【配套K12]七年级数学下册 第6章 实数 6.3 实数学案 (新版)新人教版

合集下载

新人教版 数学 七年级数学下册 第六章 实数 6.3 实数 学案

新人教版 数学 七年级数学下册 第六章 实数 6.3 实数 学案

实数【学习目标】1. 了解无理数和实数的概念2.会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小3.了解实数范围内相反数和绝对值的意义【学习重点】正确理解实数的概念【学习难点】理解实数的概念; 体会数轴上的点与实数是一一对应的.【学习过程】【知识回顾】1、什么是有理数?如何分类?2是这样的数么?【合作交流,解读探究】【活动1】探究:使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 ,35-,478,911,119,59我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即3 3.0 =,30.65-=-,475.8758=,90.8111=,111.29=,50.59=归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式。

反过来,任何有限小数或无限循环小数也都是有理数.(板书)?为什么?..定义:无限不循环小数又叫无理数, 3.14159265π=也是无理数结论:有理数和无理数统称为实数学生举例:有理数无理数整理:⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数试探练习,回授调节:1.填空: 在-19,3.878787…,π2,1.41467-,这些数中, 有理数是 ;无理数是 ;2.判断对错:对的画“√”,错的画“×”.(1)无理数都是无限小数. ( )(2)无限小数都是无理数. ( ). ( ). ( )(5)带根号的数都是无理数. ( )(6)有理数都是实数. ( )【活动2】我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢? 探究1.如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?2.总结:①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______ 讨论: 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?O O ’总结 数a 的相反数是______,这里a 表示任意____________。

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。

本节内容主要包括实数的定义、实数的分类和实数的性质。

通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。

但是,对于实数的定义和性质,可能还比较陌生。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。

三. 教学目标1.理解实数的概念,掌握实数的分类和性质。

2.能够运用实数的概念和性质解决一些简单的实际问题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.实数的定义和性质。

2.实数的分类。

五. 教学方法采用讲授法、引导法、讨论法等教学方法。

通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。

六. 教学准备1.教师准备教案、PPT等教学资料。

2.学生准备笔记本、文具等学习用品。

七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。

2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。

引导学生理解和记忆实数的概念和性质,掌握实数的分类。

3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。

通过练习,巩固学生对实数的理解和掌握。

4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。

5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。

6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。

7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。

七年级数学下册 第6章 实数 6.3 实数学案 (新版)新人教版-(新版)新人教版初中七年级下册数学

七年级数学下册 第6章 实数 6.3 实数学案 (新版)新人教版-(新版)新人教版初中七年级下册数学

6.3 实数 班级:某某: 学习目标:1.了解无理数和实数的概念,能按要求对实数进行分类。

2.了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。

进一步领会数形结合的思想。

3.会某某数的相反数和绝对值。

4.学会比较两个实数的大小,能熟练地进行实数运算。

学习重点:能按要求对实数进行分类。

熟练地进行实数运算。

学习难点:用数轴上的点来表示无理数。

熟练地进行实数运算。

一、 复习回顾,引入新课:把下列各数写成小数的形式,你有什么发现?二、自主学习,合作探究(一)什么叫实数?如何分类?1.什么叫无理数?在前面我们学习了求一个数的平方根和立方根时,有些数的平方根或立方根是无限不循环小数,如:333252,,,-…都是无理数,π…也是无理数。

我们把无限不循环小数叫做无理数。

小结:我们目前学习的无理数有下面三种形式① 开方开不尽的数,如:2,325,7-,…② 圆周率π,它是无限不循环小数③ …(每两个1之间依次多1个1)(二):数轴上的点与什么数成一一对应?实验:1.将一个直径为1个单位的圆在数轴上滚动一周,圆上的点由原点到达O',点O'的对应点是思考:上面的实验说明:。

