(完整word版)圆的方程练习题
2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.2 圆的方程 Word版含答案
§8.2圆的方程A组基础题组1.(2021课标Ⅱ,7,5分)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2B.8C.4D.102.(2021浙江嘉兴一中阶段测试)若P(2,-1)为圆M:(x-1)2+y2=25的弦AB的中点,则直线AB的方程为( )A.2x+y-3=0B.x-y-3=0C.x+y-1=0D.2x-y-5=03.(2021浙江湖州德清高级中学月考)已知点M是直线3x+4y-2=0上的动点,点N为圆(x+1)2+(y+1)2=1上的动点,则|MN|的最小值是( )A. B.1 C. D.4.(2021黑龙江大庆铁人中学月考,4,5分)已知圆C的方程为x2+y2+2x-2y+1=0,当圆心C到直线kx+y+4=0的距离最大时,k的值为( )A. B. C.- D.-5.(2021河北衡水中学一调,5)假如直线l将圆x2+y2-2x-4y=0平分且l不通过第四象限,则l的斜率的取值范围是( )A.[0,2]B.[0,1]C. D.6.(2022福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5B.+C.7+D.67.(2021浙江六校联考文,10,6分)已知点M(2,1)及圆x2+y2=4,则过M点的圆的切线方程为,若直线ax-y+4=0与该圆相交于A、B两点,且|AB|=2,则a= .8.(2022山东,14,5分)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C 的标准方程为.9.(2021湖南,13,5分)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r= .10.(2021湖北,16,5分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准..方程为;(2)圆C在点B处的切线在x轴上的截距为.11.(2021黑龙江双鸭山一中期中,20)已知圆C的半径为2,圆心在x轴正半轴上,直线3x-4y+4=0与圆C相切.(1)求圆C的方程;(2)若过点(0,-3)的直线l与圆C交于不同的两点A(x1,y1),B(x2,y2),且x1x2+y1y2=3,求三角形AOB的面积. B组提升题组1.(2021宁波十校联考,4,5分)直线x+y-2=0截圆x2+y2=4所得劣弧所对的圆心角的大小为( )A. B. C. D.2.(2021山东烟台诊断)已知P(x,y)是直线kx+y+4=0(k>0)上一动点,PA是圆C:x2+y2-2y=0的一条切线,A是切点,若线段PA长度的最小值为2,则k的值为( )A.3B.C.2D.23.(2022陕西,12,5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.4.(2021诸暨高中毕业班检测,12,6分)已知圆C:(x-1)2+y2=25与直线l:mx+y+m+2=0,若圆C关于直线l对称,则m= ;当m= 时,圆C被直线l截得的弦长最短.5.(2021浙江冲刺卷五,14)过点A(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于M,N两点,若|MN|=8,则l的方程为.6.(2021浙江模拟训练冲刺卷一,14)已知圆的方程为x2+y2+2mx+4y+2m2-3m=0,若过点A(1,-2)的圆的切线有两条,则实数m的取值范围是.7.(2022重庆,13,5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a= .8.(2021宁波高考模拟文,12,6分)已知实数a,b,c满足a+b=2c,则直线l:ax-by+c=0恒过定点,该直线被圆x2+y2=9所截得的弦长的取值范围为.9.(2021山东济南模拟)已知P是直线3x+4y-10=0上的动点,PA,PB是圆x2+y2-2x+4y+4=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.10.(2021湖北华中师大附中期中,14)在平面直角坐标系xOy中,已知点P(3,0)在圆C:x2+y2-2mx-4y+m2-28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围是.11.(2021河南六市一联)如图所示,在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对相互垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等.试求全部满足条件的点P的坐标.12.(2021重庆一中期中,21)已知点H(-3,0),点P在y轴上,点Q在x轴正半轴上,点M在PQ所在直线上,且满足·=0,=-.(1)当点P在y轴上移动时,求点M的轨迹C的方程;(2)给定圆N:x2+y2=2x,过圆心N作直线l,此直线与圆N和(1)中的轨迹C共有四个交点,自上而下顺次记为A,B,C,D,假如线段AB,BC,CD的长按此挨次构成一个等差数列,求直线l的方程.A组基础题组1.C 设圆心为P(a,b),由点A(1,3),C(1,-7)在圆上,知b==-2.再由|PA|=|PB|,得a=1.则P(1,-2),|PA|==5,于是圆P的方程为(x-1)2+(y+2)2=25.令x=0,得y=-2±2,则|MN|=|(-2+2)-(-2-2)|=4.2.B 依题意知圆心M(1,0),MP⊥AB,而k MP==-1,所以k AB=1,由于直线AB过点P(2,-1),所以直线AB的方程为y-(-1)=x-2,即x-y-3=0.故选B.3.C 圆心(-1,-1)到点M的距离的最小值为点(-1,-1)到直线3x+4y-2=0的距离,依据点到直线的距离公式得d==,故点N到点M的距离的最小值为d-1=.故选C.4.D 圆C的方程为(x+1)2+(y-1)2=1,圆心为C(-1,1).又直线kx+y+4=0恒过定点A(0,-4),所以当圆心C到直线kx+y+4=0的距离最大时,直线CA垂直于直线kx+y+4=0,而k CA=-5,则由-5×(-k)=-1,得k=-.5.A 圆的方程x2+y2-2x-4y=0可化为(x-1)2+(y-2)2=5,其圆心坐标为(1,2),经过圆心和原点的直线的斜率为2,由题意知直线l过圆心且不过第四象限,则斜率k的取值范围是0≤k≤2.6.D 设Q(cosθ,sinθ),圆心为M,由已知得M(0,6),则|MQ|= ===≤5当sinθ=-时取等号,故|PQ|max =5+=6.7.答案x=2或3x+4y-10=0;±解析若过M点的圆的切线斜率不存在,则切线方程为x=2,阅历证满足条件.若切线斜率存在,可设切线方程为y=k(x-2)+1,由圆心到切线的距离等于半径得=2,解得k=-,故切线方程为y=-(x-2)+1,即3x+4y-10=0.综上,过M点的圆的切线方程为x=2或3x+4y-10=0.由=得a=±.8.答案(x-2)2+(y-1)2=4解析由于圆心在直线x-2y=0上,且圆C与y轴相切,所以可设圆心坐标为(2a,a),则(2a)2=a2+()2,解得a=±1.又圆C与y轴的正半轴相切,所以a=1,故圆C的标准方程为(x-2)2+(y-1)2=4.9.答案 2解析过O作OC⊥AB于C,则OC==1,在Rt△AOC中,∠AOC=60°,则r=OA==2.10.答案(1)(x-1)2+(y-)2=2(2)--1解析(1)记AB的中点为D,在Rt△BDC中,易得圆C的半径r=BC=.因此圆心C的坐标为(1,),所以圆C的标准方程为(x-1)2+(y-)2=2.