实验5两路PCM时分复用

合集下载

两路语音PCM时分复用系统的设计

两路语音PCM时分复用系统的设计

摘要数字通信系统是采用数字信号来传递信息的通信系统,数字通信过程中主要涉及信源编码与译码、信道编码与译码、数字调制与解调等技术问题。

而脉冲编码调制就是一种常用的信源编码方法,将模拟信号抽样、量化,直到转换成为二进制符号的基本过程。

为了扩大通信系统链路的容量,在一条链路上传输多路独立的信号,为此引入了一种复用技术来实现多路信号共同传输的目的。

而在本系统设计中,所运用的复用技术是时分复用,同时基于现场可编程门阵列器件作为主控芯片,在Quartus II软件中使用硬件描述语言Verilog HDL编写PCM编译码和时分复用模块的程序,再对其进行波形仿真以验证程序的正确性,从而设计出语音信号的PCM编码与译码、时分复用的过程。

本设计中,将两路语音信号通过外围硬件电路模块送至FPGA中进行PCM编码、译码处理,最后通过后级外围电路实现语音信号的重现。

关键词:语音脉冲编码调制时分复用FPGADesign of Two-way V oice PCM Systemby Time Division MultiplexingABSTRACT A digital communication system is a communication system that transmit information by using digital signal, and digital communication mainly relates to the source coding and decoding, channel coding and decoding, digital modulation and demodulation technology. Pulse code modulation is a common source coding, and it is that the analog signal sampling ,quantization ,until the transformation become the basic process of binary symbols. In order to expand the capacity of communication link system ,a transmission of multiple independent signal on a link, therefore introduction of a division multiplexing technology to achieve the purpose of multiplexing.In this system design, we use a time division multiplexing technology, and based on the Field Programmable Gate Array, using Verilog HDL hardware description language to write PCM encoding and decoding and time division multiplexing module in Quartus II, then Waveform simulation to verify the correctness of the program, thus design a voice signal process of PCM encoding and decoding, time division multiplexing. In this system design, The two-way voice signal through the peripheral hardware circuit module is sent to the FPGA for PCM encoding and decoding, finally to achieve reproducible speech signal through the peripheral circuit. Key Words:V oice Pulse code modulation Time division multiplexing FPGA目录摘要 (I)ABSTRACT........................................................... I I 目录1 引言 (1)1.1 选题背景与意义 (1)1.2 QuartusⅡ软件 (2)1.3 FPGA的介绍 (3)1.4 本文内容简介 (4)1.5 实施过程简介 (4)1.6 设计结果简介 (4)2 基本原理介绍 (5)2.1 模拟信号的数字化 (5)2.1.1 采样定理 (5)2.1.2 量化原理 (5)2.1.3 A律13折线 (5)2.2 脉冲编码调制 (7)2.3 时分复用技术 (9)2.4 PCM一次群帧结构 (10)3 系统设计介绍 (11)3.1 总体框图 (11)3.2 外围硬件电路的介绍 (12)3.2.1 拾音电路 (12)3.2.2 仪用放大器 (12)3.2.3 带通滤波器 (13)3.2.4 抬升电路 (13)3.2.5 A/D转换电路 (14)3.2.6 D/A转换电路 (14)3.2.7 功率放大器 (15)3.3 基于FPGA的模块设计 (16)3.3.1 系统时钟的设计 (16)3.3.2 前端模块设计 (16)3.3.3 后级模块设计 (18)3.3.4 同步时钟的提取 (20)3.3.5 整体FPGA系统原理框图 (20)4 设计的结果 (21)致谢 (22)参考文献 (22)附录 (23)1 系统实物图 (23)2 FPGA中主要模块程序 (24)1 引言1.1 选题背景与意义在当今信息化极其高度的社会,信息和通信已经与现代社会的发展密不可分。

实验五 时分复用(TDM)通信系统综合实验

实验五 时分复用(TDM)通信系统综合实验
率Pe≈4×10—3的情冴下,TPB07不TPB06同步, TPB07的下降沿对应TPB06的上升沿
TPB01
TPB05
在误码率Pe≈4×10—3的情冴下,TPB01为1110010, TPB05为1110010 TPB01不TPB05同步丏一致
TPB07
TPB06
在误码率Pe≈ 1.6×10—2的情冴下,TPB07不TPB06同步, TPB07的下降沿对应TPB06的上升沿
丌同信道误码率下帧内数据信号传 输的测量
实验步骤:
1. 测量TPB07不TPB06波形,用TPB07同步,观察TPB01和TPB05波形 是否一致。 • 2. 将SWB02的E_SEL0插入、E_SEL1拔除(10),此时 Pe≈4×10—3。①测量TPB07不TPB06波形,用TPB07同步。②测量 TPB01和TPB05波形。 • • • 3. 4. 将SWB02中E_SEL1插入、E_SEL0拔除(01),Pe≈1.6×10—2。 将SWB02的E_SEL0、E_SEL1短路器都插入(1100),在传输
THANKS
TPB01
TPB05
在误码率Pe≈ 1.6×10—2的情冴下,TPB01为1110010, TPB05为1110010 TPB01不TPB05同步一致
TPB07
TPB06
在误码率Pe≈ 1×10—1的情冴下,TPB07不TPB06丌同步,丏TPB06 的脉冲在丌断移劢
TPB01
TPB05
在误码率Pe≈ 1×10—1的情冴下,TPB01为1110010,TPB05为 11100010 TPB01不TPB05丌同步丏丌一致
丌同信道误码率下帧内传输PCM话 音业务的测量结果
• ②丌加错时,话音质量清楚,效果好 • ③当Pe≈4×10—3时,话音夹杂着沙沙声,效果丌是很好。 • ④当Pe≈1.6×10—2时,话音夹杂着沙沙声和尖锐的噪声, 效果较差。 • ⑤当Pe≈1×10—1时,沙沙声和尖锐的噪声很严重,效果 非常差。

