数学必修二公理定理
公理定理定律的区别与联系
公理定理定律的区别与联系
公理、定理、定律是数学中常用的概念,它们分别表示不同的含义。
公理是数学中最基础的概念之一,也被称为公设或公公理公设,是不需要证明的基础性命题,是数学推理的起点。
公理是从人们对客观事物的感性认识中抽象出来的基本原理,是所有其他定理的前提。
定理是在公理的基础上通过推理得出的结论,是在严格的逻辑推理下,由已知的命题推导出新的命题的过程。
定理需要证明,证明过程需要遵循数学严谨的证明方法,经过推理、演绎、归纳等步骤,最终得出结论。
定律是在数学和自然科学中经验和实践的基础上总结出来的一
般规律,是经过反复验证、具有普遍适用性的规律性描述。
定律是经验归纳的结果,不需要证明,但需要经过实验验证。
公理、定理、定律之间存在着密切的联系和区别。
公理是一切数学理论的基础,没有公理就没有数学;定理是在公理的基础上通过推理得出的结论,是数学理论的重要组成部分;定律是在实践和经验的基础上总结出来的规律性描述,是数学和自然科学的重要内容。
总的来说,公理、定理、定律都是数学中重要的概念,它们相互联系,相互依存,共同构成了数学体系的重要组成部分。
- 1 -。
初中数学公理和定理
初中数学公理和定理一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边和夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。
8、直线公理:过两点有且只有一条直线。
9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。
2、经过两点有一条直线,并且只有一条直线。
3、同角或等角的补角相等,同角或等角的余角相等。
4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
6、经过已知直线外一点,有且只有一条直线与已知直线平行。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行10、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.(2)对应线段相等、对应角相等。
高中人教版数学必修1,2,3,4,5的公式,结论
高中人教版数学必修1,2,3,4,5的公式,结论1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
高中数学必修2点、直线、平面之间的位置关系(1)
1.空间中的平行关系1.集合的语言:点A 在直线l 上,记作: A ∈l ;点A 在平面α内,记作: A ∈α;直线在平面α内(即直线上每一个点都在平面α内),记作l ⊂α ; 注意:点A 是元素,直线是集合,平面也是集合。
2.平面的三个公理:(1)公理一:如果一条直线上的两点在同一个平面内那么这条直线上所有的点都在这个平而内.符号语言表述:A ∈l ,B ∈l , A ∈α, B ∈α⇒l ⊂α ; (2)公理二:经过不在同一条直线上的三点,有且只有一个平面,即不共线的三点确定一个平面.符号语言表述: A,B,C 三点不共线⇒有且只有一个平面α,使A ∈a, B ∈a, C ∈(3)公理三:如果不重合的两个平面有一个公共点,那么它们 有且只有一条过这个点的公共直线,符号语言表述: A ∈α∩β⇒α∩β= a, A ∈a.3. 平面基本性质的推论推论1:经过一条直线和直线外的一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
【例1.【解析】(1)D;直线上有两点在一个平面内,则这条直线一定在平面内,公理1保证了A 正确;公理2保证了C 正确;如果两个平面有两个公共点,则它们的交线是过这两点的直线,公理3保证了B 正确;直线不在平面内,可以与平面有一个交点,故D 错误.(2)①错误,如果这三条直线交于一点,比如过正方体同一顶点的三条棱就无法确定一个平面;②正确,两条相交直线确定一个平面;③错误,必须是不共线的三点,如果是共线三点,则有无数个平面;④正确,两条相交的对角线确定一个平面,四个顶点都在这个平面内,故是平面图形;⑤错误,两个平面若相交,公共点必是一条直线;⑥错误;若四点共线,则可以有无穷多个平面过这四点,若是对不共线的四点,该命题正确.【备选】 已知点A ,直线l ,平面α,① αα∉⇒⊄∈A l l A , ② αα∈⇒∈∈A l l ,A ③ αα∉⇒⊂∉A l l A , ④ αα⊄⇒∉∈l A l A , 以上说法表达正确的有______________【解析】④直线不在平面内,可以与平面有一个交点,故①错误; 直线是点集,故只能用l ⊂α,②错误;直线是平面的真子集,故不在直线上的点可以在平面内,③错误; 一条直线在一个平面内,则直线上任一点都在平面内,故④正确。
必修二课件1.4.2公理四及等角定理
(3)不能把异面直线误解为:分别在不同平面内的两条直线为 异面直线.如图,虽然有a α,b β,即a,b分别在两个
不同的平面内,但是由于a∩b=O,所以a与b不是异面直线.
