轴流风机典型异常判断处理
静叶可调轴流风机出力异常原因分析及处理措施
静叶可调轴流风机出力异常原因分析及处理措施张宝武【摘要】内蒙古大唐国际托克托发电有限责任公司呼热电工程300 MW机组B引风机静叶可调轴流风机在运行中突然出现出力异常现象,静叶开度增大,电机电流远低于正常值,引风机出口压力降低,影响机组带负荷能力.通过对机组运行曲线的分析,结合现场检查,确认原因为引风机入口静叶片损坏.因此对静叶片进行更换,静叶片顶部增加转动轴,校正变形的静叶片.并建议增加静叶片根部强度,在静叶片顶部加装限位装置,利用停机机会检查静叶片状态及运行情况,以保证轴流风机安全稳定运行.【期刊名称】《内蒙古电力技术》【年(卷),期】2013(031)004【总页数】5页(P118-122)【关键词】静叶可调轴流风机;引风机出力;静叶片;静叶开度;转动轴【作者】张宝武【作者单位】内蒙古大唐国际托克托发电有限责任公司,内蒙古托克托010206【正文语种】中文【中图分类】TM621.7内蒙古大唐国际托克托发电有限责任公司呼热电工程为2台300 MW机组,锅炉型号为HG-1025/17.6-YM26,引风机为成都电力机械厂生产的AN25e6型静叶可调轴流式风机,设计风量267.4m3/s,风压6.039 kPa,允许介质温度114℃,风机转速980 r/min,电机功率2400 kW。
AN25e6型静叶可调轴流式风机主要由电机、联轴器、中间轴、叶轮、导叶、静叶挡板、中心筒、机壳、出入口软连接、出入口挡板门和冷却风机等组成。
引风机的作用是将烟气流引出布袋除尘器排至烟囱,其原理是叶轮转动将烟气带入入口集箱,经扩散器排放至出口烟道。
引风机入口和出口的风量调整通过调节引风机入口静叶的角度来实现,入口静叶的行程范围为-75°~30°。
静叶装置安装在叶轮的入口集箱侧,有24个可调径向静叶片。
每一个静叶片的根部都装有输入轴,输入轴插入推力轴承内,推力轴承座固定在机壳上;每一输出轴通过铰接组件连接至控制环上,控制环又连接至执行器上,执行机构通过DCS进行远程控制。
火电厂轴流风机机械故障原因分析及处理措施
摘要火力发电目前仍然是我国发电行业的基础,但在火力发电的过程中,由于其系统复杂,设备耦合紧密以及设备在高温、高压、高速转动的状态下运行,火电厂设备的故障率一直处于较高的状态。
因此分析火电厂设备故障诊断可以有效的为电厂减少故障的发生和损失。
轴流风机作为火电厂中广泛使用的引风机,具有很高的研究价值,因此文章针对火电厂中的轴流式引风机进行故障诊断研究。
关键词:故障诊断,轴流风机,动叶1 引言大型发电企业的设备和系统十分复杂,并且非常关键,需要监测的参数很多。
这些参数的变化比较频繁,参数之间的耦合性比较强,从单个参数的变化很难第一时间分辨出设备运行状态是否异常,而很多第三方的分析工具又要求很强的专业性,这无疑给机组的稳定运行及设备状态和性能分析等工作带来了很大的困难。
设备检修和维护质量不良所可能引发的电厂非计划停运带来的电量损失、设备修复费用、燃油消耗、设备使用寿命损耗等都会给企业造成经济上的巨大损失。
2 轴流式引风机分析及故障整理轴流风机主要由叶轮、机壳、电动机等零部件组成,支架采用型钢与机壳风筒连接。
当叶轮旋转时,气体从进风口轴向进入叶轮,受到叶轮上叶片的推挤而使气体的能量升高,然后流入导叶。
导叶将偏转气流变为轴向流动,同时将气体导入扩压管,进一步将气体动能转换为压力能,最后引入工作管路。
轴流式风机叶片的工作方式与飞机的机翼类似。
但是,后者是将升力向上作用于机翼上并支撑飞机的重量,而轴流式风机则固定位置并使空气移动。
轴流式风机的横截面一般为翼剖面。
叶片可以固定位置,也可以围绕其纵轴旋转。
叶片与气流的角度或者叶片间距可以不可调或可调。
改变叶片角度或间距是轴流式风机的主要优势之一。
小叶片间距角度产生较低的流量,而增加间距则可产生较高的流量。
先进的轴流式风机能够在风机运转时改变叶片间距(这与直升机旋翼颇为相似),从而相应地改变流量。
这称为动叶可调(VP)轴流式风机。
动叶可调轴流式引风机一般包括进气箱、机壳、转子、扩压器、联轴器及其保护罩、调节装置及执行机构、液压及润滑供油装置和测量仪表、风机出口膨胀节、进口配对法兰、出口配对法兰。
轴流风机喘振故障原因分析及对策
风机压力升高/ a P
电 机 功率 / w k
主轴转速/ r・ i ) ( rn a
20 09年 4月 1 日 2 :0 风 机 出现 异 常轰 鸣 6 12 ,
声, 持续一段 时 间后 声 音变 轻 ; 至 1 直 7日 0 1 , :0 风
面 的流动 工况则 开始恶 化 , 界层受 到破坏 , 叶 边 在
少, 或风机动叶开度增大 , 都会使进 入风机叶轮
流道 的气 流 冲 角 增 大 。当 冲角 Ⅸ超 过 临 界 值 时, 风机 产 生 “ 转 失 速 ” 象 , 片 流 道 阻 塞 , 旋 现 叶
流动阻力增大 , 风机输 出的压能大 为降低 , 口 出
作者简介 : 文兵 , 16 俞 男,9 6年 出生,97年毕业 于上 海石 油 18 化工高等 专科 学校化 纤机械专业 , 高级工程 师, 长期从 事石
油 化 工 设 备 管理 工作 。
石 油 化 工 技 术 与 经 济
