(完整版)高中物理专题复习动量及动量守恒定律
(完整版)高中物理专题复习动量及动量守恒定律
高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞1v v1/v2/vA A BAB A BⅠⅡⅢ两个物体在极短时间内发生互相作用,这类状况称为碰撞。
因为作用时间极短,一般都知足内力远大于外力,所以能够以为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完整非弹性碰撞三种。
认真剖析一下碰撞的全过程:设圆滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体 B 运动, B 的左端连有轻弹簧。
在Ⅰ地点A、B 恰巧接触,弹簧开始被压缩, A 开始减速, B 开始加快;到Ⅱ地点A、B 速度恰巧相等(设为v),弹簧被压缩到最短;再今后A、B 开始远离,弹簧开始恢还原长,到Ⅲ地点弹簧恰巧为原长,A、B 分开,这时 A、B 的速度分别为 v1和 v2。
全过程系统动量必定是守恒的;而机械能能否守恒就要看弹簧的弹性怎样了。
⑴ 弹簧是完整弹性的。
Ⅰ→Ⅱ系统动能减少所有转变成弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少所有转变成动能;所以Ⅰ、Ⅲ状态系统动能相等。
这类碰撞叫做弹性碰撞。
由动量守恒和能量守恒能够证明A、B 的最后速度分别为:v1m1m 2v1 , v 2 2 m 1v1。
m 1m 2m 1 m 2⑵ 弹簧不是完整弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转变成弹性势能,一部分转变成内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转变成动能,部分转变成内能;因为全过程系统动能有损失(一部分动能转变成内能)。
这类碰撞叫非弹性碰撞。
⑶ 弹簧完整没有弹性。
Ⅰ→Ⅱ系统动能减少所有转变成内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;因为没有弹性,A、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这类碰撞叫完整非弹性碰撞。
能够证明, A、B 最后的共同速度为v v2m1v。
在完整非弹性碰撞过程中,1m21m1系统的动能损失最大,为:1212m1m2 v12。
高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律
高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律【知识要点复习】1、动量是矢量,其方向与速度方向相同,大小等于物体质量和速度的乘积,即P=mv。
2、冲量也是矢量,它是力在时间上的积累。
冲量的方向和作用力的方向相同,大小等于作用力的大小和力作用时间的乘积。
在计算冲量时,不需要考虑被作用的物体是否运动,作用力是何种性质的力,也不要考虑作用力是否做功。
在应用公式I=Ft进行计算时,F应是恒力,对于变力,则要取力在时间上的平均值,若力是随时间线性变化的,则平均值为3、动量定理:动量定理是描述力的时间积累效果的,其表示式为I=ΔP=mv-mv0式中I表示物体受到所有作用力的冲量的矢量和,或等于合外力的冲量;ΔP是动量的增量,在力F作用这段时间内末动量和初动量的矢量差,方向与冲量的方向一致。
动量定理可以由牛顿运动定律与运动学公式推导出来,但它比牛顿运动定律适用范围更广泛,更容易解决一些问题。
4、动量守恒定律(1)内容:对于由多个相互作用的质点组成的系统,若系统不受外力或所受外力的矢量和在某力学过程中始终为零,则系统的总动量守恒,公式:(2)内力与外力:系统内各质点的相互作用力为内力,内力只能改变系统内个别质点的动量,与此同时其余部分的动量变化与它的变化等值反向,系统的总动量不会改变。
外力是系统外的物体对系统内质点的作用力,外力可以改变系统总的动量。
(3)动量守恒定律成立的条件a、不受外力b、所受合外力为零c、合外力不为零,但F内>>F外,例如爆炸、碰撞等。
d、合外力不为零,但在某一方向合外力为零,则这一方向动量守恒。
(4)应用动量守恒应注意的几个问题:a、所有系统中的质点,它们的速度应对同一参考系,应用动量守恒定律建立方程式时它们的速度应是同一时刻的。
b、无论机械运动、电磁运动以及微观粒子运动、只要满足条件,定律均适用。
(5)动量守恒定律的应用步骤。
第一,明确研究对象。
第二,明确所研究的物理过程,分析该过程中研究对象是否满足动量守恒的条件。
2025届高三物理一轮复习动量守恒定律及其应用(40张PPT)
1.碰撞:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。2.碰撞的特点:在碰撞现象中,一般都满足内力_______外力,可认为相互碰撞的物体组成的系统动量守恒。
考点2 碰撞问题
远大于
动量是否守恒
机械能是否守恒
弹性碰撞
守恒
_______
非完全弹性碰撞
守恒
有损失
完全非弹性碰撞
答案 D