(4)异面直线的画法 ①一个平面衬托画法(如图1)
图1 ②两个平面衬托画法(如图2)
图2
【微思考】 求两条异面直线所成角的关键是什么? 提示:求两条异面直线所成角的关键是找到两异面直线所成的 角.
【即时练】 1.(2014·杭州高二检测)如图的正方体ABCD-A1B1C1D1中,异面 直线AA1与BC所成的角是( )
A.30°
B.45°
C.60°
D.90°
2.正方体ABCD������
A′B′C′D′中,E,F分别为平面
A′B′C′D′与AA′D′D的中心,则EF与CD所成角的度数是
________.
因为AC=BD,所以EF=EH.
所以四边形EFGH是菱形.
(2)取DD1的中点Q,连接EQ,QC1.
因为E是AA1的中点,所以EQ
又在矩形A1B1C1D1中,A1D1
A 1D 1.
B 1C 1,
所以EQ
B 1C 1,
所以四边形EQC1B1为平行四边形,
所以B1E
C1Q.
又因为Q,F是矩形DD1C1C的两边中点, 所以QD C 1F ,
所以四边形DQC1F为平行四边形, 所以C1Q DF,又因为B1E C1Q,所以B1E DF,
所以四边形B1EDF是平行四边形.
【延伸探究】将本例(1)中“AC与BD相等”改为AC与BD垂直,
则EFGH的形状为________.
【解析】由E,F,G,H分别为各边的中点,
得EF
初中数学公理、定理
初中数学公理、定理一、线与角1、线段公理:两点之间,线段最短2、直线公理:经过两点有一条直线,并且只有一条直线3、垂线公理:经过直线外或直线上一点,有且只有一条直线与已知直线垂直4、平行公理:经过已知直线外一点,有且只有一条直线与已知直线平行推论:如果两条直线都和第三条直线平行,那么这两条直线也平行5、对顶角相等;同角的余角(或补角)相等;等角的余角(或补角)相等6、平行线的判定:(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行7、平行线的特征:(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补8、角平分线的性质:角平分线上的点到这个角的两边的距离相等角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上9、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上二、三角形、多边形10、三角形中的有关公理、定理:(1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和②三角形的一个外角大于任何一个与它不相邻的内角③三角形的外角和等于360°(2)三角形内角和定理:三角形的内角和等于180°(3)三角形的任何两边的和大于第三边(4)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半11、多边形中的有关公理、定理:(1)多边形的内角和定理:n边形的内角和等于(n-2)×180°(2)多边形的外角和定理:任意多边形的外角和都为360°(3)欧拉公式:顶点数+ 面数-棱数=212、如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分13、等腰三角形中的有关公理、定理:(1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)(3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”(4)等边三角形的各个内角都相等,并且每一个内角都等于60°5)三边都相等的三角形叫做等边三角形;有一个角等于600的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形14、直角三角形的有关公理、定理:(1)直角三角形的两个锐角互余(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形(4)直角三角形斜边上的中线等于斜边的一半(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半三、特殊四边形15、平行四边形的性质:(1)平行四边形的对边平行且相等(2)平行四边形的对角相等(3)平行四边形的对角线互相平分.16、平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形(2)一组对边平行且相等的四边形是平行四边形(3)两组对边分别相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形17、平行线之间的距离处处相等18、矩形的性质:(1)矩形的四个角都是直角(2)矩形的对角线相等且互相平分19、矩形的判定:(1)有一个角是直角的平行四边形是矩形(2)有三个角是直角的四边形是矩形(3)对角线相等的平行四边形是矩形20、菱形的性质:(1)菱形的四条边都相等(2)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角21、菱形的判定:(1)有一组邻边相等的平行四边形是菱形(2)四条边相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形22、正方形的性质:(1)正方形的四个角都是直角(2)正方形的四条边都相等(3)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角23、正方形的判定:(1)有一个角是直角的菱形是正方形(2)有一组邻边相等的矩形是正方形(3)两条对角线垂直的矩形是正方形(4)两条对角线相等的菱形是正方形梯形:一组对边平行而另一组对边不平行的四边形是梯形24、等腰梯形的判定:(1)同一条底边上的两个内角相等的梯形是等腰梯形(2)两条对角线相等的梯形是等腰梯形25、等腰梯形的性质:(1)等腰梯形的同一条底边上的两个内角相等(2)等腰梯形的两条对角线相等26、