(2)由于点B的坐标为(0,+1),C的坐标为(1,),所以直线BC的斜率为-1,所以所求切线的斜率为1.由点斜式得切线方程为y=x++1,故切线在x轴上的截距为--1.11.解析(1)设圆心C的坐标为(a,0)(a>0),则圆C的方程为(x-a)2+y2=4.由于圆C与直线3x-4y+4=0相切,所以=2,解得a=2或a=-(舍),所以圆C的方程为(x-2)2+y2=4.(2)依题意知直线l的斜率存在,设直线l的方程为y=kx-3,由得(1+k2)x2-(4+6k)x+9=0,∵l与圆C相交于不同的两点A(x1,y1),B(x2,y2),∴Δ=[-(4+6k)]2-4(1+k2)×9>0,且x1+x2=,x1x2=,∴y1y2=(kx1-3)(kx2-3)=k2·x1x2-3k(x1+x2)+9=-+9,又∵x1x2+y1y2=3,∴+-+9=3,整理得k2+4k-5=0,解得k=1或k=-5(不满足Δ>0,舍去). ∴直线l的方程为y=x-3.∴圆心C到l的距离d==,易得|AB|=2=,又△AOB的边AB上的高h==,所以S△AOB=|AB|·h=××=.B组提升题组1.C 以直线x+y-2=0与圆x2+y2=4的两个交点及圆心为顶点的三角形为等腰三角形.圆x2+y2=4的圆心为原点,由点到直线的距离公式,得原点到直线x+y-2=0的距离为=,所以直线被圆截得的弦长为2=2,所以该三角形为等边三角形,所以劣弧所对的圆心角的大小为.故选C.2.D 圆C:x2+(y-1)2=1,圆心C(0,1),半径r=1,由题意得=,解得k=2或k=-2(舍去),故选D.3.答案x2+(y-1)2=1解析点(1,0)关于直线y=x对称的点(0,1)为圆心,又半径r=1,所以圆C的标准方程为x2+(y-1)2=1.4.答案-1;1解析当圆C关于l对称时,圆心(1,0)在直线mx+y+m+2=0上,得m=-1.直线l:m(x+1)+y+2=0恒过圆C内的点M(-1,-2),当圆心到直线l的距离最大,即MC⊥l时,圆C被直线l截得的弦长最短,k MC==1,由(-m)×1=-1,得m=1.5.答案x=-4或5x+12y+20=0解析当直线l的斜率不存在时,其方程为x=-4,可得交点坐标为(-4,6),(-4,-2),此时|MN|=8,符合题意. 当直线l的斜率存在时,设其方程为y=k(x+4),圆的标准方程为(x+1)2+(y-2)2=25,则圆心到直线l的距离d=,由|MN|=2=8,得25-=16,解得k=-,故l的方程为5x+12y+20=0.综上,直线l的方程为x=-4或5x+12y+20=0.6.答案解析将圆的方程配方得(x+m)2+(y+2)2=-m2+3m+4,则有-m2+3m+4>0;由题意知点A(1,-2)在圆外,则(1+m)2+(-2+2)2>-m2+3m+4,即2m2-m-3>0.由得故实数m的取值范围是<m<4.7.答案4±解析易知△ABC是边长为2的等边三角形,故圆心C(1,a)到直线AB的距离为,即=,解得a=4±.经检验均符合题意,故a=4±.8.答案;[,6]解析依题意,c=,故ax-by+c=0⇔ax-by+=0,即(2x+1)a-(2y-1)b=0,可知直线l过定点.圆心到直线的距离d=,故弦长为2≥2=,当且仅当a=b时等号成立.又弦长≤6,故弦长的取值范围为[,6].9.答案 2解析圆的标准方程为(x-1)2+(y+2)2=1,其圆心为C(1,-2),半径为1,且直线与圆相离,如图所示,四边形PACB的面积等于2S△PAC,而S△PAC=|PA|·|AC|=|PA|=,又|PC|min==3,∴(S△PAC)min==,故四边形PACB面积的最小值为2. 10.答案(3-2,3-2]∪[3+2,3+2)解析圆C的标准方程为(x-m)2+(y-2)2=32,则圆心C(m,2),半径r=4,S△ABC=r2sin∠ACB=16sin∠ACB,∴当∠ACB=90°时,S△ABC取得最大值16,此时△ABC为等腰直角三角形,∴AB=8,则C到AB的距离为4,∴4≤PC<4,即4≤<4,∴16≤(m-3)2+4<32,即12≤(m-3)2<28,∴解得3-2<m≤3-2或3+2≤m<3+2.故实数m的取值范围是(3-2,3-2]∪[3+2,3+2).11.解析(1)由于直线x=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(x-4),圆C1的圆心到直线l的距离为d,由于直线l被圆C1截得的弦长为2,所以d==1.由点到直线的距离公式得d=,从而=1,化简得k(24k+7)=0,所以k=0或k=-,所以直线l的方程为y=0或7x+24y-28=0.(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(x-a),k≠0,则直线l2的方程为y-b=-(x-a).由于圆C1和C2的半径相等,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即=,整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,由于k的取值有无穷多个,所以或解得或这样点P的坐标为或.经检验,上述坐标均满足题目条件.12.解析(1)设M(x,y),P(0,y'),Q(x',0)(x'>0),∵·=0,=-,∴(3,y')·(x,y-y')=0,(x,y-y')=-(x'-x,-y),∴3x+y'y-y'2=0,x'=x,y'=-y,将y'=-y代入3x+y'y-y'2=0,整理得y2=4x,又由x'>0得x>0,∴点M的轨迹C的方程为y2=4x(x>0).(2)圆N:(x-1)2+y2=1,直径为2,圆心为N(1,0),由题意设l的方程为x=my+1,将x=my+1代入y2=4x(x>0),得y2-4my-4=0,设A(x1,y1),D(x2,y2),则y1+y2=4m,y1y2=-4,则|AD|=·=4(m2+1),∵线段AB,BC,CD的长按此挨次构成一个等差数列,∴2|BC|=|AB|+|CD|=|AD|-|BC|,∴|AD|=3|BC|,又|AD|=4(m2+1),|BC|=圆N的直径=2,∴4(m2+1)=6,解得m=±,∴直线l的方程为x-y-=0或x+y-=0.。
高中数学 必修二 习题:第4章 圆的方程4.2.3 Word版含解析
第四章 4.2 4.2.3一、选择题1.一辆卡车宽1.6 m ,要经过一个半圆形隧道(半径为3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过( )A .1.4 mB .3.5 mC .3.6 mD .2.0 m[答案] B[解析] 圆半径OA =3.6,卡车宽1.6,所以AB =0.8, 所以弦心距OB = 3.62-0.82≈3.5(m).2.已知实数x 、y 满足x 2+y 2-2x +4y -20=0,则x 2+y 2的最小值是( )A .30-10 5B .5- 5C .5D .25[答案] A [解析]x 2+y 2为圆上一点到原点的距离.圆心到原点的距离d =5,半径为5,所以最小值为(5-5)2=30-10 5.3.方程y =-4-x 2对应的曲线是( )[答案] A[解析] 由方程y =-4-x 2得x 2+y 2=4(y ≤0),它表示的图形是圆x 2+y 2=4在x 轴上和以下的部分.4.y =|x |的图象和圆x 2+y 2=4所围成的较小的面积是( )D .π4B .3π4C .3π2D .π[答案] D[解析] 数形结合,所求面积是圆x 2+y 2=4面积的14.5.点P 是直线2x +y +10=0上的动点,直线P A 、PB 分别与圆x 2+y 2=4相切于A 、B 两点,则四边形P AOB (O 为坐标原点)的面积的最小值等于( )A .24B .16C .8D .4[答案] C[解析] ∵四边形P AOB 的面积S =2×12|P A |×|OA |=2OP 2-OA 2=2OP 2-4,∴当直线OP 垂直直线2x +y +10=0时,其面积S 最小.6.