20201228 十二月第二次月考数学试题及答案2
2020年部编人教版二年级数学上册第二次月考试卷附参考答案(二套)

2020年部编人教版二年级数学上册第二次月考试卷附参考答案(二篇)目录:2020年部编人教版二年级数学上册第二次月考试卷附参考答案一2020年部编人教版二年级数学上册第二次月考试卷附答案二2020年部编人教版年级数学上册第次月考试卷附参考答案一班级:姓名:满分:100分考试时间:90分钟一、填空题。
(20分)1、丽丽用4米长的竹竿量井深,竹竿露出井沿部分是1米.井深_______米.2、一个角有(____)个顶点,(____)条边。
3、长方形、正方形、平行四边形都有________条边,________个角。
4、钟面上分针指着6,时针指在5和6之间,这时是________时________分。
5、一支铅笔长约16(_________),教室宽约6(_________)。
6、4个3相加的和,列乘法算式是(_____);列加法算式是(_____)。
7、按规律接着填数:980、985、990、(__________)、(__________)、1005.8、一头大猪重280千克,一头小猪重40千克,这头大猪的体重是小猪的(_______)倍.9、丽丽家有公鸡15只,母鸡比公鸡多23只,母鸡有(____)只,公鸡和母鸡一共有(____)只。
10、最大的三位数是(_______),比它大1的数是(_______)。
二、我会选(把正确答案前面的序号填在()里)(10分)1、下图中,一共有( )个锐角。
A.5 B.6 C.7 D.82、椅子摇晃了,常常在椅子下边斜着钉木条,这是运用了()。
A.三角形的稳定性能B.四边形容易变形的特性3、无论从什么角度看,(____)看到的形状都是一样的。
A. B. C.4、有一堆苹果,比30个多,比40个少,分得的份数和每份的个数同样多。
这堆苹果可能有()个。
A.32 B.25 C.365、3个人每人做6朵花,共做了多少朵花?列式不正确的为()。
A.3+3+3 B.6+6+6 C.6×3三、判断题:对的在()里画“√”,错的画“×”。
2019-2020学年七年级数学第二次(12月)月考试题新人教版.docx

2019-2020 学年七年级数学第二次( 12 月)月考试题新人教版一、选择题 ( 每小题 3 分,共 30 分)题号 12345678910答案1.下列方程是 一元一次方程的是 ()A.22 5B.3x 14 2x C.y 2 3 y 0D.9x y 2x22.下列说法中正确的是 ()A. 平 角是一条直线 B周角是一条直线C.任意两个直角都相等D. 用 2 倍的放大镜看 30 度的角,这个角变成了 60 度。
3.在直线上顺次取 A 、 B 、C 三点,使得 AB=9㎝, BC=4㎝,如果点 O 是线段 AC 的中点,则线段 OB 的长为 ( )A . 2.5 ㎝B. 1.5㎝ C. 3.5㎝D. 5㎝4.下列方程变形中,正确的是()A .由 3( x1) 5( x 1)0, 得 2 x8. B.由x1 1, 得 3x2 1.23 C .由 x 12x3, 得 x 2x1 3.D .由 2x3, 得 x2 .35.若 a=b ,则下列等式不一定成立的是 ( )A . a+5 =b+5B. 5-a =5-bC . 3 2 a6 4b D. 0.25ac1 b c 4c8c46.解方程3x7 1 x1,去分母正确的是 ()2 4A . 2 3x 7 1 x 4B . 3x 7 (1 x) 1C . 2(3 x 7)(1 x) 1D . 2 3x7 1 x47.如图,直线 a 、 b 相交于 O 点,∠ 1= 130°,则∠ 2+∠3 等于 ()A. 50 °B. 100 °C. 130 °D. 18 0°OBA( 第 7 题图 )(第 10 题图 )8.某商品的标价为120 元,若以九折降价出售,仍获利20%,则该商品的进货价为()A . 80 元B . 85 元C . 90 元D . 95 元 9. 钟表在 10 点 10 分时,时针与分针的夹角为( )A .120°B. 115° C . 90° D .100°10.如图,已知该圆的半径为 1,圆心角∠ AOB=120°,则扇形 AOB的面积为 ( )A .1B.1C . 2D .132 3 4二、填空题( 每小题 3 分,共24 分)11.已知 x 的 2 倍减去 3,等于 x 的 4 倍加上7,那么 x.1 2.农民挖水渠,先在两端立木桩拉线,然后沿线开挖,其中的道理是13.过某个多边形一个顶点的所有对角线,将这个多边形分成5 个三角形,这个多边形是边形 .14.填写适当的分数:45 =___ _ 直角 =____ 平角 =_ ___ 周角 .15. 30.6 °=_____°_____′; 30°6′=_ ______°.16.一个小圆柱形油桶的的直径是8cm ,高为 6cm ,另一个大圆柱形的油桶的直径是10cm, 且它的容积是小油桶的2.5 倍,则大油桶的高为cm.17. 如果 3 2a 1 6是一元一次方程,那么 a,方程的解为 x.x18.若关于 x 的方程 3x+5=0 与 3x+2k=-1 的解相同,则 k=.三、解答题 ( 共 66 分)19.解下列方程(每小题5 分,共 20 分):(1) 16x 40 9x 16;(2)2(3 x)4( x 5)(3)1 15 x 75x 8.( x 4) (3x 4)(4)4122320.