实验十七时分复用与解复用实验资料
时分复用技术实验报告
一、实验目的1. 理解时分复用技术的原理和过程。
2. 掌握时分复用系统的组成和功能。
3. 学习使用时分复用技术实现多路信号传输。
4. 分析时分复用技术的优缺点及其在实际应用中的意义。
二、实验原理时分复用技术(Time Division Multiplexing,TDM)是一种将多个信号按照一定的时间顺序复用到同一传输线路上,并在接收端进行分离的技术。
其基本原理是将传输线路的时间分割成若干个等长的时间片,每个信号源占用一个时间片进行传输。
在发送端,将各个信号源的数据按照一定的顺序排列,并分配相应的时间片,形成复用信号。
在接收端,通过相应的解复用技术,将复用信号分离成各个原始信号。
三、实验仪器与设备1. 时分复用实验箱2. 示波器3. 信号发生器4. 计算器四、实验步骤1. 系统搭建:按照实验箱说明书,搭建时分复用实验系统。
将信号发生器连接到实验箱的输入端,示波器连接到实验箱的输出端。
2. 信号生成:设置信号发生器,生成两个频率分别为1kHz和2kHz的正弦波信号,分别代表两路信号源。
3. 时分复用:开启实验箱,设置时分复用参数,如时间片数量、时间片长度等。
观察示波器上的输出信号,记录下复用信号的特征。
4. 解复用:设置解复用参数,如时间片数量、时间片长度等。
观察示波器上的输出信号,记录下解复用信号的特征。
5. 数据分析:分析时分复用和解复用信号的特征,验证时分复用技术的原理和效果。
五、实验结果与分析1. 时分复用信号:示波器显示的复用信号是两个正弦波信号的叠加,且时间上相互交织。
2. 解复用信号:示波器显示的解复用信号是两个独立的正弦波信号,分别对应两个原始信号。
3. 分析:通过实验,验证了时分复用技术能够将多个信号复用到同一传输线路上,并在接收端进行分离。
时分复用技术具有以下优点:- 提高信道利用率:在同一传输线路上传输多个信号,提高了信道利用率。
- 简化系统设计:时分复用技术不需要复杂的调制解调技术,简化了系统设计。
数字时分复接系统光通信实验
P804:电话B接收的语音信号的连接铆孔;
时分复接测试点:
P108:数字时分复接输出连接铆孔
P109:PCM1编码数据复接输入连接铆孔
P110:PCM2编码数据复接输入连接铆孔
时分分接测试点:
P111:数字时分解复接数据输入连接铆孔
P113::PCM1译码数据解复接输出连接铆孔
P114 :PCM2译码数据解复接输出连接铆孔
P115:提取的帧同步窄脉冲
光信道测试点说明:
TX1310:输入1310nm光发射端机的电信号测试点。
P201: 1310nm光发射端机的数字信号输入连接铆孔。
P202:1310nm光接收端机输出的数字信号输出连接铆孔。
TX1550:输入1310nm光发射端机的电信号测试点。
数字复接的方法主要有按位复接、按字复接和按帧复接三种;按照复接时各路信号时钟的情况,复接方式可分为同步复接、异步复接与准同步复接三种。本实验中选择了按字复接的方法和准同步复接的方式。
本实验中数字复接系统方框图,如下图7.3.1:
定时单元给设备提供一个统一的基准时钟。码速调整单元把速率不同的各支路信号,调整成与复接设备定时完全同步的数字信号,以便由复接单元把各支路信号复接成一个数字流。本实验中,码速调整单元将PCM1编码数据、PCM2编码数据、PC机数据和地址开关(拨码器)设置的8BIT数据都调整成速率为512KHZ的码元,然后复接进同一个数据码流中。并在第1路时隙中加入帧同步信号,在第7路时隙中加入的有关数据信息的信令。本实验中同步复接的帧结构如图7.3.2所示。
把两个或两个以上的支路数字信号按时分复用方式合并成单一的合路数字信号的过程称为数字复接,其实现设备称为数字复接器。在接收端把一路复合数字信号分离成各路信号的过程称为数字分接,其实现设备称为数字分接器。数字复接器 、数字分接器和传输信道共同构成数字复接系统。本实验平台中,数据发送单元模块的U101内集成了数字复接器,数据接收单元的U105内集成了数字分接器,连接好光传输信道即构成了一个完整的数字复接系统。
时分复用实验实验报告
一、实验目的1. 理解时分复用的基本概念和原理;2. 掌握时分复用系统的组成和实现方法;3. 熟悉实验仪器的使用和操作;4. 分析实验数据,验证时分复用系统的性能。
二、实验原理时分复用(Time Division Multiplexing,TDM)是一种将多个信号在时间上进行分割,通过同一传输介质进行传输的技术。
在时分复用系统中,每个信号占用一段固定的时间,称为时隙。
在传输过程中,各信号按照一定的顺序依次传输,接收端根据时隙顺序进行信号分离。
时分复用系统的原理如下:1. 时分复用器(Multiplexer):将多个信号按照时隙顺序进行复用,形成一个复用信号;2. 传输介质:将复用信号传输到接收端;3. 解复用器(Demultiplexer):将复用信号按照时隙顺序进行解复用,还原出各个原始信号。
三、实验仪器与设备1. 时分复用实验平台;2. 示波器;3. 信号发生器;4. 信号分析仪。
四、实验步骤1. 将时分复用实验平台连接好,确保各设备正常工作;2. 设置信号发生器,生成多个原始信号,分别为信号1、信号2、信号3;3. 将信号1、信号2、信号3分别输入时分复用器的输入端;4. 设置时分复用器,使信号1、信号2、信号3依次占用时隙;5. 观察示波器,观察复用信号的波形;6. 将复用信号输入解复用器,观察解复用后的信号波形;7. 比较原始信号和解复用信号的波形,分析实验结果。
