实验2脉冲编码调制PCM与时分复用实验(.)-

合集下载

PCM编码 实验报告

PCM编码   实验报告

实验二十三时分复用与解复用实验实验项目一256K时分复用帧信号观测(1)帧同步码观测:用示波器连接复用输出,观测帧头的巴克码。

(2)帧内PN序列信号观测:用示波器接复用输出,利用储存功能观测3个周期中的第一时隙的信号。

实验项目二256K时分复用及解复用(1)帧内PCM编码信号观测:将PCM信号输入DIN2,观测PCM数据。

以帧同思考题:PN15序列的数据是如何分配到复用信号中的?分析分时复用的实质,可知,在模拟传送时,一位用户的数据根据复用划分的时隙以一帧为周期,逐次将8位数据插入每个帧相同的时隙处。

对于此次实验中的PN15序列,检测到帧同步信号的帧头时,便插入第一帧数据,在第二次检测到帧头时插入第二帧数据,以此类推,将信号分配到复用信号中,以达到提高信道利用率的目的。

对比观测实验出现的码元,发现为01110010,根据所学知识可知,这串码即为帧头的观测码。

步为触发分别观测PCM编码数据和复用输出的数据。

(2)解复用帧同步信号观测:PCM对正弦波进行编译码。

观测复用输出与FSOUT,观测帧同步上跳沿与帧同步信号的时序关系。

思考题:PCM数据是如何分配到复用信号中去的?时分多路复用以时间作为信号分割的参量,将各路输入变为变为并行数据,然后按照给端口数据所在的时隙进行帧的拼接,完成一个完整的数据帧。

而在本实验中,PCM 的数据输入到DIN2,将其插入到复用信号的第2个时隙,与其它3个时隙拼接为一帧,从而实现了PCM信号分配到复用信号中。

上图分别为PCM编码输入和复用输出的波形。

仔细观察可知,对比复用输入信号,复用输出有2帧的延时,且在复用输出的第0时隙为帧头的巴克码,第1时隙没有数据,第2时隙有了数据的存放,即PCM复用编码时被插在了一帧的第2时隙中,在解复用时先寻找巴克码,再按照每一帧的数据存放的相应的时隙进行解复用,之后拼接起来,便实现了PCM的数据恢复。

(3)解复用PCM信号观测:对比观测复用前与解复用后的PCM序列;对比观测PCM编译码前后的正弦波信号。

实验二十二 电话接口及其PCM编译码和时分复用实验

实验二十二  电话接口及其PCM编译码和时分复用实验

实验二十二电话接口及其PCM编译码和时分复用实验一、实验目的1、全面了解用户线接口电路功能(BORST)的作用及其实现方法。

2、通过对PBL38710电路的学习与实验,进一步加深对BORST功能的理解。

3、了解二/四线变换电路的工作原理。

二、实验内容1、观察语音信号波形。

2、二/四线变换实验。

3、对两路语音信号进行PCM编码,观察编码波形。

4、对两路语音信号进行PCM编码,然后将编码后的信号进行译码,聆听通话效果。

5、对两路语音信号进行PCM编码,然后进行时分复用,解复用,PCM译码,观察复用后的信号与解复用的信号,并将其与复用前的编码信号比较。

6、对时分复用后的信号进行信道模拟,观察其对话音质量的影响。

三、实验仪器1、模拟信号数字化模块2、时分复用模块3、信道模拟模块4、电话接口及计算机数据通信模块5、电话单机二部6、20M双踪示波器一台7、连接线若干四、实验原理1、用户接口电路的作用在现代电话通信设备与程控交换机中,由于交换网络不能通过铃流、馈电等电流,因而将过去在公用设备(如绳路)实现的一些用户功能放到“用户电路”来完成。

用户电路也可称为用户线接口电路(Subscriber Line Interface Circuit—SLIC)。

任何交换机都具有用户线接口电路。

模拟用户线接口电路在实现上的最大压力是应能承受馈电、铃流和外界干扰等高压大电流的冲击,过去都是采用晶体管、变压器(或混合线圈)、继电器等分立元件构成,随着微电子技术的发展,近十年来在国际上陆续开发多种模拟SLIC,它们或是采用半导体集成工艺或是采用薄膜、厚膜混合工艺,并已实用化。

在实际中,基于实现和应用上的考虑,通常将BORSCHT 功能中过压保护由外接元器件完成,编解码器部分另单成一体,集成为编解码器(CODEC),其余功能由所谓集成模拟SLIC完成。

在布控交换机中,向用户馈电,向用户振铃等功能都是在绳路中实现的,馈电电压一般是-48V,用户的馈电电流一般是20mA~30mA,铃流是25Hz左右,而在程控交换机中,由于交换网络处理的是数字信息,无法向用户馈电、振铃等,所以向用户馈电、振铃等任务就由用户线接口电路来承担完成,再加上其它一些要求,程控交换机中的用户线接口电路一般要具有B(馈电)、O(过压保护)、R(振铃)、S(监视)、C(编译码)、H(混合)、T(测试)七项功能。

通信原理实验报告模板-时分复用

通信原理实验报告模板-时分复用

2.用示波器观察分接后的数据信号、用于数据分接的帧同步信号。
华 北 电 力 大 学 实 验 报 告 1、实验原理框图
巴克码 1# 模块 2# 模块 甲一路 PCM编码 数字终端
PCM编码 输出
时 串并变换 串并变换 开关信号 输入 分 复 用 并 串 变 换
复用输出
DoutMUX
复用输出 时钟
帧同步 提取
华 北 电 力 大 学 实 验 报 告 实验一: 256K 时分复用帧信号观测 1、关电,按表格所示进行连线。 源端口 信号源:FS 目的端口 模块 7:TH11(FSIN) 连线说明 帧同步输入
2、开电,设置主控菜单,选择【主菜单】→【通信原理实验】→【时分复用】→【复用速率 256KHz】 。 3、此时系统初始状态为:在复用时隙的速率 256K 模式,7 号模块的复用信号只有四个时隙,其中第 0、1、 2、3 输出数据分别为巴克码、 DIN1、DIN2、开关 S1 拨码信号。 4、实验操作及波形观测。 (1)帧同步码观测:观测帧头的巴克码。 注:为方便记录巴克码波形,可先将 7 号模块上的拨码开关 S1 全置为 0,使整个复用中只有帧同步信号, 记录复用输出波形。 (3)帧内 PN 序列信号观测 继续连线,将信号源的 PN15 连接到 7 号模块的 DIN1,即将 PN15 送至第 1 时隙。观测 3 个周期中的第 1 时隙的信号。 实验二: 256K 时分复用及解复用 概述:该项目是将模拟信号通过 PCM 编码后,送到复用单元,再经过解复用输出,最后译码输出。 1、连线。 源端口 信号源:FS 信号源:FS 信号源:CLK 目的端口 模块 7:TH11(FSIN) 模块 1:TH9(编码帧同步) 模块 1:TH11(编码时钟) 模块 1:TH5(音频接口 1) 模块 7:TH14(DIN2) 模块 7:TH18(解复用输入) 模块 7:TH17(解复用时钟) 模块 1:TH10 (译码帧同步) 模块 1:TH18(译码时钟) 模块 1:TH7(PCM 编码输入) 位同步输入 模拟信号输入 PCM 编码输入 时分复用输入 锁相环实现位同步 解复用帧同步输入 连线说明 帧同步输入

实验2脉冲编码调制PCM与时分复用实验-.