T c n l g & E o o c n P t c e c l e h oo y c n mi si er h mi as o
摘 要 : 详 细描述 了动叶可调轴流风机喘振故障 的发生机理 , 分析 了电厂脱硫增压风机 喘振 故障原因 , 认
为故障的发生是由于风机后系统 阻力增加使 管路特性 曲线变 陡, 使风机工 作点落入非 稳定工况 区所致 , 提
出 了改善后系统管路阻力的针对性措施 。 关键词 : 喘振 故障 原因 对策
机 厂有 限 公 司 制 造 ,0 7年 1 20 0月 投 入 运 行 。用
于稳定 , 来 自动调 节 至 开 度 7 % 。事 后 检查 仪 后 3 表, 确认风机声 音异常系喘振报警 。 4月 1 8日 90 , 机 烟 气 旁路 挡 板 开 , 对 :0 风 核
轴流风机动调机构典型故障分析及处理 刘恩生
轴流风机动调机构典型故障分析及处理刘恩生摘要:风机运行的可靠性直接影响着机组的安全稳定运行。
据不完全统计,风机故障造成的机组降出力超过锅炉辅机故障总数的约1/2,风机液压缸作为动调轴流式风机的核心部件,结构复杂,故障点多,维护检修程序复杂。
本文对动调机构调节原理作了简要介绍,对部分典型故障进行了分析,提出了检修关键控制点和应对措施。
关键词:火电厂;轴流式;动调机构引言作为发电厂主要辅机,送、引风机和一次风机如发生故障,会直接引起锅炉负压的大幅波动,严重威胁机组的安全运行。
由于安装、维护、运行调整等各方面因素的影响,风机故障率居高不下,成为锅炉辅机可靠性下降的主要影响因素。
目前,国内大容量等级机组的送风机一次风机大多数采用了动叶可调轴流风机。
动叶可调轴流风机与静叶可调轴流风机相比,具有调节范围广、效率高、体积小、重量轻等优点。
动叶可调轴流风机由电动执行器直接调节液压调节装置即液压缸,进而调节动叶片角度,改变风机风压、风量。
静叶可调风机由电动执行器直接调节风机进口导叶角度,从而达到改变风压、风量的目的。
1.动叶调节原理:风机液压调节系统可以实现对叶片安装角的调节和自锁功能。
动调机构主要通过风机电动执行机构带动风机液压缸伺服机构控制液压缸进油和回油,从而控制液压缸缸体进行往复运动,通过传动系统控制叶片开度。
液压缸的调节是通过调节供油装置中的滑阀的位置,打开不同进油口实现的。
在平衡状态下,液压缸左右腔的进油及回油管路都切断,润滑油路开启,液压缸不动作。
当叶片需要开的时候,执行机构使调节阀体向左移动,这时右腔油路与进油口联通,左腔油路与回油口接通,右腔膨胀,面积变大,由于缸体是固定的,活塞就向左移动,由于阀芯与活塞是一体的,所以阀芯也向左移动,从而使调节阀阀芯和阀体的位置到平衡位置。
当叶片需要关的时候,执行机构使调节阀体向右移动,这时左腔油路与进油口联通,右腔油路与回油口接通,左腔膨胀,活塞向右移动,带动阀芯也向右移动,从而使阀芯与阀体回到平衡的位置。
动叶可调式轴流风机故障原因分析及处理
动叶可调式轴流风机故障原因分析及处理发布时间:2021-05-25T04:05:32.829Z 来源:《中国电业》(发电)》2021年第3期作者:常凌尧[导读] 动叶可调式轴流风机在运行过程中,可根据机组负荷需要改变叶片角度调节风量,具有良好的调节性能。
通淮沪煤电有限公司田集发电厂安徽淮南 232082摘要:动叶可调式轴流风机在运行过程中,可根据机组负荷需要改变叶片角度调节风量,具有良好的调节性能。
通过对风机转子及动叶调节装置故障原因分析,提出处理方法并实施,实施后保证风机正常运行,提高风机的安全性、可靠性、稳定性和经济性。
关键词:液压缸;卡涩;叶片密封;密封风机1设备概况某发电厂的2×700MW超超临界机组锅炉由上海锅炉厂有限公司设计制造,锅炉为超超临界参数变压运行螺旋管圈直流炉,一次中间再热,喷燃器采用四角切圆方式、平衡通风、Π型露天布置,全钢架悬吊结构,固态排渣。
风烟系统采用两台上海鼓风机厂生产的SAF30.5-16-2型动叶可调轴流式引风机,两台PAF18-12.5-2动叶可调轴流式一次风机及两台豪顿华工程有限生产的ANN2660/1400N型动叶可调轴流式送风机,主要为锅炉燃料燃烧提供所需的空气和引出燃烧后的烟气。
2故障及其原因分析该发电厂在2014年投产后三年内先后发生两次动叶卡涩失调事件、五次液压缸损坏叶片开度失调事件及一次风机转子轴承箱振动事件,通过现场解体检查、分析论证,外出调研后总结原因如下: 2.1动叶片失调故障原因引起风机叶片卡涩失调主要原因有以下几点:1)风机叶片根部与轮毂之间密封结构不合理,叶片根部弹性密封片在风机运行一段时间后通常会因磨损而产生间隙失去密封作用导致大量粉尘、水汽渗入,致使叶柄轴承油脂损坏失效,极大的减弱了叶片转动灵活度,易出现叶片卡涩、叶片开启角度不一致等问题。
2)叶柄衬套材质使用不当易腐蚀磨损,黄铜材质的叶柄衬套因叶片密封失效,大量水汽、粉尘进入后衬套表面产生大量铜锈腐蚀磨损工作面与粉尘混合后结垢严重,降低叶片转动灵活性。
轴流式一次风机动叶故障分析及其预防处理措施
5、待负荷下降至150MW左右,准备停运1A一次风机前手动开大#1B一次风机动叶,与副值保持联系,注意汽包水位。(汽包水位因1A一次风机停运后炉膛燃烧减弱会迅速下降,之后因1B一次风机出力炉膛燃烧增加水位会上升,通过曲线看出#1B一次风机出风后水位的上升很快,因此在手动增大#1B一次风机动叶时不到大幅度增大,防止水位上升太多),提高凝结水压力设定值,防止备用凝泵自启。
