人教版六年级下册数学专项复习训练课件-第3章 式与方程第3课时 比、比例和比例尺
合集下载
人教版六年级下册比和比例复习课精品课件.ppt
( 2 ):8=(0.25 )
=—1 6
=20÷( 80
)
出粉率一定,面粉重量和小麦重量成( 正)比例. 被除数一定,除数和商成( 反 )比例. 总价一定,单价和数量成( 反 )比例.
小明每天看8页书,它看书的总页数和看书的天数成 正
(
)比例.
已知a×b=c( a.b.c 均不为0)
当a一定时,b和c成( 正 )比例.当b一定时, a和c成 ( )比例
(3)把 1吨 :250千克 化成最简整 数比是 ( 4 ):( 1 ),它的比值是( 4 )。
(4)如果2X = 5y,那么 X :y= ( 5 ):( 2 )
(5)两个正方形的边长比是1:3,周 长比是(1:3 ),面积是(1:9)。
(6)解比例 3 :x= 1: 2
5
3
三、比例尺.
(1)什么叫做比例尺 ?
3
5.把3克盐放入20克水中,盐占盐水的 20 .( × )
6.图上距离一定,比例尺和实际距离成反比例. ( √ )
7.正方形的面积和边长成反比例.
(× )
1
×
( 10000
8.有一幅图的比例尺是
米
)
4、师:你是怎样判断两种量成正比例还是成 反比例的?
两种相关联的量,一种量变化,另一种量也 随着变化,若比值一定,则成正比例;若积一定, 则成反比例。
③ 分数比化简,一般先把比的前项、后项同时乘上 分母的最小公倍数,使它成为整数比,再用第一 种方法化简。
④ 特殊:也可以用求比值的方法化简,求出比值后 再写成比的形式。
(3) 化简比与求比值容易混淆,它们有什么不同之处?
求比值
4
∶
2 5
=10
人教版六年级数学下册《总复习比和比例》课件
● 02
第2章 比的基本概念
什么是比
比是一种用来表示两个或多个数之间大小关系的数学工具。在生 活中,我们常常会用到比,比如“1:2”表示1和2之间的关系。 比可以帮助我们更直观地理解数值之间的差异和关系。
比的表示方法
分式表示法
使用分数表示比例 关系
百分数表示法
将比例换算为百分 数来表示
冒号表示法
课程内容
比的基本概念
比的含义 比的性质
比的表示方法
分数表示 百分数表示
比的化简
最简比例 等比例
比的性质
比的放大 比的缩小
学习方法
在学习本章内容时,建议学生多做练习题,加深对比和比例的理 解;同时要注重举一反三,通过类比与推理来提升解题能力;最 重要的是要理解问题背后的数学规律,不仅要知其然,更要知其 所以然。
比例的特殊情况
同比例
具体概念 同比例的应用场景
反比例
详细解释反比例的含义 反比例的例子
复合比例
复合比例的特点 复合比例的运用
总结
比例的重要性
总结比例在数学中 的重要作用
练习题
巩固所学内容的练 习题
比例的应用
探讨比例在日常生 活中的应用场景
● 04
第4章 比和比例的应用
速度比与时间比
速度比是指两个物体在单位时间内所走的距离的比值,时间比是 指两个事件所花费的时间的比值。速度比与时间比之间存在密切 的关系,通过比较两者可以更好地理解运动过程中的速度变化。
人教版六年级数学下册《总 复习比和比例》课件PPT
创作者:XX 时间:2024年X月
第1章 简介 第2章 比的基本概念 第3章 比例的概念 第4章 比和比例的应用 第5章 比和比例的综合运用 第6章 总结
人教版六年级数学下册《总复习比和比例》课件课件
第二部分:比的应用
1 比的化简
2 比的大小比较
学习相同单位下和不同单位下的比的化简 方法。
了解同名比较和异名比较的方法。
3 比例的定义
学习什么是比例,比例的定义和性质。
4 等比例和不等比例
区分等比例和不等比例的特点和特征。
第三部分:比例的求解
基本操作
掌握算术平均数和几何平均数 的计算方法。
比例的计算方法
学习单纯比例法和综合比例法 的应用。
比例的应用
应用比例解决常见问题,提升 数学应用能力。
第四部分习内容,梳理知识点,加深印
象。
3
提高策略建议
4
提供学习比和比例的提高策略和建议。
案例分析
通过案例分析巩固对比和比例的理解。
课后训练
进行课后题目训练,检验学习成果。
人教版六年级数学下册 《总复习比和比例》课件 PPT
通过本课件,您将全面了解人教版六年级数学下册《总复习比和比例》的内 容,掌握比的概念、应用和求解,加深对数学知识的理解。
第一部分:复习比的概念
比的定义
学习什么是比,比的定义 是什么。
一比的概念
掌握一比的概念,了解一 比的性质和特点。
如何表示比
学习用冒号和分数表来表 示比的方法。
六年级下册数学比例复习与整理人教版(18张)课件
原路返回时每小时行 60 km,返回时用了多长时间?