(6 分 ) 作图题:如图 , 平面上有四个点 A、B、 C、 D,根据下列语句画图(1)画直线 AB(2) 连接 AD ( 3) 作射线 BC;A BC D21. (8 分 ) 在甲处劳动的有27 人,在乙处劳动的有19 人,现在另调20 人去支援,使在甲处人数为在乙处的人数的 2 倍,应调往甲、乙两处各多少人?22.(8 分 ) 甲、乙两站相距 510 千米,一列慢车从甲站开往乙站,速度为45千米 / 时,慢车行驶两小时后,另有一列快车从乙站开往甲站,速度为 60 千米 / 时.(1)快车开出几小时后与慢车相遇?(2) 相遇时快车距离甲站多少千米?23.(8 分 )如图,点O是直线AB上的点,AOC 130 ,OB平分COD ,OE平分 AOD ,求AOE 度数.COA BE D24. (8分)已知段AB 和 BC在同一条直上,如果AB=12cm,BC=6cm,D 段 AC的中点,E 段 BC的中点,求DE的度 .25.(8 分)把 2012 个正整数 1,2, 3, 4,⋯, 2012 按如方式排列成一个表.(1)如,用一正方形框在表中任意框住 4 个数,左上角的一个数x,另三个数用含 x的式子表示出来,从小到大依次是________,______ , _______.(2)在中能否框住的 4 个数,它的和等于 324?若能,求出x 的;若不能,明理由.12345678910111213141516 17181920212223⋯⋯⋯⋯⋯。
2020年人教版二年级数学上册第二次月考试卷及答案各版本(二套)

2020年人教版二年级数学上册第二次月考试卷及答案各版本(二篇)目录:2020年人教版二年级数学上册第二次月考试卷及答案各版本一2020年人教版二年级数学上册第二次月考试卷及答案学生专用二2020年人教版年级数学上册第次月考试卷及答案各版本一班级:姓名:满分:100分考试时间:90分钟题序一二三四五六七总分得分一、填空题。
(20分)1、一条红领巾有(_____)个角。
数学书的封面有(____)个直角。
2、丽丽用4米长的竹竿量井深,竹竿露出井沿部分是1米.井深_______米.3、图中一共有______个角,其中有_____个直角,_____个锐角,_____个钝角。
4、把18个面包平均分成6份,每份有________个面包.5、0和任何数相乘都得_____.6、算式里有括号的,要先算括号(____)的。
7、同学们排队,小丽前面有14名同学,后面有16名同学,她所在的这队共有(____)名同学。
8、9的3倍是________,9是3的________倍。
9、求几个相同加数的和用(_________)计算简便。
10、在()里填上“>”或'<”。
6×6(______)30 9(______)81÷9 6千克(______)500克2千克(______)3000克5×3(______)5×4÷5二、我会选(把正确答案前面的序号填在()里)(10分)1、动物园里有15只老虎,猴子比老虎多12只,这两种动物一共有( )只。
A.27 B.39 C.422、下图中,分针从12转到图中位置,经历过的时间是()。
A.40分钟B.24分钟C.8分钟3、小明每天上午7︰30到校,11︰30放学回家,他上午在校的时间是()A.4分钟 B.4小时 C.5小时4、一个三角形中,最多有()个直角。
A.1B.2C.35、先估一估,再量一量,下面的线段中最长的是()。
2020年人教版二年级数学上册第二次月考试题附参考答案(二套)

2020年人教版二年级数学上册第二次月考试题附参考答案(二篇)目录:2020年人教版二年级数学上册第二次月考试题附参考答案一2020年人教版二年级数学上册第二次月考试题附答案二2020年人教版年级数学上册第次月考试题附参考答案一班级:姓名:满分:100分考试时间:90分钟题序一二三四五六七总分得分一、填空题。
(20分)1、丽丽家有公鸡15只,母鸡比公鸡多23只,母鸡有(____)只,公鸡和母鸡一共有(____)只。
2、小蚂蚱一次跳4格,2次跳8格,3次跳(____)格,乘法算式是(_____),4次跳(____)格,乘法算式是(______)。
3、计算有余数的除法时,余数要比(____)小。
4、6只小动物聚餐,每一位一双筷子,需要(_______)根筷子。
5、一个因数是5,另一个因数是6,积是________。
6、16与14的和是(_____),再减去20,结果得(_____)。
7、小丽同学的体重是25(__________);一个梨子约重200(__________)。
8、70比(________)大1,比(________)小1。
9、最小的三位数与最大的三位数相差(______)。
10、一个角有(________)个顶点,(_______)条边,长方形有(_______)个角,它们都是(________)角。
二、我会选(把正确答案前面的序号填在()里)(10分)1、我的食指的宽度大约是()。
A.1厘米 B.1米 C.1拃2、如下图,如果x点的位置表示为(2,3),则点y的位置表示为()A.(4,4)B.(4,5)C.(5,4)3、三位数乘两位数,所得的积是()A.三位数B.四位数C.四位数或五位数4、从上面看到的图形是( )。
A.B.C.5、用细铁丝焊成一个边长8厘米的正方形,然后把它拉成一个底长10厘米的最大的平行四边形,求与这条边相邻的另一条边的正确列式()A.(10+8)÷2 B.8×4-20 C.8×2-10 D.8×4÷2三、判断题:对的在()里画“√”,错的画“×”。