95,9011,119,847,53,3-2、以一个单位长度为边画一个正方形,以原点为圆心,正方形的对角线为半径画弧,弧与数轴的交点表示:、 。

2-2上面的实验说明:数可以用数轴上的点表示出来。

也就是说数轴上的点有的表示:、有的表示:。

归纳:数轴上的点与数成一 一对应。

(三)怎样某某数的相反数和绝对值?在数轴上一个实数的绝对值是表示这个数的点到的距离:两个互为相反数的实数就是表示这两个数的点一个在,一个在,它们到原点的距离。

(1) 相反数:π的相反数是,2-的相反数是,0的相反数是 。

小结:实数a 的相反数是。

(2) 绝对值:5-=,π=, 0=,37-=,小结:一个正实数的绝对值,一个负实数的绝对值是,0的绝对值是。

(四)实数的运算① 从高到低:先算,再算,最后算;②同级运算,按照的顺序进行;③从大大小:如果有括号,先算里的,再算里的,最后算里的.三、释疑解惑 巩固练习1.实数的定义:和 统称实数。

七年级数学下册第六章实数教案(7套)(新版)新人教版

七年级数学下册第六章实数教案(7套)(新版)新人教版

第六章 实数6.1平方根 【教学目标】 知识与技能1. 了解算术平方根的概念。

2. 会用根号表示正数的算术平方根。

3. 了解开方与乘方的互逆运 算;会用平方运算求某些非负数的算术平方根。

过程与方法通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。

情感、态度与价值观通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。

【教学重难点】重点: 算术平方根的概念和求法难点: 会用平方运算求某些非负数的算术平方根 【导学过程】 【知识回顾】写出下列各数是哪个正数的平方① 16 ② 49 ③ 100 ④ 94 ⑤ 169 ⑥2581⑦ 2.5 ⑧ 2.25 【新知探究】 探究一、问题1:(P40)提问:怎样算出画框的边长?依据是什么?如何用式子表示? 探究二、算术平方根的概念1、归纳:一般地, 叫做a 的算术平方根.a 的算术平方根记为a ,读作“ ”,a 叫做 . 规定:0的算术平方根是 .也就是,在等式2x =a (x ≥0)中,规定 x=2、 试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.3、 想一想:下列式子表示什么意思?并求出它们的值?1.25探究三、例1 求下列各数的算术平方根:(1) 100; (2) 1; (3) 6449; (4) 0.0001探究四、算术平方根的有意义的条件 (1)负数有算术平方根吗?(2)、a 是什么数?(3),a 中的a 可以取任何数吗?【知识梳理】本节课你学到了什么?有什么收获和体会?还有什么困惑?1.一般的说,一个 数x 的平方等于a,即x 2=a,那么这个 数x 就叫着a 的 。