图形的放大与缩小的特点:
一幅图的图上距离和实际距离的比。
照这样的速度,从甲地到乙地一共要用 3 小时,甲乙两地相距多远?
想一想,怎么判断两种量成正比例还是成反比例呢?
(2)积(0 除外)一定,一个因数和另一个因数。
解下面的比例。
四、正比例和反比例的意义
根据比例的意义可以判断两个比是否能组成比例。
二、比和比例的区别
比
1. 两个量相除、式子。 2. 有两项(前项、后项) 3. 比有基本性质,它是化简比的依据。
比例
1. 两个比相等、等式。 2. 有四项(两个内项、两个外项)。 3. 比例有基本性质,它是解比例的依据。
即时练习
1、下面哪组中的两个比可以组成比例?把能组成的比例写出来。 (1)6:9 和 1.2:1.8 (2) 2:1 和 1.2 :2.4
二、比例的基本性质
在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。 分数形式的比是交叉相乘的积相等。
或
三、解比例
如果已知比例中的任何三项,就可以求出这个比例的另外一个未知项。求比例中的未知项,叫做解比例。
关 键是看这两种相关联的量对应的两个数的商一定还是积一定,如果商一定就成正比例,如果积一定就成反比例。
练习
在一幅比例尺是1:2000000 的地图上,量得甲、乙两个城市之间高速公路的距离是5.5cm 。在 另一幅比例尺是 1:5000000的地图上,这条公路的图上距离是多少?
六、图形的放大与缩小
把图形按一定的比放大或缩小,就是把图形中各边的长按这样的比放大或缩小。
图形的放大与缩小的特点:
关 键是看这1两、种相王关叔联的叔量开对应车的从两个甲数地的商到一乙定还地是,积一前定2,如小果时商一行定了就成1正00比例km,。如果照积这一定样就的成反速比度例。,从甲地到乙地一共要用 3 小时,甲乙 一 2、幅把图一的个图图两上形距地按离x相和:实1距放际多大距,离远就的?是比将。这个图形的各条边放大( )倍。
六年级下册数学人教版总复习《数与代数:式与方程,比和比例》课件
x+(x+60)=2x+60;(4)0.6x;(5)8xy
课后练习
1.解方程。
(1)12X-3=8x+17
(2)25.Leabharlann x÷3=6.3×4(3)12÷(0.5x-1)=4
5−1 7
(4)
=
6
3
答案:(1)x=5;(2)x=3;(3)x=8;(4)x=3
第一章 数与代数
第五节 比和比例
1.比和比例的意义与性质
a× 4 × 写成4ab。
• 1与字母相乘时,1省略不写。如:a× 1写成a。
2.等式的基本性质
• 等式:表示相等关系的式子叫做等式。
• 等式的基本性质:
(1)等式两边同时加上(或减去)同一个数,等式仍然成立。
(2)等式两边同时乘(或除以)同一个数(不为0),等式仍然成
立。
3.简易方程
• 方程:含有未知数的等式叫做方程。
比
意义
基本性质
比例
两个数相除又叫做两个数的比
表示两个比相等的式子叫做比例
比的前项和后项同时乘或除以相同
的数(0除外),比值不变
在比例里,两个内项的积等于两个外
项的积
2.比、分数与除法的关系
比
“:”(比号)
前项
后项
比值
分数
“——”(分数线)
分子
分母
分数值
除法
“÷”(除号)
被除数
除数
商
3.求比值和化简比的区别与联系
),
比值是( ),水和糖的质量比是(
),比值是(
)。
(2)7:12的后项乘3,要使比值不变,前项应该加上(