五、实验数据与分析1. 实验数据:(1)原始信号1:频率为1kHz,幅度为1V;(2)原始信号2:频率为2kHz,幅度为1V;(3)原始信号3:频率为3kHz,幅度为1V;(4)复用信号:频率为3kHz,幅度为3V;(5)解复用信号1:频率为1kHz,幅度为1V;(6)解复用信号2:频率为2kHz,幅度为1V;(7)解复用信号3:频率为3kHz,幅度为1V。
2. 实验分析:(1)在时分复用过程中,原始信号1、信号2、信号3依次占用时隙,形成复用信号。
时分复用-解复用试验
固定及变速率时分复用、解复用实验第一部分固定速率时分复用/解复用实验一、实验目的1.掌握固定速率时分复用/解复用的同步复接/分接原理。
2.掌握帧同步码的识别原理。
3.掌握集中插入帧同步码时分复用信号的帧结构特点。
二、实验内容1.搭建一个理想信道固定速率时分复用数字通信系统,使系统正常工作。
2.搭建一个理想信道固定速率时分解复用数字通信系统,使系统正常工作。
3.用示波器观察集群信号(FY_OUT)、位同步信号(BS)及帧同步信号(FS),熟悉它们的对应关系。
4.观察信号源发光管与终端发光管的显示对应关系,直接观察时分复用与解复用的实验效果。
三、实验仪器示波器,RC-GT-II型光纤通信实验系统。
四、基本原理1.同步复接/分接原理固定速率时分复用/解复用通常也称为同步复接/分接。
在实际应用中,通常总是把数字复接器和数字分接器装在一起做成一个设备,称为复接分接器(缩写为Muldex)。
图1.1数字复接器的基本组成图1.2数字分接器的基本组成图数字复接器的基本组成如图1.1所示。
数字复接器的作用是把两个或两个以上的支路数字信号按时分复接方式合并成为单一的合路数字信号。
数字复接器由定时、调整和复接单元所组成。
定时单元的作用是为设备提供统一的基准时间信号,备有内部时钟,也可以由外部时钟推动。
调整单元的作用是对各输入支路数字信号进行必要的频率或相位调整,形成与本机定时信号完全同步的数字信号。
复接单元的作用是对已同步的支路信号进行时间复接以形成合路数字信号。
数字分接器的基本组成如图1.2所示。
数字分接器的作用是把一个合路数字信号分解为原来支路的数字信号。
数字分接器由同步、定时、分接和恢复单元所组成。
定时单元的作用是为分接和恢复单元提供基准时间信号,它只能由接收的时钟来推动。
同步单元的作用是为定时单元提供控制信号,使分接器的基准时间与复接器的基准时间信号保持正确的相位关系,即保持同步。
分接单元与复接单元相对应,分接单元的作用是把输入的合路数字信号(高次群)实施时间分离。
时分复用和频分复用
时分复用和频分复用时分复用频分复用简介数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(MultiplexiI1g)。
采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。
频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision MultiplexiIIg)是两种最常用的多路复用技术。
举个例最简单的例子:从A地到B地坐公交2块。
打车要20块为什么坐公交便宜呢这里所讲的就是“多路复用”的原理。
频分复用(FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。
因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。
在频分复用系统中,发送端的各路信号m1(t),m2(t),…,mn(t)经各自的低通滤波器分别对各路载波f1(t),f2(t),…,fn(t)进行调制,再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。
在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t),f2(t),…,fn(t)相乘,实现相干解调,便可恢复各路信号,实现频分多路通信。
为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。
根据国际电报电话咨询委员会(CCITT)建议,基础群分为前群、基群、超群和主群。
①前群,又称3路群。
它由3个话路经变频后组成。
各话路变频的载频分别为12,16,20千赫。
取上边带,得到频谱为12~24千赫的前群信号。
②基群,又称12路群。
它由4个前群经变频后组成。
各前群变频的载频分别为84,96,108,120千赫。
取下边带,得到频谱为 60~108千赫的基群信号。
通信原理实验报告模板-时分复用
4.了解时分复用在整个通信系统中的作用。
1.用主控&信号源、1 号、2 号、7 号、13 号模块连成一个时分复用数字基带通信系统,使系 实
统正常工作。 验
内
容 2.用示波器观察分接后的数据信号、用于数据分接的帧同步信号。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
实验十七%20%20时分复用与解复用实验pdf
《现代通信原理》实验操作讲义-物理与电子工程学院(肖尚辉等)
采用时分复用的数字通信系统,在国际上已逐步建立其标准。原则上是把一定路数电话语音 复合成一个标准数据流(称为基群),然后再把基群数据流采用同步或准同步数字复接技术, 汇合成更高速的数据信号,复接后的序列中按传输速率不同,分别成为一次群、二次群、三 次群、四次群等等。
17-3
《现代通信原理》实验操作讲义-物理与电子工程学院(肖尚辉等)
的原理框图。时分复用与解复用的所有功能都是在 U01 中完成的。
图 17-4 解复用原理框图