梯形的中位线平行于梯形的两底边,并且等于两底和的一半四、相似形与全等形27、相似多边形的性质:(1)相似多边形的对应边成比例(2)相似多边形的对应角相等(3)相似多边形周长的比等于相似比(4)相似多边形的面积比等于相似比的平方5相似三角形的对应角相等,对应边成比例;相似三角形对应高的比,对应中线的比,都等于相似比;相似三角形周长的比等于相似比;相似三角形的面积比等于相似比的平方.28、相似三角形的判定:1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似(2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似29、全等多边形的对应边、对应角分别相等30、全等三角形的判定:(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(S.S.S.)(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等(S.A.S.)(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(A.S.A.)(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(A.A.S.)(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等(H.L.)五、圆31、(1)在同圆或等圆中,如果两个圆心角,两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;(2)半圆或直径所对的圆周角都相等,都等于90°(3)90°的圆周角所对的弦是圆的直径32、在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等33、不在同一条直线上的三个点确定一个圆34、(1)经过半径的外端且垂直于这条半径的直线是圆的切线(2)圆的切线垂直于过切点的半径35、从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角36、圆的内接四边形对角互补,外角等于内对角37、垂径定理及推论:垂直于弦的直径平分这条弦,并且平分所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧六、变换37、轴对称:(1)关于某条直线对称的两个图形是全等形;如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(2)两个图形关于某直线对称,如果它们的对应线段(或延长线)相交,交点一定在对称轴上;(3)两个图形关于某直线对称,如果它们的对应线段(或延长线)相交,交点一定在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称38、平移:(1)平移不改变图形的形状和大小(即平移前后的两个图形全等);(2)对应线段平行且相等(或在同一直线上),对应角相等;(3)经过平移,两个对应点所连的线段平行(或在同一直线上)且相等.39、旋转:(1)旋转不改变图形的形状和大小(即旋转前后的两个图形全等)(2)任意一对对应点与旋转中心的连线所成的角彼此相等(都是旋转角)(3)经过旋转,对应点到旋转中心的距离相等40、中心对称:(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点连线都经过对称中心;(3)如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称41、位似:(1)如果两个图形不仅相似,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比;(2)位似图形上的任意一对对应点到位似中心的距离之比等于位似比。
必修二空间位置关系及基本公理-郝启院
学科教师辅导讲义
在直线上:
在直线外:
在平面
在平面;
α________.
P∉β________.A________.
若空间中三个平面两两相交于三条直线,这三条直线两两不平行,求证此三条直线必相交于一点.
分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线
一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:
.
在直线
由于这两个平面都过直线
可知:都过点
因此重合,与假设矛盾
,故,因直线
都在平面
11
所成的角,
把正方体平面展开图还原到原来的正方体,
是异面直线,
所成的角,∠EGF(或它的补角)。
常见的初中数学公理
1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角得补角相等4、同角或等角得余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接得所有线段中,垂线段最短7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都与第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理:三角形两边得与大于第三边16、推论:三角形两边得差小于第三边17、三角形内角与定理:三角形三个内角得与等于180°18、推论1:直角三角形得两个锐角互余19、推论2:三角形得一个外角等于与它不相邻得两个内角得与20、推论3:三角形得一个外角大于任何一个与它不相邻得内角21、全等三角形得对应边、对应角相等22、边角边公理(SAS):有两边与它们得夹角对应相等得两个三角形全等23、角边角公理(ASA):有两角与它们得夹边对应相等得两个三角形全等24、推论(AAS):有两角与其中一角得对边对应相等得两个三角形全等25、边边边公理(SSS):有三边对应相等得两个三角形全等26、斜边、直角边公理(HL):有斜边与一条直角边对