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0与圆C :x 2+y 2+2x =b 2-1(b >0)的位置关系是“平行相交”,则实数b 的取值范围为( )A .(2,322)B .(0,322)C .(0,2)D .(2,322)∪(322,+∞)[答案] D[解析] 圆C 的标准方程为(x +1)2+y 2=b 2.由两直线平行,可得a (a +1)-6=0,解得a =2或a =-3.当a =2时,直线l 1与l 2重合,舍去;当a =-3时,l 1:x -y -2=0,l 2:x -y +3=0.由l 1与圆C 相切,得b =|-1-2|2=322,由l 2与圆C 相切,得b =|-1+3|2= 2.当l 1、l 2与圆C 都外离时,b < 2.所以,当l 1、l 2与圆C “平行相交”时,b 满足⎩⎪⎨⎪⎧b ≥2b ≠2,b ≠322,故实数b 的取值范围是(2,322)∪(322,+∞). 二、填空题7.已知实数x 、y 满足x 2+y 2=1,则y +2x +1的取值范围为________.[答案] [34,+∞)[解析] 如右图所示,设P (x ,y )是圆x 2+y 2=1上的点,则y +2x +1表示过P (x ,y )和Q (-1,-2)两点的直线PQ 的斜率,过点Q 作圆的两条切线QA ,QB ,由图可知QB ⊥x 轴,k QB 不存在,且k QP ≥k QD .设切线QA 的斜率为k ,则它的方程为y +2=k (x +1),由圆心到QA 的距离为1,得|k -2|k 2+1=1,解得k =34.所以y +2x +1的取值范围是[34,+∞).8.已知M ={(x ,y )|y =9-x 2,y ≠0},N ={(x ,y )|y =x +b },若M ∩N ≠∅,则实数b 的取值范围是________.[答案] (-3,32][解析] 数形结合法,注意y =9-x 2,y ≠0等价于x 2+y 2=9(y>0),它表示的图形是圆x 2+y 2=9在x 轴之上的部分(如图所示).结合图形不难求得,当-3<b ≤32时,直线y =x +b 与半圆x 2+y 2=9(y >0)有公共点. 三、解答题9.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.[解析] 以O 为坐标原点,过OB 、OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1,因为点B (8,0)、C (0,8),所以直线BC 的方程为x 8+y8=1,即x+y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆相切所成切点处时,DE 为最短距离,此时DE 的最小值为|0+0-8|2-1=(42-1)km.10.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,求支柱A 2P 2的长.(精确到0.01 m)[解析] 如图,以线段AB 所在的直线为x 轴,线段AB 的中点O 为坐标原点建立平面直角坐标系,那么点A 、B 、P 的坐标分别为(-18,0)、(18,0)、(0,6).设圆拱所在的圆的方程是x 2+y 2+Dx +Ey +F =0. 因为A 、B 、P 在此圆上,故有 ⎩⎪⎨⎪⎧182-18D +F =0182+18D +F =062+6E +F =0,解得⎩⎪⎨⎪⎧D =0E =48F =-324.故圆拱所在的圆的方程是x 2+y 2+48y -324=0. 将点P 2的横坐标x =6代入上式,解得y =-24+12 6. 答:支柱A 2P 2的长约为126-24 m.一、选择题1.已知圆C 的方程是x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为( )A .9B .14C .14-6 5D .14+6 5[答案] D[解析] 圆C 的标准方程为(x +2)2+(y -1)2=9,圆心为C (-2,1),半径为3.|OC |=5,圆上一点(x ,y )到原点的距离的最大值为3+5,x 2+y 2表示圆上的一点(x ,y )到原点的距离的平方,最大值为(3+5)2=14+6 5.2.方程1-x 2=x +k 有惟一解,则实数k 的范围是( )A .k =- 2B .k ∈(-2,2)C .k ∈[-1,1)D .k =2或-1≤k <1[答案] D[解析] 由题意知,直线y =x +k 与半圆x 2+y 2=1(y ≥0只有一个交点.结合图形易得-1≤k <1或k = 2.3.已知圆的方程为x 2+y 2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .10 6B .20 6C .30 6D .40 6[答案] B[解析] 圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1,根据题意最短弦BD 和最长弦(即圆的直径)AC 垂直,故最短弦的长为252-12=46,所以四边形ABCD 的面积为12×AC ×BD =12×10×46=20 6. 4.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )D .4π5B .3π4C .(6-25)πD .5π4[答案] A[解析] 原点O 到直线2x +y -4=0的距离为d ,则d =45,点C 到直线2x +y -4=0的距离是圆的半径r ,由题知C 是AB 的中点,又以斜边为直径的圆过直角顶点,则在直角△AOB 中,圆C 过原点O ,即|OC |=r ,所以2r ≥d ,所以r 最小为25,面积最小为4π5,故选D . 二、填空题5.某公司有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于________.[答案] B 景点在小路的投影处[解析] 所选观景点应使对两景点的视角最大.由平面几何知识,该点应是过A 、B 两点的圆与小路所在的直线相切时的切点,以小路所在直线为x 轴,过B 点与x 轴垂直的直线为y 轴上建立直角坐标系.由题意,得A (2,2)、B (0,22),设圆的方程为(x -a )2+(y -b )2=b 2.由A 、B 在圆上,得⎩⎨⎧ a =0b =2,或⎩⎨⎧ a =42b =52,由实际意义知⎩⎨⎧a =0b =2.∴圆的方程为x 2+(y -2)2=2,切点为(0,0),∴观景点应设在B 景点在小路的投影处.6.设集合A ={(x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},若存在实数t ,使得A ∩B ≠∅,则实数a 的取值范围是________.[答案] [0,43][解析] 首先集合A 、B 实际上是圆上的点的集合,即A 、B 表示两个圆,A ∩B ≠∅说明这两个圆相交或相切(有公共点),由于两圆半径都是1,因此两圆圆心距不大于半径之和2,即(t -4)2+(at -2)2≤2,整理成关于t 的不等式:(a 2+1)t 2-4(a +2)t +16≤0,据题意此不等式有实解,因此其判别式不小于零,即Δ=16(a +2)2-4(a 2+1)×16≥0,解得0≤a ≤43.三、解答题7.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km 的B 处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法) [解析] 如图,以O 为原点,东西方向为x 轴建立直角坐标系,则A (40,0),B (0,30),圆O 方程x 2+y 2=252.直线AB 方程:x 40+y30=1,即3x +4y -120=0.设O 到AB 距离为d ,则d =|-120|5=24<25, 所以外籍轮船能被海监船监测到. 设监测时间为t ,则t =2252-24228=12(h)答:外籍轮船能被海监船监测到,时间是0.5 h.8.已知隧道的截面是半径为4.0 m 的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m 、高为3 m 的货车能不能驶入这个隧道?假设货车的最大宽度为a m ,那么要正常驶入该隧道,货车的限高为多少?[解析] 以某一截面半圆的圆心为坐标原点,半圆的直径AB 所在的直线为x 轴,建立如图所示的平面直角坐标系,那么半圆的方程为:x 2+y 2=16(y ≥0).将x =2.7代入,得 y =16-2.72=8.71<3,所以,在离中心线2.7 m 处,隧道的高度低于货车的高度,因此,货车不能驶入这个隧道.将x =a 代入x 2+y 2=16(y ≥0)得y =16-a 2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a2m.。