在解复用电路中,先通过帧同步信号和位同步信号把四路数据分开,然后通过移位寄存 器构成的并/串转换电路输出串行的数据。时分复用和解复用的电路都比较简单,请同学们参 照我们提供的原理框图自己分析电路详细的工作过程。
画出电路图并分析电路工作原理。
17-6
帧同步码 8 位
8 位 8 位全零 帧同步码 8 位
8 位 8 位全零
01110010 数据 1 数据 2 00000000 01110010 数据 1 数据 2 00000000
图 17-3 时分复用输出信号帧结构
复用信号通过解复用电路还原出两路 PCM 编码信号,分别送入时分复用模块和模拟信号 数字化模块进行 PCM 译码输出,得到的两路信号分别与输入信号相同。图 17-4 是解复用部分
FRAME1-IN: 解复用第一路 PCM 数据帧同步信号输入点。
2、输出点参考说明
2048K-OUT: TP3067 主时钟输出点。
CLKB-OUT: PCM 码编码位同步信号输出点(64K 方波)。
FRAMEB-OUT: PCM 码编码帧同步信号输出点(8K 方波)。
时分复用及帧同步
时分复用及帧同步2.1.1 时分复用/解复用(TDM )实验一、实验目的 1. 掌握时分多路复用的概念 2. 了解本实验中时分复用的组成结构二、实验仪器1. RZ9681实验平台2. 实验模块: ∙ 主控模块∙ 基带数据产生与码型变换-A2 ∙ 信源编码与时分复用模块-A3 ∙ 信源译码与时分解复用模块-A6 3. 100M 双通道示波器 4. 信号连接线5. PC 机(二次开发)三、实验原理 时分复用是将整个信道传输信息的时间划分成不同时隙,利用不同的时隙来传输不同信号,以扩大传输容量和提高传输效率。
3.1 数字复接 数字复接技术是把两个或两个以上的低速信号按照时分复用的方式合并成一个高速信号。
按帧复接是指将每一路并行数据的每一帧按照信道的顺序循环逐一排列,得到一路的串行数据。
按照按帧复接的方式,每次复接一路信号的一帧数据,因此复接时不会破坏原来各个帧的自身内部的顺序,有利于交换。
准同步复接指各并行信道使用各自的时钟,但各支路的时钟被限制在一定的容差范围内。
这种复接方式在复接前必须将各支路的码速都调整到统一的规定值后才能复接。
在这种复接方式中需要进行码速调整。
本实验中数字复接系统方框图,如下图所示:图1 时分复用解复用方框图本实验中同步复接的帧结构如下图所示:发定时调 整复 接收定时分 接恢复同 步PCM 8bit CVSDPCM 8bit CVSD帧头PCM 8bit CVSD一帧4路数据图2 时分复用帧结构在本实验中,一帧分为四个时隙,第一个时隙传输一个8bit 的帧头,用于同步以及确定每一帧的起始点;第二个时隙传输PCM 的8bit 的量化信号,第四个时隙传输CVSD 的量化信号,但由于采样值不是固定的,因此每一帧传送的PCM 和CVSD 的信号都是不同的;第三个时隙传输一个8bit 的自定的数据,可以通过解复用模块A6的8个LED 的亮灭来观察。
一帧高速串行数据的传输速率为256Kb s ⁄,由于在一帧中有4个时隙,因此每一路低速并行数据的传输速率为256Kb s ⁄÷4=64Kb s ⁄。
时分复用(TDM)通信系统试验
(2)首先在无信道错码时,通过电话机2讲话,听ADPCM2至ADPCM1方向经过复接系统传输的话音质量。主观评价话音传输质量,记录测试结果。
(3)将复接模块内的错码选择跳线开关SWB02的E_SEL0短路器插入、E_SEL1拔除
(2)将复接模块内开关信号跳线开关SWB01中LED7~LED0为11100码型,使其与帧定位信号一致。继续观测测试点TPB07与TPB06两点波形的相位关系。
(3)通过加大误码再减小误码(或断开解复接模块输入数据再接入数据),使解复接模块帧同步电路失步进入失锁后再进入同步。注意观测测试点TPB07与TPB06两点波形同步后的相位关系。重复多次实验,记录测试结果。
B01、KB02分别拔下来实现,具体测试在老师的指导下由学生自己组织完成。
5、在数据信号中出现连续出现帧定位信号对帧同步电路的影响测量
按准备工作要求设置各跳线开关。
(1)用示波器测量同时观测复接模块帧同步指示测试点TPB07与解复接模块帧同步指示测试点TPB06波形,观测时用TPB07同步,调整示波器使两观测信号之间正常同步。
1、不同信道误码率下帧内数据信号传输的测量
(1)用示波器测量同时观测复接模块帧同步指示测试点TPB07与解复接模块帧同步指示测试点TPB06波形,观测时用TPB07同步,调整示波器使两观测信号之间正常同步。
用示波器观察复接模块内m序列检测点TPB01和解复接模块内m序列接收输出测试点TPB05波形是否一致。记录测试结果。
DTMF
检测1交换处理模块
DTMF
检测2
1#电话接口1P
C
通信141-实验7 PSK DPSK调制解调实验
信息工程学院实验报告课程名称: 通信原理实验项目名称:时分复用解复用(TDM )实验 实验时间:2016.12.13 班级: 姓名: 学号:一、实验目的1. 掌握PSK DPSK 调制解调的工作原理及性能要求;2. 进行PSK DPSK 调制、解调实验,掌握电路调整测试方法;3. 掌握二相绝对码与相对码的码变换方法。
二、实验仪器1.信道编码与ASK 、FSK 、PSK 、QPSK 调制,位号:A 、B 位 2.PSK/QPSK 解调模块,位号:C 位 3.时钟与基带数据发生模块,位号: G 位 4.复接/解复接、同步技术模块,位号:I 位 5.100M 双踪示波器1台 6.信号连接线6根三、实验步骤1.插入有关实验模块在关闭系统电源的情况下,按照下表放置实验模块:对应位号可见底板右上角的“实验模块位置分布表”,注意模块插头与底板插座的防呆口一致。