考向3 用数学归纳法解决多次碰撞问题【典例6】 (多选)(2022·全国卷Ⅱ)水平冰面上有一固定的竖直挡板,一滑冰运动员面对挡板静止在冰面上,他把一质量为4.0 kg的静止物块以大小为5.0 m/s的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡板弹性碰撞,速度反向,追上运动员时,运动员又把物块推向挡板,使其再一次以大小为5.0 m/s的速度与挡板弹性碰撞。总共经过8次这样推物块后,运动员退行速度的大小大于5.0 m/s,反弹的物块不能再追上运动员。不计冰面的摩擦力,该运动员的质量可能为( )A.48 kg B.53 kg C.58 kg D.63 kg
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
考向1 碰撞的可能性【典例4】 (多选)A、B两球在光滑水平面上沿同一直线、同一方向运动,A球的动量是6 kg·m/s,B球的动量是4 kg·m/s,已知mA=1 kg,mB=2 kg,当A追上B并发生碰撞后,A、B两球速度的可能值是( )A.vA'=3 m/s vB'=3.5 m/s B.vA'=2 m/s vB'=4 m/sC.vA'=5 m/s vB'=2.5 m/s D.vA'=-3 m/s vB'=6.5 m/s
高中物理选必一第一章动量守恒定律(1动量2动量定理)
第一章动量守恒定律第1节动量知识点一、动量(1)定义:物体质量和速度的乘积,用字母p 表示,p =m v .(2)动量的矢量性:动量既有大小,又有方向,是矢量.动量的方向与速度的方向一致,运算遵循矢量运算法则.(3)单位:国际单位是千克·米每秒,符号是kg·m/s.(4)动量具有相对性:选取不同的参考系,同一物体的速度可能不同,物体的动量也就不同,即动量具有相对性.通常在不说明参考系的情况下,物体的动量是指相对地面的动量.知识点二、动量与速度、动能的区别和联系动量与速度动量与动能区别①动量在描述物体运动方面更进一步,更能体现运动物体的作用效果②速度描述物体运动的快慢和方向①动量是矢量,从运动物体的作用效果方面描述物体的状态②动能是标量,从能量的角度描述物体的状态联系①动量和速度都是描述物体运动状态的物理量,都是矢量,动量的方向与速度方向相同,且p =mv ②动量和动能都是描述物体运动状态的物理量,且p =2mE k 或E k =p 22m知识点三、动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差,即Δp =p ′-p(2)动量的变化量Δp 也是矢量,其方向与速度的改变量Δv 相同.(3)因为p =m v 是矢量,只要m 的大小、v 的大小和v 的方向三者中任何一个发生了变化,动量p 就发生变化.(4)动量变化量Δp 的计算①当物体做直线运动时,只需选定正方向,与正方向相同的动量取正,反之取负.若Δp 是正值,就说明Δp 的方向与所选正方向相同;若Δp 是负值,则说明Δp 的方向与所选正方向相反.②当初、末状态动量不在一条直线上时,可按平行四边形定则求Δp 的大小和方向.典例分析一、对动量和动量增量的理解例1关于动量变化,下列说法正确的是()A .做直线运动的物体速度增大时,动量的增量Δp 的方向与运动方向相同B .做直线运动的物体,速度减小时,动量增量Δp 的方向与运动方向相反C .物体的速度大小不变时,动量的增量Δp 为零D .物体做平抛运动时,动量的增量一定不为零二、动量变化量的计算例2羽毛球是速度最快的球类运动之一,林丹扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,林丹将球以342km/h的速度反向击回.设羽毛球质量为5g,试求:(1)林丹击球过程中羽毛球的动量变化量.(2)在林丹的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题一对动量及动量变化的理解例3关于动量的变化,下列说法正确的是()A.做直线运动的物体速度增大时,动量的增量Δp的方向与运动方向相同B.做直线运动的物体速度减小时,动量的增量Δp的方向与运动方向相反C.物体的速度大小不变时,动量的增量Δp为零D.物体做曲线运动时,动量的增量一定不为零专题二对动量及动量变化的计算例4羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,运动员将球以342km/h的速度反向击回.设羽毛球的质量为5g,试求(1)运动员击球过程中羽毛球的动量变化量.(2)在运动员的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题三碰撞中的动量变化例5质量为0.1kg的小球从1.25m高处自由落下,与地面碰撞后反弹回0.8m高处.取竖直向下为正方向,且g =10m/s2.求:(1)小球与地面碰前瞬间的动量;(2)球与地面碰撞过程中动量的变化.第2节动量定理知识点一、冲量(1)概念:力与力的作用时间的乘积叫做力的冲量.(2)定义式:I=Ft.(3)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大.(4)单位:在国际单位制中,冲量的单位是牛·秒,符号为N·s.知识点二、冲量的理解(1)冲量的绝对性.由于力和时间均与参考系无关,所以力的冲量也与参考系的选择无关.(2)冲量是矢量.冲量的运算服从平行四边形定则,合冲量等于各外力的冲量的矢量和,若整个过程中,不同阶段受力不同,则合冲量为各阶段冲量的矢量和.(3)冲量是过程量,它是力在一段时间内的积累,它取决于力和时间这两个因素.所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.知识点三、冲量的计算(1)恒力的冲量:公式I=Ft适用于计算某个恒力的冲量,这时冲量的数值等于力与作用时间的乘积,冲量的方向与恒力方向一致.