应相等得两个直角三角形全等27、定理1:在角得平分线上得点到这个角得两边得距离相等28、定理2:到一个角得两边得距离相同得点,在这个角得平分线上29、角得平分线就是到角得两边距离相等得所有点得集合30、等腰三角形得性质定理等腰三角形得两个底角相等(即等边对等角)31、推论1:等腰三角形顶角得平分线平分底边并且垂直于底边32、等腰三角形得顶角平分线、底边上得中线与底边上得高互相重合33、推论3:等边三角形得各角都相等,并且每一个角都等于60°34、等腰三角形得判定定理:如果一个三角形有两个角相等,那么这两个角所对得边也相等(等角对等边)35、推论1:三个角都相等得三角形就是等边三角形36、推论2:有一个角等于60°得等腰三角形就是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对得直角边等于斜边得一半38、直角三角形斜边上得中线等于斜边上得一半39、定理:线段垂直平分线上得点与这条线段两个端点得距离相等40、逆定理:与一条线段两个端点距离相等得点,在这条线段得垂直平分线上41、线段得垂直平分线可瞧作与线段两端点距离相等得所有点得集合42、定理1:关于某条直线对称得两个图形就是全等形43、定理2:如果两个图形关于某直线对称,那么对称轴就是对应点连线得垂直平分线44、定理3:两个图形关于某直线对称,如果它们得对应线段或延长线相交,那么交点在对称轴上45、逆定理:如果两个图形得对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理:直角三角形两直角边a、b得平方与、等于斜边c得平方,即a^2+b^2=c^247、勾股定理得逆定理:如果三角形得三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形就是直角三角形48、定理:四边形得内角与等于360°49、四边形得外角与等于360°50、多边形内角与定理:n边形得内角得与等于(n-2)×180°51、推论:任意多边得外角与等于360°52、平行四边形性质定理1:平行四边形得对角相等53、平行四边形性质定理2:平行四边形得对边相等54、推论:夹在两条平行线间得平行线段相等55、平行四边形性质定理3:平行四边形得对角线互相平分56、平行四边形判定定理1:两组对角分别相等得四边形就是平行四边形57、平行四边形判定定理2:两组对边分别相等得四边形就是平行四边形58、平行四边形判定定理3:对角线互相平分得四边形就是平行四边形59、平行四边形判定定理4:一组对边平行相等得四边形就是平行四边形60、矩形性质定理1:矩形得四个角都就是直角61、矩形性质定理2:矩形得对角线相等62、矩形判定定理1:有三个角就是直角得四边形就是矩形63、矩形判定定理2:对角线相等得平行四边形就是矩形64、菱形性质定理1:菱形得四条边都相等65、菱形性质定理2:菱形得对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积得一半,即S=(a×b)÷267、菱形判定定理1:四边都相等得四边形就是菱形68、菱形判定定理2:对角线互相垂直得平行四边形就是菱形69、正方形性质定理1:正方形得四个角都就是直角,四条边都相等70、正方形性质定理2:正方形得两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1:关于中心对称得两个图形就是全等得72、定理2:关于中心对称得两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理:如果两个图形得对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理:等腰梯形在同一底上得两个角相等75、等腰梯形得两条对角线相等76、等腰梯形判定定理:在同一底上得两个角相等得梯形就是等腰梯形77、对角线相等得梯形就是等腰梯形78、平行线等分线段定理:如果一组平行线在一条直线上截得得线段相等,那么在其她直线上截得得线段也相等79、推论1:经过梯形一腰得中点与底平行得直线,必平分另一腰80、推论2:经过三角形一边得中点与另一边平行得直线,必平分第三边81、三角形中位线定理:三角形得中位线平行于第三边,并且等于它得一半82、梯形中位线定理:梯形得中位线平行于两底,并且等于两底与得一半L=(a+b)÷2S=L×h83、(1)比例得基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理:三条平行线截两条直线,所得得对应线段成比例87、推论:平行于三角形一边得直线截其她两边(或两边得延长线),所得得应线段成比例88、定理:如果一条直线截三角形得两边(或两边得延长线)所得得对应线段成比例,那么这条直线平行于三角形得第三边89、平行于三角形得一边,并且与其她两边相交得直线,所截得得三角形得三边与原三角形三边对应成比例90、定理:平行于三角形一边得直线与其她两边(或两边得延长线)相交,所构成得三角形与原三角形相似91、相似三角形判定定理1:两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上得高分成得两个直角三角形与原三角形相似93、判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3:三边对应成比例,两三角形相似(SSS)95、定理:如果一个直角三角形得斜边与一条直角边与另一个直角三角形得斜边与一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1:相似三角形对应高得比,对应中线得比与对应角平分线得比都等于相似比97、性质定理2:相似三角形周长得比等于相似比98、性质定理3:相似三角形面积得比等于相似比得平方99、任意锐角得正弦值等于它得余角得余弦值,任意锐角得余弦值等于它得余角得正弦值100、任意锐角得正切值等于它得余角得余切值,任意锐角得余切值等于它得余角得正切值101、圆就是定点得距离等于定长得点得集合102、圆得内部可以瞧作就是圆心得距离小于半径得点得集合103、圆得外部可以瞧作就是圆心得距离大于半径得点得集合104、同圆或等圆得半径相等105、到定点得距离等于定长得点得轨迹,就是以定点为圆心,定长为半径得圆106、与已知线段两个端点得距离相等得点得轨迹,就是着条线段得垂直平分线107、到已知角得两边距离相等得点得轨迹,就是这个角得平分线108、到两条平行线距离相等得点得轨迹,就是与这两条平行线平行且距离相等得一条直线109、定理:不在同一直线上得三点确定一个圆。