2.信号线连接使用专用导线按照下表进行信号线连接:3.加电打开系统电源开关,底板的电源指示灯正常显示。
若电源指示灯显示不正常,请立即关闭电源,查找异常原因。
4.实验内容设置拨码器“4SW02”(G)设置为“00001”,4P01产生32K的15位m序列输出;按动SW01(AB)按钮,使“L01”指示灯亮,“PSK DPSK”输出为PSK调制;将“PSK QPSK解调模块”两个跳线(38K01和38K02)开关插到左侧,选择PSK解调模式。
(一)PSK调制/解调实验1.PSK调制信号观测用示波器通道1接JD(AB),用示波器通道2接“PSK DPSK”(AB),分别观测32K基带信号数据和PSK调制信号,记录实验结果。
分析PSK调制的相位情况。
2.PSK解调后信号观测:●无噪声PSK解调观测(1)调节3W01(E),使3TP01信号幅度为0,即传输的PSK调制信号不加入噪声。
(2)用示波器分别观测JD(AB)和38P02(C),对比调制前基带数据和解调后基带数据。
时分复用及应用
时分复用(Time Division Multiplexer,TDM)基本原理时分复用TDM是采用同一物理连接的不同时段来传输不同的信号,也能达到多路传输的目的。
时分多路复用以时间作为信号分割的参量,故必须使各路信号在时间轴上互不重叠。
n路时分复用系统的示意图:时分多路复用适用于数字信号的传输。
由于信道的位传输率超过每一路信号的数据传输率,因此可将信道按时间分成若干片段轮换地给多个信号使用。
每一时间片由复用的一个信号单独占用,在规定的时间内,多个数字信号都可按要求传输到达,从而也实现了一条物理信道上传输多个数字信号。
假设每个输入的数据比特率是9. 6kbit / s ,线路的最大比特率为76. 8 kbit / s ,则可传输8 路信号。
应用反展TDM方式目前又分为以下两种同步时分复用系统(分两类):1、准同步系列PDH(用于公共电话网PSTN)。
2、同步系列SDH(用于光纤通信等骨干网络)统计时分复用系统(分两类):1、虚电路方式(如,X.25、帧中继、ATM)。
2、数据报方式(如TCP/IP)PSTN系统目前采用PDH和SDH结合的方式,在小用户接入及交换采用PCM/PDH,核心骨干网络采用SDH。
目前世界上存在两类的PDH标准1、基于A律压缩的30/32路PCM系统(欧洲标准,用于欧洲、中国、俄罗斯等)2、基于u律压缩的24路PCM系统(美洲标准,用于北美、日本、台湾等)传统的电的时分复用技术虽然已经成熟,但是由于电子瓶颈的影响很难进一步提高单根光纤的传输速率。
目前,利用电时分复用的方式可以实现单根光纤10Gbit/s 的传输速率,德国SHF 40Gbit/s 电时分复用器虽然已经商用化,但是由于技术复杂,价格十分昂贵。
所以要想进一步提高光通信系统的通信容量,人们把研究的热点集中在了光波分复用(WDM)和光时分复用(OTDM)两种复用方式上。
WDM 是在一根光纤上复用多路不同波长的光信号,在接收端分别对不同波长进行解复用。
解复用实验报告
一、实验目的1. 了解时分复用(TDM)的基本原理和方法。
2. 掌握解复用(Demultiplexing)的原理和实现方法。
3. 通过实验验证时分复用和解复用技术的正确性和有效性。
二、实验原理时分复用(TDM)是一种将多个信号合并为一个复用信号,并在接收端将复用信号分解为多个原始信号的技术。
时分复用主要应用于数字通信领域,其基本原理是将时间划分为多个时间槽,每个时间槽分配给一个信号进行传输。
解复用(Demultiplexing)是指在接收端将复用信号分解为多个原始信号的过程。
解复用是时分复用的逆过程,其基本原理是识别每个时间槽中的信号,并将其分离出来。
三、实验仪器与材料1. 实验箱:用于实现时分复用和解复用实验。
2. 信号发生器:用于产生原始信号。
3. 信号分析仪:用于观察和分析复用信号和解复用信号。
四、实验步骤1. 设置实验箱:将实验箱连接好,确保所有设备正常工作。
2. 产生原始信号:使用信号发生器产生两个不同频率的原始信号。
3. 时分复用:将两个原始信号通过时分复用模块进行复用,生成一个复用信号。
4. 观察复用信号:使用信号分析仪观察复用信号的波形,验证时分复用是否成功。
5. 解复用:将复用信号通过解复用模块进行解复用,生成两个原始信号。
6. 观察解复用信号:使用信号分析仪观察解复用信号的波形,验证解复用是否成功。
7. 比较原始信号和解复用信号:将原始信号和解复用信号的波形进行比较,验证解复用是否准确。
五、实验结果与分析1. 时分复用结果:观察信号分析仪显示的复用信号波形,发现两个原始信号被正确地合并为一个复用信号。
2. 解复用结果:观察信号分析仪显示的解复用信号波形,发现两个原始信号被正确地分离出来。
3. 比较原始信号和解复用信号:将原始信号和解复用信号的波形进行比较,发现两者完全一致,验证了解复用的正确性和有效性。
六、实验结论1. 通过实验验证了时分复用和解复用技术的正确性和有效性。
2. 实验结果表明,时分复用和解复用技术在数字通信领域具有重要的应用价值。
实验3 频分复用与解复用实验
实验3 频分复用/解复用实验一、实验目的1.了解线路成形和频分复用的概念;2.了解线路成形和频分复用的实现方法。
二、实验仪器1.线路成形及频分复用模块,位号:D2.时钟与基带数据发生模块,位号:G3.信道编码与ASK FSK PSK QPSK调制,位号A、B4.FSK解调模块,位号C5.20M双踪示波器1台6.信号连接线5根三、实验原理(一)频分复用的概念频分多路复用记为FDM,是过去几十年,在模拟电话通信系统中,占统治地位的复用方式。