2020年十二月月考数学试卷

2020-2021学年度第一学期部分学校九年级十二月月考数学试题一、选择题(本大题共10小题,共30分)1.将方程3x2+1=6x化为一元二次方程的一般形式,其中二次项系数为3,则一次项系数、常数项分别是()A. −6、1B. 6、1C. 6、−1D. −6、−12.下列美丽的图案,是中心对称图形但不是轴对称图形的是()A. B. C. D.3.抛物线y =12x 2经过平移得到抛物线y =12(x−6)2+3,平移过程正确的是()A. 先向左平移6个单位,再向上平移3个单位B. 先向左平移6个单位,再向下平移3个单位C. 先向右平移6个单位,再向上平移3个单位D. 先向右平移6个单位,再向下平移3个单位4.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是()A. 相交B. 相切 C. 相离 D. 无法判断5.如图,四边形ABCD内接于⊙O,AB为直径,BC=CD,连接AC.若∠DAB=70°,则∠B的度数为()A. 50°B. 55°C. 65°D.70°6.某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的总产值为175亿元,若设平均每月的增长率为x,根据题意可列方程()A. 50(1+x)2=175B. 50+50(1+x)2=175C. 50(1+x)+50(1+x)2=175D. 50+50(1+x)+50(1+x)2=1757.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′//AB,则∠BAB′=()A. 30°B. 35°C. 40°D. 50°8.如图,在纸上剪一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径r=1,扇形的半径为R,扇形的圆心角等于90°,则R的值是()A. R=2B. R=3C. R=4D. R=59.已知m,n是方程x2−2x−2016=0的两个实数根,则m2+2n的值为()A. 1008B. 2016C. 2018D. 202010.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(−1,0),对称轴为直线x=2,下列结论,其中正确的结论有()(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若点A(−2,y1),点B(12,y2),点C(52,y3)在该函数图象上,则y1<y3<y2;(5)m为任意实数,则m(am+b)<2(2a+b)A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共6小题,共18分)11.在直角坐标系中,点M(5,7)关于原点O对称的点N的坐标是______.12.已知3是一元二次方程x2−4x+c=0的一个根,则方程的另一个根是______ .13.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为____________________(不用化为一般式)14.某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图所示),如果抛物线的最高点M离墙1米,离地面203米,则水流下落点B离墙距离OB是______m.14题图 15题图 16题图15.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,AB=10,点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B′,则△CEF的周长为______.16. 在Rt△ABC中,∠A=90º,AC=AB=4,D,E分别是AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1 ,记直线BD1与CE1的交点为P,则点P到AB所在直线的距离的最大值为________ 三、解答题(本大题共8小题,共72分)17.(本题8分)已知关于x的方程x2−6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1=2x2,求m的值.18.(本题8分)如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,并且CD=4,EM=6,求⊙O的半径.19. (本题8分)如图,已知二次函数y=ax2+2x+c图象经过点A(1,4)和点C(0,3).(1)求该二次函数的解析式;(2)结合函数图象,直接回答下列问题:①当−1<x<2时,求函数y的取值范围:______.②当y≥3时,求x的取值范围:______.20.(本题8分) (1) 如图1,在7×7的正方形网格中,每个小正方形的边长为1,小正方形的顶点叫做格点,△ABC的顶点在格点上,过点A画一条直线平分△ABC的面积(2) 如图2,点E在正方形ABCD的内部,且EB=EC,过点E画一条射线平分∠BEC(3) 如图3,点A、B、C均在⊙O上,且∠BAC=120°,在优弧BC上画M、N两点,使∠MAN=60°21.(本题8分)已知PA,PB分别与⊙O相切于点A,B,连接OP(1)如图1,AB交OP于点C,D 为PB的中点,求证:CD∥PA;(2)如图2,OP交⊙O于点E,EF⊥PB于点F,若PA=45,⊙O 的半径为25,求EF的长。