pcm编码时分复用课程设计

pcm编码时分复用课程设计

pcm编码时分复用课程设计一、课程目标知识目标:1. 学生能理解PCM编码的基本原理,掌握其采样、量化和编码的过程。

2. 学生能了解时分复用的概念,掌握其在通信系统中的应用。

3. 学生能运用所学知识分析PCM编码时分复用在实际通信系统中的作用。

技能目标:1. 学生能运用PCM编码方法对模拟信号进行数字化处理。

2. 学生能通过时分复用技术实现多路信号的传输与解复用。

3. 学生能运用相关软件或工具进行PCM编码时分复用的模拟与测试。

情感态度价值观目标:1. 学生培养对通信技术的兴趣,提高对信息科学领域的认识。

2. 学生培养团队协作意识,提高沟通与表达能力。

3. 学生认识到通信技术在现代社会中的重要性,增强社会责任感。

课程性质:本课程为电子信息类学科的基础课程,旨在帮助学生掌握PCM编码和时分复用技术的基本原理和应用。

学生特点:学生为高中二年级学生,具备一定的物理和数学基础,对通信技术有一定了解。

教学要求:结合学生特点,注重理论与实践相结合,提高学生的动手能力和实际问题解决能力。

通过课程学习,使学生能够将所学知识应用于实际通信系统,为后续相关课程打下坚实基础。

教学过程中,注重激发学生的学习兴趣,培养其科学精神和创新意识。

二、教学内容1. PCM编码原理- 采样定理与信号重建- 量化原理与量化误差- 编码方法及其在通信系统中的应用2. 时分复用技术- 时分复用的基本概念- 多路信号时分复用的实现方法- 时分复用在通信系统中的应用案例分析3. PCM编码与时分复用的结合- PCM编码在时分复用中的应用原理- PCM时分复用系统的构建与性能分析- PCM时分复用在现代通信系统中的实例教学大纲:第一周:PCM编码原理学习,包括采样定理、量化原理和编码方法。

第二周:时分复用技术学习,重点掌握时分复用的基本概念和实现方法。

第三周:结合教材案例分析,深入理解PCM编码与时分复用的结合。

第四周:实践操作,运用软件或工具进行PCM编码时分复用的模拟与测试。

南昌大学通信原理实验五 PCM编码、译码原理实验

南昌大学通信原理实验五 PCM编码、译码原理实验

实验五 PCM编码、译码原理实验一、实验目的1、加深对PCM 编码过程的理解;2、熟悉PCM 编、译码专用集成芯片的功能和使用方法;3、了解PCM 系统的工作过程;4、了解帧同步信号的时序状态关系;5、掌握时分多路复用的工作过程;6、用同步正弦波信号观察PCM 八比特编码的实验。

二、实验原理脉冲调制就是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。

脉冲编码调制就是对模拟信号先抽样,量化、编码的过程。

所谓抽样,就是在抽样脉冲来到的时刻提取对模拟信号在该时刻的瞬时值,抽样把时间上连续的信号变成时间上离散的信号。

抽样速率的下限是由抽样定理确定的。

在该实验中,抽样速率采用8Kbit/s。

所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。

所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。

然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。

PCM原理框图三、实验内容1、用同步正弦波信号观察PCM 八比特编码的实验;2、脉冲编码调制(PCM)及系统实验;3、PCM 八比特编码时分复用输出波形观察测量实验。

四、实验步骤及结果1、打开实验箱右侧电源开关,电源指示灯亮;2、编码部分:SP401 接入模拟信号,输入正弦波信号;SP405 接入2048KHz 主时钟信号;SP406 接入8KHz 脉冲信号;SP407 接入可选发码时钟,有64K、512K、2048K 三种频率。

3、译码部分:SP408 接入8KHz 脉冲信号;SP409 接入可选发码时钟,有64K、512K、2048K 三种频率。

4、连接SP402、SP403 两点,测试译码输出电路各点波形,在TP404能观察到稳定的正弦输出信号。

用音乐信号源取代函数信号发生器测试各点。

TP401:模拟信号输入TP402:数字编码输出; TP403:数字译码输入TP404:模拟信号输出TP405:主时钟TP407/409 :512KHz5、实验现象TP401TP402TP403TP404TP405TP403 405TP406TP407 409TP408五、测量点说明TP401:该点为输入的音频信号,用连接线连接模拟信号源与TP401,若幅度过大,则被限幅电路限幅成方波,因此信号波形幅度尽量小一些。

PCM编码和时分复用实验

PCM编码和时分复用实验

通信原理实验PCM编译码与时分复用目录一、实验目的二、实验原理三、实验设备四、实验过程五、实验总结2一、实验目的验证PCM编译码原理了解时分复用数字电话原理掌握PCM基群信号的形成过程及分接过程,了解多路PCM编码信号的复用和去复用的过程学习语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法34二、实验原理(1)m (t ) PCM 信号信号(线性或非线性)抽样量化编码001010011000PCM 编码过程示意图时间离散化幅度离散化幅值数字化PCM :Pulse Code Modulation 脉冲编码调制5二、实验原理(2)2020/3/16时分复用原理示意图时分复用是将传输时间划分为若干个互不重叠的时隙,互相独立的多路信号分别占用各自的时隙,合路成为一个复用信号,在同一信道中传输。

F A B …………PCM基群信号32时隙F BA6二、实验原理(3)2020/3/16低通滤波器PCM 编 码器复接器低通滤波器PCM 译 码器分接器混合电路广义信道PCM 复用过程:把若干路相互独立的数字电话信号通过复接器复合成一个标准的数据流,再送入传输信道中传输。