CRT上停运一次风机后,立刻增大1B一次风机动叶开度,保证一次风压正常(必要时就地手动关严#1A一次风机出口电动挡板),维持炉膛燃烧稳定。控制汽包水位正常。
6、待汽包水位,负荷、主汽压力、一次风压力稳定后,做好相应安措,联系检修处理。
若在以上操作过程中,在停1A一次风机前,1A一次风机应“过电流保护动作”跳闸,应立刻增大1B一次风机动叶开度(注意#1B一次风机参数如振动,电流、温度上升速度等)维持燃烧稳定,注意控制汽包水位。同时RB动作后要及时将减温水调节阀开启,防止超温。
异常现象及处理经过:
事件回顾分析:
(1)1月3日,#1A一次风机动叶执行机构曲柄脱落,与电动执行机构分离,就地动叶输出轴已开至最大,因此导致#1A一次风机电流上升至166A,最大时达到185A;1A一次风机跳闸,一次风机RB动作,负荷降至144MW左右各参数相对稳定后复位一次风机RB,后负荷稳定在165MW左右。
3结论
2、液压缸反馈原理
当液压缸向右移动时,定位轴被带动同时向右移动。但由于滑块不动,单面齿条向左移动。这样又使伺服阀将油道兰色与红色油道的油孔关闭,液压油缸随之处在新的平衡位置不再移动。而动叶片亦在关小的状态下工作,这就是反馈过程。在反馈时齿轮带动指示轴旋转,将动叶片关小的角度显示出来。
大型轴流风机各类振动原因分析及处理措施
大型轴流风机各类振动原因分析及处理措施轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步取代离心风机成为主流。
轴流风机有动叶和静叶2种调节方式。
动叶可调轴流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于送风机及一次风机。
静叶可调轴流风机通过改变流通面积和入口气流导向的方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以一般用于工作环境恶劣的引风机。
随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴露,这些问题在离心式风机上则不存在或不常见。
本文通过总结各种轴流风机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析。
1、动叶调节结构导致振动动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示。
动叶调节结构对振动的影响主要分单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本身偏心3个方面。
1.1单级叶轮部分叶片开度不同步单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。
这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动。
单级叶轮部分叶片开度不同步引起的振动主要特点如下。
1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲击,使振动频谱中出现工频高次谐波成分,这在振速频谱中表现得相对明显一些,在位移频谱中几乎观察不到。
轴流式引风机运行异常分析及防范措施
轴流式引风机运行异常分析及防范措施发布时间:2022-07-22T05:21:13.585Z 来源:《中国电业与能源》2022年5期3月作者:李金龙王浩南[导读] 成都风机厂制造的双级动叶可调轴流式风机,主要由进气室、集流器、两级叶轮、叶片、李金龙王浩南浙江浙能乐清发电有限责任公司 325609摘要:成都风机厂制造的双级动叶可调轴流式风机,主要由进气室、集流器、两级叶轮、叶片、扩压器、动叶调节机构等部件构成。
运行中出现协调同步调节过程中频繁出现电流偏差大现象,最大时超过30A,引起引风机自动撤出。
本文简述解决方法及防范措施,以供参考。
关键词:引风机;风机同步;转动机械动平衡引言自2021年5月7日起,我厂4号炉在600MW以上高负荷时,两台引风机调节过程中频繁出现电流偏差大现象,最大时超过30A,引起引风机自动撤出;在600MW以下低负荷时,两台引风机电流无偏差,但动叶偏差随着负荷的降低逐渐增大(最大偏差超过20%),其中4B引风机动叶最低至14%(350MW时),轴承温度逐渐升高至报警值(最高至73℃),风机水平和垂直振动均有上升。
4B引风机运行声音较4A引风机偏低沉。
一、事故经过典型工况1:5月7日18:27,#4机组负荷640MW,炉膛负压-0.2kPa,4A引风机电流385A,动叶开度56%,4B引风机电流406A,动叶开度50%,引风机电流偏差大报警,两台引风机动叶偏差有偏大趋势。
18:31,#4机组负荷634MW,炉膛负荷-0.06kPa,4A引风机电流410A,动叶开度60%,4B引风机电流398A,动叶开度51%。
本班陆续发生6次类似的引风机电流偏差大现象。
相比4B引风机, 4A引风机电流波动较大。
典型工况2:5月13日10:38,#4机组负荷由660MW减至350MW,4A引风机电流 237.29A,动叶开度34.22%,4B引风机电流240.24A,动叶开度14.05%。