若力为同一方向均匀变化的力,该力的冲量可以用平均力计算,若力为一般变力则不能直接计算冲量.(2)变力的冲量①变力的冲量通常可利用动量定理I=Δp求解.②可用图象法计算如图所示变力冲量,若某一力方向恒定不变,那么在F-t图象中,图中阴影部分的面积就表示力在时间Δt=t2-t1内的冲量.知识点四、冲量与功(1)联系:冲量和功都是力作用过程的积累,是过程量.(2)区别:冲量是矢量,是力在时间上的积累,具有绝对性;功是标量,是力在位移上的积累,有相对性.知识点四、动量定理1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量.这个关系叫做动量定理.2.表达式:I=Δp或Ft=m v′-m v.3.对动量定理的理解(1)动量定理反映了合外力的冲量是动量变化的原因.(2)动量定理的表达式是矢量式,它说明合外力的冲量跟物体动量变化量不仅大小相等,而且方向相同.(3)动量的变化率和动量的变化量由动量定理可得出F=p′-pt,它说明动量的变化率决定于物体所受的合外力.而由动量定理I=Δp可知动量的变化量取决于合外力的冲量,它不仅与物体的受力有关,还与力的作用时间有关.(4)动量定理具有普遍性,即不论物体的运动轨迹是直线还是曲线,不论作用力是恒力还是变力,不论几个力的作用时间是相同还是不同都适用.4.动量定理的应用(1)定性分析有关现象由F=Δpt可知:①Δp一定时,t越小,F越大;t越大,F越小.②Δp越大,而t越小,F越大.③Δp越小,而t越大,F越小.(2)应用动量定理解决问题的一般步骤①审题,确定研究对象:对谁、对哪一个过程.②对物体进行受力分析,分析力在过程中的冲量,或合力在过程中的冲量.③抓住过程的初、末状态,选定参考方向,对初、末状态的动量大小、方向进行描述.④根据动量定理,列出动量定理的数学表达式.⑤写清各物理量之间关系的补充表达式.⑥求解方程组,并分析作答.典例分析一、冲量的理解例1如图所示,质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力的冲量各是多大?二、平均冲量的计算例2如图所示,质量为m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,反弹的最大高度为h2=0.2m,从小球下落到反弹到最高点经历的时间为Δt=0.6s,g取10m/s2.求:小球撞击地面过程中,球对地面的平均压力F的大小.三、合力冲量的计算例3质量为1.0kg的小球从20m高处自由下落到软垫上,反弹后上升的最大高度为5.0m,小球与软垫接触时2)()间为1.0s,在接触时间内小球受到的合力的冲量大小为(空气阻力不计,g=10m/sA.10N·s B.20N·s C.30N·s D.40N·s四、冲量的综合应用例4用0.5kg的铁锤把钉子钉进木头里,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s,那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力是多大?(2)考虑铁锤受的重力,铁锤钉钉子的平均作用力又是多大?(g取10m/s2)(3)比较(1)和(2),讨论是否要计铁锤的重力。
高一物理动量与动量守恒知识点归纳
高一物理动量与动量守恒知识点归纳在高一物理学中,动量是与物体的质量和速度相关的物理量,动量守恒是最早发现的一条守恒定律。
下面店铺给大家带来高一物理动量与动量守恒知识点,希望对你有帮助。
高一物理动量与动量守恒知识点1.力的冲量定义:力与力作用时间的乘积--冲量I=Ft 矢量:方向--当力的方向不变时,冲量的方向就是力的方向。
过程量:力在时间上的累积作用,与力作用的一段时间相关单位:牛秒、N?9?9s2. 动量定义:物体的质量与其运动速度的乘积--动量p=mv 矢量:方向--速度的方向状态量:物体在某位置、某时刻的动量单位:千克米每秒、kgm/s3. 动量定理∑Ft=mvt-mv0动量定理研究对象是一个质点,研究质点在合外力作用下、在一段时间内的一个运动过程。
定理表示合外力的冲量是物体动量变化的原因,合外力的冲量决定并量度了物体动量变化的大小和方向。
矢量性:公式中每一项均为矢量,公式本身为一矢量式,在同一条直线上处理问题,可先确定正方向,可用正负号表矢量的方向,按代数方法运算。
当研究的过程作用时间很短,作用力急剧变化(打击、碰撞)时,∑F可理解为平均力。
动量定理变形为∑F=Δp/Δt,表明合外力的大小方向决定物体动量变化率的大小方向,这是牛顿第二定律的另一种表述。
4. 动量守恒:一个系统不受外力或所受到的合外力为零,这个系统的动量就保持不变,可用数学公式表达为p=p' 系统相互作用前的总动量等于相互作用后的总动量。
Δp1=-Δp2 相互作用的两个物体组成的系统,两物体动量的增量大小相等方向相反。
Δp=0系统总动量的变化为零“守衡”定律的研究对象为一个系统,上式均为矢量运算,一维情况可用正负表示方向。
注意把握变与不变的关系,相互作用过程中,每一个参与作用的成员的动量均可能在变化着,但只要合外力为零,各物体动量的矢量合总保持不变。
注意各状态的动量均为对同一个参照系的动量。
而相互作用的系统可以是两个或多个物体组成。
高三复习高中物理重点知识习题 动量守恒定律 - (含答案)