实验2脉冲编码调制PCM与时分复用实验-.

实验2 脉冲编码调制PCM与时分复用实验—、实验目的1.加深对PCM编码过程的理解;2.熟悉PCM编、译码专用集成芯片的功能和使用方法;3.了解PCM系统的工作过程;4.掌握时分多路复用的工作过程;用同步正弦波信号观察A律PCM八比特编码的实验。

二、实验仪器1.HD8621D实验箱1台2.20M双踪示波器1台3.铆孔线5根三、实验电路工作原理(一PCM基本工作原理脉冲调制就是把一个的模拟信号变换成的数字信号后在信道中传输。

脉冲编码调制就是对模拟信号的过程。

所谓抽样,就是在抽样脉冲来到的时刻提取对模拟信号在,抽样把时间上的信号变成时间上的信号。

所谓量化,就是把经过抽样得到的瞬时值将其幅度,即用一组规定的电平,把瞬时抽样值用来表示。

一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。

话音信号先经滤波器,进行脉冲抽样,变成的抽样信号,然后将幅度连续的PAM 信号用“四舍五入”办法量化为的信号,再经编码后转换成。

对于语音电话通信,CCITT规定抽样率为8KHz,每抽样值编位码,即共有个量化值,因而每话路PCM 编码后的标准数码率是 b/s。

为解决均匀量化时小信号量化误差大、音质差的问题,在实际中采用量化方法,即量化特性在小信号时分层密、量化间隔小,而在大信号时分层疏、量化间隔大。

(二 PCM编译码电路【PCM编译码电路TP3067芯片】1.根据图4-4和图4-5说明单路PCM编译码器的工作原理答:计时,可以实现对编译码器的降功耗控制。

图4-5是短帧同步定时波形图。

四、实验内容1.用同步正弦波信号观察A律PCM八比特编码的实验;2.脉冲编码调制(PCM及系统实验;3.PCM八比特编码时分复用输出波形观察测量实验;4.PCM编码时分多路复用时序分析实验。

五、实验步骤及注意事项本PCM编译码系统分为PCM(一、PCM(二两个分系统(见图4-9、图4-10电原理图。

芯片U501及外围电路构成PCM(一,芯片U502及外围电路构成PCM(二。

PCM编码和时分复用实验

PCM编码和时分复用实验

通信原理实验PCM编译码与时分复用目录一、实验目的二、实验原理三、实验设备四、实验过程五、实验总结2一、实验目的验证PCM编译码原理了解时分复用数字电话原理掌握PCM基群信号的形成过程及分接过程,了解多路PCM编码信号的复用和去复用的过程学习语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法34二、实验原理(1)m (t ) PCM 信号信号(线性或非线性)抽样量化编码001010011000PCM 编码过程示意图时间离散化幅度离散化幅值数字化PCM :Pulse Code Modulation 脉冲编码调制5二、实验原理(2)2020/3/16时分复用原理示意图时分复用是将传输时间划分为若干个互不重叠的时隙,互相独立的多路信号分别占用各自的时隙,合路成为一个复用信号,在同一信道中传输。

F A B …………PCM基群信号32时隙F BA6二、实验原理(3)2020/3/16低通滤波器PCM 编 码器复接器低通滤波器PCM 译 码器分接器混合电路广义信道PCM 复用过程:把若干路相互独立的数字电话信号通过复接器复合成一个标准的数据流,再送入传输信道中传输。

PCM 解复用过程:是复用过程的逆过程。

将经过传输的复用信号数据流,通过分接器把各路信号从复用信号中提取出来,恢复原始信号。

三、实验设备通信原理教学实验箱示波器低频信号发生器失真度测量仪4096KHz 晶 振分频器1分频器2 帧同步信号产生器正弦信号源AS1S2S3S4PCM 编译码器A复接器抽样信号产生电路PCM 编译码器B PCMPCM-ASRBSRAPCM-B256KHzS3S2S18KHz 2048KHz CLKSLA(SL2)SLBSTA-INK5SLASLB⎪⎪⎪⎭⎪⎪⎪⎬⎫SL7SL5SL2、SL1、SL0、K8正弦信号源BSTB-INSTB K6STA-SSTA STB-S 四、实验过程:电路原理框图四、实验过程(1)原始语音信号波形观察通过低频信号发生器产生两路正弦信号注意:信号幅度:小于5V p-p;频率:300-3400Hz4096KHz 晶 振分频器1分频器2 帧同步信号产生器正弦信号源AS1S2S3S4PCM 编译码器A复接器抽样信号产生电路PCM 编译码器B PCMPCM-ASRBSRAPCM-B256KHzS3S2S18KHz 2048KHz CLKSLA(SL2)SLBSTA-INK5SLASLB⎪⎪⎪⎭⎪⎪⎪⎬⎫SL7SL5SL2、SL1、SL0、K8正弦信号源BSTB-INSTB K6STA-SSTA STB-S 四、实验过程(2):PCM 信号观察四、实验过程(2)PCM 信号观察示波器CH1接SL0时隙;CH2接PCM 信号,观察时隙信号和对应的PCM 信号SL0的宽度为1个时隙宽度,对应8位帧同步码比特。

脉冲编码调制(PCM)实验完整版文档

脉冲编码调制(PCM)实验完整版文档
传输输入放大器的同向输入。
负电源引脚。VBB=-5V±5%。
❖ 定时部分
❖ TP3067编译码器所需的定时脉冲均由定时部分提供。这里只 需要主时钟2048KHz和帧定时8KHz信号。
❖ 为了简化实验内容,本实验系统的编译码部分公用一个定时源
以确保发收时隙的同步。在实际的PCM数字电话设备中,必须 有一个同步系统来保证发收同步的。 动态范围应大于CCITT(国际电报、电话咨询委员会)建议的框架(样板值),如图所示。
2、 实验电路
TP3067的管脚定义简述如下:
❖ PCM编译码器简介
(1) VPO+ 接收功放的同向输出。 (2) GNDA 模拟地。所有信号以
VPO+
1
20
VBB
这个引脚为参考点。
(三GN)D系A 统性能测试 2
19
VFXI+
1、复习《通信系统原理》中有关编译码和PCM通信系统的内容;
(3) VPO(4) VPI
三、实验原理和电路说明
发滤