【同步练习】2019年高中数学人教A版必修2 圆的一般方程 同步练习 Word版含解析
2019年高中数学人教A 版必修2 圆的一般方程 同步练习一、选择题:1.方程2x 2+2y 2-4x +8y +10=0表示的图形是( )A.一个点B.一个圆C.一条直线D.不存在2.方程x 2+y 2+Dx +Ey +F=0表示的圆过原点且圆心在直线y=x 上的条件是( )A.D=E=0,F ≠0B.D=F=0,E ≠0C.D=E ≠0,F ≠0D.D=E ≠0,F=03.由方程x 2+y 2+x +(m-1)y +0.5m 2=0所确定的圆中,最大面积是( ) A.23π B.43π C.3π D.不存在 4.若圆x 2+y 2-2x-4y=0的圆心到直线x-y +a=0的距离为22,则a 的值为( ) A.-2或2 B.0.5或1.5 C.2或0 D.-2或05.若Rt △ABC 的斜边的两端点A ,B 的坐标分别为(-3,0)和(7,0),则直角顶点C 的轨迹方程为( )A.x 2+y 2=25(y ≠0)B.x 2+y 2=25C.(x-2)2+y 2=25(y ≠0)D.(x-2)2+y 2=256.若圆x 2+y 2-4x +2y +m=0与y 轴交于A 、B 两点,且∠ACB=90°(其中C 为已知圆的圆心),则实数m 等于( )A.1B.-3C.0D.2二、填空题:7.已知圆C :x 2+y 2+2x +ay-3=0(a 为实数)上任意一点关于直线l :x-y +2=0的对称点都在圆C 上,则a=________.8.当动点P 在圆x 2+y 2=2上运动时,它与定点A(3,1)连线中点Q 的轨迹方程为________.三、解答题:9.已知圆C :x 2+y 2+Dx +Ey +3=0,圆心在直线x +y-1=0上,且圆心在第二象限,半径为2,求圆的一般方程.10.设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为两边作▱MONP,求点P的轨迹方程.11.已知圆的方程是x2+y2+2(m-1)x-4my+5m2-2m-8=0.(1)求此圆的圆心与半径;(2)求证:不论m为何实数,它们表示圆心在同一条直线上的等圆.参考答案1.A;2.D;3.B4.C;5.C;6.B;7.答案为:-2;8.答案为:(x-1.5)2+(y-0.5)2=0.5.9.解:圆心C(-0.5D,-0.5E),因为圆心在直线x+y-1=0上,所以-0.5D,-0.5E-1=0,即D+E=-2,①又r=2,所以D2+E2=20,②由①②可得D=2,E=-4或D=-4,E=2.又圆心在第二象限,所以-0.5D<0,即D>0,所以D=2,E=-4.所以圆的一般方程为:x2+y2+2x-4y+3=0.10.解:11.解:(1)x2+y2+2(m-1)x-4my+5m2-2m-8=0可化为[x+(m-1)]2+(y-2m)2=9,∴圆心为(1-m,2m),半径r=3.(2)证明:由(1)可知,圆的半径为定值3,且圆心(a,b)满足方程组a=1-m,b=2m, 即2a+b=2.∴不论m为何值,方程表示的圆的圆心在直线2x+y-2=0上,且为等圆.。
(完整word版)代数方程练习题解析
参考答案与试题解析A组一.(共30小题)1.在方程、、、中,无理方程共有()、2.三角形的三条边长分别为2、k、4,若k满足方程k2﹣6k+12﹣=0,则k的值()﹣3.已知,则x等于(),先化简再求值即可得出答案.解:已知∴原式可化简为:+34.若,则x+y的值为()=a不能为负,5.方程的所有解的和为()解:方程时,时,6.已知四个方程①;②;③;④,其中有实数解的方C D原方程可化为8.已知下列关于x的方程:①;②+1=0;③+2x=7;④﹣7=0;⑤+=2;⑥﹣=.C±或是二元二次方程是分式方程是无理方程D.先移项得到=C DC D、∵、∵,∴、∵14.方程的解的情况是()此题需将方程变形为,再分三种情况讨论,即可得出方程解的解:将方程变形为,即,即成为B组15.如果满足=a的实数x恰有6个值,那么a的取值范围是()C D=|﹣)|时,=a=,;)|时,=a=,≥﹣)|时,=a=,;时,16.方程+=12的实数解个数为()时,=8+17.已知a为非负实数,若关于x的方程至少有一个整数根,则a可能取值的个数为()=ya=,18.方程的根为()C D==020.在方程、、、中,无理方程的个数有()、C D=,去掉分母后、因为22.下列方程中,无实根的方程是()C D24.(2006•闸北区一模)下列方程中有实数解的方程是()+1=0 =x﹣2 C++1=0 D=、由于≥+1C DCC D 、∵,而C DC D。
(完整word版)参数方程直线、圆专题练习
参数方程直线、圆专题练习.。
评卷人得分一.选择题(共9小题)1.曲线C的参数方程为(θ为参数),直线l的方程为x﹣y﹣2=0,P、M分别为曲线C和直线l上的点,则|PM|的最小值为()A.0 B.C. D.22.直线l的参数方程为(t为参数),则l的倾斜角大小为()A. B. C.D.3.直线(t为参数)与曲线(θ为参数)相交的弦长为()A.1 B.2 C.3 D.44.已知曲线的参数方程为(0≤t≤5),则曲线为( )A.线段B.双曲线的一支 C.圆弧D.射线5.参数方程(t为参数,且0≤t≤3)所表示的曲线是( )A.直线B.圆弧C.线段D.双曲线的一支6.椭圆的参数方程为(θ为参数),则它的两个焦点坐标是()A.(±4,0) B.(0,±4) C.(±5,0) D.(0,±3)7.已知α是锐角,则直线(t为参数)的倾斜角是( )A.αB.α﹣C.α+D.α+8.已知M为曲线C:(θ为参数)上的动点.设O为原点,则|OM|的最大值是()A.1 B.2 C.3 D.49.已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t=,点O为原点,则直线OM的斜率为()A. B.﹣C.2D.﹣2评卷人得分二.填空题(共16小题)10.参数方程(α为参数)化成普通方程为.11.已知椭圆的参数方程为,则该椭圆的普通方程是.12.椭圆(θ为参数)的右焦点坐标为13.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是.14.若直线(t为参数)与曲线(θ为参数)相切,则实数m的值为.15.设点A是曲线是参数)上的点,则点A到坐标原点的最大距离是.16.直线(t为参数)与曲线(θ为参数)的公共点个数为.17.参数方程(θ为参数)化为普通方程是.:18.直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1 (θ为参数),曲线C:ρcos(θ+)=t,若两曲线有公共点,则t的取值范围2是.19.直线(t为参数)对应的普通方程是.20.直线(t为参数)的倾斜角的大小为.21.将参数方程(t为参数)化为普通方程是.22.