2020年部编版二年级数学上册第二次月考真题试卷及答案(三套)

2020年部编版二年级数学上册第二次月考真题试卷及答案(三篇)目录:2020年部编版二年级数学上册第二次月考真题试卷及答案一2020年部编版二年级数学上册第二次月考知识点及答案二2020年部编版二年级数学上册第二次月考精编试卷及答案三2020年部编版二年级数学上册第二次月考真题试卷及答案一班级:姓名:满分:100分考试时间:90分钟题序一二三四五六七总分得分一、填空题。
(20分)1、与1000相邻的两个数是(______)和(______)2、笔算加法时,(______)要对齐,从(______)位算起。
3、8的5倍是(__________);21是3的(__________)倍。
4、6个9相加的和是(____),7个5相加的和是(____)。
5、左图中有(____)个锐角,(____)个钝角,(____)个直角。
6、用0、1、2、3、4五个数字,一共可以组成(__)个没有重复数字的三位数。
7、两位数乘一位数(不为0),积可能是________位数,也可能是________位数。
8、在()×7<36中,括号里最大可以填(______)。
9、做加法时,个位相加满(______),要向十位进(______);做减法时,个位不够减,要从(______)借1当(______)再减。
10、一个因数是3,另一个因数是6,积是(_______)。
二、我会选(把正确答案前面的序号填在()里)(10分)1、1千克铁与1千克棉花比较,( )重。
A.铁B.棉花C.一样重D.不一定2、班级图书架放着一些书,上层有128本,中层有112本,下层有86本,书架上大约有几本书?应选下面()算式计算A.128+112+86=326(本)B.130+110+90=330(本)3、下面各数一个0都不需要读出来的数是()A.5007 B.6090 C.90004、用细铁丝焊成一个边长8厘米的正方形,然后把它拉成一个底长10厘米的最大的平行四边形,求与这条边相邻的另一条边的正确列式()A.(10+8)÷2 B.8×4-20 C.8×2-10 D.8×4÷25、养殖场养了120只,比多40只,一共养了多少只鸡?正确算式是()。
2020届高三12月月考数学(理)试题+参考答案

2020届高三12月月考数学试卷(理科)说明:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第(1)页至第(3)页,第Ⅱ卷第(4)页至第(6)页。
2、本试卷共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)注意事项:1、答第Ⅰ卷前,考生务必将自己的姓名、班级填涂在答题卡上,贴好条形码。
答题卡不要折叠2、每小题选出答案后,用2B 铅笔把答题卡上对应的题目标号涂黑。
答在试卷上无效。
3、考试结束后,监考人员将试卷答题卡收回。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2|0|2M x x x N x x =-=<,<,则 ( )A .M N ⋂=∅B .M N M ⋂=C .M N M ⋃=D .M N R =U2. “”是“方程表示双曲线”的 ( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件3.正项等差数列{}n a 中的11a ,4027a 是函数()3214433f x x x x =-+-的极值点,则20192log a =( ) A .2B .3C .4D .54.函数1sin cos (0)y x a x a =+>的图象是由函数25sin 5cos y x x =+的图像向左平移ϕ个单位得到的,则cos ϕ=( )A .35B .45C 32D 225.新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为A 、B 、C 、D 、E 五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是 ( )A .获得A 等级的人数减少了B .获得B 等级的人数增加了1.5倍C .获得D 等级的人数减少了一半D .获得E 等级的人数相同6.设()0sin cos a x x dx π=+⎰,且21nx ax ⎛⎫- ⎪⎝⎭的展开式中只有第4项的二项式系数最大,那么展开式中的所有项的系数之和是 ( ) A .1 B .1256 C .64 D .1647.直线(1)(2)0()x y R λλλλ+-++=∈恒过定点A ,若点A 在直线20mx ny ++=上,其中0m >,0n >,则21m n+的最小值为 ( ) A .22B .4C .52D .928.《九章算术》是我国古代的数学巨著,其中《方田》章给出了计算弧田面积所用的经验公式为:弧田面积12=⨯(弦×矢+矢2),弧田(如图阴影部分所示)是由圆弧和弦围成,公式中的“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为23π,矢为2的弧田,按照上述方法计算出其面积是 ( )A .2+43B .13+2C .2+83D .4+839.执行如图所示的程序框图,则输出n 的值是 ( )A .3B .5C .7D .910.