引风机轴承温度上升最高达 73.3℃,引风机轴承水平和垂直振动较满负荷时也均有上升,其中水平振动达 2.1mm/s,垂直振动达1.4mm/s。
电厂动调轴流风机常见问题的分析及处理措施 张晟
电厂动调轴流风机常见问题的分析及处理措施张晟发表时间:2019-06-03T15:29:25.067Z 来源:《电力设备》2019年第2期作者:张晟[导读] 摘要:随着社会经济的发展,我国对电能的需求有了很大进展,电厂建设越来越多。
(华电集团山东分公司十里泉电厂山东枣庄 277100)摘要:随着社会经济的发展,我国对电能的需求有了很大进展,电厂建设越来越多。
本文对电厂动调轴流风机在运行中易出现的主要问题及其有效处理措施进行分析概述,使现实中风机的检修人员能够及时解决故障,尽可能减少电厂损失。
关键词:轴流风机;常见问题;故障;分析;措施轴流风机的效率曲线近似呈现椭圆面,风机运行的高效区域范围大。
动叶可调式轴流风机在运行中可以通过改变叶片的角度来调节风机的性能与出力,运行控制方便,风机节能效果好,建设成本低。
在大型火力发电厂中,动叶可调风机得到了广泛应用。
动叶可调轴流风机有一套液压调节系统,包括动叶调节组件、液压缸、风机传动臂、电动执行机构、液压油系统等附属设备,结构比较复杂。
1电厂动调轴流风机常见故障1.1叶轮部常见问题及处理措施①叶片发生漂移,相邻叶片不同步:由于调节杆螺钉和叶柄拧紧力矩不到位,导致无法锁死而使叶片漂移,可以通过适当增加螺栓扭矩加以紧固解决;②叶片磨损:引风机前接的除尘装置效果差会造成叶片不规则磨损而导致叶轮的不平衡,提高除尘器的除尘效果及在叶片表面喷涂特殊材料的涂层以提高叶片耐磨性能,可有效改善叶片的磨损情况;③叶片产生裂纹或断裂:铝叶片的叶轮在运转过程中如有杂物进入,即使是一个小螺钉,叶片也会在杂物的冲击下产生裂纹或发生断裂乃至更严重的安全事故,因此在风机运行过程应避免有任何杂物进入的可能;钢叶片产生裂纹主要与选材的材质、下料的方式及其选择的翼型有关;④滑块磨损:滑块材料偏软或推盘光洁度不够易使滑块磨损而造成风机振动大,可以通过提高滑块材质硬度和推盘的光洁度来改善;⑤叶片卡涩:叶柄轴承中润滑油脂加量不够易使滚珠烧坏而使轴承损坏造成叶柄发生卡涩现象,同时,若轴承内外套、滚珠有裂纹、斑纹、斑痕、磨蚀锈痕、过热变色和间隙超过标准时,应更换新轴承以保证叶片转动灵活。
大型轴流风机振动故障诊断及处理
大型轴流风机振动故障诊断及处理摘要:大型轴流风机振动故障的存在会影响到系统运行的稳定性,因此需要结合实际情况做好大型轴流风机振动故障的诊断,并且加强技术处理以此来保证系统运行的稳定性。
本文结合实际,对大型轴流风机振动故障的诊断方法以及处理内容进行探讨。
关键词:大型轴流风机;振动故障;诊断与处理引言经过对风机振动跳变前后所产生的不同振幅变化数据分析,获得频谱数据,从而了解到不同振幅作用之下的频谱状态,发现在不足300Hz的情况下发生了比较多的线性与非线性的谐波,同时发展振动跳变前后出现振动复制较小时,相应频率范围内的谐波数量与幅值相对较小,振动幅值跳变会存在不稳定、摩擦的外力影响,结合风机的内部组成特点,了解目前风机出现振动跳变故障的范围,以分析目前的振动跳变故障问题。
1概述某企业中采购的1000MW发电机组中安装了二级动叶可调轴流风机,其额定流量183m3/s、出口静压20949Pa、额定转速1480r/min和轴功率4417kW。
在机组正式投入运营之后,其中一台风机振动跳变故障而造成风机不能稳定的运行,首先要进行转子动平衡校正、转子轴承箱返厂检修,并多次抢修处理,但是并不能从根本上消除振动跳变的故障问题,风机运行经过几个月。
经过对风机故障问题检查发现,其跳变故障主要是出现在动叶开度超过40%、风机动叶变化的条件下,风机振幅出现变化后,其振动幅度变化并不存在规律,然后就会自行下降到接近振动跳变故障之前的幅值。
在持续运行中,振动跳变故障更加严重,也会表现出阶梯变化趋势。
2风机振动测试方案与故障机理经过对轴流风机结构分析,其轴承处于风道上部,振动变化不能准确的测量,所以故障诊断的信号只能是在风机振动与测量保护的信号输出端口采集,利用设备进行风机振动变化的随时获取,通过大量的数据分析,得出两组振动幅值与频谱结构变化较大数据。
振动同频幅值回落后或者跳变发生的振动幅值频谱。
综合分析频谱的变化,在较高频谱条件下,300Hz以内频段存在较多的非线谐波,其密度高、低幅值线性多,并且产生的量比较大,经过振动作用而出现通频幅值更大。
轴流式风机失速原因分析及处理
轴流式风机失速原因分析及处理摘要:本文根据福州发电公司600 MW 机组一次风机失速现象, 分析了造成失因, 并通过对失速前后风机运行参数的分析比对, 提出了相应的预防和处理措施。
希望多我厂#3机吸风机失速处理提供参考。
关键词:轴流式风机; 一次风机; 失速; 叶轮; 叶片1 轴流风机的失速及其危害图1 为轴流风机的性能曲线, 它由失速界线分为两个区域。
在失速线的右下方为稳定运行区域, 在失速线的左上方为不稳定工作区域即失速区域。
当轴流式风机进入到不稳定区运行时, 在轴流风机叶轮的环形叶栅上将产生一个到数个失速区, 且这些失速区会沿着与叶轮旋转相反的方向在叶片间传递, 称为旋转失速。