2. a 的算术平方根记为 ; 0的算术平方根是 。

3. 一个 数越大,这个 数的算术平方根就越 。

【随堂练习】3. 4的算术平方根是 ;2581的算术平方根是 ; 2 97的算术平方根是 ; 2.25的算术平方根是 ;1000的算术平方根是 。

七年级数学下册第六章实数6.3实数第1课时实数教案1新人教版

七年级数学下册第六章实数6.3实数第1课时实数教案1新人教版

6.3 实 数第1课时 实 数1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;(重点)2.进一步理解有理数和无理数的概念,会把实数进行分类;(重点)3.理解实数与数轴的关系,并进行相关运用.(难点)一、情境导入为了美化校园,学校打算建一个面积为225平方米的正方形植物园,这个正方形的边长应取多少?你能计算出来吗?如果把“225”改为其他数字,如“200”,这时怎样确定边长?二、合作探究探究点一:实数的相关概念及分类【类型一】 无理数的识别在下列实数中:157,3.14,0,9,π,5,0.1010010001…,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个解析:根据无理数的定义可以知道,上述实数中是无理数的有:π,5,0.1010010001….故选C.方法总结:常见无理数有三种形式:第一类是开方开不尽的数;第二类是化简后含有π的数;第三类是无限不循环的小数.【类型二】 实数的分类把下列各数分别填到相应的集合内:-3.6,27,4,5,3-7,0,π2,-3125,227,3.14,0.10100…. (1)有理数集合{ …};(2)无理数集合{ …};(3)整数集合{ …};(4)负实数集合{ …}.解析:实数分为有理数和无理数两类,也可以分为正实数、0、负实数三类.而有理数分为整数和分数.解:(1)有理数集合{-3.6,4,5,0,-3125,227,3.14,…}; (2)无理数集合{27,3-7,π2,0.10100…,…};(3)整数集合{4,5,0,-3 125,…};(4)负实数集合{-3.6,3-7,-3125,…}.方法总结:正确理解实数和有理数的概念,做到分类不遗漏不重复.探究点二:实数与数轴上的点【类型一】求数轴上的点对应的实数如图所示,数轴上A,B两点表示的数分别是-1和3,点B关于点A的对称点为C,求点C所表示的实数.解析:首先结合数轴和已知条件可以求出线段AB的长度,然后利用对称的性质即可求出点C所表示的实数.解:∵数轴上A,B两点表示的数分别为-1和3,∴点B到点A的距离为1+ 3.则点C到点A的距离也为1+ 3.设点C表示的实数为x,则点A到点C的距离为-1-x,∴-1-x=1+3,∴x=-2- 3.∴点C所表示的实数为-2- 3.方法总结:本题主要考查了实数与数轴之间的对应关系,两点之间的距离为两数差的绝对值.【类型二】利用数轴进行估算如图所示,数轴上A,B两点表示的数分别是3和5.7,则A,B两点之间表示整数的点共有( )A.6个 B.5个 C.4个 D.3个解析:∵3≈1.732,∴3和5.7之间的整数有2,3,4,5,∴A,B两点之间表示整数的点共有4个.故选C.方法总结:要确定两点间的整数点的个数,也就是需要比较两个端点与邻近整点的大小,牢记数轴上右边的点表示的实数比左边的点表示的实数大.三、板书设计实数⎩⎪⎨⎪⎧实数的分类⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数分数无理数实数与数轴——实数与数轴上的点一一对应本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理数的基础上扩充到实数.在学习中,要求学生结合有理数理解实数的有关概念.本节课要注意的地方有两个:一是所有的分数都是有理数,如227;二是形如π2,π3等之类的含有π的数不是分数,而是无理数。

