伺服系统三种电流采集方案比较

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伺服系统三种电流采集方案比较

摘 要: 伺服电机控制系统中,精确的电流采样是实现高性能闭环控制系统的关键。本文针对电流检测常用的三种方案进行了实验和比较,获得了三种方案各自优势和缺点的清晰认识,这对基于不同的条件选择合适的电流检测方案提供了参考。

关键字: 电机控制 伺服系统 电流环 电流检测

Comparison of the three schemes of current sampling in the controlling system of servo motor

LUO Ying Wan Chao

(South China university of technology, Guangzhou 510640 , China)

Abstract: in the controlling system of servo motor, accurate current sampling is the key of realizing the high-powered close loop controlling system. In this paper, aim at three norma l schemes of current sampling, do some experiments and compare the results, then obtain very clear cognition about the advantages and the faults of the schemes respectively, that can s upply the reference for choosing proper scheme of current sampling in the base of different situation.

Key words: motor controlling, servo system, the loop of current, current sampling

1 前言

对于数字化伺服电机控制系统,转矩环的性能直接影响着系统的控制效果,电流采样的精度和实时性很大程度上决定了系统的动、静态性能,精确的电流检测是提高系统控制精度、稳定性和快速性的重要环节,也是实现高性能闭环控制系统的关键。在伺服电机控制系统中,电流检测的方案有多种,常见的一种方案是使用霍耳传感器[1],将电流信号经过电磁转换,变换为直流电压信号输出,然后,通过运放和比较器构成的处理电路处理后,输入到处理器;另一种方案是,取采样电阻两端的电压,经线性光藕或者隔离放大器进行信号隔离,调理后接A/D转换器输入进行数字化,获取电流的采样值,而数字化的过程即可以利用处理器中的A/D转换通道实现[3] [4],也可以利用根据 原理实现的模拟量直接转换为数字量的隔离调制芯片来实现[2]。本文通过对这三种方案分别进行电路设计和具体实验后所得结果的比较分析,对三种方案各自的特点有了清晰的认识,这有利于基于不同的条件选择合适的方案来提高伺服控制系统的整体性能。

2 伺服电机控制系统简介

本系统采用交直交电压型变频电路,主电路由整流电路、滤波电路及智能功率模块IPM逆变电路构成,控制部分以DSP芯片TMS320LF2812为核心,CPLD作为辅助处理模块,构成功能齐全的全数字矢量控制系统,系统结构如图1所示,从图1可以看出,本系统是一个有电流、转速和位置负反馈的三闭环系统, D SP负责采样各相电流,计算电机的转速和位置,最后运用矢量控制算法,得到电压矢量PWM控制信号,经过光藕隔离电路后,驱动逆变器功率开关器件;同时DSP还监控变频调速系统的运行状态,当系统出现短路、过流、过压、过热等故障时,DSP将封锁SVPWM信号,使电机停机,并通过LED显示。CPLD模块负责对光栅尺反馈的位置信息和上位机发送脉冲形式指令信息进行滤波和计数,并将数据以总线方式传送给DS P;同时处理键盘输入和显示输出,以及开关量的输入输出。

伺服电机控制系统中电流采样的作用就是检测交流同步电动机的三相定子电流并转换成相应的信号输入到DSP中,再由DSP的AD模块转化成数字量进行处理。因为本文研究的是三相平衡系统Ia+Ib+Ic=0,因此只要检测其中的两路电流,就可以得到三相电流。

图1 全闭环立式加工中心的控制框图

3 三种电流采样方案的分析与比较

3.1 利用霍耳传感器采样电流

3.3.1 LEM霍耳传感器介绍

采用霍尔电流传感器(LEM模块)-- LA25-NP对电流进行检测。霍尔器件根据磁补偿原理制作而成,它可传感从直流到数百千赫兹的信号。它突出的特点是在整个工作区域内输出特性是线性的,功耗小,重量轻,温度稳定性好,测量频带宽,能测量各种波形的电流,而且电隔离,输出为电压信号或电流信号,精度普遍较高,因而使用极为方便可靠,是理想的电流传感器;但是成本较高。

3.2.1 电流采样电路设计

电流采样电路如图2所示,由于TMS320F2812片内的ADC模块要求输入0~3V的单极信号,必须将LEM 输出的小电流信号转换为电压信号,再经过放大滤波后输入DSP。因此,设计了如图2所示的电路来进行信号的转换,图2中R1为霍尔传感器件所允许的负载电阻,考虑到霍尔器件的输出电流信号较弱,选用运放构成反相放大器,反相放大器的输入阻抗很高,R2的影响可以忽略,反相端通过可调电阻输入的参考电压为2V,设定电机的最大启动电流为 20A,当I = 20A时,对应的ADC输入为3V;当I = -20A时,对应的 ADC输入为0V;I = 0时,ADC的输入为1.5V,将具有正负极性的电流反馈信号转换为单极信号送入D SP。

图2

3.3.2 电流采样实验数据

表1中的数据为电流检测电路的实验数据,从表中数据可知相对误差均小于 1%,说明采用LEM霍尔传感器检测电流具有较高的准确度。

表1

实际采样电流值(A) 实际采样电压值(V) 运放的输出电压值(V)

3 2.577 1.576

2 2.549 1.549

1 2.526 1.527

0 2.501 1.500

-1 2.475 1.474

-2 2.451 1.451

-3 2.424 1.425

3.2 利用采样电阻结合A/D转换隔离调制芯片采样电流

3.2.2 7860以及接口芯片0872介绍[5]

HCPL-7860/0872是Agilent公司的两款用于隔离A/D转换的IC,其典型应用电路如图3所示,其中HC PL-7860为隔离调制器部分,HCPL-0872为数字接口部分,它们一起组合成一套隔离可编程双芯片A/D转换器。HCPL-7860/0872组成的可编程A/D转换器具有12位的线性度,转换时间为800nS,可提供5种转换模式,输入电压范围为-200mV~+200mV,单5V电源供给,HCPL-7860内部分为转换编码模块和译码模块,转

换编码模块包含一个式过采样A/D转换器,它将输入的低带宽模拟电压信号转化为一位高速串行数据流,该高速数据流和采样时钟的编码后通过隔离带传输至译码模块,译码模块接收到数据解码后,将数据转换成分离的高速时钟和数据通道,再由HCPL-0872进行下一步处理。

HCPL-0872将输入的串行数据流转化为15位的字输出,它支持SPI、QSPI及MICROWIRE三种同步串行接口协议,可与微控制器直接连接,HCPL-0872可支持5种不同的转换模式,3种不同的预触发模式,偏移校准,快速超范围侦测,以及可调的门限侦测等功能,这些可编程特性通过串行配置端口配置,另外,HC PL-0872还支持多路复用,因此可输入两路数字信号进行处理。

图4示意了一个完整的转换周期时序图,一个转换周期在转换开始信号CS的下降沿开始,CS在整个转换周期保持为低电平,当CS变为低电平后,串行数据输出线SDAT从高阻态变为低电平,指示转换正在进行,转换完成后,SDAT信号的上升沿指示数据准备同步输出,输出数据在串行时钟脉冲SCLK信号的下降沿被同步,并且高位数据(MSB)首先发送,总共需要16个脉冲进行数据同步,在最后一个时钟脉冲后,CS再一

相关文档
最新文档