PCM 解复用过程:是复用过程的逆过程。

将经过传输的复用信号数据流,通过分接器把各路信号从复用信号中提取出来,恢复原始信号。

三、实验设备通信原理教学实验箱示波器低频信号发生器失真度测量仪4096KHz 晶 振分频器1分频器2 帧同步信号产生器正弦信号源AS1S2S3S4PCM 编译码器A复接器抽样信号产生电路PCM 编译码器B PCMPCM-ASRBSRAPCM-B256KHzS3S2S18KHz 2048KHz CLKSLA(SL2)SLBSTA-INK5SLASLB⎪⎪⎪⎭⎪⎪⎪⎬⎫SL7SL5SL2、SL1、SL0、K8正弦信号源BSTB-INSTB K6STA-SSTA STB-S 四、实验过程:电路原理框图四、实验过程(1)原始语音信号波形观察通过低频信号发生器产生两路正弦信号注意:信号幅度:小于5V p-p;频率:300-3400Hz4096KHz 晶 振分频器1分频器2 帧同步信号产生器正弦信号源AS1S2S3S4PCM 编译码器A复接器抽样信号产生电路PCM 编译码器B PCMPCM-ASRBSRAPCM-B256KHzS3S2S18KHz 2048KHz CLKSLA(SL2)SLBSTA-INK5SLASLB⎪⎪⎪⎭⎪⎪⎪⎬⎫SL7SL5SL2、SL1、SL0、K8正弦信号源BSTB-INSTB K6STA-SSTA STB-S 四、实验过程(2):PCM 信号观察四、实验过程(2)PCM 信号观察示波器CH1接SL0时隙;CH2接PCM 信号,观察时隙信号和对应的PCM 信号SL0的宽度为1个时隙宽度,对应8位帧同步码比特。

实验5两路PCM时分复用

实验5两路PCM时分复用

信号源:同步正弦波(2K)
模块8:FS3 模块8:FS_SEL 模块2:PCMOUT-A 模块2:PCMOUT-B
模块2:SIN IN-A;SIN IN-B
模块2:FSXA 模块2:FSXB 模块8:PCMAIN 模块8:PCMBIN
PCM编码输入信号
A路PCM编码帧同步输入 B路PCM编码帧同步输入 A路PCM编码输入信号 B路PCM编码输入信号
同步提取输入提取的位同步输入提取的帧同步输入pcm解码输入信号pcm解码输入信号路pcm解码帧同步输入路pcm解码帧同步输入1拨码开关s4s5都拨为01000404拨码开关s1s拨为0000103用示波器观测sin4用示波器观测sininbsinoutbinasin码帧同步输入两点的波形并进行比较结束结束结束outa两点的波形并进行比解复用输出bpcm译码位同步输入解复用输出a1用示波器观测pcmainpcmouta两点的波形并进行比较路解码帧同步输入2用示波器观测pcmbinpcmoutb点的波形并进行比较解复用输入保持前面连线继续解复用连线同步提取输入触发按钮看连线位同步输入返回波形帧同步输入保持前面连线继续解复用连线五实验步骤两人时分复用通话实验1保持以上连线不变拆除信号源模块保持以上连线不变拆除信号源模块2k步正弦波与模块2的连线增加以下连线
1、分别接两副耳麦的话筒耳机
2、调节W1W2W3W4改变通话音量及质量, 解码后2路语音信号输出 进行两人通话(结束)
六、实验报告要求
1、实验目的
2、实验内容 3、实验器材 4、实验原理 5、实验步骤 6、实验结果及分析
五、实验步骤
2、将两副耳麦分别接入模块2上的耳机插座:
“话筒1”“耳机1”“话筒2”“耳机2”,进行两人通 化实验,调节电位器W1、W2、W3、W4改变音 量及通话质量。 3、实验结束关闭电源,拆除连线,完成实验 报告。

脉冲编码调制解调实验

脉冲编码调制解调实验

..a2012-2013 第二学期开放实验项目题目:两路话音+两路计算机数据综合传输系统实验学生姓名专业名称:电子信息工程指导教师:2013年5月20日脉冲编码调制解调实验一、实验原理(一)基本原理PCM 调制原理框图1、 量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合,模拟信号的量化分为均匀量化和非均匀量化。

模拟信号的量化2、 编码所谓编码就是把量化后的信号变换成二进制码,其相反的过程称为译码。

当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。

模拟入yx量化器量化值..(二)实验电路说明模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。

在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧(32个时隙)里,只在一个特定的时隙中发送编码信号。

同样,译码电路也只是在一个特定的时隙(此时隙应与发送时隙相同,否则接收不到PCM编码信号)里才从外部接收PCM编码信号,然后进行译码,经过带通滤波器、放大器后输出。

(三)输入、输出点参考说明1、输入点说明MCLK:芯片工作主时钟,频率为2.048M。

SIN IN-A:模拟信号输入点。

BSX:PCM编码所需时钟信号输入点。

BSR:PCM解码所需时钟信号输入点。

FSXA:PCM编码帧同步信号输入点。

FSRA:PCM解码帧同步信号输入点。

PCMIN-A:PCM解调信号输入点。

EARIN1:耳机语音信号输入点。

MICOUT1:麦克风语音信号输出点。

K1、K2:A律、μ律切换开关PCMAOUT-A:脉冲编码调制信号输出点。

SIN OUT-A:PCM解调信号输出点。

二、实验步骤1、将信号源模块和模块2固定在主机箱上,将黑色塑封螺钉拧紧,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,将信号源模块和模块2的电源开关拨下,观察指示灯是否点亮,红灯为+5V电源指示灯,绿灯为-12V电源指示灯,黄色为+12V电源指示灯。

4.时分多路复用PCM_标准实验报告

4.时分多路复用PCM_标准实验报告

实验十三时分多路复用PCM实验【实验内容】1.脉冲编码调制(PCM)及系统实验2.PCM编码时分多路复用时序分析实验【实验目的】1.加深对PCM编码过程的理解。

2.掌握时分多路复用的工作过程。

3.了解PCM系统的工作过程。

【实验环境】1.分组实验:两人一组或单人2.设备:通信实验箱,数字存储示波器【实验原理】1.PCM基本工作原理脉冲编码调制(PCM)是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。