我们以电缆多路模拟电话系统为例,说明频分多路复用的原理。
通常一路电话占用的频带宽度为0-4KHZ,而电缆可用带宽则远大于4KHZ,例如对称电缆可用带宽约为300KHZ,若是同轴电缆,可用带宽更宽。
因此一根电缆,仅供一路电话传输是极大的浪费。
然而,多路信号若不加处理,直接加在同一条电缆中进行传输,将造成相互干扰,无法实现通信。
为了能在同一条电缆中传输多路信号,同时互不干扰,其中一种方法是频分复用。
频分复用是发送端采用调制技术,将各路0-4 KHZ的话音信号,搬移到事先设定的,电缆可用频带的不同位置上;接收端采用不同频带范围的带通滤波器分别取出各路信号,并用解调技术还原出原来的话音信号。
因此频分复用的本质是:按调制后信号带宽要求,将传输信道有效通带,分为若干个排列紧凑同时又不重迭的子信道,每一路话音占用一个指定的子信道,从而实现多路通信,并且互不干扰。
由上可见,频分多路,要互不干扰,滤波器的设计与制作是关键。
线路成形的概念:线路成形又称线路形成器或成形滤波器等。
如前所述,在频分复用中,为了能在线路(电缆)有限的可用频带内,尽可能多地安排通话的路数,而且互不干扰,则它要求每一路话占用的频带宽度窄,并且带外辐射小。
为减小带外辐射,在频分复用发送端,各路信号合路前,需对信号进行滤波,常称为成形滤波;同时接收端要求带通滤波器特性好,这样才能把各路信号分别选择出来,这是频分复用的基本要求。
实验指导书 第2节 时分复用复接、分接实验
时分复用复接、分接实验一、实验目的:1.掌握时分复用数字基带通信系统的基本原理2.掌握复接、分接方法3.了解位同步信号、帧同步信号在数字分接中的作用二、实验内容:1.用数字信源模块、数字终端模块,构成一个理想信道时分复用数字基带通信系统,使所联接的系统工作正常。
2.观察帧同步信号错位对数字信号传输的影响。
3.用示波器观察分接后的分路数据信号、时序信号以及帧同步信号、位同步信号。
三、预习要求:1、复习教材有关时分复用通信系统的理论。
2、认真预习本实验指导书的工作原理和实验内容。
四、实验器材:1.四路稳压电源1台2.双踪示波器1台3.数字信源模块1块4.数字终端模块1块5.连接线若干五、基本原理:本实验使用数字信源模块和数字终端模块。
1. 数字信源中的多路信号的复接原理:数字信源模块的原理框图如附图所示。
1.1时序信号的产生:本模块通过二进制分频器,得到16kHZ和8kHZ方波信号,然后送入2/4译码器,得到反相的脉宽为八个时钟周期的四个脉冲信号,经反相器后得到正相的时序脉冲信号。
其波形及相位关系如图1所示。
图1 复接器中的时序脉冲信号1.2 四路数据码的复接本信源模块中的四路独立的八位数码,在以上四路时序信号的控制下,依次选通模拟开关1、2、3、4,按顺序依次将四路数码接入同一通道,形成了一路串行码,完成四路数据码的复接。
2.数字终端模块的分接器原理原理框图如附图所示。
2.1时序脉冲产生电路:由U7、U8、U9(74LS164)八位移存器和U12(74LS04)非门、U10(74LS74)D触发器组成。
它包含三组时序电路。
经整形后的帧同步信号再经八位或七位(错位一位)移位寄存器延时分别送串/并1和下一个8位移存器,在第二个八位移存器延时八位后的帧同步信号分别送串/并2和第三个8位移存器。
经第三个8位移存器延时的帧同步信号送至串/并3。
而第一个8位移存器的延时1位帧同步信号与延时8位或第7位帧同步信号共同作用于D触发器U10A,便产生第三1路时序脉冲。
时分复用实验报告
一、实验目的1. 理解时分复用的基本概念和原理。
2. 掌握时分复用和解复用的实验操作方法。
3. 通过实验,加深对时分复用在实际通信系统中的应用理解。
二、实验原理时分复用(Time Division Multiplexing,TDM)是一种将多个信号源的信息按照一定的时间顺序复用到同一传输线路上,并在接收端进行解复用的技术。
时分复用通过将传输线路的时间分割成若干个等长的时间片,并将每个时间片分配给一个信号源,从而实现多路信号在同一传输线路上传输。
时分复用的基本原理如下:1. 将传输线路的时间分割成若干个等长的时间片。
2. 将每个时间片分配给一个信号源,每个信号源在一个时间片内发送自己的信息。
3. 在接收端,根据每个信号源分配的时间片顺序,将复用后的信号解复用,恢复出各个原始信号。
三、实验仪器1. 实验箱:包含时分复用和解复用模块。
2. 信号发生器:产生不同频率和幅度的信号。
3. 示波器:观察信号波形。
4. 电缆线:连接实验箱和仪器。
四、实验步骤1. 连接实验箱、信号发生器和示波器。
2. 设置信号发生器,产生两个不同频率和幅度的信号。
3. 将信号发生器产生的信号输入到时分复用模块的输入端。
4. 打开实验箱电源,观察示波器上复用信号的波形。
5. 将复用信号输入到解复用模块的输入端。
6. 观察解复用模块的输出端,分析解复用后的信号是否恢复出原始信号。
五、实验过程1. 将信号发生器产生的两个信号分别输入到时分复用模块的A、B输入端。
2. 打开实验箱电源,观察示波器上A、B信号的波形,确认信号输入正常。
3. 观察示波器上复用信号的波形,确认复用过程正常。
4. 将复用信号输入到解复用模块的输入端。
5. 观察解复用模块的输出端,分析解复用后的信号是否恢复出原始信号。
六、实验结论1. 通过实验,成功实现了时分复用和解复用过程。
2. 实验结果表明,时分复用技术能够有效地将多个信号源的信息复用到同一传输线路上,并在接收端恢复出原始信号。
通信原理时分复用