第七章动量守恒定律考点一:动量、动量变化量与冲量、动量定理1. (多选)如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止开始自由下滑,不计空气阻力,在它们到达斜面底端的过程中()A.重力的冲量相同B.斜面弹力的冲量不同C.斜面弹力的冲量均为零D.合力的冲量不同答案BD2.(多选)质量为m的物块以初速度v0从光滑斜面底端向上滑行,到达最高位置后再沿斜面下滑到底端,则物块在此运动过程中()A.上滑过程与下滑过程中物块所受重力的冲量相同B.整个过程中物块所受弹力的冲量为零C.整个过程中物块合外力的冲量为零D.若规定沿斜面向下为正方向,则整个过程中物块合外力的冲量大小为2mv0 答案AD3.如图所示,质量为m的物体,在大小确定的水平外力F作用下,以速度v沿水平面匀速运动,当物体运动到A点时撤去外力F,物体由A点继续向前滑行的过程中经过B点,则物体由A点到B点的过程中,下列说法正确的是()A.v越大,摩擦力对物体的冲量越大,摩擦力做功越多B.v越大,摩擦力对物体的冲量越大,摩擦力做功与v的大小无关C.v越大,摩擦力对物体的冲量越小,摩擦力做功越少D.v越大,摩擦力对物体的冲量越小,摩擦力做功与v的大小无关答案D4. (多选)几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则可以判断的是()A.子弹在每个水球中的速度变化相同B.子弹在每个水球中运动的时间不同C.每个水球对子弹的冲量不同D.子弹在每个水球中的动能变化相同答案BCD5. (多选)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。
F随时间t变化的图线如图所示,则() 答案ABA.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零6. (多选)一质点静止在光滑水平面上,现对其施加水平外力F,力F随时间按正弦规律变化,如图5所示,下列说法正确的是()A.第2 s 末,质点的动量为0B.第4 s 末,质点回到出发点C.在0~2 s 时间内,力F 的功率先增大后减小D.在1~3 s 时间内,力F 的冲量为0 答案 CD7.质量为1 kg 的物体做直线运动,其速度—时间图象如图所示。
动量定理及动量守恒定律专题复习(附参考答案)
动量定理及动量守恒定律专题复习一、知识梳理1、深刻理解动量的概念(1)定义:物体的质量和速度的乘积叫做动量:p =mv(2)动量是描述物体运动状态的一个状态量,它与时刻相对应。
(3)动量是矢量,它的方向和速度的方向相同。
(4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。
题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。
(5)动量的变化:0p p p t -=∆.由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。
A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。
B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。
(6)动量与动能的关系:k mE P 2=,注意动量是矢量,动能是标量,动量改变,动能不一定改变,但动能改变动量是一定要变的。
2、深刻理解冲量的概念(1)定义:力和力的作用时间的乘积叫做冲量:I =Ft(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
(3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。
如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
(4)高中阶段只要求会用I=Ft 计算恒力的冲量。
对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。
(5)要注意的是:冲量和功不同。
恒力在一段时间内可能不作功,但一定有冲量。
特别是力作用在静止的物体上也有冲量。
3、深刻理解动量定理(1).动量定理:物体所受合外力的冲量等于物体的动量变化。
既I =Δp(2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。
高考总复习物理课件48动量动量守恒定律
三.本章应重点掌握动量、冲量两个概念的物 理意义;熟练掌握重要规律;动量守恒定 律.明确动量的方向性及动量守恒条件.
PART ONE
题中,凡需要求速度,相互作用的系统又 动量守恒条件应首选动量守恒定律求解; 及碰撞、反冲、爆炸、打击类问题,应考 用动量守恒定律.
14
►疑难详析◄ 动量守恒定律的适用条件
1. 系统不受外力或系统所受外力和为零,根据动量定理可知, 系统的合外力冲量为零,系统的动量为零,系统动量守恒.
2. 系统在某一方向上不受外力,或外力之和为零,则系统所受 合外力在这一方向上的冲量为零,因而系统在这一方向上的 动量改变量为零,系统在这一方向上动量守恒.
内容 动量、动量守恒定律及其
应用
弹性碰撞和非弹性碰撞
要求 Ⅱ Ⅰ
说明
只限于一 维
实验:验证动量守恒定律
新课标高考对本章的考查主要体现在动量、动量 守恒定律及其应用、弹性碰撞和非弹性碰撞及验 证动量守恒定律上,新课标对冲量和动量定理没 有要求,强调了弹性碰撞和非弹性碰撞的知识, 动量守恒定律显得更为突出,由于动量守恒定律 研究对象是相互作用的物体所构成的系统,因此 在高考中所涉及的物理情境往往较为复杂.