脉冲编码调制包括三个步骤,对模拟信号先抽样,再对样值幅度量化、编码的过程。

抽样:要使模拟信号数字化并实现时分多路复用,首先要在时间上对模拟信号进行离散化处理,这一过程叫抽样。

所谓抽样就是每隔一定的时间间隔T,抽取话音信号的一个瞬时幅度值(抽样值),抽样后所得出的一系列在时间上离散的抽样值称为样值序列。

抽样后的样值序列在时间上是离散的,可进行时分多路复用,也可将各个抽样值经过量化、编码变换成二进制数字信号。

量化:抽样把模拟信号变成了时间上离散的脉冲信号,但脉冲的幅度仍然是模拟的,还必须进行离散化处理,才能最终用数码来表示。

这就要对幅值进行舍零取整的处理,这个过程称为量化。

量化有均匀量化和非均匀量化。

采用均匀间隔量化级进行量化的方法称为均匀量化或线性量化,这种量化方式会造成大信号时信噪比有余而小信号时信噪比不足的缺点。

如果使小信号时量化级间宽度小些,而大信号时量化级间宽度大些,就可以使小信号时和大信号时的信噪比趋于一致。

这种非均匀量化级的安排称为非均匀量化或非线性量化。

目前国际上普遍采用容易实现的A律13折线压扩特性和μ律15折线的压扩特性。

我国规定采用A律13折线压扩特性。

采用13折线压扩特性后小信号时量化信噪比的改善量可达24dB,而这是靠牺牲大信号量化信噪比(亏损12dB)换来的。

A律和μ律的压扩特性如下图所示:编码:抽样、量化后的信号还不是数字信号,需要把它转换成数字编码脉冲,这一过程称为编码。

通信原理脉冲编码调制与PCM时分复用实验

通信原理脉冲编码调制与PCM时分复用实验

《通信原理》实验报告实验四:脉冲编码调制解调实验实验五:两路PCM时分复用实验系别:信息科学与技术系专业班级:通信工程0901学生姓名:郑洋同组学生:马超成绩:指导教师:惠龙飞(实验时间:2011年11 月25日)华中科技大学武昌分校一、实验目的1、掌握脉冲编码调制与解调的原理。

2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。

3、了解脉冲编码调制信号的频谱特性。

4、了解大规模集成电路W681512的使用方法。

二、实验内容1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。

2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。

3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。

4、改变位同步时钟,观测脉冲编码调制波形。

三、实验器材1、信号源模块一块2、②号模块一块3、60M双踪示波器一台4、连接线若干四、实验原理(一)基本原理模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。

如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。

脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。

脉码调制的过程如图5-1所示。

PCM主要包括抽样、量化与编码三个过程。

抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。

国际标准化的PCM 码组(电话语音)是用八位码组代表一个抽样值。

编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。

预滤波是为了把原始语音信号的频带限制在300Hz~3400Hz左右,所以预滤波会引入一定的频带失真。

时分复用-解复用实验

时分复用-解复用实验

固定及变速率时分复用、解复用实验第一部分固定速率时分复用/解复用实验一、实验目的1.掌握固定速率时分复用/解复用的同步复接/分接原理。

2.掌握帧同步码的识别原理。

3.掌握集中插入帧同步码时分复用信号的帧结构特点。

二、实验内容1.搭建一个理想信道固定速率时分复用数字通信系统,使系统正常工作。

2.搭建一个理想信道固定速率时分解复用数字通信系统,使系统正常工作。

3.用示波器观察集群信号(FY_OUT)、位同步信号(BS)及帧同步信号(FS),熟悉它们的对应关系。

4.观察信号源发光管与终端发光管的显示对应关系,直接观察时分复用与解复用的实验效果。

三、实验仪器示波器,RC-GT-II型光纤通信实验系统。

四、基本原理1.同步复接/分接原理固定速率时分复用/解复用通常也称为同步复接/分接。

在实际应用中,通常总是把数字复接器和数字分接器装在一起做成一个设备,称为复接分接器(缩写为Muldex)。

图1.1 数字复接器的基本组成图 1.2 数字分接器的基本组成图数字复接器的基本组成如图1.1所示。

数字复接器的作用是把两个或两个以上的支路数字信号按时分复接方式合并成为单一的合路数字信号。

数字复接器由定时、调整和复接单元所组成。

定时单元的作用是为设备提供统一的基准时间信号,备有内部时钟,也可以由外部时钟推动。

调整单元的作用是对各输入支路数字信号进行必要的频率或相位调整,形成与本机定时信号完全同步的数字信号。

复接单元的作用是对已同步的支路信号进行时间复接以形成合路数字信号。

数字分接器的基本组成如图1.2所示。

数字分接器的作用是把一个合路数字信号分解为原来支路的数字信号。

数字分接器由同步、定时、分接和恢复单元所组成。

定时单元的作用是为分接和恢复单元提供基准时间信号,它只能由接收的时钟来推动。

同步单元的作用是为定时单元提供控制信号,使分接器的基准时间与复接器的基准时间信号保持正确的相位关系,即保持同步。

分接单元与复接单元相对应,分接单元的作用是把输入的合路数字信号(高次群)实施时间分离。

实验五 时分复用通信系统综合实验

实验五 时分复用通信系统综合实验
7

(3)SWB02的E_SEL1短路器插入、 E_SEL0拔除 ,重复上述测量步骤,记录 测试结果。 (4)SWB02的E_SEL0、E_SEL1短路器都 插入 ,重复上述测量步骤,记录测试结果。

8

2.不同误码率下帧内数据信号传输的测量

(1) ADPCM1模块内K504设置在MUX(左端)、
4
实验一需做的设置:

电话1模块内K101、K102设置在N位置(左端),电话2 模块内K201.K202设置在N位置。 ADPCM1模块内K501设置在N位置(左),K502、K503 在N位置(左),K504在中间;


ADPCM2模块内K601设置在N位置(左), K602、K603 在N位置(左),K604在ADPCM1位置;
熟悉帧复接解复接器在通信系统中所处的地位及作用定性了解帧传输在不同信道误码率时对语音业务和数据业务的影响zh7001通信原理综合实验系统一台20mhz双踪示波器一台电话机二部传输信道交换处理模块dtmf检测1dtmf检测2pcm编码数据地址码m序列帧标志pcm译码数据地址码显示m序列输出帧标志同步tdm数据256kbps时钟64kbps图21时分复用tdm系统测试组成框图电话1模块内k101k102设置在n位置左端电话2模块内k201k202设置在n位置
ADPCM2模块内K604设置在ADPCM1位置(中
间)。通过菜单选择PCM编码方式.