七年级数学下册 第六章 实数 6.3 实数备课资料教案 (新版)新人教版

七年级数学下册 第六章 实数 6.3 实数备课资料教案 (新版)新人教版

第六章 6.3实数知识点1:无理数1.定义:无限不循环小数叫做无理数.2.表现形式:(1)开方开不尽得到的数如: 、等;(2)含有π的式子;(3)有规律但不循环的无限小数,如:0.101 001 000 1…;注意:对于实数的分类,不能只看形式,并非所有带根号的数都是无理数,应严格按照有理数和无理数的定义来判定,如为有理数.知识点2:实数的概念(1)定义:有理数和无理数统称实数.例如:-6,,,0.4,π等都是实数.(2)实数的分类总结:(1)实数的相反数的意义和有理数的相反数的意义一样,如果a表示任意一个实数,那么-a 就是a的相反数,即a与-a互为相反数,例如:的相反数是 -,的相反数是-.另外,规定0的相反数仍然是0;(2)实数的绝对值的意义与有理数的绝对值的意义一样,一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0,用字母表示为:对于任意实数a,有|a|=知识点3:实数与数轴1.对应关系:实数与数轴上的点一一对应.2.与有理数相同,数轴上右边的点表示的数总比左边的点表示的数大.总结:(1)利用数轴可以比较实数的大小,在数轴上,右边的点表示的实数总比左边的点表示的实数大;(2)正实数大于0,负实数小于0,正实数大于一切负实数,两个负实数比较大小,绝对值大的反而小.知识点4:实数的性质在实数范围内的相反数、倒数、绝对值的意义和在有理数范围内的相反数、倒数、绝对值的意义完全一样.知识点5:实数的运算(1)实数有加、减、乘、除、乘方、开方运算,混合运算的顺序是先算乘方、开方,再算乘、除,最后算加、减,同级运算按照从左到右的顺序进行,有括号的要先算括号里的;(2)加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac.总之有理数的一切运算法则适用于实数的运算.考点1:实数概念的应用【例1】下列各数:-5,3.7,,,,-π,,0.3,-,0.212 112 111 2…(每两个2之间依次多一个1)哪些是有理数?哪些是无理数?哪些是正实数?哪些是负实数?解:有理数有:-5,3.7,,,0.3,-;无理数有:,-π,,0.212 112 111 2…(每两个2之间依次多一个1);正实数有:3.7,,,0.3,,,0.212 112 111 2…(每两个2之间依次多一个1);负实数有:-5,-,-π.考点2:实数的大小比较【例2】比较2,,的大小,正确的是( )A.2<<B.2<<C.<2<D.<<2答案:C点拨:∵22=4<5,∴2<,∵23=8>7,∴2>.故选C.考点3:用数轴比较数的大小【例3】在数轴上表示下列各数,并把它们按从小到大的顺序排列起来,用“<”连接:-0.,-,.解:-0.,-,在数轴上表示,如图所示.由图得到:-<-0.<.点拨:对于-,可以通过画边长为1的正方形的对角线得到.考点4:实数的运算【例4】计算:(1)(+)×;(2)--;(3)-(精确到0.01);(4)+(<a<π)(精确到0.01).解:(1)原式=(0.1+0.1)×12=2.4;(2)原式=--=-;(3)原式=(-)-(+)=---=-2≈(-2)×1.414=-2.828≈-2.83;(4)由<a<π,得原式=(π-a)+(a-)=π-≈3.142-1.414=1.728≈1.73.点拨:对于一些常用的无理数,应记住其近似值,如≈1.414,≈1.732.。

人教版七年级数学下册(教案):6.3实数

人教版七年级数学下册(教案):6.3实数
4.鼓励学生在课堂上积极提问,及时解答他们的疑惑,提高教学效果。
人教版七年级数学下册(教案):6.3实数
一、教学内容
人教版七年级数学下册(教案):6.3实数
1.实数的定义与分类
-有理数与无理数的概念
-实数的性质与分类
2.无理数的理解
-无理数的概念及特点
-常见无理数(如π、e等)的认识
3.实数的运算
-实数的加减乘除
-实数的乘方与开方
4.实数与数轴的关系
-实数在数轴上的表示
1.理论介绍:首先,我们要了解实数的基本概念。实数包括有理数和无理数,是数学中ห้องสมุดไป่ตู้一种重要数集。它在解决生活中的实际问题中起着关键作用。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算圆的周长时,我们需要使用π这个无理数,这就是实数在实际中的应用。
3.重点难点解析:在讲授过程中,我会特别强调实数的分类和实数的运算这两个重点。对于难点部分,比如无理数的运算,我会通过举例和比较来帮助大家理解。
在总结回顾环节,我强调了实数知识在日常生活中的应用,希望学生们能够学以致用。但从教学反思来看,我还需要在以下几个方面进行改进:
1.加强对无理数运算的教学,通过更多实例和练习,让学生熟练掌握运算规律。
2.在实践活动中,增加学生对实数运算的实际操作,提高他们的动手能力。
3.针对学生在讨论中暴露出的问题,有针对性地进行教学指导,帮助他们消除误区。
(1)无理数的理解:无理数的概念较为抽象,学生难以理解。
-无理数的表示:如根号2、π等,学生需要理解无理数是无限不循环小数。
-无理数的性质:如无理数的乘方和开方运算,举例说明。
(2)实数的运算:尤其是涉及无理数的运算,学生容易出错。

七年级下册数学人教版 第6章 实数6.3 实数【教案】

七年级下册数学人教版 第6章  实数6.3  实数【教案】

实数及其性质一、学生起点分析实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。

二、教学任务分析本节是义务教育课程标准七年级下册第六章《实数》的第三节。

主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义。

在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。

中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。

本节课的教学目标是:1.了解实数的意义,能对实数按要求进行分类;2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。