已知函数()sin (0)f x x ωω=>,点A ,B 分别为()f x 图像在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB ∆为锐角三角形,则ω的取值范围为( )A .30,2π⎛⎫⎪ ⎪⎝⎭B .3,22ππ⎛⎫⎪ ⎪⎝⎭C .0,2π⎛⎫⎪⎝⎭D .,2π⎛⎫+∞ ⎪⎝⎭11.设函数()f x 在R 上存在导函数'()f x ,x R ∀∈,有3()()f x f x x --=,在(0,)+∞上有22'()30f x x ->,若2(2)()364f m f m m m --≥-+-,则实数m 的取值范围为( )A .[1,1]-B .(,1]-∞C .[1,)+∞D .(,1][1,)-∞-+∞U12.已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .(3)(2019)3f f -+=-B .()f x 在区间[]4,5上是增函数C .若方程() 1f x k x =+恰有3个实根,则11,24k ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则()61i i i x f x =∑的取值范围是()0,6第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分. 13.已知34a b R a ib i i+=+∈,(,)其中i 为虚数单位,则a bi +=________; 14.已知数列{}n a的首项11a =,且满足11(2)n n n n a a a a n ---=≥,则122320142015a a a a a a +++=L ;15.如图,在矩形ABCD 中,4,2AB AD ==,E 为AB 的中点.将ADE V 沿DE 翻折,得到四棱锥1A DEBC -.设1A C 的中点为M ,在翻折过程中,有下列三个命题:①总有BM ∥平面1A DE ; ②线段BM 的长为定值;③存在某个位置,使DE 与1A C 所成的角为90°. 其中正确的命题是_______.(写出所有正确命题的序号)16.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,左顶点为A ,以F 为圆心,FA 为半径的圆交C 的右支于M ,N 两点,且线段AM 的垂直平分线经过点N ,则C 的离心率为_________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知函数2()cos 2cos 2()3f x x x x R π⎛⎫=--∈⎪⎝⎭(1)求函数()f x 的单调递增区间;(2)ABC ∆内角,,A B C 的对边分别为,,a b c ,若3()2B f =-,1b =,3c =,且a b >,试求角B 和角C .18.(本小题满分10分)如图,在PBE △中,AB PE ⊥,D 是AE 的中点,C 是线段BE 上的一点,且5AC =,122AB AP AE ===,将PBA ∆沿AB 折起使得二面角P AB E --是直二面角. (l )求证:CD 平面PAB ;(2)求直线PE 与平面PCD 所成角的正切值.19.(本小题满分10分)2019年3月5日,国务院总理李克强作出的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部2014年印发的《学术论文抽检办法》通知中规定:每篇抽检的学术论文送3位同行专家进行评议,3位专家中有2位以上(含3位)专家评议意见为“不合格”的学术论文,将认定为“存在问题学术论文”.有且只有1位专家评议意见为“不合格”的学术论文,将再送另外2位同行专家(不同于前3位专家)进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学术论文,将认定为“存在问题学术论文”.设每篇学术论文被每位专家评议为“不合格”的概率均为()01p p <<,且各篇学术论文是否被评议为“不合格”相互独立.(1)若12p =,求抽检一篇学术论文,被认定为“存在问题学术论文”的概率;(2)现拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的总评审费用1500元;若某次评审抽检论文总数为3000篇,求该次评审费用期望的最大值及对应p 的值.20.(本小题满分10分)在平面直角坐标系xOy中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),离心率2e=.(1)求椭圆G 的标准方程;(2)已知直线11l y kx m=+:与椭圆G交于A B,两点,直线2212l y kx m m m=+≠:()与椭圆G交于C D,两点,且AB CD=,如图所示.①证明:120m m+=;②求四边形ABCD的面积S的最大值.21.(本小题满分10分)已知函数()22,02,0xx xf x xax ax xe⎧-<⎪=⎨+-≥⎪⎩在(),-∞+∞上是增函数.()1求实数a的值;()2若函数()()g x f x kx=-有三个零点,求实数k的取值范围.22.在平面直角坐标系xOy中,曲线C的参数方程为3cos3xyαα=⎧⎪⎨=⎪⎩(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为2sin42πρθ⎛⎫-=⎪⎝⎭.