);如果前
课后练习
1.解方程。
(1)12X-3=8x+17
(2)25.Leabharlann x÷3=6.3×4(3)12÷(0.5x-1)=4
5−1 7
(4)
=
6
3
答案:(1)x=5;(2)x=3;(3)x=8;(4)x=3
第一章 数与代数
第五节 比和比例
1.比和比例的意义与性质
a× 4 × 写成4ab。
• 1与字母相乘时,1省略不写。如:a× 1写成a。
2.等式的基本性质
• 等式:表示相等关系的式子叫做等式。
• 等式的基本性质:
(1)等式两边同时加上(或减去)同一个数,等式仍然成立。
(2)等式两边同时乘(或除以)同一个数(不为0),等式仍然成
立。
3.简易方程
• 方程:含有未知数的等式叫做方程。
比
意义
基本性质
比例
两个数相除又叫做两个数的比
表示两个比相等的式子叫做比例
比的前项和后项同时乘或除以相同
的数(0除外),比值不变
在比例里,两个内项的积等于两个外
项的积
2.比、分数与除法的关系
比
“:”(比号)
前项
后项
比值
分数
“——”(分数线)
分子
分母
分数值
除法
“÷”(除号)
被除数
除数
商
3.求比值和化简比的区别与联系
),
比值是( ),水和糖的质量比是(
),比值是(
)。
(2)7:12的后项乘3,要使比值不变,前项应该加上(
);如果前
六年级下册数学毕业总复习课件-第三章式与方程综合训练 人教新课标(共10张PPT)
和( 0.8∶1.2=x∶y )。
9.
( 16∶15 )。
10. 配制一种盐水,用5克盐需加水250克,现有水1000
克,需盐(20)克。
二、判断题。(正确的在后面画“√”,错误的画
“×”)
√
1. 把4×6=12×2改写成比例是2∶4=6∶×12。( )
2. 差一定,被减数和减数能成比例。( )
3. 一项工程,甲单独做要10小时,乙×单独做要8小时,
甲、乙工作效率之比是5∶4。( ) 4. 大圆×周长与直径的比值大于小圆周长与直径的比
值。( )
√
5. 正方体一个面的面积与它的表面积成正比例。( )
三、选择题。
1.
3 x
=
y 2
中,x和y成(
A
)。
A. 成反比例
B. 成正比例
C. 不成比例
2. 在一幅平面图上,用图上距离2cm表示实际距离200m,
A. 4∶5
B. ∶
C. 5∶4
9. 比例7∶2=21∶6的外项7加7,要使比例成立,内项21
应该( B )。
A.加7
B.加21
C.除以3
10.把一些树苗按2∶3∶5分配给一班、二班、三班的学生
去种植,一班分配的树苗比三班少(A )。
A. 60%
B. 40%
C. 20%
四、解比例。
4∶4. 5=
0.49x=9.8×16 4.5x=4×27
99、读书忌死读,死读钻牛角。——叶圣陶100、不要回避苦恼和困难,挺起身来向它挑战,进而克服它。——池田大作
5
时,2a+5b的值是(3 )。
5. 甲、乙、丙三个数的平均数是15,甲、乙、丙三个数
人教版数学课件(六下)比和比例
返回
5.按比例分配
按比分配应用题的解题步骤 先找出或求出总数量和总份数(总数量是组成比的各 个数量的和,总份数是各个比的和)。
再求出每份是多少。(总数量÷总份数)
用每份乘各部分数量所对 称 联 系 变化规律 关系式 图 像
正 比 例
1.两种相 关联的量。
相对应的两 个量的比值 (商)
这节课你们都学会了哪些知识?