2 0
#2022
►基础梳理◄
2 1
并计算系统相互作用前后的总动能 Ek=21m1v21+12m2v22,
E′k=12m1v′21+12m2v′22,图以及1能量的变化率ΔEEkk,并分析相
互作用过程中的能量变化规律.
为了研究接触面的性质以及相互作用前后物体运动 情况对动量以及能量的变化有无影响,应根据接触 面性质、运动情况的不同组合分别加以验证.由于 时间关系,采取相互合作的方式,每小组只验证以 下几种情况中的一种:弹性圈的动碰静、弹性圈对 碰、弹性圈追碰,滑块的动碰静、滑块追碰,粘扣 的动碰静.最后将各组实验结果综合在一起分析.
高三第一轮复习-动量 动量守恒定律
动量动量守恒定律1.理解动量、动量的变化量、动量定理的概念.2.知道动量守恒的条件.3.会利用动量守恒定律分析碰撞、反冲等相互作用问题.考点一动量、冲量、动量定理的理解与应用1.动量(1)定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p来表示.(2)表达式:p=mv.(3)单位:kg·m/s.(4)标矢性:动量是矢量,其方向和速度方向相同.2.冲量(1)定义:力F 与力的作用时间t 的乘积. (2)定义式:I =Ft . (3)单位:N·_s.(4)方向:恒力作用时,与力的方向相同.(5)物理意义:是一个过程量,表示力在时间上积累的作用效果. 3.动量定理(1)内容:物体所受合外力的冲量等于物体的动量的变化量.(2)表达式:⎩⎪⎨⎪⎧Ft =p ′-pI =Δp[例题1] (2024•河南一模)质量相等的A 、B 两个小球处在空中同一高度,将A 球水平向右抛出,同时将B 球斜向上抛出,两小球抛出时的初速度大小相同,两小球在空中运动的轨迹如图,不计空气阻力。
则两小球在空中运动的过程中,下列说法正确的是( )A .相同时间内,速度变化量可能不同B .同一时刻,速度变化快慢可能不同C .抛出后下降到同一高度时,动能一定相同D .相同时间内,重力的冲量大小可能不同[例题2] (2024•开福区校级模拟)一质量为m =1kg 的物体,从距地面高度为0.8m 处以某一未知初速度水平抛出。
落地后不弹起。
假设地面为粗糙刚性水平接触面(与物体发生碰撞的时间极短,不计重力产生的冲量),物体与地面间的动摩擦因数μ=0.5,取重力加速度g =10m/s 2。
下列说法正确的是( )A .物体从抛出到最终停下的过程中,减少的机械能等于与粗糙水平面的摩擦生热B .若物体的初速度为1m/s ,则与地面碰撞的过程中,地面对其冲量的大小为4N •sC .若物体的初速度为3m/s ,则与地面碰撞的过程中,地面对其冲量的大小为2√5N •sD .若物体的初速度变为之前的2倍,物体落地后沿水平运动的距离可能是原来的4倍 [例题3] (2024•宁波二模)如图所示,在水平地面上用彼此平行、相邻间距为l 的水平小细杆构成一排固定的栅栏。
高考物理一轮复习专题之《动量守恒》核心知识点汇总
高考物理一轮复习专题之《动量守恒》核心知识点汇总【基本概念、规律】一、动量动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力F的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)公式:p=mv.(3)单位:千克·米/秒,符号:kg·m/s.(4)意义:动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的增量.(2)表达式:F·Δt=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.4.动量、动能、动量的变化量的关系(1)动量的变化量:Δp=p′-p.二、动量守恒定律1.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.三、碰撞1.碰撞物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类【重要考点归纳】考点一动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值.2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力.(3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二动量守恒定律与碰撞1.动量守恒定律的不同表达形式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(4)Δp=0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(3)速度要合理.①碰前两物体同向,则v后>v前;碰后,原来在前的物体速度一定增大,且v′前≥v′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三爆炸和反冲人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等.3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m11=-m22得m1x1=-m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.考点五实验:验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P 就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.【思想方法与技巧】动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.。
高中物理动量守恒定律知识点总结
高中物理动量守恒定律知识点总结高中物理动量守恒定律是高中物理的重点和难点,那么有哪些知识点是必须掌握的呢?以下是店铺为您整理关于高中物理动量守恒定律知识点相关资料,希望对您有所帮助。