5.了解数系扩展对人类认识发展的必要性;教学重点1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:课堂练习;第六环节:归纳小结;第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。

效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。

通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。

人教版七年级下册 第六章实数 6.3实数(1) 学案 导学案

人教版七年级下册 第六章实数 6.3实数(1) 学案 导学案

第六章实数6.3实数(1)学案学习目标理解无理数和实数概念,学习重点掌握实数与数轴上的点的一一对应关系学习难点熟练运用无理数与有理数的性质一、 新知探究1.所有的数都可以写成有限小数或无限循环小数的形式吗? ......414.12= ;......14159265.3=π;1.010010001…(两个1之间依次多一个0)2.新知:无限不循环小数叫无理数。

归纳:①②③注意:带根号的数不一定是无理数有理数和无理数统称实数。

3.实数的分类:① 按定义分:有理数 0 有限小数或 无限循环小数实数正无理数无理数 负无理数②按大小分:实数负无理数是负无理数—是正无理数,如:373二、范例学习巩固练习巩固练习:13.142,,38-, 32, 0.3737737773, 0,2π0.205, 7-, 15--().有理数有( ) 无理数有( ) 正实数有( ) 负实数有( )三、巩固练习观察思考在实数范围内研究相反数、倒数、绝对值1.13的相反数是()倒数()是绝对值是()2.2-的相反数是()倒数()是绝对值是()3. a是一个实数,它的相反数是()绝对值是()如果0a≠,则它的倒数是()一个正实数的绝对值是(它本身)一个负实数的绝对值是(它的相反数)0的绝对值是 (0)巩固练习求下列各数的相反数、倒数、绝对值:33(1)7 (2) 5 (3) (4)27π+(5)3π-31(6)10-评价反思总结本节课主要学习内容:1.通过实际问题,使学生认识到数的扩充的必要性.2.掌握无理数、实数的定义,能对实数按要求进行分类.3. 会用所学定义正确判断所给数的属性.4.了解实数范围内,相反数、倒数、绝对值的意义.四、课堂小结课堂小结这节课我们学习了什么?1无理数:无限不循环小数。

2实数的分类:定义法和大小法。

3实数与数轴的关系:一一对应。

七年级数学下册第六章实数6.3实数教案(新版)新人教版

七年级数学下册第六章实数6.3实数教案(新版)新人教版

6.3 实数(第1课时)教学目标1.了解无理数和实数的概念.2.知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应.3.了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化. 教学重点实数的运算.教学难点实数的运算教学内容一、导入新课使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3,-53,847,119,911,95. 二、新课教学我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即3=3.0;-53=-0.6;847=5.875;119=0.81;911=1.2;95=0.5. 归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.无限不循环小数又叫无理数,π=3.1415926…也是无理数;有理数和无理数统称为实数.由于非0有理数和无理数都有正负之分,实数也有正负之分,所以实数还可以按大小分类如下:探究:如下图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?从图中可以看出,OO′的长是这个圆的周长π,所以点O′的对应数是π.这样,无理数π可以用数轴上的点表示出来.事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.数a的相反数是-a,这里a表示任意一个实数.一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0.三、课堂练习四、课堂小结1.什么叫做无理数?2.什么叫做有理数?3.有理数和数轴上的点一一对应吗?4.无理数和数轴上的点一一对应吗?5.实数和数轴上的点一一对应吗?五、布置作业教学反思:6.3 实数(第2课时)教学内容实数的运算.一、导入新课1. 用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律.2. 用字母表示有理数的加法交换律和结合律.3. 平方差公式、完全平方公式.4. 有理数的混合运算顺序.复习以前知识,导入新课的教学.二、实例探究1. 思考:(1)2的相反数是,-π的相反数是,0的相反数是 .(2)2=,-π=,0= .数A的相反数是-a,这里A表示任意一个实数.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设A表示一个实数,则2. 例题例1 (1)分别写出-6,π-3.14的相反数;(2)指出-5,1-33各是什么数的相反数;-的绝对值;(3)求364(4)已知一个数的绝对值是3,求这个数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算. 在进行实数的运算时,有理数的运算法则及运算性质等同样适用.例2 计算下列各式的值:(1);3+(2)33+23.(-2)2在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似的有限小数去代替无理数,再进行计算.三、课堂小结1. 实数的运算法则及运算律;2. 实数的相反数和绝对值的意义.四、布置作业教学反思:。