(2)无信道错码时, SWB02的E_SEL0、E_SEL1 都拔下。通过电话机2讲话,听ADPCM2至 ADPCM1方向经过复接系统传输的话音质量。主 观评价话音传输质量,
9

(3)SWB02的E_SEL0短路器插入、E_SEL1拔除(10),

实验五 PCM编译码

实验五  PCM编译码

实验五 PCM编译码一、实验目的1. 掌握PCM编译码原理。

2. 掌握PCM基带信号的形成过程及分接过程。

3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。

二、实验内容1. 用示波器观察两路音频信号的编码结果,观察PCM基群信号。

2. 改变音频信号的幅度,观察和测试译码器输出信号的信噪比变化情况。

3. 改变音频信号的频率,观察和测试译码器输出信号幅度变化情况。

三、基本原理1. 点到点PCM多路电话通信原理脉冲编码调制(PCM)技术与增量调制(ΔM)技术已经在数字通信系统中得到广泛应用。

当信道噪声比较小时一般用PCM,否则一般用ΔM。

目前速率在155MB以下的准同步数字系列(PDH)中,国际上存在A解和μ律两种PCM编译码标准系列,在155MB以上的同步数字系列(SDH)中,将这两个系列统一起来,在同一个等级上两个系列的码速率相同。

而ΔM在国际上无统一标准,但它在通信环境比较恶劣时显示了巨大的优越性。

点到点PCM多路电话通信原理可用图5-1表示。

对于基带通信系统,广义信道包括传输媒质、收滤波器、发滤波器等。

对于频带系统,广义信道包括传输媒质、调制器、解调器、发滤波器、收滤波器等。

图5-1 点到点PCM多路电话通信原理框图本实验模块可以传输两路话音信号。

采用TP3057编译器,它包括了图5-1中的收、发低通滤波器及PCM编译码器。

编码器输入信号可以是本实验模块内部产生的正弦信号,也可以是外部信号源的正弦信号或电话信号。

本实验模块中不含电话机和混合电路,广义信道是理想的,即将复接器输出的PCM信号直接送给分接器。

2. PCM编译码模块原理本模块的原理方框图图5-2所示,模块内部使用+5V和-5V电压,其中-5V电压由-12V 电源经7905变换得到。

图5-2 PCM编译码原理方框图该模块上有以下测试点和输入点:∙ BS PCM基群时钟信号(位同步信号)测试点∙ SL0 PCM基群第0个时隙同步信号∙ SLA 信号A的抽样信号及时隙同步信号测试点∙ SLB 信号B的抽样信号及时隙同步信号测试点∙ SRB 信号B译码输出信号测试点∙ STA 输入到编码器A的信号测试点∙ SRA 信号A译码输出信号测试点∙ STB 输入到编码器B的信号测试点∙ PCM PCM基群信号测试点∙ PCM-A 信号A编码结果测试点∙ PCM-B 信号B编码结果测试点∙ STA-IN 外部音频信号A输入点∙ STB-IN 外部音频信号B输入点本模块上有三个开关K5、K6和K8,K5、K6用来选择两个编码器的输入信号,开关手柄处于左边(STA-IN、STB-IN)时选择外部信号、处于右边(STA-S、STB-S)时选择模块内部音频正弦信号。

时分复用的PCM系统

时分复用的PCM系统
数字基带传输系统的基本结构如图3-1所示
输入 {dk}
脉冲 形成器
发送 滤波器
d(t) 定时脉冲
gT(t)
信道
接收 滤波器
yr(t)
噪声n(t)
抽样 判决
y(t) cp
同步提 取电路
码元 再生
输出 {dk'}
32
数字基带传输系统各部分的作用: 脉冲形成器:就是把原始基带信号变换成适合于信道 传输的基带信号,这种变换主要是通过码型变换和波 形变换来实现的。 信道:它是允许基带信号通过的媒质,通常为有线信 道,如市话电缆、架空明线等。 接收滤波器:是滤除带外噪声,对信道特性均衡,使 输出的基带波形有利于抽样判决。
PCM编译码系统仿真演示
14
2.3 增量调制
一、编码的基本思想 假设一个模拟信号x(t),我们用一时间间隔为Δt,
幅度差为±σ的阶梯波形x′(t)去逼近它, 如图所示。 只要Δt足够小,即抽样频率fs=1/Δt足够高, 且σ足够 小,则x′(t)可以相当近似于x(t)。我们把σ称作量阶, Δt=Ts称为抽样间隔。
发端定时
取样
去信道
(a)
来自信道 码型反变换
译码
1路 2路 3路
收定时 (1路)
分离
收定时 (2路)
放大和低通滤波 1路输出
收端定时
分离
收定时 (3路)
放大和低通滤波 2路输出
分离
放大和低通滤波 3路输出
(b)
24
带宽设计:
TDM—PCM的信号代码在每一个抽样周期内 有Nk个,这里N表示复用路数,k表示每个抽样值 编码的二进制码元位数。
15
用阶梯或锯齿波逼近模拟信号
16

实验五 两路PCM时分复用

实验五 两路PCM时分复用

实验五两路PCM时分复用一、实验目的1.掌握时分复用的概念。

2.了解时分复用的构成及工作原理。

3.了解时分复用的优点与缺点。

4.了解时分复用在整个通信系统中的作用。

二、实验内容对两路模拟信号进行PCM编码,然后进行复用,观察复用后的信号。

三、实验器材1.信号源模块一块2.②号模块一块3.⑧号模块一块4.20M 双踪示波器一台5.连接线若干四、实验原理在数字通信中,PCM、 M、ADPCM或者其它模拟信号的数字化,一般都采用时分复用方式来提高信道的传输效率。