数学中 公理 定理 定义 命题的区别
数学中公理定理定义命题的区别摘要:一、公理与定理的区别1.公理:不需要证明,实践得出的结论2.定理:由公理推导出来,需要证明二、定义与命题的区别1.定义:对事物的概括性描述,用于明确概念的含义2.命题:对某个事物的陈述或判断,可以是真或假三、定理、公理、定义、命题在数学中的实际应用1.定理:作为数学推理的基础,用于证明其他定理或命题2.公理:构建数学体系的基础,无需证明3.定义:为数学概念赋予意义,便于交流与理解4.命题:用于表述数学问题,可以是真或假正文:在数学领域,公理、定理、定义和命题是构建数学知识体系的重要元素。
它们之间的区别在于:公理与定理的区别:公理是不需要证明的基本事实或结论,通常是数学体系的基础。
它们是通过实践和观察得出的结论,被认为是真实的,无需进一步证明。
例如,欧几里得的公理体系是几何学的基础,其中包括诸如“直线可以无限延伸”和“两个直线可以在一个点相交”等公理。
定理则是从公理或其他已知的定理中推导出来的结论,需要通过逻辑推理和证明来证实。
例如,勾股定理就是一个著名的定理,它通过公理和已知定理的推导得出。
定义与命题的区别:定义是对某个数学概念的描述,用于明确概念的含义。
定义通常包含概念的本质特征、属性以及与其他概念的区别。
例如,直角的定义是“90度的角”。
命题是对某个事物的陈述或判断,可以是真或假。
命题可以用来描述数学关系、性质或事实。
例如,“三角形的三条边之和等于180度”就是一个真命题。
在数学中,定理、公理、定义和命题的实际应用:定理作为数学推理的基础,用于证明其他定理或命题。
定理的证明过程通常包括逻辑推理、数学证明和实例验证。
公理是构建数学体系的基础,无需证明。
公理的存在保证了数学体系的完整性和一致性。
定义为数学概念赋予意义,便于交流与理解。
定义明确了概念的内涵和外延,有助于数学家们在研究中达成共识。
命题用于表述数学问题,可以是真或假。
命题是数学研究的基本单位,真命题反映了数学世界的规律,而假命题则揭示了数学知识的不完备性。
高中数学八大定理
高中数学八大定理
高中数学八大定理分别是:
1.同一性公理:对于任何一个数a,a等于自己,即a=a。
2.归纳原理公理:如果某个语句对于自然数n成立,并且如果该语
句对于n+1也成立,那么该语句对于所有的自然数都成立。
3.整除性公理:如果a和b是整数,并且a能够整除b,则存在一
个整数k使得b=ak。
4.数学归纳法公理:如果P(1)成立,并且对于所有的n≥1,如果
P(n)成立,则P(n+1)也成立,则对于所有的自然数n,P(n)都成立。
5.平行公理:如果直线l与点P不相交,并且有另外一条直线m也
不与点P相交,则l与m平行。
6.射线公理:给定点P和点Q,存在唯一一条射线段,使得该射线
段的一个端点为P,另一个端点为Q。
7.面公理:任意三个不共线的点A、B、C,存在唯一的一个平面,
该平面上包含了这三个点。
8.距离公理:对于两个不同的点P和Q,存在唯一一条线段r,线段
r的端点为P和Q,且r的长度为P和Q之间的欧几里德距离。
必修二数学知识点整理
必修二数学知识点整理一、立体几何初步。
(一)空间几何体。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的多面体。
- 性质:侧棱都平行且相等;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形。
- 分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱等;按侧棱与底面是否垂直分为直棱柱和斜棱柱,底面是正多边形的直棱柱叫正棱柱。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体。
- 性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比。
- 分类:按底面多边形的边数分为三棱锥(四面体)、四棱锥等;底面是正多边形,且顶点在底面的射影是底面中心的棱锥叫正棱锥。
正棱锥的性质包括各侧棱相等,各侧面都是全等的等腰三角形等。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 性质:棱台的各侧棱延长后交于一点;棱台的上下底面是相似多边形;棱台的侧面积等于各个梯形面积之和。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转形成的面所围成的旋转体。
- 性质:圆柱的轴截面是全等的矩形;平行于底面的截面是与底面全等的圆;圆柱的侧面展开图是矩形,其长为底面圆的周长,宽为圆柱的高。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转形成的面所围成的旋转体。
- 性质:圆锥的轴截面是等腰三角形;平行于底面的截面是圆;圆锥的侧面展开图是扇形,扇形的弧长等于底面圆的周长,半径等于圆锥的母线长。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 性质:圆台的轴截面是等腰梯形;平行于底面的截面是圆;圆台的侧面展开图是扇环。
7. 球。
- 定义:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体。
初中数学公理和定理
初中数学公理和定理(北师版)初中数学公理和定理(北师版)一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、边对应相等的两个三角形全等; (SSS)6、等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。