高中物理动量守恒定律知识点(一)一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲)注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=—△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
二、碰撞1、完全非弹性碰撞:获得共同速度,动能损失最多动量守恒。
2、弹性碰撞:动量守恒,碰撞前后动能相等。
特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度,vB=.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)3、一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
4、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv=MV(注意:几何关系)高中物理动量守恒定律知识点(二)冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}高中物理学习方法要重视实验物理学是一门以实验为基础的科学,许多物理概念、物理规律都是从自然现象的实验中总结出来的。
(完整版)动量、动量守恒定律知识点总结
龙文教育动量知识点总结一、对冲量的理解1、I =Ft :适用于计算恒力或平均力F 的冲量,变力的冲量常用动量定理求。
2、I 合 的求法:A 、若物体受到的各个力作用的时间相同,且都为恒力,则I 合=F 合.tB 、若不同阶段受力不同,则I 合为各个阶段冲量的矢量和。
1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。
2、矢量性:ΔP 的方向由v ∆决定,与1p 、2p 无必然的联系,计算时先规定正方向。
三、对动量守恒定律的理解:1、研究对象:相互作用的物体所组成的系统2、条件: A 、理想条件:系统不受外力或所受外力有合力为零。
B 、近似条件:系统内力远大于外力,则系统动量近似守恒。
C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。
结论:等质量 弹性正碰 时,两者速度交换。
依据:动量守恒、动能守恒五、判断碰撞结果是否可能的方法:碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。
动能和动量的关系:mp E K 22= K mE p 2=六、反冲运动:1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。
2、规律:系统动量守恒3、人船模型:条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。
七、临界条件:“最”字类临界条件如压缩到最短、相距最近、上升到最高点等的处理关键是——系统各组成部分具有共同的速度v。
八、动力学规律的选择依据:1、题目涉及时间t,优先选择动量定理;2、题目涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒;3、题目涉及位移s,优先考虑动能定理、机械能守恒定律、能量转化和守恒定律;4、题目涉及运动的细节、加速度a,则选择牛顿运动定律+运动学规律;九、表达规范:说明清楚研究对象、研究过程、规律、规定正方向。
典型练习一、基本概念的理解:动量、冲量、动量的改变量1、若一个物体的动量发生了改变,则物体的()A、速度大小一定变了B、速度方向一定变了C、速度一定发生了改变D、加速度一定不为02、质量为m的物体从光滑固定斜面顶端静止下滑到底端,所用的时间为t, 斜面倾角为θ。
高三物理【动量定理 动量守恒定律】复习整合
[真题再练] 1.(2020·全国卷Ⅰ)行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬 间充满气体.若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作 用,下列说法正确的是( ) A.增加了司机单位面积的受力大小 B.减少了碰撞前后司机动量的变化量 C.将司机的动能全部转换成汽车的动能 D.延长了司机的受力时间并增大了司机的受力面积
B.0.27 N
C.0.022 N
D.0.027 N
解析:D 由题知,水滴质量为 m=0.5 g,重力加速度为 g=10 m/s2,屋檐高度为 h =4 m,设水滴刚落到石板上时速度为 v.水滴从屋檐开始下落到石板上,忽略空气阻力, 水滴的机械能守恒,有 mgh=12mv2.水滴从接触石板到速度为零的过程中,取向下为正方 向,对水滴由动量定理得(mg-F)t=0-mv,解得 F≈0.027 N,由牛顿第三定律可知,D 正确.
动量守恒定律解题的基本步骤 1.明确研究对象,确定系统的组成(系统包括哪几个物体)及研究的过程. 2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒). 3.规定正方向,确定初、末状态动量. 4.由动量守恒定律列出方程. 5.代入数据,求出结果,必要时讨论说明.
[精选模拟] 视角 1:动量守恒的判断 1.关于下列四幅图所反映的物理过程的说法正确的是( )
8 次这样推物块后,运动员退行速度的大小大于 5.0 m/s,反弹的物块不能再追上运动员.不
计冰面的摩擦力,该运动员的质量可能为( )
A.48 kg
B.53 kg
C.58 kg
D.63 kg