两数相除又叫两个数的比。 两个比相等的式子叫作比例。 在比例里,两外项之积等于两内项之积。
返回
返回
化简比的方法有哪些?
整数比 小数比
比的前项和后项同时除以它们的最大公 因数。 把比前、后项的小数点向右移动相同的位 数,转化成整数比再化简。
把比前、后项同时乘分母的最小公倍数,
分数比 转化成整数比再化简。
返回
3.比、分数和除法
比 前项 除法 被除数
联系 比号 后项 除号 除数
比值 商
区别 比是两个数之间 的倍数关系
商不变的性质、比的基本性质和分数的基本性质的内容 实质上是一样的。
返回
4.比例尺
意义
分类
按表现形式,可以分 一幅图 为数值比例尺和线段 的图上 比例尺。 距离和 实际距 按将实际距离放大还 离的比。 是缩小分,分为缩小
比例尺和放大比例尺。
举例 1:500000 0 50km
1:500000 20:1
3厘米 8厘米
180千米 15千米
4毫米
比例尺 1∶3000000
1∶500000
20∶1
返回
一个三角形的三个内角度数的比是1∶2∶3。这个三角形的 三个内角分别是多少度?它是什么三角形?
总份数:1+2+3=6 每份:180÷6=30(度)
人教版六年级数学下册《总复习比和比例》课件
人教版六年级数学下册《总复习比 和比例》课件
目录
• 比和比例的定义与性质 • 比的应用 • 比例的应用 • 比和比例的易错点解析 • 综合练习题
01
比和比例的定义与性质
Chapter
比的定义与性质
总结词
描述比的定义,包括比的前项、后项以及比值的概念。
详细描述
比是描述两个数量之间关系的一种方式,通常表示为“a:b”的形式,其中a是 前项,b是后项。比值是前项除以后项的结果,表示两个数量之间的相对大小。
根据各个部分的比例和总数,可 以计算出各个部分的具体数量或 金额。例如,如果总数为100, 按照2:3:4的比例分配,则第一部 分为20,第二部分为30,第三部 分为50。
按比分配的应用
按比分配在日常生活和工作中很 常见,如分蛋糕、分摊费用等。
比和比例在实际问题中的应用
比和比例在生活中的应用
在生活中,比和比例的应用非常广泛。例如,在购物时比较不同商品的价格和性能,按照 一定的比例调整菜品的味道等。
比例在配料中的应用
在食品、化工等领域,常常需要按照 一定的比例来配料,以确保产品的质 量和性能。
04
比和比例的易错点解析
Chapter
比和比例的混淆点解析
总结词
学生常常混淆比和比例的概念,导致在解题时出现错误。
详细描述
比是指两个数之间的数量关系,通常表示为“甲:乙”的形 式,而比例是指四个数之间相等的数量关系,通常表示为“ 甲:乙=丙:丁”。学生需要明确区分两者的概念,理解各 自的意义和用法。
比例的定义与性质
总结词
描述比例的定义,包括比例的交叉相 乘性质。
详细描述
比例是表示四个数之间关系的一种方 式,通常表示为“a:b=c:d”的形式。 比例具有交叉相乘性质,即如果 a/b=c/d,那么a×d=b×c。
目录
• 比和比例的定义与性质 • 比的应用 • 比例的应用 • 比和比例的易错点解析 • 综合练习题
01
比和比例的定义与性质
Chapter
比的定义与性质
总结词
描述比的定义,包括比的前项、后项以及比值的概念。
详细描述
比是描述两个数量之间关系的一种方式,通常表示为“a:b”的形式,其中a是 前项,b是后项。比值是前项除以后项的结果,表示两个数量之间的相对大小。
根据各个部分的比例和总数,可 以计算出各个部分的具体数量或 金额。例如,如果总数为100, 按照2:3:4的比例分配,则第一部 分为20,第二部分为30,第三部 分为50。
按比分配的应用