8、直线公理:过两点有且只有一条直线。
9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直注:(1)其中1-6要求能作为对其它定理进行证明的依据,7-10作为基本事实应了解。
(2)等式和不等式的有关性质也可视为公理。
以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。
2、经过两点有一条直线,并且只有一条直线。
3、同角或等角的补角相等,同角或等角的余角相等。
4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
6、经过已知直线外一点,有且只有一条直线与已知直线平行。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行(6)利用三角形中位线定理10、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.(2)对应线段相等、对应角相等。
初中数学公理和定理-
初中数学公理和定理一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边和夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。
8、直线公理:过两点有且只有一条直线。
9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。
2、经过两点有一条直线,并且只有一条直线。
3、同角或等角的补角相等,同角或等角的余角相等。
4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
6、经过已知直线外一点,有且只有一条直线与已知直线平行。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行10、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. (2)对应线段相等、对应角相等。
数学公理与定理
数学公理与定理## 数学公理与定理### 引言数学是一门基础学科,其建立在一系列公理和定理之上。
这些公理和定理构成了数学的基础框架,为我们理解和应用数学提供了坚实的基础。
本文将介绍一些重要的数学公理和定理,并讨论其在数学领域中的重要性和应用。
### 公理的作用数学公理是一组被认为是真实和不可证明的命题,它们作为数学推理的起点。
这些公理为数学领域的证明提供了基础,确保了数学推理的严谨性和准确性。
数学公理构建了数学体系中的基本概念和性质,为我们研究和理解数学现象提供了框架。
### 数学公理的例子#### 整数公理整数公理是数学中最基本的公理之一。
它声明了整数的一些基本属性,如加法和乘法的封闭性、结合律、交换律和零元素的存在等。
整数公理为我们进行整数运算提供了依据,而这些运算则是数学中其他概念和方法的基础。
#### 实数公理实数公理是描述实数系统属性的一组公理。
实数公理包括了关于实数的有序性、复合性和连续性的性质。
实数公理在分析学和几何学等领域中发挥着重要作用,为我们研究和理解实数的特性提供了依据。
### 定理的意义定理是通过逻辑推理方法从公理中得出的命题,可以被证明为真实的数学陈述。
定理是数学领域中的重要工具,它们提供了关于数学结构和关系的详细信息,帮助我们理解和应用数学。
### 数学定理的应用#### 费马大定理费马大定理是数论中的一个著名定理,它表明当n大于2时,以下方程没有正整数解:x^n + y^n = z^n费马大定理在数论和代数几何等领域有重要的应用,其证明过程曾是数学史上最经典也最困难的问题之一。
#### 柯西-施瓦茨不等式柯西-施瓦茨不等式是线性代数中的一个定理,它表明对于任意的n 维实或复向量,以下不等式成立:|⟨u, v⟩| ≤ ||u|| · ||v||柯西-施瓦茨不等式在函数分析、概率论和信号处理等领域中广泛应用,它不仅有着重要的理论意义,也在实际问题中起到了至关重要的作用。
数学三角形定理
证明
公理:三边对应相等的两个三角形全等。
(SSS)
公理:两边及其夹角对应相等的两个三角形全等。
(SAS)
公理:两角及其夹边对应相等的两个三角形全等。
(ASA)
公理:全等三角形的对应边相等,对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等。
(AAS)定理:等腰三角形的两个底角相等,简述为等角对等边。
推论:等腰三角形顶角的平分线,底边上的中线,底边上的高线互相重合。
(三线合一)
定理:有两个角相等的三角形是等腰三角形。
定理:有一个角等于60°的等腰三角形是等边三角形。
定理:在直角三角形中,如果一个锐角等于30°,那么,他所对的直角边等于斜边的一半。
直角三角形
定理:直角三角形两条直角边的平方和等于斜边的平方。
定理:如果三角形两边的平方和,等于第三边的平方,那么这个三角形是直角三角形。
定理:斜边和一条直角边对应相等的两个直角三角形全等。
简单的用“斜边,直角边”或“HL”来表示。
线段的垂直平分线
定理:线段垂直平分线上的点到这条线断的两个端点的距离相等。
定理:到一条线段两个端点距离相等的点,在这条线段垂直平分
线上。
定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
角平分线
定理:角平分线上的点到这个叫的两边距离相等。
定理:在一个角的内部,且到角两边距离相等的点,在这个角的平分线上。
定理:三角形的三条角平分线相较于一点,并且这一点到三条边的距离相等。
高中数学-北师大版必修二 空间图形的公理4及等角定理 课件
提示:如图,在空间中任取一点 O,作直线 a′∥a,b′∥b,则两条相交直 线 a′,b′所成的锐角或直角 θ 即两条异面直线 a,b 所成的角.