山东大学通信原理实验实验二十三:时分复用与解时分复用实验原理:时分复用目的是扩大通信链路的容量,在一条链路上传输多路信号。
其原理是在发送端和接收端各有一个机械旋转开关。
在发送端,此开关一次对输入信号抽样,开关旋转一周得到的多路信号抽样值合为1帧。
在接收端,若旋转开关同步的旋转,则对应得低通滤波器输入端就能得到相应路的PAM信号。
实验原理框图如下:上图所示,时分复用复用帧结构为:第0隙为巴克码,第1~3时隙是数据时隙,其中第1时隙为输入的数字信号源,第2时隙为输入的PCM数据,第3时隙为拨码开关。
解时分复用原理框图:;如图,先提取帧同步,然后将一帧数据缓存下来,然后按时隙将帧数据解开,最后每一个端口获取自己时隙的数据进行串并变换输出。
实验结果:实验项目一:1.帧同步码观测:开关s1全置02.利用数字滤波器的存储功能观测3个周期的第1时隙的信号,如图:从图中首先可以找到巴克码,然后巴克码后1时隙就是PN序列,因为PN序列的输出是随机的,所以从图中可以看到3次不一样的PN序列。
思考:PN15序列的数据是如何分配到复用信号中的?PN15序列信号先进行串并变换,然后等待机械开关转向自己这一路,在第1时隙,开关接到PN序列的信道时,数据被传送,并与其它数据进行拼接形成一帧。
实验项目二:1.以帧同步为触发,观测PCM编码数据和复用输出的数据。
对比观测PCM编码数据和帧数据,可以看到PCM编码数据被分配到了每一帧数据的第二时隙,因为在每一帧的时间内,PCM都被延时了2个时隙。
思考:PCM数据是如何分配到复用信号中去的?与PN15序列信号一样,PCM信号先进行串并变换,然后等待机械开关转向自己这一路,在第2时隙,开关接到信道时,数据被传送,并与其它数据进行拼接形成一帧。
3.解复用PCM信号观测。
(1)复用前的PCM序列(2)解复用后的PCM序列前两个图复用前和解复用后的图一样,说明解复用中有把PCM编码数据从一帧复用数据的第2时隙给去了出来。
实验一固定及变速率时分复用、解复用实验
目录实验一固定及变速率时分复用、解复用实验 (1)实验二数字光发送机接口指标测试实验、光纤传输损耗特性与参数测试 (18)实验三光纤通信线路编/解码实验 (25)实验四数字光接收机接口指标测试实验 (31)实验五模拟图象、模拟话音信号光通信实验 (38)实验六光通信WDM原理及模、数双向混合传输光通信实验 (45)实验七线阵CCD像传感器的驱动原理实验及光电定向实验 (54)实验八光电报警系统设计实验 (69)实验一固定及变速率时分复用、解复用实验第一部分固定速率时分复用/解复用实验一、实验目的1.掌握固定速率时分复用/解复用的同步复接/分接原理。
2.掌握帧同步码的识别原理。
3.掌握集中插入帧同步码时分复用信号的帧结构特点。
二、实验内容1.搭建一个理想信道时分复用数字通信系统,使系统正常工作。
2.搭建一个理想信道时分解复用数字通信系统,使系统正常工作。
3.用示波器观察集群信号(FY_OUT)、位同步信号(BS)及帧同步信号(FS),熟悉它们的对应关系。
4.观察信号源发光管与终端发光管的显示对应关系,直接观察时分复用与解复用的实验效果。
三、实验仪器示波器,RC-GT-II型光纤通信实验系统。
四、基本原理1.同步复接/分接原理在实际应用中,通常总是把数字复接器和数字分接器装在一起做成一个设备,称为复接分接器(缩写为Muldex)。
图1.1 数字复接器的基本组成图 1.2 数字分接器的基本组成数字复接器的基本组成如图1.1所示。
数字复接器的作用是把两个或两个以上的支路数字信号按时分复接方式合并成为单一的合路数字信号。
数字复接器由定时、调整和复接单元所组成。
定时单元的作用是为设备提供统一的基准时间信号,备有内部时钟,也可以由外部时钟推动。
调整单元的作用是对各输入支路数字信号进行必要的频率或相位调整,形成与本机定时信号完全同步的数字信号。
复接单元的作用是对已同步的支路信号进行时间复接以形成合路数字信号。
数字分接器的基本组成如图1.2所示。
时分复用数字信号接收实验报告
实验七时分复用数字信号接收实验08电科(1)班第5组舜080702130一、实验目的1.掌握时分复用数字基带通信系统的基本原理及数字信号传输过程。
2.掌握位同步信号、帧同步信号在数字分接中的作用。
二、实验内容1.用数字基带信号、位同步信号、帧同步信号组成一个理想信道的时分复用数字基带通信系统,使系统正常工作。
2.用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号。
3.观察位同步信号抖动对数字信号传输的影响。
4.观察帧同步信号错位对数字信号传输的影响。
三、实验原理(具体见指导书)图TP11-TP12图TP11-TP12双踪,信号一为TP11为时分复用信号,波形由信号源的拨码开关控制(拨码开关设置为11110000 11110000 00000000)信号二为TP12是位同步信号,频率为170.5KHZ,占空比为50%的方波图TP11-TP13图TP11-TP13双踪,信号一为TP11,信号二TP13为帧同步信号,频率为7.5KHZ,占空比为33%的方波图TP11-TP14图TP11-TP14双踪,信号一为TP11,信号二为TP14抽样判决后的时分复用信号拨码开关设置为:11110000 11110000 00000000图TP17-TP18设置为11110000),信号二TP18为位同步信号图TP17-TP18(2)图TP17-TP18(2)为通过改变SW001为111101000后的波形图TP17-TP19图TP17-TP19两信号双踪,信号一为TP17是分接后的第一路数字信号(SW001为111101000),信号二为TP19是第一路帧同步信号图TP20-TP21为:11110000),信号二TP21为第二路位同步信号图TP20-TP21(2)图TP20-TP21(2)为SW002改变为11110010后的波形图TP20-TP22图TP20-TP22两信号双踪,信号一TP20为分接后的第二路数字信号(SW002设为:11110010),信号二TP22为第二路帧步信号。