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点()1,0P-,直线l和曲线C交于,A B两点,求||||PA PB+的值.23.已知函数()()210f x x a x a=++->.(1)当1a =时,求不等式()4f x >的解集;(2)若不等式()42f x x >-对任意的[]3,1x ∈--恒成立,求a 的取值范围.(数学理)1-5 BDCBB 6-10 DDADB 11.B 12 BCD13.5 14. 15. ①② 16. 4 317【解析】(1)233()cos2cos2sin2cos23sin23223f x x x x x xππ⎛⎫⎛⎫=--=-=-⎪ ⎪⎝⎭⎝⎭Q,令222,232k x k k Zπππππ--+∈剟,解得5,1212k x k k Zππππ-+∈剟∴故函数()f x的递增区间为5,()1212k k kππππ⎡⎤-+∈⎢⎥⎣⎦Z.(2)313sin,sin2332Bf B Bππ⎛⎫⎛⎫⎛⎫=-=-∴-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,20,,,333366B B B Bπππππππ<<∴-<-<∴-=-=Q即,由正弦定理得:13sin sinsin6aA Cπ==,3sin2C∴=,0Cπ<<Q,3Cπ∴=或23π.当3cπ=时,2Aπ=:当23Cπ=时,6Aπ=(不合题意,舍)所以,63B Cππ==.18.如图,在PBE△中,AB PE⊥,D是AE的中点,C是线段BE上的一点,且5AC=,122AB AP AE===,将PBAV沿AB折起使得二面角P AB E--是直二面角.(l)求证:CD平面PAB;(2)求直线PE与平面PCD所成角的正切值.【答案】(1)证明见解析.(2)13.【解析】分析:(1)推导出4,AE AC =是Rt ABE ∆的斜边上的中线,从而C 是BE 的中点,由此能证明//CD 平面PAB ;(2)三棱锥E PAC -的体积为E PAC P ACE V V --=,由此能求出结果.详解:(1)因为122AE =,所以4AE =,又2AB =,AB PE ⊥, 所以22222425BE AB AE =+=+=,又因为152AC BE ==, 所以AC 是Rt ABE n 的斜边BE 上的中线,所以C 是BE 的中点,又因为D 是AE 的中点.所以CD 是ABE n 的中位线,所以CD AB n , 又因为CD ⊄平面PAB ,AB ⊂平面PAB ,所以CD n 平面PAB .(2)据题设分析知,AB ,AE ,AP 两两互相垂直,以A 为原点,AB ,AE ,AP 分别为x ,y ,z 轴建立如图所示的空间直角坐标系:因为122AB AP AE ===,且C ,D 分别是BE ,AE 的中点, 所以4AE =,2AD =,所以()040E n n ,()120C n n ,()002P n n ,()020D n n ,所以()042PE =-u u n v n u ,()122PC =-u u n v n u ,()100CD =-u u n vn u , 设平面PCD 的一个法向量为()n x y z '''=n n ,则00n CD n PC ⎧⋅=⎨⋅=⎩u u u v u u u v ,即0220x x y z ''''-=⎧⎨+-=⎩,所以0x z y =⎧⎨='''⎩,令1y '=,则()011n =n n ,设直线PE 与平面PCD 所成角的大小为θ,则10sin 10PE n PE nθ⋅==⋅u u u v u u u v . 故直线PE 与平面PCD 所成角的正切值为13.19.2019年3月5日,国务院总理李克强作出的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部2014年印发的《学术论文抽检办法》通知中规定:每篇抽检的学术论文送3位同行专家进行评议,3位专家中有2位以上(含3位)专家评议意见为“不合格”的学术论文,将认定为“存在问题学术论文”.有且只有1位专家评议意见为“不合格”的学术论文,将再送另外2位同行专家(不同于前3位专家)进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学术论文,将认定为“存在问题学术论文”.设每篇学术论文被每位专家评议为“不合格”的概率均为()01p p <<,且各篇学术论文是否被评议为“不合格”相互独立.(1)若12p =,求抽检一篇学术论文,被认定为“存在问题学术论文”的概率;(2)现拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的总评审费用1500元;若某次评审抽检论文总数为3000篇,求该次评审费用期望的最大值及对应p 的值.【答案】(1) 2532 (2) 最高费用为350万元.对应13p =.(1)因为一篇学术论文初评被认定为“存在问题学术论文”的概率为()2233331C p p C p -+, 一篇学术论文复评被认定为“存在问题学术论文”的概率为()()2213111C p p p ⎡⎤---⎣⎦, 所以一篇学术论文被认定为“存在 问题学术论文”的概率为()()()()22223313331111f p C p p C p C p p p ⎡⎤=-++---⎣⎦()()()2223313111p p p p p p ⎡⎤=-++---⎣⎦5432312179p p p p =-+-+.