直线(t为参数)被圆(θ为参数)所截得的弦长为.23.直线(t为参数)与曲线(θ为参数)的交点个数是.24.已知直线C1:(t为参数),C2:(θ为参数),当α=时,则C1与C2的交点坐标为.25.若直线l的参数方程为,t∈R,则直线l在y轴上的截距是.评卷人得分三.解答题(共5小题)26.在直角坐标系xOy中,曲线C1:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2:ρ2﹣10ρcosθ﹣6ρsinθ+25=0.(Ⅰ)求C1的普通方程与曲线C2的直角坐标方程,并说明方程所表示的曲线名称;(Ⅱ)判断曲线C1与曲线C2的位置关系,若相交,求出弦长.27.已知直线l参数方程:(t为参数),曲线C1:.(1)求直线l的直角坐标方程和曲线C1的参数方程;(2)若点M在曲线C1上运动,求M到直线l距离的最小值.28.已知直线l:(t为参数),曲线C1:,(θ为参数).(1)设l与C1相交于A,B两点,求|AB|;(2)曲线C2为(θ为参数),点P是曲线C2上的一个动点,求它到直线l的距离的最小值.29.在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.30.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.参数方程直线、圆专题练习参考答案与试题解析一.选择题(共9小题)1.曲线C的参数方程为(θ为参数),直线l的方程为x﹣y﹣2=0,P、M分别为曲线C和直线l上的点,则|PM|的最小值为()A.0 B.C. D.2【分析】直接利用三角函数关系式的恒等变变换和正弦型函数的性质及点到直线的距离公式的应用求出结果.【解答】解:曲线C的参数方程为(θ为参数),设P(2c osθ,sinθ),则:点P到直线x﹣y﹣2=0的距离d==,当sin(θ+α)=1时,|PM|的最小值为.故选:B.【点评】本题考查的知识要点:点到直线的距离公式的应用,三角函数关系式的恒等变变换,正弦型函数性质的应用.2.直线l的参数方程为(t为参数),则l的倾斜角大小为( )A. B. C.D.【分析】根据题意,将直线的参数方程变形为普通方程,由直线的方程形式分析可得答案.【解答】解:根据题意,直线l的参数方程为(t为参数),则到直线的方程为,所以直线的斜率为,倾斜角为,故选:C.【点评】本题考查直线的参数方程及倾斜角,注意将直线的参数方程变形为普通方程.3.直线(t为参数)与曲线(θ为参数)相交的弦长为()A.1 B.2 C.3 D.4【分析】分别化直线与圆的参数方程为普通方程,再由圆心在直线上可得弦长.【解答】解:由,得x﹣,由,得(x﹣1)2+y2=1.∴圆(x﹣1)2+y2=1的圆心坐标为(1,0),半径为1.而圆心(1,0)在直线x﹣上,∴直线与曲线相交的弦长为2.故选:B.【点评】本题考查参数方程化普通方程,考查直线与圆位置关系的应用,是基础题.4.已知曲线的参数方程为(0≤t≤5),则曲线为()A.线段B.双曲线的一支 C.圆弧D.射线【分析】曲线的参数方程消去参数t,得x﹣3y=5.再由0≤t≤5,得﹣1≤y≤24.从而求出该曲线是线段.【解答】解:由(0≤t≤5),消去参数t,得x﹣3y=5.又0≤t≤5,故﹣1≤y≤24.故该曲线是线段.故选:A.【点评】本题考查曲线形状的判断,考查极坐标方程、参数方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是基础题.5.参数方程(t为参数,且0≤t≤3)所表示的曲线是()A.直线B.圆弧C.线段D.双曲线的一支【分析】根据题意,由参数方程中t的范围分析可得x、y的范围,结合参数方程消去参数可得x ﹣3y=10,结合x、y的范围分析可得答案.【解答】解:根据题意,参数方程,若0≤t≤3,则有:4≤x≤31,﹣2≤y≤7,又由参数方程,则y+2=(x﹣4),即x﹣3y=10,又由4≤x≤31,﹣2≤y≤7,则参数方程表示的是线段;故选:C.【点评】本题考查参数方程与普通方程的转化,注意t的取值范围.6.椭圆的参数方程为(θ为参数),则它的两个焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0)D.(0,±3)【分析】根据题意,将椭圆的参数方程变形为普通方程,分析a、b的值,计算可得c的值,即可得答案.【解答】解:根据题意,椭圆的参数方程为(θ为参数),则其普通方程为+=1,其中a=5,b=3,则c==4,其它的两个焦点坐标是(±4,0);故选:A.【点评】本题考查椭圆的参数方程,关键是将椭圆的方程变形为普通方程.7.已知α是锐角,则直线(t为参数)的倾斜角是()A.αB.α﹣C.α+D.α+【分析】设直线的倾斜角为θ,则tanθ==,α锐角,化简即可得出.【解答】解:设直线的倾斜角为θ,则tanθ====,α锐角.∴θ=,故选:C.【点评】本题考查了直线的倾斜角与斜率之间的关系、诱导公式的应用,考查了推理能力与计算能力,属于中档题.8.已知M为曲线C:(θ为参数)上的动点.设O为原点,则|OM|的最大值是( ) A.1 B.2 C.3 D.4【分析】直接把圆的参数方程转化为直角坐标方程,进一步利用两点间的距离公式求出结果.【解答】解:曲线C:(θ为参数)转化为:(x﹣3)2+y2=1,则:圆心(3,0)到原点(0.0)的距离为3,故点M到原点的最大值为:3+1=4.故选:D.【点评】本题考查的知识要点:参数方程和直角坐标方程的转化,两点间的距离公式的应用.9.已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t=,点O为原点,则直线OM的斜率为()A. B.﹣C.2D.﹣2【分析】将点对应的参数代入椭圆的参数方程得到M的坐标,再利用直线的斜率公式即可求出答案.【解答】解:当t=时,点M的坐标为(2cos,4sin),即M(1,2),∴OM的斜率为k=2.故选:C.【点评】本题主要考查了椭圆的参数方程,直线的斜率等基本知识,属于基础题.二.填空题(共16小题)10.参数方程(α为参数)化成普通方程为x2+(y﹣1)2=1 .【分析】欲将参数方程(α为参数)化成普通方程,只须消去参数即可,利用三角函数的同角公式中的平方关系即得.【解答】解:∵(α为参数)∴x2+(y﹣1)2=cos2α+sin2α=1.即:参数方程(α为参数)化成普通方程为:x2+(y﹣1)2=1.故答案为:x2+(y﹣1)2=1.【点评】本小题主要考查参数方程的概念的应用、圆的参数方程的概念、三角函数的同角公式等基础知识,考查运算求解能力、化归与转化思想.属于基础题.11.已知椭圆的参数方程为,则该椭圆的普通方程是.【分析】根据题意,由椭圆的参数方程可得=cosα,=sinα,进而可得,即可得答案.【解答】解:根据题意,椭圆的参数方程为,则有=cosα,=sinα,则有,即该椭圆的普通方程为:,故答案为:.【点评】本题考查椭圆的参数方程,注意椭圆的参数方程的形式,属于基础题.12.椭圆(θ为参数)的右焦点坐标为(1,0)【分析】根据题意,将椭圆的参数方程变形为标准方程,分析可得a、b的值,计算可得c的值,即可得椭圆的右焦点坐标,即可得答案.【解答】解:根据题意,椭圆(θ为参数)的普通方程为+=1,其中a=2,b=,则c=1;故椭圆的右焦点坐标为(1,0);故答案为:(1,0)【点评】本题考查椭圆的参数方程,注意将椭圆的参数方程变形为普通方程.13.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是.【分析】利用弦长=,(其中d为弦心距)公式即可计算出.【解答】解:直线l的极坐标方程为ρsinθ+ρcosθ=1,化为直角坐标系下的普通方程为y+x=1;由圆C的参数方程为(θ为参数),消去参数θ化为普通方程x2+(y﹣2)2=1,其圆心C(0,2),半径r=1.直线l截圆C所得的弦长=2=.故答案为.