波器

Voice 混合
装置
收滤


波器




分 收

PCM数字电话终端机的结构示意图
模拟信源 x (t ) 预滤波
x(n) 波形编码器
抽样器
量化、编码
x(t)
模拟终端
发送端
接收端
数字信道
重建滤波器
x(n)
抽样保持、x/sinx低通
波形解码器
PCM原理图
1、PCM编译码原理
❖ PCM主要包括抽样、量化与编码三个过程。
❖ 抽样:把连续时间模拟信号转换成离散时间连续幅

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验一、 实验目的 1. 了解语音信号编译码的工作原理; 2. 验证PCM 编码原理; 3. 初步了解PCM 专用大规模集成电路的工作原理和应用; 4. 了解语音信号数字化技术的主要指标及测试方法。

二、 实验仪器双踪同步示波器1台;直流稳压电源l 台;低频信号发生器l 台;失真度测试仪l 台;PCM 实验箱l 台。

三、 实验原理 PCM 数字终端机的结构示意图如下:PCM 原理图如下:模拟信源 预滤波抽样器 波形编码器 量化、编码 数字信道波形解码器重建滤波器抽样保持、X/sinx 低通模拟终端()x t ()x n ()ˆxn ()ˆxt 发送端接收端PCM 编译码原理为:1.PCM主要包括抽样、量化与编码三个过程。

2.抽样:把连续时间模拟信号转换成离散时间连续幅度的抽样信号;3.量化:把离散时间连续幅度的抽样信号转换成离散时间离散幅度的数字信号;4.编码:将量化后的信号编码形成一个二进制码组输出。

5.国际标准化的PCM 码组(电话语音)是八位码组代表一个抽样值。

ITT G.712 详细规定了它的S/N指标,还规定比特率为64Kb/s. 使用A 律或u 律编码律。

A律13折线和其编码表为:A律13折线图A律13折线编码表段落序号段落码c2 c3 c4段内码c5 c6 c7 c88 111 0000…….11117 110 0000…….11116 101 0000…….11115 100 0000…….11114 011 0000…….11113 010 0000…….11112 001 0000…….11111 000 0000…….1111内为均匀分层量化,即等问隔16 个分层。

系统性能测试有三项指标,即动态范围、信噪比特性和频率特性。

在满足一定信噪比(SIN)条件下,编译码系统所对应的音频信号的幅度范围定义为动态范围。

PCM 编译码系统动态范围样板值图:动态范围测试框图:四、 实验步骤(一)时钟部分:1. 主振频率为4096KHz ;用示波器在测试点(1)观察主振波形,用示波器测量其频率。

脉冲编码调制实验报告

脉冲编码调制实验报告

一、实验目的1. 了解脉冲编码调制(PCM)的工作原理和实现过程;2. 掌握PCM编译码器的组成和功能;3. 验证PCM编译码原理在实际应用中的有效性;4. 分析PCM编译码过程中可能出现的问题及解决方法。

二、实验原理脉冲编码调制(PCM)是一种将模拟信号转换为数字信号的方法。

其基本原理是:首先对模拟信号进行抽样,使其在时间上离散化;然后对抽样值进行量化,使其在幅度上离散化;最后将量化后的信号编码成二进制信号。

PCM编译码器是实现PCM调制和解调的设备。

1. 抽样:抽样是指在一定时间间隔内对模拟信号进行采样,使其在时间上离散化。

抽样定理指出,为了无失真地恢复原信号,抽样频率必须大于信号最高频率的两倍。

2. 量化:量化是指将抽样值进行幅度离散化。

量化方法有均匀量化和非均匀量化。

均匀量化是将输入信号的取值域按等距离分割,而非均匀量化则是根据信号特性对取值域进行不等距离分割。

3. 编码:编码是指将量化后的信号编码成二进制信号。

常用的编码方法有自然二进制编码、格雷码编码等。

三、实验仪器与设备1. 实验箱:包括模拟信号发生器、抽样器、量化器、编码器、译码器等;2. 示波器:用于观察信号波形;3. 数字频率计:用于测量信号频率;4. 计算机软件:用于数据处理和分析。

四、实验步骤1. 模拟信号发生器输出一个连续的模拟信号;2. 通过抽样器对模拟信号进行抽样,得到一系列抽样值;3. 对抽样值进行量化,得到一系列量化值;4. 将量化值进行编码,得到一系列二进制信号;5. 将二进制信号输入译码器,恢复出量化值;6. 将量化值进行反量化,得到一系列反量化值;7. 将反量化值通过重建滤波器,恢复出模拟信号;8. 观察示波器上的信号波形,分析PCM编译码过程。

五、实验结果与分析1. 观察示波器上的信号波形,可以发现,通过PCM编译码过程,模拟信号被成功转换为数字信号,再恢复为模拟信号。

这验证了PCM编译码原理在实际应用中的有效性。

4.时分多路复用PCM_标准实验报告

4.时分多路复用PCM_标准实验报告

实验十三时分多路复用PCM实验【实验内容】1.脉冲编码调制(PCM)及系统实验2.PCM编码时分多路复用时序分析实验【实验目的】1.加深对PCM编码过程的理解。

2.掌握时分多路复用的工作过程。

3.了解PCM系统的工作过程。

【实验环境】1.分组实验:两人一组或单人2.设备:通信实验箱,数字存储示波器【实验原理】1.PCM基本工作原理脉冲编码调制(PCM)是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。