∴12p =时,125232f ⎛⎫= ⎪⎝⎭所以抽检一篇的学术论文被认定为“存在问题学术论文”的概率为2532. (2)设每篇学术论文的评审费为X 元,则X 的可能取值为900,1500.()()21315001P X C p p ==-,()()21390011P X C p p ==--,所以()()()()2221133900111500190018001E X C p p C p p p p ⎡⎤=⨯--+⨯-=+-⎣⎦. 令()()21g p p p =-,()0,1p ∈,()()()()()2121311g p p p p p p '=---=--.当10,3p ⎛⎫∈ ⎪⎝⎭时,()0g p '>,()g p 在10,3⎛⎫⎪⎝⎭上单调递增;当1,13p ⎛⎫∈ ⎪⎝⎭时,()0g p '<,()g p 在1,13⎛⎫⎪⎝⎭上单调递减. 所以()g p 的最大值为14327g ⎛⎫= ⎪⎝⎭.所以评审最高费用为44300090018001035027-⎛⎫⨯+⨯⨯= ⎪⎝⎭(万元).对应13p =.20.在平面直角坐标系xOy 中,椭圆G 的中心为坐标原点,左焦点为F 1(﹣1,0),离心率22e =. (1)求椭圆G 的标准方程;(2)已知直线11l y kx m =+: 与椭圆G 交于 A B , 两点,直线2212l y kx m m m =+≠:()与椭圆G 交于C D , 两点,且AB CD = ,如图所示.①证明:120m m += ;②求四边形ABCD 的面积S 的最大值. (1)设椭圆G 的方程为(a >b >0)∵左焦点为F 1(﹣1,0),离心率e =.∴c =1,a =,b 2=a 2﹣c 2=1椭圆G 的标准方程为:.(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4)①证明:由消去y 得(1+2k 2)x 2+4km 1x +2m 12﹣2=0 ,x 1+x 2=,x 1x 2=;|AB |==2;同理|CD |=2,由|AB |=|CD |得2=2,∵m 1≠m 2,∴m 1+m 2=0②四边形ABCD 是平行四边形,设AB ,CD 间的距离d =∵m 1+m 2=0,∴∴s =|AB |×d =2×=.所以当2k 2+1=2m 12时,四边形ABCD 的面积S 的最大值为221.已知函数()22,02,0x x x f x x ax ax x e⎧-<⎪=⎨+-≥⎪⎩在(),-∞+∞上是增函数. ()1求实数a 的值;()2若函数()()g x f x kx =-有三个零点,求实数k 的取值范围.【答案】(1)12a e =;(2)ln211,2e e ⎧⎫⎡⎫⋃-+∞⎨⎬⎪⎢⎩⎭⎣⎭解:()1当0x <时,()2f x x =-是增函数,且()()00f x f <=,故当0x ≥时,()f x 为增函数,即()'0f x ≥恒成立,当0x ≥时,函数的导数()()()211'2221120()x x x xx e xe x f x ax a a x x a e e e --⎛⎫=+-=+-=--≥ ⎪⎝⎭恒成立,当1x ≥时,10x -≤,此时相应120x a e -≤恒成立,即12x a e ≥恒成立,即max 112()x a e e≥=恒成立,当01x ≤<时,10x ->,此时相应120x a e -≥恒成立,即12x a e ≤恒成立,即12a e ≤恒成立, 则12a e =,即12a e=. ()2若0k ≤,则()g x 在R 上是增函数,此时()g x 最多有一个零点,不可能有三个零点,则不满足条件. 故0k >,当0x <时,()2g x x kx =--有一个零点k -,当0x =时,()()0000g f =-=,故0也是故()g x 的一个零点, 故当0x >时, ()g x 有且只有一个零点,即()0g x =有且只有一个解,即202x x x x kx e e e +--=,得22x x x xkx e e e+-=,(0)x >, 则112x x k e e e=+-,在0x >时有且只有一个根, 即y k =与函数()112x x h x e e e=+-,在0x >时有且只有一个交点,()11'2x h x e e=-+,由()'0h x >得1102x e e -+>,即112x e e <得2x e e >,得ln21ln2x e >=+,此时函数递增,由()'0h x <得1102x e e -+<,即112x e e>得2x e e <,得0ln21ln2x e <<=+,此时函数递减,即当1ln2x =+时,函数取得极小值,此时极小值为()1ln211ln211ln22h e e e+++=+- ln211ln2111ln21ln2222222e e e e e e e e e e=++-=++-=⋅, ()110101h e e=+-=-,作出()h x 的图象如图,要使y k =与函数()112x x h x e e e=+-,在0x >时有且只有一个交点, 则ln22k e =或11k e≥-, 即实数k 的取值范围是ln211,2e e ⎧⎫⎡⎫⋃-+∞⎨⎬⎪⎢⎩⎭⎣⎭.22.在平面直角坐标系xOy 中,曲线C 的参数方程为3cos 3x y αα=⎧⎪⎨=⎪⎩(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为2sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)设点()1,0P - ,直线l 和曲线C 交于,A B 两点,求||||PA PB +的值.