2.a′与 b′所成角的大小与什么有关,与点 O 的位置有关吗?通常点 O 取 在什么位置?
提示:a′与 b′所成角的大小只由 a,b 的相互位置确定,与点 O 的选择无 关,一般情况下为了简便,点 O 选取在两条直线中的一条直线上.
又∵A1K∥BQ 且 A1K=BQ, ∴四边形 A1KBQ 为平行四边形, ∴A1Q∥BK, 由公理 4 有 A1Q∥CM, 同理可证 A1P∥CN, 由于∠PA1Q 与∠MCN 对应边分别平行,且方向相反, ∴∠PA1Q=∠MCN.
求异面直线所成的角 [探究问题] 1.已知直线 a,b 是两条异面直线, 如何作出这两条异面直线所成的角?
如图 1-4-17,在空间四边形 ABCD 中,AD=BC
=2,E,F 分别是 AB,CD 的中点,若 EF= 3,求异面直线
AD,BC 所成角的大小.
【导学号:64442028】
图 1-4-17
[思路探究] 根据求异面直线所成角的方法,将异面直线 AD,BC 平移到 同一平面内解决.
[解] 如图,取 BD 的中点 M,连接 EM,FM. 因为 E,F 分别是 AB,CD 的中点, 所以 EM 12AD,FM 12BC, 则∠EMF 或其补角就是异面直线 AD,BC 所成的角. 因为 AD=BC=2,所以 EM=MF=1, 在等腰△MEF 中,过点 M,作 MH⊥EF 于 H,
公理4的应用
如图 1-4-12,已知 E,F,G,H 分别是空间四边形 ABCD 的边
AB,BC,CD,DA 的中点.
【导学号:64442027】
高一下册数学必修二知识点总结
高一下册数学必修二知识点总结【定理总结】公理1:如果一条一条直线上能的两点在一个平面内,那么这条直线上以及以的所有的点都在这个平面内。
公理2:如果三个两个平面有一个公共点,那么它们有且只有一条通过这个点的公共。
公理3:过不在同一条直线上才的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外同时一点,有且只有一个平面。
推论2:经过五条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个投影。
公理4:平行于同一条直线的直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且朝向圆周相同,那么这两个角相等。
【空间两直线的位置关系】空间两条暧昧关系直线只有三种边线关系:平行、相交、异面1、按除非共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个交叉点平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的圆周,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面抛物线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共两点——相交直线;(2)没有公共点——平行或异面直线和平面的位置互动关系:直线和平面只有互动关系三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公营点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和所成角的取值范围为[0°,90°]最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及解是:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直直线和平面垂直直线和平面平行的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
高中数学必修2公式1总结
高中数学必修2公式1总结高中数学必修2公式1总结高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即ktan。
斜率反映直线与轴的倾斜程度。
当0,90时,k0;当90,180时,k0;当90时,k不存在。
yy1(x1x2)②过两点的直线的斜率公式:k2x2x1注意下面四点:(1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:yy1k(xx1)直线斜率k,且过点x1,y1注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:ykxb,直线斜率为k,直线在y轴上的截距为b③两点式:④截矩式:yy1y2y1xayxx1x2x1(x1x2,y1y2)直线两点x1,y1,x2,y21b其中直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b。
⑤一般式:AxByC0(A,B不全为0)1各式的适用范围○2特殊的方程如:注意:○平行于x轴的直线:yb(b为常数);平行于y轴的直线:xa(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线A0xB0yC00(A0,B0是不全为0的常数)的直线系:A0xB0yC0(C为常数)(二)过定点的直线系()斜率为k的直线系:yy0kxx0,直线过定点x0,y0;()过两条直线l1:A1xB1yC10,l2:A2xB2yC20的交点的直线系方程为,其中直线l2不在直线系中。