脉冲编码调制包括三个步骤,对模拟信号先抽样,再对样值幅度量化、编码的过程。

抽样:要使模拟信号数字化并实现时分多路复用,首先要在时间上对模拟信号进行离散化处理,这一过程叫抽样。

所谓抽样就是每隔一定的时间间隔T,抽取话音信号的一个瞬时幅度值(抽样值),抽样后所得出的一系列在时间上离散的抽样值称为样值序列。

抽样后的样值序列在时间上是离散的,可进行时分多路复用,也可将各个抽样值经过量化、编码变换成二进制数字信号。

量化:抽样把模拟信号变成了时间上离散的脉冲信号,但脉冲的幅度仍然是模拟的,还必须进行离散化处理,才能最终用数码来表示。

这就要对幅值进行舍零取整的处理,这个过程称为量化。

量化有均匀量化和非均匀量化。

采用均匀间隔量化级进行量化的方法称为均匀量化或线性量化,这种量化方式会造成大信号时信噪比有余而小信号时信噪比不足的缺点。

如果使小信号时量化级间宽度小些,而大信号时量化级间宽度大些,就可以使小信号时和大信号时的信噪比趋于一致。

这种非均匀量化级的安排称为非均匀量化或非线性量化。

目前国际上普遍采用容易实现的A律13折线压扩特性和μ律15折线的压扩特性。

我国规定采用A律13折线压扩特性。

采用13折线压扩特性后小信号时量化信噪比的改善量可达24dB,而这是靠牺牲大信号量化信噪比(亏损12dB)换来的。

A律和μ律的压扩特性如下图所示:编码:抽样、量化后的信号还不是数字信号,需要把它转换成数字编码脉冲,这一过程称为编码。

脉冲编码调制(PCM)及系统实验报告

脉冲编码调制(PCM)及系统实验报告

深圳大学实验报告
课程名称:通信原理
实验项目名称:脉冲编码调制(PCM)及系统
学院:信息工程学院
专业:通信工程
指导教师:李晓滨
报告人:学号:班级: 2 实验时间:2017.11.22
实验报告提交时间:2017.12.
教务部制
图2-2帧脉冲和PCM编码数据(128K)实测波形
(2)时钟为128KHZ,频率为2KHZ的同步正弦波及PCM编码数据波形:用8KHZ的矩形窄脉冲测出一帧两路的PCM编码数据
(3)时钟为64KHZ,频率为2KHZ的非同步正弦波及PCM编码数据波形用8KHZ的矩形窄脉冲测出一帧8bit的PCM编码数据;
(4)时钟为128KHZ,频率为2KHZ的非同步正弦波及用8KHZ的矩形窄脉冲测出一帧两路的PCM编码数据。

实验2脉冲编码调制与解调实验

实验2脉冲编码调制与解调实验

实验2脉冲编码调制与解调实验实验2 脉冲编码调制与解调实验⼀、实验⽬的1、掌握脉冲编码调制与解调的基本原理。

2、定量分析并掌握模拟信号按照13折线A律特性编成⼋位码的⽅法。

3、通过了解⼤规模集成电路TP3067的功能与使⽤⽅法,进⼀步掌握PCM通信系统的⼯作流程。

⼆、实验内容1、观察脉冲编码调制与解调的整个变换过程,分析PCM调制信号与基带模拟信号之间的关系,掌握其基本原理。

2、定量分析不同幅度的基带模拟正弦信号按照13折线A律特性编成的⼋位码,并掌握该编码⽅法。

三、实验仪器1、信号源模块2、模拟信号数字化模块3、20M双踪⽰波器⼀台4、连接线若⼲四、实验原理脉冲编码调制(PCM)与解调通信系统的原理框图如下:模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。

在单路编译码器中,经变换后的PCM码是在⼀个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对⼀个单路编译码器来说,它在⼀个PCM帧(32个时隙)⾥,只在⼀个特定的时隙中发送编码信号。

同样,译码电路也只是在⼀个特定的时隙(此时隙应与发送码数据的时隙相同,否则接收不到PCM编码信号)⾥才从外部接收PCM编码信号,然后再译码输出。

五、实验步骤及注意事项1、将信号源模块、模拟信号数字化模块⼩⼼地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,再分别按下⼆个模块中的相应开关POWER1、POWER2,对应的发光⼆极管LED01、LED02发光,按⼀下信号源模块的复位键,⼆个模块均开始⼯作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)3、对任意频率、幅度的模拟正弦信号脉冲编码调制与解调实验(1)将信号源模块中BCD码分频值(拨码开关SW04、SW05)设置为0000000 0000001(分频后“BS”端输出频率即为基频2.048MHz),模拟信号数字化模块中拨码开关S1设置为0000,“编码幅度”电位器逆时针旋转到顶。

通信原理脉冲编码调制与PCM时分复用实验

通信原理脉冲编码调制与PCM时分复用实验

《通信原理》实验报告实验四:脉冲编码调制解调实验实验五:两路PCM时分复用实验系别:信息科学与技术系专业班级:通信工程0901学生姓名:郑洋同组学生:马超成绩:指导教师:惠龙飞(实验时间:2011年11 月25日)华中科技大学武昌分校一、实验目的1、掌握脉冲编码调制与解调的原理。

2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。

3、了解脉冲编码调制信号的频谱特性。

4、了解大规模集成电路W681512的使用方法。

二、实验内容1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。

2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。

3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。

4、改变位同步时钟,观测脉冲编码调制波形。

三、实验器材1、信号源模块一块2、②号模块一块3、60M双踪示波器一台4、连接线若干四、实验原理(一)基本原理模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。