【答案】(1)22193x y +=,10x y -+=;(266(1)因为曲线C 的参数方程为3cos 3x y αα=⎧⎪⎨=⎪⎩(α为参数),所以曲线C 的普通方程为22193x y +=.因为2sin 42πρθ⎛⎫-= ⎪⎝⎭,所以sin cos 1,10x y ρθρθ-=∴-+=. 所以直线l 的直角坐标方程为10x y -+=.(2)由题得点()1,0P -在直线l 上,直线l的参数方程为122x y ⎧=-+⎪⎪⎨⎪=⎪⎩,代入椭圆的方程得2280t -=,所以1212+402t t t t ==-<,所以12|PA|+|PB|=||t t -==. 23.已知函数()()210f x x a x a =++->. (1)当1a =时,求不等式()4f x >的解集;(2)若不等式()42f x x >-对任意的[]3,1x ∈--恒成立,求a 的取值范围.【答案】(1)5|13x x x >⎧⎫<-⎨⎬⎩⎭或;(2)()5,+∞(1)当1a =时,()121f x x x =++-,故()4f x >等价于1314x x ≤-⎧⎨-+>⎩或1134x x -<≤⎧⎨-+>⎩或1314x x >⎧⎨->⎩,解得1x <-或53x >.故不等式()4f x >的解集为5|13x x x >⎧⎫<-⎨⎬⎩⎭或.(2)当[]3,1x ∈--时,由()42f x x >-得22240x a x x ++-+->, 即2x a +>,即2a x >-或2a x <--对任意的[]3,1x ∈--恒成立. 又()max 25x -=,()min 21x --=-,故a 的取值范围为()(),15,-∞-+∞U . 又0a >,所以5a >, 综上,a 的取值范围为()5,+∞.。
湖北省武汉市2020版八年级上学期数学12月月考试卷(II)卷

湖北省武汉市2020版八年级上学期数学12月月考试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分) (2016七下·沂源开学考) 下面汽车标志中,属于轴对称图形的是()A .B .C .D .2. (1分)下列各组式子中,两个单项式是同类项的是()A . 2a与B . 与C . xy与D . 与3. (1分)如图,△ABC≌△ADE,已知在△ABC中,AB边最长,BC边最短,则△ADE中三边的大小关系是()A . AD=AE=DEB . AD<AE<DEC . DE<AE<ADD . 无法确定4. (1分)多项式49a3bc3+14a2b2c2在分解因式时应提取的公因式是()A . 7a3bc3B . 7a2b2c2C . 7ab2c25. (1分) (2019七上·武邑月考) 已知有理数a,b在数轴上表示的点如图所示,则下列式子中错误的是()A .B . a﹣b>0C . a+b>0D . ab<06. (1分) (2019八上·北京期中) 等腰三角形的一个内角为80°,则它的顶角度数为()A . 20°B . 80°C . 20°或80°D . 50°或80°7. (1分)(2019·光明模拟) 在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4 ,则S1+S2+S3+S4等于()A . 4B . 5C . 6D . 148. (1分)若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A . 6B . 8C . 10D . 129. (1分) (2016七下·虞城期中) 如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于()B . 140°C . 150°D . 160°10. (1分)如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|PA﹣PB|的最大值是()A . 4B . 5C . 6D . 8二、填空题 (共8题;共9分)11. (1分) (2019八上·桐梓期中) 如下图,在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点A坐标是,则经过第2019次变换后所得的A点坐标是________.12. (2分) (2018八上·渝北月考) 若2x=3,2y=5,则22x+y=________.13. (1分) (2019八上·高安期中) 如图,已知AB∥CD,AD∥BC,E.F是BD上两点,且BF=DE,则图中共有________对全等三角形.14. (1分) (2019八上·重庆月考) 已知一个多边形每个外角都为30°,则这是________边形15. (1分)(2020·上海模拟) 计算:(m-n)(m+n)________.16. (1分) (2016八上·宁江期中) 如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,给出下列判断:17. (1分)(2014·连云港) 若ab=3,a﹣2b=5,则a2b﹣2ab2的值是________.18. (1分) (2020八上·通榆期末) 特例探究:如图1,已知在△ABC中,AB=CB,∠ABC=90°,D为AC边的中点,连接BD,则△ABD是________三角形。