解析:BC 设运动员和物块的质量分别为 m、m0,规定运动员运动的方向为正方向, 运动员开始时静止,第一次将物块推出后,运动员和物块的速度大小分别为 v1、v0,则根 据动量守恒定律 0=mv1-m0v0,解得 v1=mm0v0,物块与弹性挡板撞击后,运动方向与运动 员同向,当运动员再次推出物块 mv1+m0v0=mv2-m0v0,解得 v2=3mm0v0,第 3 次推出后 mv2+m0v0=mv3-m0v0, 解得 v3=5mm0v0,依次类推,第 8 次推出后,运动员的速度 v8=15mm0 v0, 根据题意可知 v8=15mm0v0>5 m/s, 解得 m<60 kg,第 7 次运动员的速度一定小于 5 m/s, 则 v7=13mm0v0<5 m/s, 解得 m>52 kg,综上所述,运动员的质量满足 52 kg<m<60 kg,AD 错 误,BC 正确.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量及动量守恒定律一、动量守恒定律的应用两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m1的物体 A 以速度v1向质量为m2的静止物体 B 运动,B的左端连有轻弹簧。
在Ⅰ位置A、B 刚好接触,弹簧开始被压缩, A 开始减速, B 开始加速;到Ⅱ位置A、B 速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A、B 分开,这时A、B 的速度分别为v1和v2。
全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹⑵弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。
这种碰撞叫非弹性碰撞。
⑶ 弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这种碰撞叫完全非弹性碰撞。
可以证明,A、B 最终的共同速度为v1 v2m1v1。
在完全非弹性碰撞过程中,1 2m1 m211 2 1 2 m1m2 v12E k 2 m1v122 m1 m2 v 22 m112m12例 1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。
质量为m 的小球以速度v1 向物块运动不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H 和物块的最终速度v。
解:系统水平方向动量守恒,全过程机械能也守恒高中物理专题复习性碰撞。
由动量守恒和能量守恒可以证明A、B的最终速度分别为:v m1 m21 2v1,v2m1m22m1v1。
m1m2系统的动能损失最大,为:3.反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而 分开。
这类问题相互作用过程中系统的动能增大,有其它形式的能向动能转化 称为反冲。
例 3. 质量为 m 的人站在质量为 M 、长为 L 的静止小船的右端,小船的左 端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?解:先画出示意图。
人、船系统动量守恒,总动量始终为零,所以人、船在小球上升过程中,由水平方向系统动量守恒得: mv 1 M mv由系统机械能守恒得: 12 mv 12 12 M m v 2 mgH解得HMv 12 2 M m g2mvM m1本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。
全过程系统水平动量守恒,机械能守恒,得 v2.子弹打木块类问题子弹打木块实际上是一种 完全非弹性碰撞 。
作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。
下面从动量、能量和牛顿运动定律等多个角度分析这一过程。
例 2. 设质量为 m 的子弹以初速度 v 0 射向静止在光滑水平面上的质量 v 0为M 的木块,并留在木块中不再射出,子弹钻入木块深度为 d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
解: 子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒: mv 0mv从能量的角度看,该过程系统损失的动能全部转化为系统的内能 木块的位移大小分别为 ①、②相减得: f s 2ds 1设平均阻力大小为 f ,设子弹、 s 2,如图所示,显然有s 1-s 2=d1 2 1 2 s 1mv 0 mv1 22⋯⋯① 12 s 2 Mv 22⋯⋯②1mv 021 M m v 2Mm 2 v 02⋯⋯③由上式不难求得平均阻力的大小: 至于木块前进的距离 s 2,可以由以上②、③相比得出: s 2mdMms 1、对子弹用动能定理:对木块用动能定理:d 2 M mMmv 02 mdf 2 M可以把这类问题统动量大小始终相等。
从图中可以看出,人、船的位移大小之和等于 L 。
设人、船位移大小分别为 l 1、l 2,则: mv 1=Mv 2,两边同乘时间 t ,ml 1=Ml 2,而 l 1+l 2= L ,∴ l 2 m L2Mm例 4. 总质量为 M 的火箭模型 从飞机上释放时的速度为 v 0 ,速度方向水平。
火箭向后以相对于地面 的速率 u 喷出质量为 m 的燃气后,火箭本身的速度变为多大?解:火箭喷出燃气前后系统动量守恒。
喷出燃气后火箭剩余质量变为 M-m ,以 v 0 方向为正方向,二、动量与能量1. 动量与动能动量和能量都与物体的某一运动状态相对应, 都与物体的质量和速度有关 .但它们存在明显的不 1同:动量的大小与速度成正比 p mv ;动能的大小与速度的平方成正比 E k 1mv 2 。
两者的关系: 2p 22mE k 。
动量是矢量而动能是标量。
物体的动量发生变化时,动能不一定变化;但物体的动能 一旦发生变化,则动量必发生变化 .2. 动量定理与动能定理动量定理: 物体动量的变化量等于物体所受合外力的冲量 . p I ,冲量 I FS 是力对时间的积 累效应。