按比分配在日常生活和工作中很 常见,如分蛋糕、分摊费用等。
比和比例在实际问题中的应用
比和比例在生活中的应用
在生活中,比和比例的应用非常广泛。例如,在购物时比较不同商品的价格和性能,按照 一定的比例调整菜品的味道等。
比例在配料中的应用
在食品、化工等领域,常常需要按照 一定的比例来配料,以确保产品的质 量和性能。
04
比和比例的易错点解析
Chapter
比和比例的混淆点解析
总结词
学生常常混淆比和比例的概念,导致在解题时出现错误。
详细描述
比是指两个数之间的数量关系,通常表示为“甲:乙”的形 式,而比例是指四个数之间相等的数量关系,通常表示为“ 甲:乙=丙:丁”。学生需要明确区分两者的概念,理解各 自的意义和用法。
比例的定义与性质
总结词
描述比例的定义,包括比例的交叉相 乘性质。
详细描述
比例是表示四个数之间关系的一种方 式,通常表示为“a:b=c:d”的形式。 比例具有交叉相乘性质,即如果 a/b=c/d,那么a×d=b×c。
人教版小学六年级数学下册总复习比和比例
可以用两种方法解答:
(一)用比例解: 设需要X小时,因为工效相等,所以 72:6=120:X 72X=120×6 X=10
(二)用算术方法解:先求出工作效率,再求工作时间:
Page 2
(2)比、比例各部分的名称是什么? (3)比和比例的基本性质是怎样的?
比
LOGO
比例
意义
。
表示两个比相等 两个数相除又叫做两个数的比。 的式子叫做比例。。
各部分 名称
90 : 60 = 1.5
9:6 = 3:2
前项 比号 后项
比值
内项 外项
基本 性质
比的前项和后项同时乘或同时除以 相同的数(0除外),比值不变。
二、例4:
LOGO
(1)写出李阿姨平时和节日期间剪纸张数及相应工作时间的比。
李阿姨平时剪纸张数与工作时间的比是: 72:6=12:1 节日期间剪纸张数与工作时间的比是:96:8=12:1
(2)上面两个比能组成比例吗?
这两个比成比例,因为这两个比是相 等的,所以这两个比成比例。
Page 17
(3)如果李阿姨要剪120张剪纸,需要的LOGO 是小时?
12、 人 乱 于 心 ,不 宽余请 。2021/5/102021/5/102021/5/10Monday, Ma 拿 别人 做错的 事来惩 罚自己 。2021/5/102021/5/102021/5/102021/5/105/10/2021
14、 抱 最 大 的 希望 ,作最 大的努 力。2021年 5月 10日星 期一2021/5/102021/5/102021/5/10
种方法化简。
6∶ 2 3
4
2
5 ∶3
5
2
4 ∶3
0.4∶ 2 3
(一)用比例解: 设需要X小时,因为工效相等,所以 72:6=120:X 72X=120×6 X=10
(二)用算术方法解:先求出工作效率,再求工作时间:
Page 2
(2)比、比例各部分的名称是什么? (3)比和比例的基本性质是怎样的?
比
LOGO
比例
意义
。
表示两个比相等 两个数相除又叫做两个数的比。 的式子叫做比例。。
各部分 名称
90 : 60 = 1.5
9:6 = 3:2
前项 比号 后项
比值
内项 外项
基本 性质
比的前项和后项同时乘或同时除以 相同的数(0除外),比值不变。
二、例4:
LOGO
(1)写出李阿姨平时和节日期间剪纸张数及相应工作时间的比。
李阿姨平时剪纸张数与工作时间的比是: 72:6=12:1 节日期间剪纸张数与工作时间的比是:96:8=12:1
(2)上面两个比能组成比例吗?
这两个比成比例,因为这两个比是相 等的,所以这两个比成比例。
Page 17
(3)如果李阿姨要剪120张剪纸,需要的LOGO 是小时?