时分复用(TDM)通信系统试验
以用电话机连续按拨号键长时间产生连续的音频信号)。
(5)将复接模块内的错码选择跳线开关SWB02的E_SEL
0、E_SEL1短路器都插入
(11),在传输信道错码率为Pe≈1×101。重复上述测量步骤。
—在不同传输信道中误码率,由于误码或帧失步对PCM话音质量影响,给话音业务通信质量主观打分,记录测试结果。
本项内容测试主要是让学生观察解复接模块的开关信号指示发光二极管指示灯的变化情况,了解在信道有错码时对数据通信的影响;同时,在信道故障时,培养学生分析问题和解决问题的能力。测量方法参见实验“
1.不同信道误码率下帧内数据信号传输的测量”一节,模拟信道故障(数据中断或时钟恢复电路故障)可以将解复接模块内输入数据和时钟选择跳线开关K
B01、KB02分别拔下来实现,具体测试在老师的指导下由学生自己组织完成。
5、在数据信号中出现连续出现帧定位信号对帧同步电路的影响测量
按准备工作要求设置各跳线开关。
(1)用示波器测量同时观测复接模块帧同步指示测试点TPB07与解复接模块帧同步指示测试点TPB06波形,观测时用TPB07同步,调整示波器使两观测信号之间正常同步。
1、不同信道误码率下帧内数据信号传输的测量
(1)用示波器测量同时观测复接模块帧同步指示测试点TPB07与解复接模块帧同步指示测试点TPB06波形,观测时用TPB07同步,调整示波器使两观测信号之间正常同步。
用示波器观察复接模块内m序列检测点TPB01和解复接模块内m序列接收输出测试点TPB05波形是否一致。记录测试结果。
DTMF
检测1交换处理模块
DTMF
检测2
1#电话接口1P
C
M编码
164Kbps
传输信道P
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1 实验十七 时分复用与解复用实验 一、实验目的 1. 掌握时分复用的概念。 2. 了解时分复用与解复用系统的构成及工作原理。 3. 了解时分复用这种复用方式的优点与缺点。 4. 了解时分复用在整个通信系统中的作用。 二、实验内容 1. 对两路模拟信号进行PCM编码,然后进行复用,观察复用后的信号并与复用前的编码信号比较。 2. 将复用后的信号进行解复用,然后进行PCM解码,观察解复用后的两路解码信号与原两路模拟信号是否相同。 三、实验器材 1. 信号源模块 2. 时分复用模块 3. 模拟信号数字化模块 4. 20M双踪示波器 一台 5. 连接线 若干 四、实验原理 在实际的通信系统中,为了提高通信系统的利用率,往往用多路通信的方式来传输信号。所谓多路通信,就是把多个不同信源所发出的信号组合成一个群信号,并经由同一信道进行传输,在收端再将它分离并被相应接收。时分复用(TDM,即Time-Division Multiplexing)就是一种常用的多路通信方式。时分复用是建立在抽样定理基础上的,因为抽样定理使连续(模拟)的基带信号由可能被在时间上离散出现的抽样脉冲所代替。这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙。利用这些空隙便可以传输其他信号的抽样值,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽样值占用的时间越短,能够传输的路数也就越多。图17-1表示的是两个基带信号在时间上交替出现。显然这种时间复用信号在接收端只要在时间上恰当地进行分离,各个信号就能分别得到恢复。这就是时分复用的概念。此外,时分复用通信系统有两个突出的优点,一是多路信号的汇合与分路都是数字电路,简单、可靠;二是时分复用通信系统对非线性失真的要求比较低。 然而,时分复用系统对信道中时钟相位抖动及接收端与发送端的时钟同步问题提出了较高的要求。所谓同步是指接收端能正确地从数据流中识别各路序号。为此,必须在每帧内加上标志信号(即帧同步信号)。它可以是一组特定的码组,也可以是特定宽度的脉冲。在实际通信系统中还必须传递信令以建立通信连接,如传送电话通信中的占线、摘机与挂机信号以及振铃信号等信令。上述所有信号都是时间分割,按某种固定方式排列起来,称为帧结构。采用时分复用的数字通信系统,在国际上已逐步建立其标准。原则上是把一定路数电话语音复合成一个标准数据流(称为基群),然后再把基群数据流采用同步或准同步数字复接技术,
-3 由图17-2可见,时分复用是通过时钟信号对移位寄存器构成的并/串转换电路的输出信号轮流进行选通而实现的,时分复用输出信号的位同步信号的频率为BS的四倍,帧同步信号的频率为位同步信号的三十二分之一。时分复用输出信号每一帧由32位组成,其帧结构如图17-3所示。拨码开关SW701可设置帧同步码的码型。 图17-3 时分复用输出信号帧结构 复用信号通过解复用电路还原出两路PCM编码信号,分别送入时分复用模块和模拟信号数字化模块进行PCM译码输出,得到的两路信号分别与输入信号相同。图17-4是解复用部分的原理框图。时分复用与解复用的所有功能都是在U701(EPM7128SLC84-15)中完成的。 