如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。

脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。

脉码调制的过程如图5-1所示。

PCM主要包括抽样、量化与编码三个过程。

抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。

国际标准化的PCM 码组(电话语音)是用八位码组代表一个抽样值。

编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。

预滤波是为了把原始语音信号的频带限制在300Hz~3400Hz左右,所以预滤波会引入一定的频带失真。

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验报告

实验四脉冲编码调制(PCM)实验一、实验目的通过本实验,学生应达到以下要求:1,了解语音信号PCM编译码的工作原理及实现过程.2,验证PCM编译码原理.3,初步了解PCM专用大规模集成电路的工作原理和应用.4,了解语音信号数字化技术的主要指标,学习并掌握相应的测试方法.二、实验内容本实验可完成以下实验内容:⏹观察测量PCM调制解调的各种时隙信号⏹观察编译码波形⏹测试动态范围、信噪比和系统频率特性⏹对系统性能指标进行测试和分析◆系统输出信噪比特性测量◆编码动态范围和系统动态范围测量◆系统幅频特性测量◆空载噪声测量三、基本原理脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用.十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积,减轻重量,降低功耗,简化调试以及方便维护等方面都有了显著的改进.目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化.本实验是以这些产品编排的 PCM 编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术.PCM 数字电话终端机的构成原理如图 4.1 所示.实验只包括虚线框内的部分,故名 PCM 编译码实验.图4.1 PCM数字电话终端机的结构示意图1、实验原理和电路说明PCM编译码系统由定时部分和PCM编译码器构成,电路原理图附于本章后.◆PCM编译码原理为适应语音信号的动态范围,实用的PCM编译码必须是非线性的.目前,国际上采用的均是折线近似的对数压扩特性.ITU-T 的建议规定以 13 段折线近似的 A 律(A=87.56)和15段折线近似的μ律(μ=255)作为国际标准.A 律和μ律的量化特性初始段如图 4.2 和图 4.3所示.A律和μ律的编译码表分别列于表1和表2.(附本章后) 这种折线近似压扩特性的特点是:各段落间量阶关系都是 2 的幂次,在段落内为均匀分层量化,即等间隔16个分层,这些对于用数字电路实现非线性编码与译码是极为方便的.◆PCM编译码器简介鉴于我国国内采用的是A律量化特性,因此本实验采用TP3067专用大规模集成电路,它是CMOS工艺制造的单片PCMA律编译器,并且片内带输入输出话路滤波器.TP3067的管脚如图4.4所示,内部组成框图如图4.5所示.TP3067的管脚定义简述如下:(1)VPO+ 收端功率放大器的同相输出端.(2)GNDA 模拟地.所有信号都以此管脚为参考.(3)VPO- 收端功放的反相输出端.(4)VPI 收端功放的反相输入端.(5)VFRO 接收部分滤波器模拟输出端.(6)VCC +5V电压输入.(7)FSR接收部分帧同步时隙信号,是一个8KHz脉冲序列.(8)DR接收部分PCM码流解码输入端.(9)BCLKR/CLKSEL位时钟(bitclock),它使PCM码流随着FSr上升沿逐位移入Dr端,位时钟可以为从 64KHz 到 2048MHz 的任意频率.或者作为一个逻辑输入选择 1536MHz,1544MHz 或2048MHz,用作同步模式的主时钟.(10)MCLKR/PDN接收部分主时钟,它的频率必须为1536MHz,1544MHz或2048MHz.可以和MCKLx异步,但是同步工作时可达到最佳状态.当 MCLKx 接低电平,MCLKR被选择为内部时钟,当MCLKx接高电平,该芯片进入低功耗状态.(11)MCLKx发送部分主时钟,必须为1536MHz,1544MHz或2048MHz.可以和MCLKR异步,但是同步工作时可达到最佳状态.(12)BCLKx发送部分时钟,使PCM码流逐位移入DR端.可以为从64KHz到2048MHz的任意频率,但必须和MCLKx同步.(13)Dx发送部分PCM码流编码输出端.(14)FSx发送部分帧同步时隙信号,为一个8KHz的脉冲序列.(15)TSx漏极开路输出端,它在编码时隙输出低电平.(16)ANLB 模拟反馈输入端.在正常工作状态下必须置成逻辑"0".当置成逻辑"1"时,发送部分滤波器的输入端并不与发送部分的前置滤波器相连,而是和接收部分功放的VPO+相连.(17)GSx发送部分输入放大器的模拟基础,用于在外部同轴增益.(18)VFxI发送部分输入放大器的反相输入端。

脉冲编码调制PCM实验

脉冲编码调制PCM实验

实验报告册课程:通信系统原理教程实验:脉冲编码调制PCM实验班级:姓名:学号:指导老师:日期:实验二:脉冲编码调制PCM 实验实验目的:1、 为了能够熟练的运用SystemView 来实现脉冲编码调制仿真实验。

2、 进一步了解信号经过传输、调制、恢复过程中信号的失真程度,及其影响失真的因素。

3、 为了掌握避免输入与输出波形的严重失真,而应当注意一些事项。

实验原理:脉冲编码调制(PCM )是波形编码中最重要的一种。

PCM 在光纤、数字微波通信、卫星通信中均获得了极为广泛的应用。

其数学模型可以用如下图示所示。

PCM 是模拟信号数字化的一种具体方法,它包括取样、量化、和编码三个步骤。

它是采用PCM 的模拟信号数字传输系统,简称PCM 系统,即为上图“数学模型”所示。

取样信号m(t)在时间上离散化,量化使取样值在电平上离散化,编码就是使离散电平变换为由一组二进制码元组成的代码(也称为码组),有此得到的二进制码元序列称为PCM 信号。

PCM 信号经数字通信系统传输到达接收端,接收端对它们进行适当的分组,重建量化值,然后经低通滤波器,便可得到重建信号m ’(t)。

值得注意的是,量化过程是一个非均匀量化过程,服从A 律。

实验步骤:1、脉冲编码调制系统仿真模型基于PCM 系统基本原理的SystemView 仿真模型如下图2-1:图2-1中,图符0、1、2产生频率分别为5Hz 、10Hz 、和15Hz 的正弦波信号,图符3对它们进行相加,模拟信号源。

图符4是压缩器,对模拟信号进行预处理,采用A 律特性。

图符6是模数转换器,完成对模拟信号的取样、量化、和编码,取样时钟由图符7提供。

图符8是接收端的数模转换器,完成对码组的译码。

图符9对译码后的样值进行扩张处理,消除发送端压缩器对信号的影响。

图符10是个低通滤波器,从接收的取样序列恢复原模拟信号。

双击图符,并选择参数按钮,可知各图图符的参数设置。

2、 仿真演示系统运行时间:样点数为2048,取样速率为1000Hz 。

脉冲编码调制(PCM)实验

脉冲编码调制(PCM)实验

脉冲编码调制(PCM)实验一、实验目的:学会利用MATLAB软件对脉冲编码的仿真。

通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。

二、实验内容:(1)根据抽样值+1270,利用MATLAB软件编写其PCM程序,进一步加强对PCM编码原理的理解。

(2)根据抽样值-93,利用MATLAB软件编写其PCM程序。

三、程序和实验结果:(1)+1270x=+1270;if x>0c1=1;elsec1=0;endif abs(x)>0&&abs(x)<16c2=0;c3=0;c4=0;m=1;elseif abs(x)>16&&abs(x)<32c2=0;c3=0;c4=1;m=1;elseif abs(x)>32&&abs(x)<64c2=0;c3=1;c4=0;m=2;elseif abs(x)>64&&abs(x)<128c2=0;c3=1;c4=1;m=4;n=64;elseif abs(x)>128&&abs(x)<256c2=1;c3=0;c4=0;m=8;elseif abs(x)>256&&abs(x)<512c2=1;c3=0;c4=1;m=16;elseif abs(x)>512&&abs(x)<1024c2=1;c3=1;c4=0;m=32;elseif abs(x)>1024&&abs(x)<2048c2=1;c3=1;c4=1;m=64;n=1024;enda=fix((abs(x)-n)/m);c8=mod(a,2);c7=mod(fix(a/2),2);c6=mod(fix(fix(a/2)/2),2);c5=fix(fix(fix(a/2)/2)/2);(2)-93x=-93;if x>0c1=1;elsec1=0;endif abs(x)>0&&abs(x)<16c2=0;c3=0;c4=0;m=1;elseif abs(x)>16&&abs(x)<32c2=0;c3=0;c4=1;m=1;elseif abs(x)>32&&abs(x)<64c2=0;c3=1;c4=0;m=2;elseif abs(x)>64&&abs(x)<128c2=0;c3=1;c4=1;m=4;n=64;elseif abs(x)>128&&abs(x)<256c2=1;c3=0;c4=0;m=8;elseif abs(x)>256&&abs(x)<512c2=1;c3=0;c4=1;m=16;elseif abs(x)>512&&abs(x)<1024c2=1;c3=1;c4=0;m=32;elseif abs(x)>1024&&abs(x)<2048c2=1;c3=1;c4=1;m=64;n=1024;enda=fix((abs(x)-n)/m);c8=mod(a,2);c7=mod(fix(a/2),2);c6=mod(fix(fix(a/2)/2),2);c5=fix(fix(fix(a/2)/2)/2);四、实验结果及分析:(1)结果图1抽样值+1270的PCM程序图2抽样值-93的PCM程序(2)分析●确定极性码:若x>0则c1赋值为1,x<0则c1赋值为0●确定段落码:确定abs(x)的值所落区间,对应赋值段c2c3c4,确定段内码时会用到均匀量化间隔m和起始电平,在第4和第8段内赋值起始电平n●确定段内码:fix函数功能取整,mod函数功能余,a=fix((abs(x)-n)/m),用于确定段内码的区间。