所谓复用就是多路信号(语音、数据或图像信号)利用同一个信道进行独立的传输。

如利用同一根同轴电缆传输1920路电话,且各路电话之间的传递是相互独立的,互不干扰。

时分复用(TDM)的主要特点是利用不同时隙来传递各路不同信号,时分复用是建立在抽样定理基础上的,因为抽样定理是连续(模拟)的基带信号有可能在被时间上离散出现的抽样脉冲所代替。

这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙。

利用这些空隙便可以传输其他信号的抽样值,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽样值占用的时间越短,能够传输的路数也就越多。

然而,TDM对信道中时钟相位抖动及接收端与发送端的时钟同步问题则提出了较高要求。

所谓同步是指接收端能正确地从数据流中识别各路序号。

为此,必须在每帧内加上标志信号(称为帧同步信号)。

它可以是一组特定的码组,可以是特定宽度的脉冲。

在实际通信系统中还必须传送命令以建立通信连接,如传送电话通信中的占线、摘机与挂机信号以及振铃信号等命令。

上述所有信号都是时间分割,按某种固定方式排列起来,称为帧结构。

采用TDM制的数字通信系统,在国际上已逐步建立起标准。

原则上是先把一定路数电话语音复合成一个标准数据流(称为基群),然后再把基群数据流采用同步或准同步数字复接技术,汇合成更高速的数据信号,复接后的序列中按传输速率不同,分别成为一次群、二次群、三次群、四次群等等。

实验二十一-光纤通信网中的时分复用技术实验

实验二十一-光纤通信网中的时分复用技术实验

光纤通信网中的复用技术实验实验二十一光纤通信网中的时分复用技术实验一、实验目的1、了解光纤接入网时分复用原理2、掌握时分复用技术二、实验内容1、将两路模拟信号进行时分复用2、观察PCM编译码过程及各测试点波形三、预备知识1、了解时分复用的概念四、实验仪器1、ZY12OFCom13BG3型光纤通信原理实验箱 1台2、20MHz双踪模拟示波器 1台3、FC/PC-FC/PC单模光跳线 1根4、连接导线 20根五、实验原理时分复用(TDM:Time-Division Multiplexing)制的数字通信系统,在国际上已经逐步建立起标准并广泛使用。

TDM的主要特点是在同一个信道上利用不同的时隙来传递各路(语音、数据或图象)不同信号。

各路信号之间的传输是相互独立的,互不干扰。

为了提高通信系统的利用率,话音信号的传输往往采用多路通信的方式。

所谓多路通信,就是把多个不同信源所发出的信号(譬如话音)组合成一个群信号,并经由同一信道进行传输,在收端再将它分离并被相应接受。

实现多路通信的方式,除采用频分复用(FDM)外,才可以采用时分复用方式(TDM)方式。

时分复用是建立在抽样定理的基础上的,因为抽样定理使连续的基带信号有可能被在时间上离散出现的抽样脉冲值所替代。

这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙。

利用这种空隙便可以传输其他信号的抽样值,因此,就有可能沿一条信道同时传送若干个基带信号。

所谓时分复用是指将多个通道的数字信息(低速率)以时间分割的方式插入到同一个物理信道中。

复用之后的数字信息成为高速率的数字流,数字流由帧组成。

帧定义了信道上的时间区域,在这个区域内信号以一定的格式传送。

时分复用必须采取同步技术来使远距离的接收端能够识别和恢复这种帧结构。

例如发送端在每帧开始的时候发送一个特殊的码组,而接收端利用检测这个特征码组来进行帧定位。

特征码组(或称帧定位码组)按一定的周期重复出现。

每一帧又包含若干个时间区域,叫做时隙TS,每个时隙在通信时严格地分配给一个信道,即每个信道的数字信息是严格相等且时间上保持严格的同步关系。

实验五 PCM编译码

实验五 PCM编译码

实验五 PCM编译码实验一、实验目的1.理解PCM编译码原理及PCM编译码性能;2.熟悉PCM编译码专用集成芯片的功能和使用方法及各种时钟间的关系;3.熟悉语音数字化技术的主要指标及测量方法。

二、实验仪器1.RZ9681实验平台2.实验模块:∙主控模块∙信源编码与时分复用模块-A33.100M四通道示波器4.信号连接线三、实验原理3.1抽样信号的量化原理模拟信号抽样后变成在时间离散的信号后,必须经过量化才成为数字信号。

模拟信号的量化分为均匀量化和非均匀量化两种。

把输入模拟信号的取值域按等距离分割的量化就称为均匀量化,每个量化区间的量化电平均取在各区间的中点,如下图所示。

qmqmqmqmqmq图3.1.2.1 均匀量化过程示意图均匀量化的主要缺点是无论抽样值大小如何,量化噪声的均方根值都固定不变。

因此,当信号()m t较小时,则信号量化噪声功率比也很小。

这样,对于弱信号时的量化信噪比就难以达到给定的要求。

通常把满足信噪比要求的输入信号取值范围定义为动态范围,那么,均匀量化时的信号动态范围将受到较大的限制。

为了克服这个缺点,实际中往往采用非均匀量化的方法。

非均匀量化是根据信号的不同区间来确定量化间隔的。

对于信号取值小的区间,其量化间隔v D 也小;反之,量化间隔就大。

非均匀量化与均匀量化相比,有两个突出的优点:首先,当输入量化器的信号具有非均匀分布的概率密度(实际中往往是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例,因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的信噪比。