失速是由于叶片吸力面发生了附面层分离( 脱流) ,使叶片产生的升力突减所致。
失速会造成流道的堵塞, 并使叶片前后的压力发生变化, 对轴流风机的安全运行是一个威胁。
在旋转失速情况下, 脱流区依次经过每个叶片, 叶片每遇一次失速就会受到一次激振力的作用, 从而使叶片受到交变力的作用, 叶片的动应力增加, 致使叶片发生疲劳损坏。
若此交变力的频率与叶片自振频率合拍, 则将使叶片产生共振, 造成叶片折断。
2 风机失速的原因( 1) 风机在一定的动叶角下运行, 如果由于某种原因, 母管风压突升, 风机流量下降, 这样在动叶角度还未发生变化之前, 压力迅速攀升, 以致于超出失速线而进入失速区运行。
对于并联运行的2 台风机, 如果其中一台动叶调节性能不好, 这台风机就有可能先失速。
( 2) 风机正常运行中流量异常降低、一次风压突升都可能导致风机失速。
在受到外部突发因素的影响下, 风机流量极可能落在风机特性曲线的驼峰段, 故极易发生风机失速。
( 3) 风机出口挡板销子脱落或断裂等原因导致其突然关闭或部分关闭, 动叶调节未能跟上压力的突变, 在压力波动及动叶自动调整过程中, 造成并列运行的其中一台风机失速。
( 4) 变负荷过程中由于调节失灵或误操作致使2 台风机风量、风压严重不平衡而失速。
轴流式一次风机异常失速分析及防范措施
轴流式一次风机异常失速分析及防范措施摘要:沈阳风机厂制造的双级动叶可调轴流式风机,主要由转子总装、轴承组、进气箱、主体风筒、中导风筒、扩散器、液压调节管路、自控调节系统、联轴器、挠性连接与底座、消声器等部件构成。
在运行过程中出现出力受限甚至失速的情况,影响机组安全稳定运行。
本文简述失速分析及防范措施,以供参考。
关键词:一次风机;风机失速;风量裕量引言轴流式一次风机并联运行时,在制粉系统管路压力扰动时,易造成开度较大侧一次风机进入不稳定区域,出现出力受限甚至失速的情况。
一次风机系统匹配性不佳,尤其是风机在高负荷运行时压力失速裕量偏低,风机存在着较大的失速风险。
因此为了保障一次风机的安全稳定运行,如何降低故障概率成为解决重点。
一、事故经过锅炉采用中速一次风正压直吹制粉系统,配有上海重型机械厂生产的HP1003型磨煤机六台,每台磨煤机的最大出力为66.5t/h,正常运行时五运一备。
锅炉一次风系统配备两台沈阳鼓风机(集团)有限公司生产的AST-1792/1120型动叶可调式轴流一次风机。
随着机组近年来掺烧经济适烧煤种,二期机组一次风机在运行过程中出现出力受限甚至失速的情况,影响机组安全稳定运行。
典型事例如下。
8月26日,#3机组协调投入,AGC、一次调频投入,负荷400MW,3A/3B/3C/3D/3F制粉系统运行,其中3C,3D制粉系统已开始燃用“托福11”印尼煤(低位发热量3811Kcal/kg,干燥无灰基挥发份51.49%,全水34.71%,属于极易自燃煤种),六大风机均正常运行,各辅机自动调节均在投入状态。
3A/3B一次风机电流121.9/121.5A,一次风母管压力9.03kPa,3A/3B引风机电流为230.5/233.14A,炉膛负压-0.16kPa,3B密封风机运行,密封风母管压力13.33kPa。
3C磨煤机给煤量35.5t/h、电流34.85A、一次风流量104.2t/h、一次风进出口风温279℃/65℃、一次风进、出口风压为5.70kPa/3.49kPa。
风机常见故障原因及其处理
风机常见故障原因及其处理【摘要】风机是由原动机械能转换成输送气体给予气体能量的机械。
它是火力发电厂中不可缺少的机械设备。
主要有送风机、一次风机、引风机、密封风机和排粉风机等。
风机一般分为两大类别:离心式风机和轴流式风机。
其中,离心式风机为气流从轴向进入,沿径向排出;轴流式风机为气流从轴向进入,沿轴向排出。
在此就围绕这两类风机在火力发电厂运行当中出现的故障与处理方法进行分析。
【关键词】风机;振动;高温;冷却0.前言在火电厂实际运行当中,特别是引风机由于所处条件较差,它的做功介质为烟气。
不论对风机磨损还是叶片结垢,都会给风机带来转子质量不均匀。
导致风机失去平衡产生轴承箱振动,轴承箱温度过高等现象。
风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动,严重影响风机的安全运行。
1.安装及引起原因首先要从安装谈起:要有一台运行良好的风机,必须前期安装要精益求精,转动机械只有在运行状态下才暴露安装中的缺陷和出现的故障。
在安装不达标就会给后期运行当中造成很大影响。
(1)安装前必须仔细翻阅图纸和风机使用说明书,了解风机结构和安装步骤,并做好必要的准备工作,检查基础表面是否有明显的裂缝和缺陷,基础的几何尺寸、地脚螺栓孔以及轴线是否与图纸相对应。
检查风机是否完好无损伤。
转子旋转方向是否与图纸相符,并要严格检查转子的焊缝是否有气孔,砂眼,裂纹等现象。
(2)轴承箱安装必须注意靠近电机端为径向止推轴承箱(固定端),另一端(膨胀端),以轴孔为基准找对主轴的水平度。
轴向水平偏差和横向水平偏差均为0.05mm以内。
两轴承的同心度在0.05mm以内,轴承箱各部内置间隙符合规范要求。
(3)特别要注意离心式风机有左右之分。
因为在电厂风机都是对称布置。
一般分左右旋转,其旋转方向应站在电机侧看风机的旋向。