新人教版七年级下册第六章6.3《实数》教案

新人教版七年级下册第六章6.3《实数》教案

《实数》教学设计一、学习目标1、了解无理数、实数的概念和分类,知道实数和数轴上的点一一对应,能估算无理数的大小。

2、了解实数的运算法则及运算律,准确地进行实数范围内的运算。

二、新课导入1的平方根是 __,算术平方根是 .2、一个数的立方根等于它本身,这个数是 .3、 2.078=0.2708=,则y =( )A.0.8966 B.0.008966C.89.66 D.0.00008966三、自主学习认真阅读课本第53页至第54页的内容。

Ⅰ、完成下面练习,并体验知识点的形成过程。

1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3=______,25=______,35-=______, 427=______,119 =______,911=______。

我们发现,上面的有理数都可以写成________ 或者 的形式。

归纳 事实上,任何一个 都可以写成有限小数或无限循环小数的形式。

反过来, 任何__________________________也都是有理数。

观察 我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫做 _ __。

例如 , , , 等都是 ____ 。

3.14159265π=也是 。

结论 有理数和无理数统称为 。

试一试 我们学过的数可以这样分类:{实数像有理数一样,无理数也有正负之分。

,π是,,π-是。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:{四、合作探究从课本图6.3-1中可以看出OO'的长是,所以O'对应的数是.总结(1)每个有理数都可以用数轴上的点来表示。

事实上,每一个也都可以用数轴上的表示出来。

这就是说,数轴上的点有些表示数,有些表示数。

(2)当从有理数扩充到实数以后,实数与数轴上的点就是___ 的,即每一个实数都可以用数轴上的_来表示;反过来,数轴上的每一个点都是表示一个。

(3)与有理数一样,对于数轴上的任意两个点,边的点所表示的实数总比_ 边的点表示的实数。

6.3实数-初中七年级下册数学教案(人教版)

6.3实数-初中七年级下册数学教案(人教版)
6.解决实际问题:运用实数解决生活中的问题。
二、核心素养目标
1.培养学生运用实数进行问题分析和解决的能力,提高数学运算素养;
2.通过实数的性质和运算,培养学生逻辑推理和数学抽象素养;
3.引导学生运用数轴辅助实数学习,提升几何直观和空间想象素养;
4.培养学生将实数与实际生活相结合的意识,提高数学在实际问题中的应用素养;
学生小组讨论部分,大家围绕实数在实际生活中的应用展开了热烈的讨论。我作为引导者,尽量提出一些开放性的问题,激发学生的思考。从成果分享来看,学生们对实数的理解和应用有了更深刻的认识。
然而,我也注意到在教学中存在一些问题。首先,实数运算的难点部分,部分学生仍然容易混淆运算规则,需要我在课后进行个别辅导。其次,在课堂总结环节,我觉得可以更加注重学生对知识点的归纳和总结,提高他们的自主学习能力。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了实数的基本概念、分类、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对实数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现实数这一章节对于学生来说既有挑战性也有趣味性。在导入环节,通过日常生活中的例子引起学生的兴趣,他们对于无法用分数表示的数感到很好奇,这为接下来的教学奠定了良好的基础。
-突破方法:通过实际例题,如计算房屋面积、制作物品时材料的比例计算等,让学生了解实数在解决实际问题中的应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《6.3实数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数的情况?”(如圆周率π)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索实数的奥秘。