非均匀量化的实际过程通常是将抽样值压缩后再进行均匀量化。

现在广泛采用两种对数压缩,美国采用μ压缩律,我国和欧洲各国均采用A 压缩律。

本实验中PCM 编码方式也是采用A 压缩律。

A 律压扩特性是连续曲线,实际中往往都采用近似于A 律函数规律的13折线(A=87.6)的压扩特性。

实验二十二 电话接口及其PCM编译码和时分复用实验

实验二十二  电话接口及其PCM编译码和时分复用实验

实验二十二电话接口及其PCM编译码和时分复用实验一、实验目的1、全面了解用户线接口电路功能(BORST)的作用及其实现方法。

2、通过对PBL38710电路的学习与实验,进一步加深对BORST功能的理解。

3、了解二/四线变换电路的工作原理。

二、实验内容1、观察语音信号波形。

2、二/四线变换实验。

3、对两路语音信号进行PCM编码,观察编码波形。

4、对两路语音信号进行PCM编码,然后将编码后的信号进行译码,聆听通话效果。

5、对两路语音信号进行PCM编码,然后进行时分复用,解复用,PCM译码,观察复用后的信号与解复用的信号,并将其与复用前的编码信号比较。

6、对时分复用后的信号进行信道模拟,观察其对话音质量的影响。

三、实验仪器1、模拟信号数字化模块2、时分复用模块3、信道模拟模块4、电话接口及计算机数据通信模块5、电话单机二部6、20M双踪示波器一台7、连接线若干四、实验原理1、用户接口电路的作用在现代电话通信设备与程控交换机中,由于交换网络不能通过铃流、馈电等电流,因而将过去在公用设备(如绳路)实现的一些用户功能放到“用户电路”来完成。

用户电路也可称为用户线接口电路(Subscriber Line Interface Circuit—SLIC)。

任何交换机都具有用户线接口电路。

模拟用户线接口电路在实现上的最大压力是应能承受馈电、铃流和外界干扰等高压大电流的冲击,过去都是采用晶体管、变压器(或混合线圈)、继电器等分立元件构成,随着微电子技术的发展,近十年来在国际上陆续开发多种模拟SLIC,它们或是采用半导体集成工艺或是采用薄膜、厚膜混合工艺,并已实用化。

在实际中,基于实现和应用上的考虑,通常将BORSCHT 功能中过压保护由外接元器件完成,编解码器部分另单成一体,集成为编解码器(CODEC),其余功能由所谓集成模拟SLIC完成。

在布控交换机中,向用户馈电,向用户振铃等功能都是在绳路中实现的,馈电电压一般是-48V,用户的馈电电流一般是20mA~30mA,铃流是25Hz左右,而在程控交换机中,由于交换网络处理的是数字信息,无法向用户馈电、振铃等,所以向用户馈电、振铃等任务就由用户线接口电路来承担完成,再加上其它一些要求,程控交换机中的用户线接口电路一般要具有B(馈电)、O(过压保护)、R(振铃)、S(监视)、C(编译码)、H(混合)、T(测试)七项功能。

实验2脉冲编码调制PCM与时分复用实验-.

实验2脉冲编码调制PCM与时分复用实验-.

实验 2 脉冲编码调制 PCM 与时分复用实验—、实验目的1.加深对 PCM 编码过程的理解 ;2.熟习 PCM 编、译码专用集成芯片的功能和使用方法;3.认识 PCM 系统的工作过程 ;4.掌握时分多路复用的工作过程;用同步正弦波信号察看 A 律 PCM 八比特编码的实验。

二、实验仪器1.HD8621D 实验箱 1 台2.20M 双踪示波器 1 台3.铆孔线 5 根三、实验电路工作原理(一 PCM 基本工作原理脉冲调制就是把一个的模拟信号变换成的数字信号后在信道中传输。

脉冲编码调制就是对模拟信号的过程。

所谓抽样 ,就是在抽样脉冲到达的时辰提取对模拟信号在 ,抽样把时间上的信号变为时间上的信号。

所谓量化 ,就是把经过抽样获得的刹时价将其幅度 ,即用一组规定的电平 ,把刹时抽样值用来表示。

一个模拟信号经过抽样量化后,获得已量化的脉冲幅度调制信号, 它仅为有限个数值。

话音信号先经滤波器 ,进行脉冲抽样 ,变为的抽样信号 ,而后将幅度连续的 PAM 信号用“四舍五入”方法量化为的信号 ,再经编码后变换成。

关于语音电话通信 ,CCITT 规定抽样率为 8KHz, 每抽样值编位码 ,即共有个量化值 ,因此每话路 PCM 编码后的标准数码率是 b/s。

为解决平均量化时小信号量化偏差大、音质差的问题 , 在实质中采纳量化方法 ,即量化特征在小信号时分层密、量化间隔小 ,而在大信号时分层疏、量化间隔大。

(二 PCM 编译码电路【 PCM 编译码电路 TP3067 芯片】1.依据图 4-4 和图 4-5 说明单路 PCM 编译码器的工作原理答:计时 ,能够实现对编译码器的降功耗控制。

图 4-5 是短帧同步准时波形图。

四、实验内容1.用同步正弦波信号察看 A 律 PCM 八比特编码的实验 ;2.脉冲编码调制 (PCM 及系统实验 ;3.PCM 八比特编码时分复用输出波形察看丈量实验;4.PCM 编码时分多路复用时序剖析实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

触 发 按 钮
PCM编码信号输入
1、拨码开关S4S5都拨为“0100”
2048K时钟输入 2048K时钟输入
看 连 线
A路PCM帧同步输入 B路PCM帧同步输入 3、用示波器观察“FJOUT”处的波形,0010 2、拨码开关S1S2拨为00 时分复用输入A 时分复用输入B 改变S1S2拨码值重复观测(结束)
五、实验步骤
2、将两副耳麦分别接入模块2上的耳机插座:
“话筒1”“耳机1”“话筒2”“耳机2”,进行两人通 化实验,调节电位器W1、W2、W3、W4改变音 量及通话质量。 3、实验结束关闭电源,拆除连线,完成实验 报告。
触 发 按 钮 看 连 线
1路语音信号输出
2路语音信号输出 解码后1路语音信号输出
保持前面连线继续解复用连线
同步提取输入
触发按钮
看连线
位同步输入
返回 波形
帧同步输入
保持前面连线继续解复用连线
五、实验步骤
两人时分复用通话实验 1、保持以上连线不变,拆除信号源模块2K同 步正弦波与模块2的连线,增加以下连线:
源端口 模块2:MICOUT1 模块2:MICOUT2 模块2:SIN OUT-A 模块2:SIN OUT-B 目的端口 模块2:SIN IN-A 模块2:SIN IN-B 模块2:EARIN2 模块2:EARIN1 连线说明 1路语音信号输入 2路语音信号输入 解码后1路语音信号输入 解码后2路语音信号输入
信号源:同步正弦波(2K)
模块8:FS3 模块8:FS_SEL 模块2:PCMOUT-A 模块2:PCMOUT-B
模块2:SIN IN-A;SIN IN-B
模块2:FSXA 模块2:FSXB 模块8:PCMAIN 模块8:PCMBIN