相对的调节风门也有左右之分,判断调节门是否装反,有一点至关重要的就是调节门叶片处在几乎关闭位置时,气流的旋转方向应与叶轮处在旋转方向一致,否则会引起风机效率急剧下降,电机电流过大,会产生较大振动。
轴流风机及附属设施常见故障处理办法08
轴流风机通风系统常见故障处理手册目录一、风机主机系统常见故障及处理方法-第3页二、软启动常见故障及处理方法---------第4页三、PLC触摸屏界面恢复方法---------- 第10页四、注意事项----------------------------- 第13页2一、风机主机系统常见故障及处理方法3二、软启动常见故障及处理方法45789三、PLC触摸屏界面恢复方法界面英文翻译【F1】:Load Application装载应用程序;Source来源。
【F2】:Load Internal Storage装载内部存储器; Load加载,装载。
【F3】:Application Settings应用程序设定。
【F4】:Terminal Settings 终端设置。
【F5】:Delete Log files before Running删除起始记录运行文件。
【F7】:Rest 复位 ;Yes是。
【F8】:Exit 退出 ; Cancel清除 ;No不。
10二、PLC控制屏界面恢复方法:第1步按【F1】:Load Application装载应用程序。
第2步按【F2】:LoadInternal Storage装载内部存储器。
11第3步按【F7】:Yes确认第4步按【F2】:Run Application运行应用程序,运行后恢复正常界面。
下图(图5);12第5步画面就切换到了风机主画面可进行正常操作。
四、注意事项操作注意事项(1)PLC控制模块CPU显示BAT指示灯常亮,电池亏损需更换电池以防数据丢失。
注意:更换时不能断电。
(2)排风风机启动前需先检查在PLC触摸屏上找出故障的名称,再去排除故障,故障排除完后,在触摸屏的主画面上按(报警复位)按钮,故障复位;如果按下该按钮,还继续报警,那么说明故障还存在。
(3)进行主电机绝缘检测前中压柜必须断电,确保软启动柜及中压柜出线母排良好接地。
(4)确定紧急按键在正常操作位置。
电厂动调轴流风机常见问题的分析及处理措施
电厂动调轴流风机常见问题的分析及处理措施摘要:本文分析了电厂动调轴流风机常见故障,之后又对存在的问题进行了探讨,要特别注意风机的维护管理,避免风机出现故障,笔者根据自己的一些经验,展开叙述,希望给相关人士提供一些经验。
关键词:轴流风机;常见问题;故障;分析;措施一、电厂动调轴流风机常见故障电厂动调轴流风机一般由以下几部分组成:转子、进气箱、机壳、扩压器、中间轴、联轴器、膨胀节、电动机及液压润滑油站等。
其中转子部套包括轴承箱、叶轮及液压调节装置。
(一)叶轮部常见问题及处理措施(1)叶片发生漂移,相邻叶片不同步:由于调节杆螺钉和叶柄拧紧力矩不到位,导致无法锁死而使叶片漂移,可以通过适当增加螺栓扭矩加以紧固解决;(2)叶片磨损:引风机前接的除尘装置效果差会造成叶片不规则磨损而导致叶轮的不平衡,提高除尘器的除尘效果及在叶片表面喷涂特殊材料的涂层以提高叶片耐磨性能,可有效改善叶片的磨损情况;(3)叶片产生裂纹或断裂:铝叶片的叶轮在运转过程中如有杂物进入,即使是一个小螺钉,叶片也会在杂物的冲击下产生裂纹或发生断裂乃至更严重的安全事故,因此在风机运行过程应避免有任何杂物进入的可能;钢叶片产生裂纹主要与选材的材质、下料的方式及其选择的翼型有关;(4)滑块磨损:滑块材料偏软或推盘光洁度不够易使滑块磨损而造成风机振动大,可以通过提高滑块材质硬度和推盘的光洁度来改善;(5)叶片卡涩:叶柄轴承中润滑油脂加量不够易使滚珠烧坏而使轴承损坏造成叶柄发生卡涩现象,同时,若轴承内外套、滚珠有裂纹、斑纹、斑痕、磨蚀锈痕、过热变色和间隙超过标准时,应更换新轴承以保证叶片转动灵活。
(二)轴承箱常见故障分析及处理措施(1)轴承箱漏油、渗油:进油量过大,回油不畅、空气平衡管堵塞、骨架密封老化失效、油管路破裂或接头密封不严及油温过高渗油气等,会造成轴承箱漏油或渗油,可对应地采取适当调小油量、清洗平衡管、更换骨架油封、更换油管和密封及降低油温的方式进行处理。
轴流风机振动故障分析与处理
轴流风机振动故障分析与处理一、设备参数与结构风机型号W12g12.5,叶轮直径 D2 =1250mm,最高转速n=2550r/min,设计性能参数为:风量 Q=235440m3/h,全压p=11 000Pa,进口温度t=150℃,进口密度ρ=0.763kg/m 3 ,输送介质为转炉煤气(干法除尘)。
风机结构和试验台布置见图1。
该风机主要由转子和定子组成,转子包括主轴、叶轮、联轴器、固定端轴承(以下简称轴承1)和非固定端轴承(以下简称轴承2),定子包括进风箱(含进口导叶和轴承I的底座)、机壳(含后导叶和轴承II的底座)、扩压器和钢制风机底座。
显然,与一般离心风机结构不同的是,轴承I的底座和轴承II的底座均未与混凝土基础直接接触。
为完成运转试验过程,由增速机通过长度为3.3m的加长型空心轴将两台直流电动机串联。
二、振动特点根据转炉各冶炼阶段(准备、预热/降罩、吹炼、补吹、出钢、清理炉口、加废钢兑铁)的不同,该风机的运行工况频繁变换。