12、 人 乱 于 心 ,不 宽余请 。2021/5/102021/5/102021/5/10Monday, Ma 拿 别人 做错的 事来惩 罚自己 。2021/5/102021/5/102021/5/102021/5/105/10/2021
14、 抱 最 大 的 希望 ,作最 大的努 力。2021年 5月 10日星 期一2021/5/102021/5/102021/5/10
种方法化简。
6∶ 2 3
4
2
5 ∶3
5
2
4 ∶3
0.4∶ 2 3
人教版六年级数学下册《比和比例》总复习PPT
探索新知
课件PPT
判断下面每题中两种量成正比例还是反比例。
正方形的面积和边长。
面积 边长
= 边长
不成比例
课堂小结
课件PPT
比 比和比例 比例
比的意义 比的基本性质 比、分数和除法的关系
比的应用
比例的意义和基本性质
正、反比例 比例的应用
正反比例的意义、图象
判断两个相关联的量 是否成正比例或反比例
五.探索与交流
关于正比例和反比例的应用 你思考是什么?
1. 正比例和反比例的意义如何体现在习题中? 2.判断成正比例和反比例练习
探索新知
课件PPT
ቤተ መጻሕፍቲ ባይዱ
判断下面每题中两种量成正比例还是反比例。
单价一定,数量和总价。
总价 数量
= 单价
(一定) 成正比例
路程一定,速度和时间。
速度×时间= 路程
(一定)
成反比例
人教版
六年级 数学 下册
比和比例复习
课件PPT
学习目标
认识比的意义和基本性质,掌握求比值和化
简比的方法,弄清两者的区别,能根据比和 除法的关系求已知比值的比里的未知数。
认识比例的意义和基本性质,能判断两个
比能不能组成比例,能比较熟练地解比例
认识正比例和反比例关系,能正确判断成
正比例关系或反比例关系的量。 能运用比例的知识解决一些简单 实际问题
谢谢观看
敬请指正
= 20
化简比
8:0.4 =80:4 =20:1( )
-----------
数
比
四.探索与交流
关于正比例和反比例你想说 什么?
1. 正比例和反比例的意义?用字母如何表示? 2.判断成正比例和反比例的方法?
人教版六年级数学下册《比例》单元整理和复习ppt课件
6
5比)值甲是数(是乙1.5数的1-)21 ,。甲数和乙数的比是( 3:2), 6()4(8 )8 ):成60=(—2205 )=( 16)÷20=0.8=( 80 )℅=
7)甲数和乙数的比是3:5,甲数占乙数的-3 ,乙数占
甲乙两数总数的-85 。
5
8)3x=4y,(x、y都不为0),x和 y的比是( 4):(3 )
24
解:设小红家离学校有x米。
500 x 8 14
8 x =500×14 x =500×14÷8 x =875
答:小红家离学校有875米。
25
2.(1)一间房子要用方砖铺地。用面积是 9平方分米的方砖,需要96块。如果改用 面积是4平方分米的方砖,需要多少块?
4X=9x96
(2)一间房子要用方砖铺地。用边长是 3分米的方砖,需要96块。如果改用边长 是2分米的方砖,需要多少块?
9
1、解下列比例
0.25:x=15:100
练一练
1—.5
=
x
—
0.2 0.4
2.5:x=0.3:0.5
10
正比例和反比例的意义。
11
两种相关联的量, 一种量变化,另一 种量也随着变化。如果这两种量中相对应 的两个数的比值(也就是商)一定,这两 种量就叫做成正比例的量,它们的关系叫 做正比例关系.
放大比例尺
1:5000000 50:1
16
强调
(1)比例尺与一般的尺不同,它是一个比,不能 带有计量单位;
(2)求比例尺时,前、后项的单位长度一定要统 一成同级单位;
(3)比例尺的前项或后项,一般应化简成“1”。
17
在一幅地图上,用2厘米表示实际距离12千米, 这张地图的比例尺是多少?
5比)值甲是数(是乙1.5数的1-)21 ,。甲数和乙数的比是( 3:2), 6()4(8 )8 ):成60=(—2205 )=( 16)÷20=0.8=( 80 )℅=
7)甲数和乙数的比是3:5,甲数占乙数的-3 ,乙数占
甲乙两数总数的-85 。
5
8)3x=4y,(x、y都不为0),x和 y的比是( 4):(3 )
24
解:设小红家离学校有x米。
500 x 8 14
8 x =500×14 x =500×14÷8 x =875
答:小红家离学校有875米。
25
2.(1)一间房子要用方砖铺地。用面积是 9平方分米的方砖,需要96块。如果改用 面积是4平方分米的方砖,需要多少块?
