=20:45写成分数形式是(),根据比例的基本性质写成乘法形式是()
4、18的约数有(),选出其中四个数组成一个比例是()
5、在比例尺1:2000000的地图上,图上1厘米表示实际距离()千米。
6、在一个比例中,两个内项互为倒数,一个外项是2
5
,另一个外项是()
7.甲数除以乙数的商是4,甲数与乙数的最简整数比是()
8、我国<<国旗法>>规定,国旗的长和宽的比是3:2,学校的国旗宽是128厘米,长应该是( )厘米。
9、三角形底一定,它的高和面积成()比例。
10、用0.2 、 6、 30、 1这四个数组成两个比例式是()和()
11、某厂男职工人数是女职工的2
3
,女职工与男职工的人数比是()
12、两个正方体的棱长比是3:4,它们的体积比是()
13、如果3a=2b,那么a:b=():()
14、从A地到B地,甲用12分钟,乙用8分钟,甲乙的速度比是( )
15、小圆的半径是2厘米,大圆的半径是3厘米,小圆和大圆的周长比是(),面积比是()
16、甲乙两数之比是3:4,它们的和是1.4,则甲数是( ),乙数是( ) 17、一个比8:15,如果后项增加60,要使比值不变,比的前项应该增加( ) 18、在比例尺是1
200 的学校平面图上,量得教室的长8厘米,宽6厘米,教室实际
面积是( )
19、男生人数比女生人数少20%,男生人数与女生人数的比是( ):( ) 20、甲数的13 等于乙数的2
5 ,甲数与乙数的比是( )
二、判断
1、圆柱的底面积一定,它的高与体积成正比例 。
( )
2、圆周率是圆的直径与周长的比值。
( )
3、把16:2化作最简的整数比是8。
( )
4、如果Y=5X ,则x 与y 成正比例。
( ) 5、一个非0的自然数与它的倒数成反比。
( ) 三、选择题
1、能与1.6:1.2组成比例的是 ( ) A、1.2:1.6 B、2
5
:0.3 C、3:4
2、一克的盐放入49克的水中,盐和盐水的比是 ( ) A、1:49 B、1:48 C、1:50
3、x ×13 =y ×1
5 时,x :y =( )
A、13 :1
5
B、5:3 C、3:5
4、一本书已看总页数的60%,没看页数与总页数的比是 ( ) A、2:3 B、3:5 C、2:5
5、花生的出油率一定,花生的质量和榨出的油的质量( ) A、成正比例 B、成反比例 C、不成比例 四、计算 1、化简比
1.5:3.5 11
5
:1.8 9分:0.4小时 2、求出比值
3.75:112 1.35:2.4 213 :312
3、解比例
0.499.8=
16
x
7:x=4.8:9.6x:
3
4
=12:
1
8
五、解决问题
1、房产博览会上,某楼盘的模型是按照1:500的比例尺制作的,该楼盘1号楼模型高7厘米,它的实际高度是多少?
2、兰州到乌鲁木齐的铁路长约1900千米,在比例尺是1:40000000的地图上,它的长是多少?
3、修一条长12千米的公路,开工3天修了1.5千米。
照这样计算,修完这条路还要多少天?
4、专业户刘大伯家养鸡、鸭、鹅共1800只,这三种家禽的只数比是5:3:1。
刘大伯家养鸡、鸭、鹅各多少只?
5、把一批书按4:5:6的比例分给甲、乙、丙三个班,已知甲班比丙班少分到24本,三个班各分到多少本书?
6、亮亮家造了新房,准备用边长是0.4米的正方形地砖装饰客厅地面,这样需要180块,装修老师建议改用边长0.6米的正方形地砖铺地。
请你算一算需要多少块?
六、数学思考
一艘轮船以每小时40千米的速度从甲港开往乙港,行了全程的20 后,又行驶了1小时,这时未行路程与已行路程的比是3:1。
甲乙两港相距多少千米?。