因此,不仅要满足各冶炼阶段所需性能参数以及防泄漏、防爆的要求,还要满足35~38min内低、高速频繁调速运行的要求。
所以,制造厂需对其进行严格的出厂运行实验。
然而,该风机在运行实验中却发生了严重的振动问题,振动数据见表1,尤其进行的所有实验转速还远达不到最高设计转速2 550r/min,显然,这个振动问题的分析和处理十分具有挑战性。
由表1可分析其振动特点如下:1)风机振动与转速关联性强,转速越高,振动越大;2)风机升/降速过程中,在同一转速的振动特性相同,具有重复性;3)风机轴承 I 与轴承 II 振动相差不大,即振动数量级相同;在2 320r/min 以上,风机轴承I与轴承II相比,前者垂直方向振动小于后者,而水平方向振动大于后者,显示二者在垂直和水平方向的刚度存在差异;4)增速机振动与转速关联性强,在输出轴反转2 400r/min时达到10.0mm/s,由此增加了振动问题的复杂性;5)受电机功率限制,最高转速只有达到正转2 349r/min和反转2 400r/min,不可能实施冲转实验;6)风机最高线速度为 167m/s,但在试验中无法实施,需由次高转速判断最高转速时的振动特性。
风机常见故障及检修
三,风机的检修:
再把铆钉插入铆钉孔内,铆钉应对中垂直, 在铆钉的下面用带有圆窝形的铁砧垫住, 上面用铆接工具铆接。全部铆接完毕,再 用小锤敲打铆钉头,声音清脆为合格。 对于自制叶片的叶轮,需将叶片的进口 和出口处的毛刺除掉,清扫叶道,并进行 修整,然后根据叶轮结构及需要来进行动、 静平衡校正。
三,风机的检修:
风机的常见故障及检修
一,风机的电机或传动件轴承振动、温度高 二,风管风道系统振动导致引风机的振动 三,风机的检修
风机的常见故障及检修
如何迅速判断风机运行中故障产生的 原因,采取得力措施解决是用户连续安全 运行的保障。 风机是一种将原动机的机械 能转换为输送气体、给予气体能量的机械。 虽然风机的故障类型繁多,原因也很复杂, 但根据调查实际运行中风机故障较多的是: 轴承振动,轴承温度高,保护装置误动, 电机电源缺相等,如能针对不同的现象分 析原因采取恰当的处理办法,往往能起到 事半功倍的效果。
一,风机的电机或传动件轴承振动、 温度高:
机翼型的叶片最易积灰。当积灰达到一定 的重量时由于叶轮旋转离心力的作用将一 部分大块的积灰甩出叶轮。由于各叶片上 的积灰不可能完全均匀一致,聚集或可甩 走的灰块时间不一定同步,结果因为叶片 的积灰不均匀导致叶轮质量分布不平衡, 从而使风机振动增大。在这种情况下,通 常只需把叶片上的积灰铲除,叶轮又将重 新达到平衡,从而减少风机的振动。
二,风管风道系统振动导致引风机 的振动:
引起风机振动的原因很多,其它如连轴器 中心偏差大、基础或机座刚性不够、原动 机振动引起等等,有时是多方面的原因造 成 的结果。实际工作中应认真总结经验, 多积累数据,掌握设备的状态,摸清设备 劣化的规律,出现问题就能有的放矢地采 取相应措施解决。
三,风机的检修:
轴流风机动叶调节机构常见故障及判断方法
轴流风机动叶调节机构常见故障及判断方法文章发表于《热力发电》2013年第八期,转载请注明,谢谢。
林邦春1,余洋2(1.福建华电可门发电有限公司,福建福州350512;2.福建华电可门发电有限公司,福建福州350512)摘要:介绍丹麦诺狄斯克VARIAX动叶调节技术的调节原理,总结该动叶调节技术的常见故障现象及原因,提出各种故障的判断方法,可供采用相同动叶调节技术风机的电厂技术人员借鉴参考。
关键词:轴流风机;动叶调节;判断方法;防范措施Common faults and judgment of the axial fan blades' regulatory agenciesLIN Bang-chun1,YU Yang2(Fujian Huadian Kemen Power Company Limited,Fuzhou 350512,China.) Abstract:Description the regulating principle of Denmark Nuodisike VARIAX moving blades to adjust technology, summarizes the common symptoms and causes of the technology of the moving blade adjusting mechanism, put forward various fault finding methods are available using the same rotor blades to adjust the technology fan power plant 's technical staff learn from the reference.Key words:Axial fan;Moving blade adjustment;Method to judge;Preventive measures1前言福建华电可门发电有限公司(以下简称可门电厂)装机容量为4×600MW,锅炉为上海锅炉厂引进美国ALSTOM技术设计,超临界参数变压运行螺旋管圈直流炉,单炉膛、一次再热、四角切圆燃烧方式、平衡通风、Π型露天布置、固态排渣、全钢梁悬吊结构,正压直吹式制粉系统。