两路PCM时分复用实验

两路PCM时分复用实验

实验报告课程名称通信原理实验名称两路PCM时分复用实验专业通信工程班级学号姓名指导教师彭祯2011年12 月15 日实验五两路PCM时分复用实验实验名称两路PCM时分复用实验评分实验日期2011 年12 月11 日指导教师彭祯姓名专业班级通信工程学号一、实验目的1、掌握时分复用的概念。

2、了解时分复用系统的构成及工作原理。

3、了解时分复用的优点与缺点。

4、了解时分复用在整个通信系统中的作用。

二、实验内容对两路模拟信号进行PCM编码,然后进行复用,观察复用后的信号并将其与复用前的编码信号比较。

三、实验器材1、信号源模块一块2、②号模块一块3、⑧号模块一块4、⑦号模块一块5、20M 双踪示波器一台6、连接线若干四、实验原理时分复用的原理框图如图6-3所示:图6-3 时分复用原理框图2、解复用原理解复用是通过帧同步提取模块提取的帧同步信号和位时钟提取模块控制计数器产生帧同步信号TS0、TT1和TS_SEL。

然后,再通过TS0、TS1、TS_SEL将复用的信号分离开。

原理框图如图6-4所示:图6-4 解复用原理框图五、实验步骤1、将信号源模块和模块2、8固定在主机箱上,将黑色塑封螺钉拧紧,确保电源接触良好。

2、将信号源模块上S4拨为“0100”,S5也拨为“0100”。

3、在电源关闭的状态下,按照下表完成实验连线:* 检查连线是否正确,检查无误后打开电源4、将模块8上的拨码开关S1,S2分别设置为0000 0100,用示波器观察模块8上“FJOUT“处的输出波形,改变拨码开关为其它值,观察输出波形变化情况。

5、实验结束关闭电源。

六、实验结果1、分析实验电路的工作原理,叙述其工作过程。

在数字通信中,PCM、ΔM、ADPCM 或者其它模拟信号的数字化,一般都采用时分复用方式来提高信道的传输效率。

所谓复用就是多路信号(语音、数据或图像信号)利用同一信道进行独立的传输。

如利用同一根同轴电缆传输 1920 路电话,且各路电话之间的传递是互独立的,互不干扰。

实验2 PCM编译码

实验2 PCM编译码

五、实验报告要求
1. 整理实验记录。 2. 设PCM通信系统传输两路话音,每帧三个时 隙,每路话音各占一个时隙,另一个时隙为帧同步 时隙,使用TP30信号之间的相位关系。 (2) 时分复用信号码速率、帧结构。
4. 用示波器观察PCM译码输出信号。示波器的 CH1接STA,CH2接SRA( 信号A译码输出信号试 点),观察这两个信号波形是否相同(有相位差)。 5. 用示波器定性观察PCM编译码器的动态 范围。如果没有配置低失真低频信号发生器,可以 用本模块上的正弦信号源来粗略观察PCM编译码系 统 的过载噪声(将STA-S或STB-S信号幅度调至5VP-P 以 上即过载)。
低通滤 波器 PCM 编 码器 复接器 广 义

混合 电路 低通滤 波器 PCM 编 码器 分接器
信 道
本实验使用PCM模块,该模块上有以下测试点和输入点: BS PCM基群时钟信号(位同步信号)测试点 SL0 PCM基群第0个时隙同步信号 SLA 信号A的抽样信号及时隙同步信号测试点 SLB 信号B的抽样信号及时隙同步信号测试点 SRB 信号B译码输出信号测试点 STA 输入到编码器A的信号测试点 SRA 信号A译码输出信号测试点 STB 输入到编码器B的信号测试点 PCM PCM基群信号测试点 PCM-A 信号A编码结果测试点 PCM-B 信号B编码结果测试点 STA-IN 外部音频信号A输入点 STB-IN 外部音频信号B输入点 本模块上有三个开关K5、K6和K8,K5、K6用来选择两个编码器的 输入信号,开关手柄处于左边(STA-IN、STB-IN)时选择外部信号、处于 右边(STA-S、STB-S)时选择模块内部音频正弦信号。K8用来选择SLB 信 号为时隙同步信号SL1、SL2、SL5、SL7中的某一个。