【配套K12]七年级数学下册 6.3 实数教案 (新版)新人教版

【配套K12]七年级数学下册 6.3 实数教案 (新版)新人教版

课题:6.3 实数教学目标:1.了解无理数和实数的概念.2.知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想.3.会求实数的相反数与绝对值,会对实数进行简单的运算.重点:1.了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系.2.知道有理数的运算律和运算性质同样适合于实数的运算,并会进行简单的运算.难点:1.对无理数的认识.2.认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充。

教学流程:一、情境引入问题1:有理数包括整数和分数,你能将下列分数写成小数的形式吗?你能将整数写成小数的形式吗?3,5327119 254911-,,,,.解:52.52=,30.6,5-=-276.754=,111.29=,90.8111=,3=3.0问题2:你有什么发现?问题3:我们学过的数是否都可以化为有限小数或无限循环小数吗?请举例说明.1.414321; 2.236067-= 1.259921=;1.442249=-;π 3.14159265=;00000000001.1111⋅⋅⋅⋅⋅⋅(两个1之间依次多一个0)概念:无限不循环小数叫无理数.无理数三种形态:开方开不尽的数;含有π的数;有规律但不循环的数无理数分为:正无理数;负无理数二、探究1归纳:有理数和无理数统称实数.按定义分类:0⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 按大小分类:⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数 正实数 正无理数实数 负有理数 负实数 负无理数 练习1:把下列各数分别填入相应的集合内:15,42π-答案:三、探究2问题1:我们知道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?追问1:直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ,点O ' 对应的数是多少?答案:π追问2:为什么?回顾:能否用两个面积为1 dm2的小正方形拼成一个面积为2 dm2的大正方形?小正方形对角线的长为______dm.问题2:和的点吗?追问:以单位长度为边长画一个正方形,以原点为圆心,正方形对角线为半径画弧,与正半轴的交点表示什么?与负半轴的交点表示什么?,与负半轴的交点表示.强调:(1)每一个无理数都可以用数轴上的一个点表示出来.(2)实数与数轴上的点是一一对应的关系.(3)数轴上的任意两个点,右边的点表示的实数总比左边的点表示的实数大.练习2:1.判断正误,并说明理由.(1)无理数都是无限小数; ( )(2)实数包括正实数、0、负实数; ( )(3)不带根号的数都是有理数; ( )(4)所有有理数都可以用数轴上的点表示,反过来,数轴上所有的点都表示有理数. ( )(5)实数不是有理数就是无理数。

七年级数学下册 6.3 实数教案1 (新版)新人教版 (3)

七年级数学下册 6.3 实数教案1 (新版)新人教版 (3)
数a的相反数是-a
一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
随着数从有理数扩充到实数,原来在有理数范围里讨论的相反数、绝对值等,自然地拓展到实数范围内。
练一练
例1 求下列各数的相反数和绝对值:
2.5,-,,0,,-3
例2 一个数的绝对值是,求这个数。
例3 求下列各式的实数x:
负分数集合{ …}
正数集合{ …}
负数集合{ …}
有理数集合{ …}
无理数集合{ …}
给出无理数定义后,请学生自己找找无理数,让学生在寻找的过程中,体会无理数的基本特征.
应该让学生自己小结得出结论:判断一个数是有理数还是
无理数,应该从它们的定义去辩别,而不能从形式上去分辩.
学生自己尝试画出实数的分类图,体会依据分类标准的不
(1)|x|=|-|;
(2)求满足x≤4的整数x
教学中应该给学生充分发表自己想法的时间,自己体会有理数关于相反数和绝对值的意义同样适用于实数。
小结与作业
布置作业
必做:课本第178页习题10.3第1、2、3题;
选做:课本第179页习题10.3第7题
本课教育评注(课堂设计理念,实际教学效果及改进设想)
波利亚认为,“头脑不活动起来,是很难学到什么东西的,也肯定学不到更多的东西”“学东西的最好途径是亲自去发现它”“学生在学习中寻求欢乐”.在本节课的教学设计中注意从学生的认知水平和亲身感受出发,创设学习情境,提高学生学习数学的积极性和学习兴趣,设计系列活动让学生经历不同的学习过程.在活动过程中让学生动手试一试,说说自己的发现并与同学交流结论,在交流中尝试得出结论:任何一个有理数都可以写成有限小数或无限循环小数的形式.进一步地提出问题:任何一个有限小数或无限循环小数都能化成分数吗?引入了无理数和实数的概念后要求学生对所学过的数按照一定的标准进行分类.分类思想是解决数学问题的常用的思想,在教学过程中,教师应该创造条件,让学生体会分类标准与分类结果之间的关系.本课提出的问题“你能尝试着找出三个无理数来吗?”具有较大的开放性,给学生提供了思维空间,能促使学生积极主动地参与到数学学习过程中,亲自体验知识的形成过程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3 实数
班级: 姓名:
学习目标:1.了解无理数和实数的概念,能按要求对实数进行分类。