轴流风机在常见故障
轴流风机在常见故障
很多时候风机在使用中产生一些故障是很常见的,但是这些故障也往往导致了风机使用效率下降,让风机的使用在一定程度上受到损坏,有一部分的原因是用户在选择中的失误,不同的型号所带来的效果不同,如果被使用到不恰当的场所中,那么出现故障就在所难免了。
轴流风机根据不同的划分依据可以产生很多不同的类型,钢制风机、玻璃钢风机、塑料风机、PP风机、PVC风机、铝风机、不锈钢风机等,这些都是轴流风机中比较常见的几个类型,不同类型的风机在使用中出现的问题不同,因此解决的方法也存在很大的差异。
叶片产生裂纹或断裂时轴流风机最常见的一个现象,在送、引风机上均有可能发生,近几年在多个大型电厂已发生多宗;转子故障。
如转子不平衡、转子振动等,最严重的甚至发生叶轮飞车事故;电机故障。
如过电流等,严重时烧坏电机;油站漏油,调节油压不稳定。
即影响风机的调节性能也威胁风机的安全。
叶片磨损也是一个很典型的现象。
主要是发生在引风机上。
由于电器投入时机把握不好或电器故障,造成引风机磨损。
这是燃煤电站引风机最轻易发生的故障。
一旦风机出现以上状况,先要停电停机,检查一下是不是流风机长期在失速条件下工作,气流压力脉动幅值显著增加,叶片共振受损;机身本身的机构没有问题,起动设计的是否合理;安装时留下的隐患,如轴系不平衡或联接不好,导致风机振动大、轴承、联轴器易损坏。
如果用户发现这些办法都不能解决风机所产生的问题,这个时候就需要对风机的类型进行考虑了,是不是由于类型选择的失败才导致的这些问题,一旦确定问题的原因所在,要立即寻找解决的方法来解决风机的这些问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴流风机典型异常判断处理
1)风机失速
在轴流风机中,当流量减少到某一小流量时,会因在叶片上脱流而造成失速,这是轴流风机所特有的不稳定现象。
失速是动叶附近的一种压力脉动,动叶会受到一种周期性的作用力而导致振动和低频噪声,若振动频率与叶片自振频率接近或相等,那么叶片将会很快遭受破坏。
风机失速的主要原因有:送风机出口挡板或空预器二次风挡板或二次风量调节挡板误关;两台送风机并列运行时,负荷分配不均匀,流量小的风机易发生失速;风机动叶开度过大。
在风机失速时,风机出口压力升高、流量突降且马达电流大幅度波动;振动增大;噪音增大。
当风机发生失速时应立即撤出自动,关小动叶开度。
严禁开大动叶角度,此时应相应降低机组负荷以保持合适的风煤比;降低风机出口压力,可适当开大二次风调节挡板,有必要时降低另一台送风机出力。
当失速消失后,检查确认风机运行正常,才允许重新增加动叶开度,恢复风机出力,并尽力避开原来失速的工况;若失速消失后,检查风机有异常或振动及其它不正常现象时,必须停运该风机运行,联系检修内部检查。
2)正常运行时一台送风机跳闸
正常运行时,二台送风机均应保持运行。
当一台送风机因故障而跳闸时,应确认引风机联跳,跳闸风机进出口挡板、调节挡板或动叶
关闭。
机组在正常运行时,锅炉的送风量和引风量保持平衡,如引风机突然跳闸,会给机组的运行造成很大的扰动,尤其是炉膛的负压,严重时可能造成炉膛压力高高而触发锅炉MFT,因此当引风机跳闸时联跳对应侧的送风机,使送风量和引风量的平衡发出较小的变化,有利于风机跳闸时的事故处理。
同样道理,当送风机跳闸时,也联跳对应侧引风机。
检查运行的引送风机调节挡板或动叶自动开大,注意电流在额定值内。
检查炉膛负压正常。
检查CCS负荷指令减至相应值,确认汽机调门快速关小以维持主汽压与滑压曲线相符。
确认相应磨煤机已联锁跳闸,保留三台磨运行,燃料量与负荷指令对应。
注意燃烧工况,必要时投入油枪助燃。
确认再热汽温调节正常。
检查汽包水位、除氧器水位调节正常。
检查轴封汽压力、温度正常,检查主机振动等参数均在正常范围内。
联系检修,尽早查出故障原因,确认故障消除后重新启动跳闸设备,恢复机组正常运行。
送风机跳闸的原因主要有:
a.风机轴承温度过高>95℃
b.风机轴承箱振动过大6.3mm/s
c.油站液压油压过低0.8Mpa
d.失速保护联锁,延时60S
e.电机轴承温度过高
f.电机定子温升过高
g.紧急停机按钮
3)风机轴承振动高
风机正常振动高的主要原因有:轴承损坏;联轴器松动或轴中心偏差大;叶轮与外壳碰触磨擦;叶轮损坏;风机失速。
当风机轴承振动高时应作相应的处理:根据送风机振动情况加强风机振动值、轴承温度、马达电流、风压风量的监视;必要时切为手动调节,降低出力;尽快查出振动原因,必要时联系检修人员查诊;若是发生失速引起振动,按风机失速处理;当风机振动值≥6.3mm/s 时风机跳闸,否则应手动停运风机;若风机跳闸,应确认风机已隔离。
4)风机轴承温度高高
风机轴承温度高高原因:轴承损坏;轴承油位太低或太高;轴承油池油质恶化;轴承振动高。
风机轴承温度高高处理:根据风机轴承温度情况,加强监视轴承温度、马达电流、风压风量等参数;必要时切为手动调节,降低风机负荷;尽快查出原因,必要时联系检修人员查诊;若油位低,及时加油。
若油位高或油质恶化,停用风机后放油或换油;若振动大引起轴承温度高,应查明原因,消除振动;轴承温度高时送风机跳闸,否则应手动停运风机;若风机自动跳闸,应确认风机已隔离。