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验报告

实验四脉冲编码调制(PCM)实验一、实验目的通过本实验,学生应达到以下要求:1,了解语音信号PCM编译码的工作原理及实现过程.2,验证PCM编译码原理.3,初步了解PCM专用大规模集成电路的工作原理和应用.4,了解语音信号数字化技术的主要指标,学习并掌握相应的测试方法.二、实验内容本实验可完成以下实验内容:⏹观察测量PCM调制解调的各种时隙信号⏹观察编译码波形⏹测试动态范围、信噪比和系统频率特性⏹对系统性能指标进行测试和分析◆系统输出信噪比特性测量◆编码动态范围和系统动态范围测量◆系统幅频特性测量◆空载噪声测量三、基本原理脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用.十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积,减轻重量,降低功耗,简化调试以及方便维护等方面都有了显著的改进.目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化.本实验是以这些产品编排的 PCM 编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术.PCM 数字电话终端机的构成原理如图 4.1 所示.实验只包括虚线框内的部分,故名 PCM 编译码实验.图4.1 PCM 数字电话终端机的结构示意图1、实验原理和电路说明PCM 编译码系统由定时部分和PCM 编译码器构成,电路原理图附于本章后.◆ PCM 编译码原理为适应语音信号的动态范围,实用的PCM 编译码必须是非线性的.目前,国际上采用的 均是折线近似的对数压扩特性.ITU-T 的建议规定以 13 段折线近似的 A 律(A=87.56)和 15段折线近似的μ律(μ=255)作为国际标准.A 律和μ律的量化特性初始段如图 4.2 和图 4.3所示.A 律和μ律的编译码表分别列于表1和表2.(附本章后) 这种折线近似压扩特性的特点是:各段落间量阶关系都是 2 的幂次,在段落内为均匀分层量化,即等间隔16个分层,这些对于用数字电路实现非线性编码与译码是极为方便的. ◆ PCM 编译码器简介鉴于我国国内采用的是A 律量化特性,因此本实验采用TP3067专用大规模集成电路,它 是CMOS 工艺制造的单片PCMA 律编译器,并且片内带输入输出话路滤波器. TP3067的管脚如图4.4所示,内部组成框图如图4.5所示. TP3067的管脚定义简述如下:(1)VPO+ 收端功率放大器的同相输出端.(2)GNDA 模拟地.所有信号都以此管脚为参考. (3)VPO- 收端功放的反相输出端. (4)VPI 收端功放的反相输入端.(5)VFRO 接收部分滤波器模拟输出端. (6)VCC +5V 电压输入.(7)FSR 接收部分帧同步时隙信号,是一个8KHz 脉冲序列. (8)DR 接收部分PCM 码流解码输入端.(9)BCLKR/CLKSEL 位时钟(bitclock),它使PCM 码流随着FSr 上升沿逐位移入Dr 端,位时钟 可以为从 64KHz 到 2048MHz 的任意频率.或者作为一个逻辑输入选择 1536MHz,1544MHz 或2048MHz,用作同步模式的主时钟.混合装置V oice发滤波器波器收滤编码器器码译分路路合发收(10)MCLKR/PDN 接收部分主时钟,它的频率必须为1536MHz,1544MHz 或2048MHz.可以和MCKLx异步,但是同步工作时可达到最佳状态.当 MCLKx 接低电平,MCLKR 被选择为内部时钟,当 MCLKx 接高电平,该芯片进入低功耗状态.(11)MCLKx 发送部分主时钟,必须为1536MHz,1544MHz 或2048MHz.可以和MCLKR 异步,但 是同步工作时可达到最佳状态.(12)BCLKx 发送部分时钟,使PCM 码流逐位移入DR 端.可以为从64KHz 到2048MHz 的任意 频率,但必须和MCLKx 同步.(13)Dx 发送部分PCM 码流编码输出端.(14)FSx 发送部分帧同步时隙信号,为一个8KHz 的脉冲序列. (15)TSx 漏极开路输出端,它在编码时隙输出低电平.(16)ANLB 模拟反馈输入端.在正常工作状态下必须置成逻辑"0".当置成逻辑"1"时,发送 部分滤波器的输入端并不与发送部分的前置滤波器相连,而是和接收部分功放的VPO+相连. (17)GSx 发送部分输入放大器的模拟基础,用于在外部同轴增益. (18)VFxI 发送部分输入放大器的反相输入端。

脉冲编码调制实验报告

脉冲编码调制实验报告

脉冲编码调制实验报告脉冲编码调制实验报告引言:脉冲编码调制(Pulse Code Modulation,PCM)是一种数字信号处理技术,广泛应用于通信领域。

本实验旨在通过实际操作,深入了解脉冲编码调制的原理和应用。

一、实验目的本实验的主要目的是通过实际操作,掌握脉冲编码调制的基本原理和实现方法,并了解其在通信系统中的应用。

二、实验仪器和材料1. 信号发生器2. 示波器3. 电阻、电容、电感等元器件4. 实验板三、实验原理脉冲编码调制是将模拟信号转换为数字信号的一种方法。

它通过对模拟信号进行采样、量化和编码,将连续的模拟信号转换为离散的数字信号。

具体步骤如下:1. 采样:将连续的模拟信号离散化,按照一定的时间间隔对信号进行采样,得到一系列的采样值。

2. 量化:将采样得到的连续信号离散化为一组有限的离散值。

量化的过程中,需要确定量化级别和量化步长。

量化级别决定了离散值的个数,量化步长决定了离散值之间的间隔。

3. 编码:将量化后的离散信号转换为二进制码。

编码的方式有很多种,常用的有自然二进制码、反码和补码等。

四、实验步骤1. 连接实验电路:按照实验指导书上的电路图,连接实验电路。

确保电路连接正确,电源稳定。

2. 设置信号发生器:根据实验要求,设置信号发生器的频率和幅度。

3. 采样:将信号发生器输出的模拟信号输入到采样电路中,通过示波器观察采样结果。

调整采样频率和采样时间,观察采样结果的变化。

4. 量化:将采样得到的模拟信号输入到量化电路中,通过示波器观察量化结果。

调整量化级别和量化步长,观察量化结果的变化。

5. 编码:将量化后的离散信号输入到编码电路中,通过示波器观察编码结果。

调整编码方式,观察编码结果的变化。

五、实验结果与分析通过实验,我们成功实现了脉冲编码调制的过程,并观察到了不同参数下的采样、量化和编码结果。

实验结果表明,采样频率越高,采样结果越接近原始信号;量化级别越高,量化结果越接近原始信号;编码方式的选择对结果的精度和传输效率有重要影响。

脉冲编码调制(PCM)实验

脉冲编码调制(PCM)实验

实验三:脉冲编码调制(PCM )实验
一.实验目的
1.熟悉PCM 编译码专用集成芯片的功能和使用方法。

2.掌握PCM 编译码原理与测试方法。

3.掌握时分多路复用的原理与实现方法。

4.了解时隙交换原理。

二.实验仪器
1.RZ8621D 实验箱一台 2.20MHz 双踪示波器一台 3.专用连接导线4根 4.平口小起子一个 三.实验电路连接
图中:
DX 送至AMI/HDB3模块作编码输入信号。

DR 来至AMI/HDB3模块译码输出。

本实验箱有两个PCM 编译码系统,因此除能进行PCM 编译码测试的实验,还能进行时分复用和时隙交换等实验。

TP507
图3-1脉冲编码调制(PCM )实验原理框图
四.实验预习及测量点说明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2脉冲编码调制PCM与时分复用实验(.)-
实验2脉冲编码调制和时分复用实验-实验目的
1。