2.了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。

进一步
领会数形结合的思想。

3.会求实数的相反数和绝对值。

4.学会比较两个实数的大小,能熟练地进行实数运算。

学习重点:能按要求对实数进行分类。

熟练地进行实数运算。

学习难点:用数轴上的点来表示无理数。

熟练地进行实数运算。

一、 复习回顾,引入新课:
把下列各数写成小数的形式,你有什么发现?
二、自主学习,合作探究
(一)什么叫实数?如何分类?
1.什么叫无理数?
在前面我们学习了求一个数的平方根和立方根时,有些数的平方根或立方根是无限不循环小数,如:333252,,
,-…都是无理数,π=3.14159265…也是无理数。

我们把无限不循环小数叫做无理数。

小结:我们目前学习的无理数有下面三种形式
① 开方开不尽的数,如:2,325,7-,…
② 圆周率π,它是无限不循环小数
③ 类似0.1010010001…(每两个1之间依次多1个1)
(二):数轴上的点与什么数成一一对应?
实验:
1.将一个直径为1个单位的圆在数轴上滚动一周,圆上的点由原点到达O',点O'的对应点

思考:
上面的实验说明: 。

2
、以一个单位长度为边画一个正方形,以原点为圆心,正方形的对角线为半径画弧,弧
95,9011,119,847,53,3-
与数轴的交点表示: 、 。

2- 2
上面的实验说明: 数可以用数轴上的点表示出来。

也就是说数轴上的点有的表
示: 、有的表示: 。

归纳:数轴上的点与 数成一 一对应。

(三)怎样求实数的相反数和绝对值?
在数轴上一个实数的绝对值是表示这个数的点到 的距离:两个互为相反数的实
数就是表示这两个数的点一个在 ,一个在 ,它们到原点的距离 。

(1) 相反数:
π的相反数是 ,2-的相反数是 ,0的相反数是 。

小结:实数a 的相反数是 。

(2) 绝对值:
5-= ,π= , 0= ,37-= ,
小结:一个正实数的绝对值 ,一个负实数的绝对值是 ,0的绝对值
是 。

(四)实数的运算
① 从高到低:先算 ,再算 ,最后算 ;
②同级运算,按照 的顺序进行;
③从大大小:如果有括号,先算 里的,再算 里的,
最后算 里的.
三、释疑解惑 巩固练习
1.实数的定义: 和 统称实数。

2.实数的分类
(1)按定义分: (2)按性质分:
⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---无限不循环小数数有限小数或无限循环小,,如:如:整数实数____________________________321______
3,2,1______ ⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数正有理数正实数实数_____________0_______ 3.计算:
(1) 2
)23(-
+
小结:实数运算中,有理数的运算法则及运算性质等同样适用。

4计算(结果保留小数点后两位)
(1)π+5 (2)32∙
注意:计算过程中要多保留一位!
四、总结归纳 ,反思提升
【课堂小结】:本节课你有什么收获?
【课后反思】本节课我最大的收获是
我还存在的疑惑是
我对学案的建议是
【学习评价】
学案答案:
一、任何一个有理数都可以写成有限小数或无限循环小数。

反过来,任何有限小数或无限循环小数也都是有理数。

二、略
三、
3、
4、。

相关文档
最新文档