4X=9x96
(2)一间房子要用方砖铺地。用边长是 3分米的方砖,需要96块。如果改用边长 是2分米的方砖,需要多少块?
9
1、解下列比例
0.25:x=15:100
练一练
1—.5
=
x
—
0.2 0.4
2.5:x=0.3:0.5
10
正比例和反比例的意义。
11
两种相关联的量, 一种量变化,另一 种量也随着变化。如果这两种量中相对应 的两个数的比值(也就是商)一定,这两 种量就叫做成正比例的量,它们的关系叫 做正比例关系.
放大比例尺
1:5000000 50:1
16
强调
(1)比例尺与一般的尺不同,它是一个比,不能 带有计量单位;
(2)求比例尺时,前、后项的单位长度一定要统 一成同级单位;
(3)比例尺的前项或后项,一般应化简成“1”。
17
在一幅地图上,用2厘米表示实际距离12千米, 这张地图的比例尺是多少?
最新人教版小学数学六年级下册《比例》ppt复习精品课件
用比例解决问题
解:设甲乙两地相距X千米。
100 2
x 3
2x 100 3
x
100 2
3
x 150
答:甲乙两地相距150km。
用比例解决问题
解:设返回时用了X小时。
60x 50 3
x
50 3 60
x 2.5
答:返回时用了2.5小时。
5 ∶ 6 = 20∶24
内项 外项
在比例里,两个内项的 积等于两个外项的积。
解比例
1、什么叫解比例?依据是什么? 求比例中的未知项叫做解比例。解比例的依据
是比例的基本性质。
什么叫正比例关系?什么叫反比例关系?
两种相关联的量,一种量变化,另一种量也随着 变化。如果这两种量中相对应的两个数的比值 (也就是商)一定,这两种量就叫做成正比例的量, 它们的关系叫做正比例关系.
两种相关联的量,一种量变化,另一种量也随着 变化。如果这两种量中相对应的两个数的积一定, 这两种量就叫做成反比例的量,它们的关系叫做 反比例关系。
正比例和反比例
正、反比例的相同点和不同点
正比例
反比例
相同点 都是两种相关联的量,一种量随着另一种量变化。
1、变化的方向相同,一 1、变化的方向相反,一 种量扩大或缩小,另一 种量扩大(缩小),另一 种量也扩大或缩小。 种量反而缩小(扩大)。
2、比例的基本性质是什么? 在比例里,两个内项的积等于两个外项的积。
3、比和比例有什么区别和联系?
比和比例的区别与联系
比
意义
两个数相除又叫做两 个数的比。
比例
表示两个比相等的式子 叫做比例。
0.9∶0.6 = 1.5 构成
人教版六年级下册数学专项复习训练课件第3章 式与方程第3课时 比、比例和比例尺
•
ቤተ መጻሕፍቲ ባይዱ
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2021/11/52021/11/5November 5, 2021 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2021年11月2021/11/52021/11/52021/11/511/5/2021 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2021/11/52021/11/5
ቤተ መጻሕፍቲ ባይዱ
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2021/11/52021/11/5November 5, 2021 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2021年11月2021/11/52021/11/52021/11/511/5/2021 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2021/11/52021/11/5
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/3/142021/3/142021/3/142021/3/14
谢谢观看
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/3/142021/3/14Sunday, March 14, 2021
• 10、人的志向通常和他们的能力成正比例。2021/3/142021/3/142021/3/143/14/2021 11:00:47 AM
。2021年3月14日星期日2021/3/142021/3/142021/3/14
• •
THE END 15、会当凌绝顶,一览众山小。2021
16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/3/142021/3/14March 14, 2021
• 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/3/142021/3/142021/3/14Mar-2114-Mar-21
• 12、越是无能的人,越喜欢挑剔别人的错儿。2021/3/142021/3/142021/3/14Sunday, March 14, 2021
• 13、志不立,天下无可成之事。2021/3/142021/3/142021/3/142021/3/143/14/2021
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.