加深对脉码调制过程的理解;
2。

熟悉PCM编解码专用集成电路的功能和用法;3.了解PCM系统的工作流程;
4。

掌握时分复用的工作流程;用同步正弦波信号观察α律PCM八位编码
2,实验仪器
1。

HD8621D实验盒1 2.20米双踪示波器1 3。

铆钉孔线5
3,实验电路工作原理(PCM基本工作原理
脉冲调制是将模拟信号转换成数字信号,然后在通道中传输它脉码调制是模拟信号的过程所谓
采样,就是在采样脉冲到达的瞬间提取模拟信号,并及时将信号转换成信号所谓的
的量化意味着采样瞬时值的幅度,即一组指定的电平,被用来表示瞬时采样值在对模拟信号进行采样和量化之后,获得量化的脉冲幅度调制信号,该信号只是有限数量的值首先对
语音信号进行滤波、脉冲采样并转换成采样信号,然后将幅度连续的PAM信号通过舍入法量化成信号,再经过编码转换成信号对于语音电话通信,CCITT规定采样速率为8千赫。

每个采样值都是编码的,即总共有量化值。

因此,每个信道的脉码调制后的标准数字速率是每秒为了解决均匀量化时小信号量化误差大、音质差的问题,在实践中采用量化方法,即小信号量化特征密集分层,量化间隔小,大信号稀疏分层,大信号大
(2个PCM编解码器电路[PCM编解码器电路TP3067芯片)1。

根据图4-4和4-5,解释了单通道PCM编解码器的工作原理。

a:
定时,可实现编解码器的省电控制图4-5是短帧同步定时的波形图
4,实验内容
1。

用同步正弦波信号观察模数转换八位编码的实验:2.脉码调制和系统实验;
3。

PCM 8位编码时分复用输出波形观测实验:4.脉码调制时分复用定
时分析实验五、实验步骤及注意事项
PCM编解码系统分为PCM(一、PCM(两个子系统)(见图4-9、图4-10电气原理图芯片U501和外围电路形成动力系统控制模块(一,芯片U502和外围电路形成动力系统控制模块(二每个测试点3067芯片U501包含一个动力系统控制模块编码器和一个动力系统控制模块解码器动力系统控制模块编码系统信号流程图(如图4-6所示,动力系统控制模块(一、二)断电示意图(如图4-9所示
编码部分:PCM(一个编码数据在x个时隙输出(TP503,PCM(两个编码数据在y个时隙输出(TP509,两个信号可以在线路和时分复用中输出)(脉码调制输出为三态门输出,它将信号依次传输到同一总线,互不干扰,前提是只有一个三态门可以同时处于工作状态,而其他门处于高电平状态
解码部分:码分多址(解码部分在Y时隙接收数据)和码分多址(两个解码部分在X时隙接收数据)
信号流程图如图4-6所示。

图4-6 PCM编码系统信号流程图
(一个我们使用PCM(一个数据编码输出,最后是PCM(两个解码输出,例如:1。

打开实验箱右侧的电源开关,电源指示灯将会亮起2.薄膜键盘选择PCM编码和解码代码,有三个选项01t24,r8,c2m 02t30,
r16,c2m 03t0,r1,c128khz选择一个并按确认键其中:
T代表PCM(一个编码时隙,PCM(两个解码时隙第24个时隙脉冲r 代表PCM(两个编码时隙,PCM(一个解码时隙16,也就是说,第16个时隙脉冲
C代表1和2的线路编码和解码时钟(例如:2M,2048千赫),其可以在一帧中容纳32个数据时分复用;如果线路编码时钟是128千赫,一帧可以容纳线路数据的时分复用。

通过实验观察来验证你的结果。

3。

将TP002的同步正弦波信号连接到动力系统控制模块(1号模拟信号输入到铜铆钉孔TP501
4。

K501连接到引脚1-2,即PCM(一个编码器)的编码信号(或带有PCM(两个时分复用数据)的
)被发送到“时分复用总线”;K502连接有引脚1-2,即PCM (1)和PCM (2)的解码器在“时分复用总线”上的相应时隙上接收数据
5。

测量TP501~TP504和TP511~TP512的波形,如图4-8所示两路示波器同时测量TP503和
TP504两点波形,此时可以观察到一个稳定的8位脉码调制数字输出信号
6。

测量TP506和TP512解码器的铜铆钉孔,看看哪个解码器可以恢复并输出正确的同步正弦波
信号。

参照上述实验原理介绍和分析实验结果。

7。

将来自TP512(或TP506)的解码输出信号连接到功率放大器模块TP006的“扬声器输入”和
端口
8。

改变输入模拟信号,选择不同的编码和解码时隙和线路时钟,并测量每个点的波形
(两次时分复用、解复用实验
1。

打开实验箱右侧的电源开关,电源指示灯将会亮起
2。

薄膜键盘选择PCM编码和解码代码。

按确认键选择三个选项之一。

01t24,r8,c2m 02t30,r16,c2m 03t0,r1,c128khz
3。

用连接线将两个不同的模拟信号分别连接到TP501和TP507“模拟输入”铜铆钉孔
4。

K501连接到引脚1-2,即PCM(一个编码器)的编码信号(或带有PCM(两个时分复用数据)的
)被发送到“时分复用总线”;K502连接有引脚1-2,即PCM (1)和PCM (2)的解码器在“时分复用总线”上的相应时隙上接收数据
5。

用连接线连接TP504和TP510铜铆钉孔,即多路复用PCM(将两个编码输出信号接到“时分多路复用总计
线”上)时分复用波形分析示意图
6。

测量TP501~TP512的波形,分析波形之间的关系
7。

解码器输出信号通过连接线从TP506和TP512引出,分别连接
到功放模块TP006的“输入”铜
铆钉孔接口或“电话模拟接收”铜铆钉孔接口此时,两个模拟信号分别经过脉冲编码调制、时分复用、解复用,并通过各自的解码输出。

8。

改变输入模拟信号,选择不同的编码和解码时隙和时钟,测量各点的波形
[注:在上述步骤中,薄膜键盘选择03项,在普通示波器上可以观察到稳定的脉码调制波形
跳线开关设置:
K501: 1-2: PCM(编码器的编码信号发送到“时分复用总线”;
2-3: PCM(一个编码数据(或用PCM(两个时分复用)输出的数据)被发送到AMI/HDB3编码和解码系统的编码输入端
K502: 1-2: PCM(一个和PCM(两个解码器从时分复用总线接收数据);2-3: PCM(一个和PCM(两个解码器接收由AMI/HDB3码解码系统解码的数据6.实验报告要求
1。

画出实验电路的实验框图,描述其工作过程。

2。

在实验过程中画出每个测量点的波形图,并注意相应的相位和时序关系。

3。

观察同步正弦波的编码波形,读出编码数据(至少12字节的数据,注意观察方法
4。

写下这次实验的经验和任何改进的建议。

相关文档
最新文档