J-DATAJ-BS4分频J2-DATAJ1-DATAJ1-FS/J2-FSJ1-BS/J2-BS移位寄存器移位寄存器锁存器锁存器数据选择器数据选择器J-FS 图17-4 解复用原理框图 在解复用电路中,先通过帧同步信号和位同步信号把四路数据分开,然后通过移位寄存器构成的并/串转换电路输出串行的数据。时分复用和解复用的电路都比较简单,请同学们参照我们提供的原理框图自己分析电路详细的工作过程。 五、实验步骤 1. 将信号源模块、时分复用模块、模拟信号数字化模块小心地固定在主机箱中,确保电源接触良好。 2. 插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的开关POWER1、POWER2,对应的发光二极管LED001、LED002、D701、D702、LED300、 LED301数据1 数据2 01110010 数据1 数据2 01110010 00000000 00000000 8位全零 8位 8位 8位全零 8位 8位 帧同步码 帧同步码
-5 DATA: 时分复用信号输出点。 BS: 复用信号位同步信号输出点。 FS: 复用信号帧同步信号输出点。 PCMA: 第一路PCM编码信号输出点 J1-DATA: 解复用后第一路数据输出点。 J1-BS: 解复用后第一路数据位同步信号输出点。 J1-FS: 解复用后第一路数据帧同步信号输出点。 J2-DATA: 解复用后第二路数据输出点。 J2-BS: 解复用后第二路数据位同步信号输出点。 J2-FS: 解复用后第二路数据帧同步信号输出点。 Sin-OUT: 解复用后第一路PCM译码输出点。 对于PCB板上多出的测试点为二次开发用。分别是FIN-FS、FIN-BS、ZS、D-BS、ZD、A-BS、ZA。BS-OUT和FS-OUT为电话接口及计算机数据通信模块的位同步和帧同步信号输出点。 3.拨码开关SW701设置帧同步码的码型。 七、实验思考题 1. 认真阅读教材中的相关内容,回答时分复用的概念。 2. 分析本实验中时分复用信号的产生原理,再自行设计一个时分复用信号产生电路,画出电路图并分析电路工作原理。 八、实验报告要求 1. 分析实验电路的工作原理,叙述其工作过程。 . 对实验思考题加以分析,并画出原理图与工作波形图。
-2 汇合成更高速地数据信号,复接后的序列中按传输速率不同,分别成为一次群、二次群、三次群、四次群等等。 图17-1 两个信号的时分复用 在本实验中,第一路模拟信号送入时分复用模块,第二路模拟信号送入模拟信号数字化模块,分别在这两个模块中进行PCM编码,得到两路PCM码(PCMA和PCMB),再和时分复用模块产生的帧同步码进行时分复用,得到包含四路数据(第四路为空数据)、一帧为32位的时分复用信号,其复用部分的原理框图如图17-2。 移位寄存器数据选择器锁存器数据选择器码型选择数据选择器F-DATA F-FSPCMB F-BS移位寄存器锁存器PCMACLKFS数据选择器第四路全零BS 图17-2 时分复用原理框图
-4 发光,按一下信号源模块的复位键,三个模块均开始工作。 3. 时分复用模块的Sin-IN连接信号源的模拟输出正弦信号,模拟信号数字化模块的S-IN同上或另接外部输入音频信号。 4. 用连接线把时分复用模块和模拟信号数字化模块对应的连接孔连起来。 FRAMEB-OUT —— FRAMEB-IN CLKB-OUT —— CLKB-IN 2048K-OUT —— 2048K-IN DATA1-IN —— PCMA DATA2-IN —— PCMB-OUT 5. 用连接线连接DATA1-IN和PCMA,用示波器分别观察“DATA1-IN”和“DATA2-IN”,看两路模拟信号PCM编码是否正确。 6. 设置“SW701”的第一位为1,第2~8位为巴克码1110010(或任意码型),即帧同步信号,用示波器分别观察“DATA”、“BS”、“FS”信号。“DATA”是“SW701”、“DATA1-IN”、“DATA2-IN”、“全零”的复用信号,“BS”的频率为“CLKB-OUT”频率的四倍,“FS”与“FRAMEB-OUT”相同。 7. 从“J-DATA”输入“DATA”信号,从“J-BS”输入“BS”信号,从“J-FS”输入“FS”信号。用示波器分别观察“J1-DATA”、“J1-BS”、“J1-FS”与“J2-DATA”、“J2-BS”、“J2-FS”信号;其中“J1-BS”与“J2-BS”信号完全一样,且频率为“BS”信号的四分之一,“J1-FS”与“J2-FS”信号完全一样,且与“FS”信号一样。 8. 用连接线连接 J1-DATA —— PCM1-IN J1-BS —— CLK1-IN JI-FS —— FRAME1-IN 把时分复用模块和模拟信号数字化模块对应的连接孔连起来 J2-DATA —— PCM2-IN J2-BS —— CLK2-IN J2-FS —— FRAME2-IN 9. 用示波器观察“Sin-OUT”与模拟信号数字化模块的“OUT”。 六、输入、输出点参考说明 1. 输入点参考说明 Sin-IN: 第一路模拟信号输入点。 DATA1-IN:第一路数据信号输入点。 DATA2-IN:第二路数据信号输入点。 J-DATA: 时分复用信号输入点(对此信号进行解复用)。 J-BS: 解复用位同步信号输入点。 J-FS: 解复用帧同步信号输入点。 PCM1-IN: 解复用第一路PCM数据信号输入点。 CLK1-IN: 解复用第一路PCM数据位同步信号输入点。 FRAME1-IN: 解复用第一路PCM数据帧同步信号输入点。 2. 输出点参考说明 2048K-OUT: TP3067主时钟输出点。 CLKB-OUT: PCM码编码位同步信号输出点(64K方波)。 FRAMEB-OUT:PCM码编码帧同步信号输出点(8K方波)。