【点评】熟练弦长、弦心距及半径三者之间的关系是解题的关键.14.若直线(t为参数)与曲线(θ为参数)相切,则实数m的值为﹣3或7 .【分析】把参数方程化为普通方程,根据圆心到直线的距离等于半径,求得m的值.【解答】解:直线l:(t为参数)即 2x﹣y+m﹣2=0.曲线C:曲线(θ为参数) 即 x2+y2=5,表示以(0,0)为圆心,半径等于的圆.再根据圆心到直线的距离等于半径,可得==,求得 m=﹣3或7,故答案为:﹣3或7.【点评】本题主要考查把参数方程化为普通方程的方法,点到直线的距离公式的应用,直线和圆的位置关系,属于基础题.15.设点A是曲线是参数)上的点,则点A到坐标原点的最大距离是 3 .【分析】设A(,1+sinθ),原点O(0,0),|AO|==,由此能求出点A到坐标原点取最大距离.【解答】解:∵点A是曲线是参数)上的点,∴设A(,1+sinθ),原点O(0,0),|AO|===,∴当sin()=1时,点A到坐标原点取最大距离3.故答案为:3.【点评】本题考查两点间距离的最大值的求法,考查勇数方程、两点间距离公式、三角函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.16.直线(t为参数)与曲线(θ为参数)的公共点个数为 2 .【分析】直线消去参数t,得x﹣2y=0,曲线消去参数,得(x﹣2)2+y2=1,联立,能求出交点个数.【解答】解:直线(t为参数)消去参数t,得x﹣2y=0,曲线(θ为参数)消去参数,得(x﹣2)2+y2=1,联立,得或.∴直线(t为参数)与曲线(θ为参数)的公共点个数为2.故答案为:2.【点评】本题考查直线与曲线的交点个数的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.17.参数方程(θ为参数)化为普通方程是(x﹣3)2+y2=1 .【分析】由参数方程可得,结合sin2θ+cos2θ=1可得答案.【解答】解:由参数方程可得,两边平方作和得(x﹣3)2+y2=1.故答案为:(x﹣3)2+y2=1.【点评】本题主要考查参数方程与普通方程的相互转化,属于基础题.:18.直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1(θ为参数),曲线C:ρcos(θ+)=t,若两曲线有公共点,则t的取值范围是2t<﹣1或t>3 .【分析】分别化直线和圆的方程为普通方程,由直线和圆的位置关系可得t的不等式,解不等式可得.【解答】解:由C:可得cosθ=x﹣1,sinθ=y,1两式平方相加可得(x﹣1)2+(y)2=1,整理可得(x﹣2)2+y2=4,表示圆心为(2,0)半径为2的圆,:ρcos(θ+)=t可得ρcosθ﹣ρsinθ=t,由C2即x﹣y=t,即x﹣y﹣2t=0,表示一条直线,由两曲线有公共点可得直线与圆相离,∴圆心到直线的距离d大于半径,即>2,解得t<﹣1或t>3故答案为:t<﹣1或t>3【点评】本题考查圆的参数方程和直线的极坐标方程,化为普通方程并利用直线和圆的位置关系是解决问题的关键,属基础题.19.直线(t为参数)对应的普通方程是x+y﹣1=0 .【分析】利用加减消元法消去参数t,即可得到直线的普通方程.【解答】解:两个方程相加得x+y﹣1=0,故答案为:x+y﹣1=0.【点评】本题考查了参数方程与普通方程的转化,属于基础题.20.直线(t为参数)的倾斜角的大小为.【分析】化参数方程为普通方程,求出斜率,即可求得倾斜角.【解答】解:(t为参数)化参数方程为普通方程,两方程相加可得x+y=2,则直线的斜率为﹣1,故倾斜角为.故答案为:.【点评】本题考查直线的斜率与倾斜角的关系,解题的关键是化参数方程为普通方程,属于基础题.21.将参数方程(t为参数)化为普通方程是2x+y﹣3=0 .【分析】2x=2+2,与y=1﹣2相加即可得出.【解答】解:2x=2+2,与y=1﹣2相加可得:2x+y=3.故答案为:2x﹣y﹣3=0.【点评】本题考查了参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.22.直线(t为参数)被圆(θ为参数)所截得的弦长为.【分析】分别化直线与圆的参数方程为普通方程,由点到直线的距离公式求出圆心到直线的距离,再由垂径定理得答案.【解答】解:由,得x+y﹣8=0,由,得,两式平方作和得:(x﹣3)2+(y+1)2=25.∴圆心坐标为(3,﹣1),半径为5.圆心到直线的距离d=.∴直线被圆所截弦长为2.故答案为:.【点评】本题考查参数方程化普通方程,考查了直线与圆位置关系的应用,考查垂径定理的应用,是基础题.23.直线(t为参数)与曲线(θ为参数)的交点个数是 2 .【分析】直线与曲线的参数方程,化为普通方程,联立可得13x2﹣18x﹣27=0,即可得出结论.【解答】解:直线(t为参数)与曲线(θ为参数),普通方程分别为x+y﹣1=0,=1,联立可得13x 2﹣18x ﹣27=0,△=(﹣18)2﹣4×13×(﹣27)>0, ∴交点个数是2, 故答案为:2.【点评】本题考查直线的参数方程与普通方程的转化,考查方程思想,比较基础.24.已知直线C 1:(t 为参数),C 2:(θ为参数),当α=时,则C 1与C 2的交点坐标为 (1,0),(,﹣) .【分析】先消去参数将曲线C 1与C 2的参数方程化成普通方程,再联立方程组求出交点坐标即可. 【解答】解:(Ⅰ)当α=时,C 1的普通方程为y=(x ﹣1),C 2的普通方程为x 2+y 2=1. 联立方程组,解得C 1与C 2的交点为(1,0),(,﹣).故答案为(1,0),(,﹣).【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,比较基础.25.若直线l 的参数方程为,t ∈R ,则直线l 在y 轴上的截距是 1 .【分析】令x=0,可得t=1,y=1,即可得出结论. 【解答】解:令x=0,可得t=1,y=1, ∴直线l 在y 轴上的截距是1. 故答案为1.【点评】本题考查参数方程的运用,考查学生的计算能力,比较基础.三.解答题(共5小题)26.在直角坐标系xOy中,曲线C1:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2:ρ2﹣10ρcosθ﹣6ρsinθ+25=0.(Ⅰ)求C1的普通方程与曲线C2的直角坐标方程,并说明方程所表示的曲线名称;(Ⅱ)判断曲线C1与曲线C2的位置关系,若相交,求出弦长.【分析】(Ⅰ)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(Ⅱ)利用点到直线的距离公式的应用求出结果.【解答】解:(Ⅰ)曲线C1:(t为参数).转换为直角坐标方程为:x﹣2y﹣4=0.(x≥2).故该曲线表示一条射线.曲线C2:ρ2﹣10ρcosθ﹣6ρsinθ+25=0.转换为直角坐标方程为:x2+y2﹣10x﹣6y+25=0,整理得:(x﹣5)2+(y﹣3)2=9,该曲线表示以(5,3)为圆心,3为半径的圆.(Ⅱ)由于该圆是以(5,3)为圆心,3为半径,所以与射线x﹣2y﹣4=0.(x≥2)有两个交点.圆心到射线的距离d=,所以弦长l=2=4.【点评】本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,点到直线的距离公式的应用.27.已知直线l参数方程:(t为参数),曲线C1:.(1)求直线l的直角坐标方程和曲线C1的参数方程;(2)若点M在曲线C1上运动,求M到直线l距离的最小值.【分析】(1)直接利用转换关系式,把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用三角函数关系式的恒等变换和点到直线的距离公式求出结果.【解答】解:(1)直线l参数方程:(t为参数),转化为直角坐标方程为:x+2y﹣10=0.曲线C1:.转换为参数方程为:(θ为参数),(2)设M(3cosθ,2sinθ)到直线l的距离d==.