数学中 公理 定理 定义 命题的区别
数学中的公理、定理、定义和命题是数学领域中非常重要且基础的概念。
它们在数学推理、证明和理论构建中起着至关重要的作用。
在本篇文章中,我们将深入探讨这些概念的区别和联系,并就其在数学中的重要性进行全面评估。
1. 公理公理是数学体系中最基本的、不需证明的假设或命题。
它们通常是在数学体系中的起点,其他的结论和定理都是基于这些公理推导出来的。
公理是数学体系的基石,没有公理就无法建立一个完整的数学理论体系。
公理是数学体系的基本前提,它们为数学的发展提供了必要的逻辑基础。
在几何学中,欧几里德的五个公设就是著名的公理,它们被视为几何学理论的基础。
欧几里德的第一个公设是“通过两点可以作一条直线”,这一公设被视为几何学中不需要证明的基本假设。
2. 定理定理是在给定公理或已经证明的命题的基础上,通过严密的推理和证明所得到的命题。
定理通常是数学中的重要结论,它们是基于公理和已知事实推导出来的新命题。
定理在数学推理和理论构建中扮演着重要的角色,它们扩展了数学知识的边界,推动了数学领域的进步。
费马大定理是数论领域中的一个重要定理,它是由皮耶尔·德费尔玛在17世纪提出的。
这个定理在300多年来一直是数学家们苦苦追寻的目标,直到1994年由安德鲁·怀尔斯成功证明。
费马大定理的证明不仅深刻影响了数论领域,也对整个数学领域的发展产生了重要的影响。
3. 定义定义是数学中非常重要的概念,它规定了数学对象的基本性质和特征。
定义在数学中的作用是非常突出的,它们为数学领域中的各种概念和对象确立了明确的含义和范围。
没有清晰准确的定义,就无法进行深入的数学研究和推理。
在微积分中,对于导数和积分的定义是非常重要的。
导数的定义是函数在某一点的变化率,积分的定义是曲线下方的面积,这些清晰的定义为微积分的理论和应用提供了坚实的基础。
4. 命题命题是陈述形式的有关某种性质的说法,它可以是真的,也可以是假的。
命题通常是对某个问题的断言或主张,它们可以通过推理和证明来确定其真假。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推论3 经过两条平行直线,有且只有一个平面。
等角定理 如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补。
判定:
直线与平面平行的判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.
平面与平面平行的判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.
性质:此点分每条高线的两部分乘积
旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点
性质:到三边的距离相等.
界心:经过三角形一顶点的把三角形周长分成1:1的直线与三角形一边的交点.
性质:三角形共有3个界心,三个界心分别与其对应的三角形顶点相连而成的三条直线交于一点.
欧拉线:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线.
三垂线定理 : 平面内的一条直线,如果与穿过这个平面的一条斜线在这个平面上的射影垂直,那么它也和这条斜线垂直。
逆定理 :如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
分别经过棱柱、棱台的两条不相邻的侧棱的截面叫做对角面.
分别经过棱柱、棱台的两条不相邻的侧棱的截面叫做对角面.
直线与平面垂直的性质:垂直同一个平面的两条直线平行.
平面与平面垂直的性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.
线线角:【0,π/2】 两直线所成的角,取不是钝角的哪一个,不然就乱套了
线面角:【0,π/2】 一样取不是钝角的哪一个
面面角:【0. π 】 两半平面(注意是半平面所成的角),所以有可能是钝角
直线与平面垂直的判定:一条直线与一个平面内的两条直线相交直线都垂直,则该直线与此平面垂直.
平面与平面垂直的判定:一个平面过另一个平面的垂线,则这两个平面垂直.
性质:
直线与平面平行的性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的相交线与该直线平行.
平面与平面平行的性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.
n棱柱共有n(n-3)/2ቤተ መጻሕፍቲ ባይዱ对角面.
三角形共有六心
内心:三条角平分线的交点,也是三角形内切圆的圆心.
性质:到三边距离相等.
外心:三条中垂线的交点,也是三角形外接圆的圆心.
性质:到三个顶点距离相等.
重心:三条中线的交点.
性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍.
垂心:三条高所在直线的交点.
公理1 如果一条直线上的两个点在一个平面内,那么这条直线在此平面内。
公理2 过不在一条直线上的三点,有且只有一个平面。
公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
公理4 平行于同一条直线的两条直线互相平行。
推论1 经过一条直线和这条直线外一点,有且只有一个平面。