PCM编码输入信号
A路PCM编码帧同步输入 B路PCM编码帧同步输入 A路PCM编码输入信号 B路PCM编码输入信号
对复用后的信号进行解复用,然后 进行PCM解码,观察解复用后的两路 解码信号与原两路模拟信号是否相同。
三、实验器材
1、信号源模块
2、模块2 3、模块8 4、模块7 5、 20M 双踪示波器 6、连接线 一台 若干
四、实验原理
时分复用原理 我国使用的PCM系统,规定采用PCM30/32路 的帧结构,如图所示。
五、实验步骤
4、将模块8上的拨码开关S1,S2分别设置为 0000 0010,用示波器观察模块8上“FJOUT”处 的输出波形,改变拨码开关为其它值,观察输出 波形变化情况。
5、用双踪示波器对比观察模块8上的“PCMAIN” 和“PCMOUTA”,“PCMBIN”和“PCMOUTB” 的波形,看是否一致。 6、实验结束关闭电源。
1、分别接两副耳麦的话筒耳机
2、调节W1W2W3W4改变通话音量及质量, 解码后2路语音信号输出 进行两人通话(结束)
六、实验报告要求
1、实验目的
2、实验内容 3、实验器材 4、实验原理 5、实验步骤 6、实验结果及分析
3、用示波器观测“SIN4、用示波器观测“SIN IN-B”“SIN OUT-B” IN-A”“SIN A路解码帧同步输入 两点的波形,并进行比较(结束) OUT-A”两点的波形,并进行比较 解复用输出B PCM译码位同步输入 解复用输出A 1、用示波器观测“PCMAIN”“PCMOUTA” 两点的波形,并进行比较 B路解码帧同步输入 2、用示波器观测“PCMBIN”“PCMOUTB” 两点的波形,并进行比较 解复用输入
16帧 复帧结构 F0 F1 F2 ... 32路时隙
TS0 TS1
F14 F15
帧结构
偶帧TS0 *
帧同步时隙 0 0 1 1 0 帧同步信号 1 A 1 1 1
TS16
信令时隙 1 1
用户时隙
奇帧TS0 *
1
1
TS31
四、实验原理
抽样频率s为8kHz,所以帧长度Ts=1/8 kHz=125。一帧分为32个时隙,其中30个时隙供 30个用户(即30路话)使用,即TS1~TS15和 TS17~TS31为用户时隙。因为采用的是13折线A 律编码,因此所有的时隙都是采用8位二进制码。 TS0是帧同步时隙,TS16是信令时隙。帧同步码 组成为*0011011,它是在偶数帧中TS0的固定码 组,接收端根据此码组建立正确的路序,即实现 帧同步。奇数帧中TS0不作为帧同步用,供其他 用途。TS16用来传送话路信令。话路信令有两种: 一种是共路信令,另一种是随路信令。
五、实验步骤
1、保持前面连线不变,增加连线如下
源端口 模块8:FJOUT 模块7:BS 模块7:FS 模块8:PCMOUTA 模块8:PCMOUTB 模块8:TS3 模块8:TS_SEL 目的端口 模块8:FJIN;模块7:DIN 模块8:BSIN;模块2:BSR 模块8:FSIN 模块2:PCMIN-A 模块2:PCMIN-B 模块2:FSRA 模块2:FSRB 连线说明 解复用输入;同步提取输入 提取的位同步输入 提取的帧同步输入 A路PCM解码输入信号 B路PCM解码输入信号 A路PCM解码帧同步输入 B路PCM解码帧同步输入
32.768Mhz FJIN
位时钟提取 模块
BS FS
计数器模块
TTS0 TTS1 TTS_SEL FRAMOUT PCMOUT1 PCMOUT2
帧同步提取 模块
解复接模块
五、实验步骤
1、将信号源模块上S4拨为“0100”,S5也拨为 “0100”。
2、在电源关闭的状态下,按照下表完成实验连线
源端口 信号源:CLK2(2048K) 信号源:CLK1(2048K) 目的端口 模块8:CLK; 模块2:MCLK;BSX 连线说明 S4拨为“0100”,时钟输入 S5拨为“0100”,时钟输入
四、实验原理
在本实验中通过CPLD产生的帧同步信号FS1和 FS_SEL来使两个TP3067其编码产生的数据分别 在1时隙和可选时隙。其中FS_SEL是由拨码开关 来选择30个时隙, 十位由一个两位的 拨码开关选择,个 位由一个四位的拨 码开关选择
四、实验原理
解复用是通过帧同步提取模块提取的帧同步信 号和位时钟提取模块控制计数器产生帧同步信号 TTS0、TTS1和TTS_SEL。然后,再通过TTS0、 TTS1、TTS_SEL将复用的信号分离开。
实验五 两路PCM时分复用
一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、实验步骤 六、实验报告要求
一、实验目的
1、掌握时分复用的概念。
2、了解时分复用系统的构成及工作原理。 3、了解时分复用的优点与缺点。 4、了解时分复用在整个通信系统中的作用。
二、实验内容
对两路模拟信号进行PCM编码,然 后进行复用,观察复用后的信号并将 其与复用前的编码信号比较。
相关文档
最新文档