动能定理:物体动能的变化量等于外力对物体所做的功 的积累效应 .3.动量守恒定律与机械能守恒定律 动量守恒定律与机械能守恒定律所研究的对象都是相互作用的物体系统,且研究的都是某一物理过程。
动量守恒定律的内容是:一个系统不受外力或者所受外力之和为 0,这个系统的总动量保 持不变;机械能守恒定律的内容是:在只有重力和弹簧弹力做功的情形下,系统机械能的总量保持 不变。
运用动量守恒定律值得注意的两点是: (1)严格符合动量守恒条件的系统是难以找到的。
如: 在空中爆炸或碰撞的物体受重力作用,在地面上碰撞的物体受摩擦力作用,但由于系统间相互作用 的内力远大于外界对系统的作用, 所以在作用前后的瞬间系统的动量可认为基本上是守恒的 .(2)即使 系统所受的外力不为 0,但沿某个方向的合外力为 0,则系统沿该方向的动量是守恒的 .动量守恒定律的适应范围广,不但适应常见物体的碰撞、爆炸等现象,也适应天体碰撞、原子 的裂变,动量守恒与机械能守恒相结合的综合的试题在高考中多次出现,是高考的热点内容 . 例 5. 如图所示,滑块 A 、B 的质量分别为 m 1与 m 2, m 1 m 2 ,由Mv 0mu M mv,vMv 0 mu MmE k W ,功W FS 是力对空间轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后 绑紧。
两滑块一起以恒定的速率 v 0向右滑动.突然轻绳断开 .当弹簧伸至本身的自然长度时,滑块 A 的速度正好为 0.求:(1)绳断开到第一次恢复自然长度的过程中弹簧释放的弹性势能 Ep ;(2)在以后的运动过程中,滑块 B 是否会有速度为 0 的时刻?试通过定量分析证明你的结论解:(1)当弹簧处压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和,当弹簧伸长 到自然长度时,弹性势能为 0,因这时滑块 A 的速度为 0,故系统的机械能等于滑块 B 的动能 .设这时滑块 B 的速度为 v ,则有 E 1m 2v 2.2由于只有弹簧的弹力做功,系统的机械能守恒,所以有: 1(m 1 m 2)v 02 E p E 2解得 Ep m 1(m 1 m 2)v 02 .2m 2可见在以后的运动中不可能出现滑块 B 的速度为 0的情况 . 例 6. 如图所示,坡道顶端距水平面高度为 h ,质量为 m 1的小物块 A 从坡道顶端由静止滑下, 进入水平面上的 滑道时无机械能损失,为使 A 制动,将轻弹簧的一端固 定在水平滑道延长线 M 处的墙上,一端与质量为 m 2 的 档板 B 相连,弹簧处于原长时, B 恰位于滑道的末端 O 点.A 与 B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在 OM 段 A 、B 与水平面间的动摩 擦因数均为 μ,其余各处的摩擦不计,重力加速度为 g ,求: (1)物块 A 在与挡板 B 碰撞前瞬间速度 v 的大小; (2)弹簧最大压缩量为 d 时的弹性势能 Ep (设弹簧处于原长时弹性势能为零) .势能为 E'p ,由机械能守恒定律得:1m 1v 12E'p (m1 m2) v0,根据动量守恒得( m 1 m 2)v 0 m 1v 1,22m 2(2)假设在以后的运动中滑块 B 可以出现速度为 0 的时刻,并设此时 A 的速度为 v 1 ,弹簧的弹性求出v 1代入上式得 :(m122m 2) v 02m 1 E'p (m 1 m 2)2v 022m 2因系统所受外力为 0,由动量守恒定律有: m 1 m 2) v 0m 2v . 解得 E(m 1 m 2)2v 022m 2因为 E'P 0,故得:(m1 m2) v02m 1(m 1 m 2 )2v 022m 2即 m 1 m 2 ,这与已知条件中 m 1 m 2 不符.解:( 1)由机械能守恒定律,有: m 1gh 1m 1v 2,解得 v = 2gh( 2) A 、B 在碰撞过程中内力远大于外力,由动量守恒,有: m 1v (m 1 m 2)v 碰后 A 、B 一起压缩弹簧,当弹簧最大压缩量为 d 时,A 、B 克服摩擦力所做的功 W (m 1m 2)gd由能量守恒定律,有: 1(m 1 m 2)v 2E P22解得 E Pm1gh (m 1 m 2)gd m 1 m 2例 7.如图,半径为 R 的光滑圆形轨道固定在竖直面内.小球 A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的 B 球相撞,碰撞后 A 、B 球能达到的最大高度均为 1 R ,碰撞4 中无机械能损失.重力加速度为 g .试求:( 1)待定系数 β;(2)第一次碰撞刚结束时小球 A 、B 各自的速度和 B 球对轨道的压力; ( 3)小球 A 、 B 在轨道最低处第二次碰撞刚结束时各自的速度。
解:( 1)由于碰撞后球沿圆弧的运动情况与质量无关,因此, A 、B 两球应同时达到最大高度处,对2设第一次碰撞刚结束时轨道对 B 球的支持力为 N ,方向竖直向上为正,则 N mg m v 2,B球对R轨道的压力 N N 4.5mg ,方向竖直向下.3)设 A 、B 球第二次碰撞刚结束时的速度分别为 V 1、V 2,取方向水平向右为正,则三、应用动量守恒定律解题的几个注意点多个物体组成的系统在满足不受外力或所受合外力为零的条件下,利用动量守恒定律可以解决解得 V 1=- 2gR ,V 2=0 (另一组解 V 1=- v 1, V 2=- v 2 不合题意,舍去)mv 2 mV 1mV 2,mgR 1mV12 1mV 222 1 2 2(m 1 m 2)gdA 、B 两球组成的系统,由机械能守恒定律得:mgR mgR mgR,解得 β=3442) 设 A 、B 第一次碰撞后的速度分别为 v 1、v 2,取方向水平向右为正,对 A 、 B 两球组成的系统,有: mgR 1mv 121mv 22,2 1 2 2mv 12m 2gRmv 1 mv 2mv 1 1gR ,方向水平向左;解得v1v 21gR ,方向水平向右.许多系统内物体间存在复杂的相互作用的问题。