当sin(θ+α)=1时,.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,三角函数关系式的恒等变换,点到直线的距离公式的应用.28.已知直线l:(t为参数),曲线C1:,(θ为参数).(1)设l与C1相交于A,B两点,求|AB|;(2)曲线C2为(θ为参数),点P是曲线C2上的一个动点,求它到直线l的距离的最小值.【分析】(1)转化hi街利用转换关系式,把参数方程和极坐标方程与直角坐标方程进行转化,进一步求出弦长.(2)利用三角函数关系式的恒等变换,进一步利用点到直线的距离公式求出结果.【解答】解:(1)直线l:(t为参数,转化为直角坐标方程为:,曲线C1:,(θ为参数).转化为直角坐标方程为:x2+y2=1,则:,解得交点的坐标A(1,0),B(,).所以:|AB|=1.(2)曲线C2为(θ为参数),点P是曲线C2上的一个动点,则点P的坐标是(),从而点P到直线l的距离是=,当时,d取得最小值,且最小值为.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,点到直线的距离公式的应用.29.在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【分析】(1)⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x+,从而圆心O(0,0)到直线l的距离d=<1,进而求出或,由此能求出α的取值范围.(2)设直线l的方程为x=m(y+),联立,得(m2+1)y2+2+2m2﹣1=0,由此利用韦达定理、中点坐标公式能求出AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x﹣,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),设A(x1,y1),(B(x2,y2),P(x3,y3),联立,得(m2+1)y2+2+2m2﹣1=0,,=﹣+2,=,=﹣,∴AB中点P的轨迹的参数方程为,(m为参数),(﹣1<m<1).【点评】本题考查直线直线的倾斜角的取值范围的求法,考查线段的中点的参数方程的求法,考查参数方程、直角坐标方和、韦达定理、中点坐标公式等基础知识,考查数形结合思想的灵活运用,考查运算求解能力,考查函数与方程思想,是中档题.30.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【分析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用直线和曲线的位置关系,在利用中点坐标求出结果.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,①当直线的斜率不存时,x=1.②当直线的斜率存在时,利用中点坐标公式,,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,中点坐标的应用.。
(完整word版)整式方程练习题
一、一元方程1、一元一次方程例1.(1)在 中,用x 的代数式表示y ,则y=_______.(2)解方程.x x +--=211521562、一元二次方程例2、解下列方程:(1)2)3(212=+x ; (2)1322=+x x ; (3)22)2(25)3(4-=+x x例3.已知关于x 的方程x 2―(2k+1)x+4(k-0.5)=0(1) 求证:不论k 取什么实数值,这个方程总有实数根;(2) 若等腰三角形ABC 的一边长为a=4,另两边的长b .c恰好是这个方程的两个根,求△ABC 的周长.例4.已知m 是方程x2-x-2=0的一个根,那么代数式m2-m = .例5.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是例6.已知a 、b 是方程0122=--x x 的两个根,求下列各式的值: 032=-+y x(1)22b a +;(2)b a 11+课堂练习:一、填空1.下列是关于x 的一元二次方程的有 ①02x 3x12=-+ ②01x 2=+ ③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=-- ⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 .4.一元二次方程ax 2+bx+c=0有一根-2,则b c a4+的值为 .5.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k 的取值范围是__________.二、选择题:6.对于任意的实数x,代数式x 2-5x +10的值是一个( )A.非负数B.正数C.整数D.不能确定的数7.已知(1-m 2-n 2)(m 2+n 2)=-6,则m 2+n 2的值是( )A.3B.3或-2C.2或-3D. 28.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )(A )x 2+4=0 (B )4x 2-4x +1=0(C )x 2+x +3=0(D )x 2+2x -1=09.下面是李刚同学在测验中解答的填空题,其中答对的是( )A .若x 2=4,则x=2B .方程x(2x-1)=2x-1的解为x=1C .方程x 2+2x+2=0实数根为0个D .方程x 2-2x-1=0有两个相等的实数根10.若等腰三角形底边长为8,腰长是方程x2-9x+20=0的一个根,则这个三角形的周长是() A.16 B.18C.16或18D.21三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x2-4x-4=0。
(完整word版)圆的标准方程练习题.docx
第四章4.14.1.1A 级基础巩固一、选择题1.圆心是 (4,- 1),且过点 (5,2)的圆的标准方程是()A .(x- 4)2+( y+1) 2= 10B.( x+ 4)2+ (y-1)2= 10C. (x-4) 2+ (y+1) 2= 100D.( x- 4)2+ (y+1)2= 102.已知圆的方程是 (x- 2)2+ (y- 3)2=4,则点 P(3,2) 满足 ()A .是圆心B.在圆上C.在圆内 D .在圆外3.圆 (x+ 1)2+ (y- 2)2= 4 的圆心坐标和半径分别为()A .(- 1,2), 2B. (1,- 2),2C. (-1,2), 4 D . (1,- 2), 44. (2016 锦·州高一检测 )若圆 C 与圆 (x+ 2)2+ (y- 1)2= 1关于原点对称,则圆 C 的方程是 ()A .(x- 2)2+( y+1) 2= 1B. (x- 2) 2+ (y- 1)2= 1C. (x-1) 2+ (y+2) 2= 1D. (x+ 1)2+ (y+2) 2= 15. (2016 全·国卷Ⅱ )圆 x2+ y2- 2x-8y+ 13=0 的圆心到直线ax+y- 1= 0 的距离为1,则 a= () 43A .-3B.-4C. 3 D . 26.若 P(2,- 1)为圆 (x- 1)2+ y2= 25 的弦 AB 的中点,则直线AB 的方程是 ( A)A . x- y- 3= 0B. 2x+ y- 3= 0C. x+ y-1= 0D. 2x- y- 5= 0二、填空题7.以点 (2,- 1)为圆心且与直线x+ y= 6 相切的圆的方程是.8.圆心既在直线x- y= 0 上,又在直线x+ y- 4= 0 上,且经过原点的圆的方程是三、解答题9.圆过点A(1,- 2)、 B(- 1,4),求(1)周长最小的圆的方程;(2)圆心在直线2x- y- 4= 0 上的圆的方程.10.已知圆 N的标准方程为 (x- 5)2+ (y- 6)2= a2(a>0).(1)若点 M(6,9)在圆上,求 a 的值;(2)已知点 P(3,3) 和点 Q(5,3),线段 PQ(不含端点 )与圆 N 有且只有一个公共点,求 a 的取值范围.B 级素养提升一、选择题1, 3与圆 x2+ y2=1的位置关系是()1. (2016 ~2017 ·宁波高一检测 )点222A .在圆上B.在圆内C.在圆外 D .不能确定2.若点 (2a, a- 1)在圆 x2+ (y+ 1)2=5的内部,则 a 的取值范围是 ()A .(-∞, 1]B. (- 1,1)C. (2,5) D . (1,+∞ )3.若点 P(1,1)为圆 (x- 3)2+ y2= 9 的弦 MN 的中点,则弦 MN 所在直线方程为()A .2x+ y- 3= 0B. x- 2y+ 1= 0C. x+ 2y- 3=0 D . 2x-y- 1= 04.点 M 在圆 (x- 5)2+ (y- 3)2= 9 上,则点M 到直线 3x+ 4y- 2= 0 的最短距离为()A .9B. 8C. 5 D . 2二、填空题5.已知圆 C 经过 A(5,1) 、B(1,3)两点,圆心在 x 轴上,则 C 的方程为 ____.6.以直线 2x+ y-4= 0 与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为____.C 级能力拔高1.如图,矩形 ABCD 的两条对角线相交于点M(2,0), AB 边所在直线的方程为x- 3y- 6= 0,点 T(- 1,1)在 AD 边所在的直线上.求AD 边所在直线的方程 .2.求圆心在直线4x+y= 0 上,且与直线l :x+ y- 1= 0 切于点 P(3,- 2)的圆的方程,并找出圆的圆心及半径.第四章 4.1 4.1.2A 级 基础巩固一、选择题1.圆 x 2 +y 2-4x + 6y = 0 的圆心坐标是 ( )A .(2,3)B . (- 2,3)C . (-2,- 3)D . (2,- 3)2. (2016 ~2017 ·曲靖高一检测 )方程 x 2+ y 2+ 2ax - by + c = 0 表示圆心为 C(2,2),半径为 2 的圆,则 a , b , c 的值依次为 ()A .- 2,4,4B .- 2,- 4,4C . 2,- 4,4D . 2,- 4,- 43.(2016 ~2017 ·长沙高一检测)已知圆 C 过点 M(1,1) ,N(5,1) ,且圆心在直线 y = x - 2 上,则圆 C 的方程为( )A .x 2+ y 2 -6x - 2y + 6= 0B . x 2+ y 2+ 6x - 2y + 6= 0C . x 2+y 2 +6x + 2y + 6= 0D . x 2+ y 2 -2x - 6y + 6= 04. 设圆的方程是 x 2+ y 2+ 2ax + 2y +(a - 1)2=0,若 0<a<1,则原点与圆的位置关系是()A .在圆上B .在圆外C .在圆内D .不确定22x -y + a = 0 的距离为2)5. 若圆 x + y - 2x - 4y = 0 的圆心到直线 ,则 a 的值为 (2A .- 2 或 2B .1或3C . 2 或 0D .- 2 或 02 26. 圆 x 2 +y 2-2y - 1= 0 关于直线 y = x 对称的圆的方程是 ( )A .(x - 1)2+y 2=2B . (x + 1) 2+ y 2= 2C . (x -1) 2+ y 2=4D . (x + 1)2+ y 2=4二、填空题7.圆心是(- 3,4),经过点M(5,1)的圆的一般方程为____.8. 设圆 x 2+ y 2- 4x + 2y - 11=0 的圆心为 A ,点 P 在圆上,则 PA 的中点 M 的轨迹方程是 _ 三、解答题9.判断方程 x 2+ y 2- 4mx + 2my + 20m - 20= 0 能否表示圆,若能表示圆,求出圆心和半径.10.求过点 A(-1,0)、 B(3,0)和 C(0,1)的圆的方程 .B 级素养提升一、选择题1.若圆 x2+ y2- 2ax+ 3by= 0 的圆心位于第三象限,那么直线x+ ay+ b= 0 一定不经过()A .第一象限B.第二象限C.第三象限 D .第四象限2.在圆 x2+ y2-2x- 6y= 0 内,过点 E(0,1)的最长弦和最短弦分别为AC 和 BD,则四边形 ABCD 的面只为() A .5 2B. 10 2C. 15 2 D . 20 23.若点 (2a, a- 1)在圆 x2+ y2- 2y- 5a2= 0 的内部,则 a 的取值范围是()444)3,+∞ ) D .3A .(-∞, ]B. (-,C. (-( ,+∞ )533444.若直线 l :ax+ by+ 1= 0 始终平分圆 M:x2+ y2+4x+ 2y+ 1=0的周长,则( a- 2)2+ (b- 2)2的最小值为()二、填空题5.已知圆 C: x2+ y2+ 2x+ ay- 3= 0(a 为实数 )上任意一点关于直线l: x- y+ 2= 0 的对称点都在圆 C 上,则 a6.若实数 x、 y 满足 x 2+ y2+ 4x- 2y-4= 0,则 x2+ y2的最大值是___.C 级能力拔高1.设圆的方程为x2+ y2=4,过点M(0,1)的直线 l 交圆于点 A、 B, O 是坐标原点,点P 为 AB 的中点,当 l 绕点 M 旋转时,求动点P 的轨迹方程 .2.已知方程x2+ y2- 2(m+ 3)x+ 2(1- 4m2)y+ 16m4+ 9= 0 表示一个圆 .(1)求实数 m 的取值范围;(2)求该圆的半径r 的取值范围;(3)求圆心 C 的轨迹方程.第四章 4.2 4.2.1A 级基础巩固一、选择题1.若直线 3x+ y+a= 0 平分圆 x2+ y2+ 2x- 4y=0,则 a 的值为 ()A .- 1B. 1C. 3 D .- 32. (2016 高·台高一检测 )已知直线 ax+ by+ c= 0(a、 b、 c 都是正数 )与圆 x2+ y2= 1 相切,则以a、 b、c 为三边长的三角形是 ()A .锐角三角形B.直角三角形C.钝角三角形 D .不存在3. (2016 北·京文 )圆 (x+ 1)2+ y2= 2 的圆心到直线 y= x+ 3的距离为 ()A .1B. 2C. 2 D . 2 2[4. (2016 铜·仁高一检测)直线 x+y=m 与圆 x2+ y2= m(m>0)相切,则m= ()1B.2C. 2 D . 2A .225.圆心坐标为 (2,- 1)的圆在直线x- y-1= 0 上截得的弦长为 22,那么这个圆的方程为()A .(x- 2)2+( y+1) 2= 4B. (x- 2) 2+ (y+ 1)2= 2C. (x-2) 2+ (y+1) 2= 8D. (x- 2)2+ (y+1) 2= 166.圆 (x- 3)2+ (y- 3)2= 9上到直线 3x+ 4y- 11= 0 的距离等于 1 的点有 ()A .1 个B. 2 个C. 3 个 D . 4 个二、填空题7. (2016 天·津文 )已知圆 C 的圆心在 x 轴的正半轴上,点 M(0,5)在圆 C 上,且圆心到直线2x- y=0 的距离为45,则圆 C 的方程为 ____.58.过点 (3,1)作圆 (x- 2)2+ (y- 2)2= 4 的弦,其中最短弦的长为 ____.三、解答题9.当 m 为何值时,直线x- y- m= 0 与圆 x2+ y2- 4x- 2y+ 1= 0 有两个公共点?有一个公共点?无公共点2210. (2016 ·坊高一检测潍 )已知圆 C: x + (y- 1) = 5,直线 l: mx-y+ 1- m= 0.(1)求证:对m∈R,直线 l 与圆 C 总有两个不同的交点;(2)若直线 l 与圆 C 交于 A、 B 两点,当 |AB |=17时,求 m 的值.B 级素养提升一、选择题1.过点 (2,1)的直线中,被圆x2+ y2- 2x+ 4y= 0 截得的弦最长的直线的方程是()A .3x- y- 5= 0B. 3x+ y- 7= 0C. 3x- y- 1=0 D . 3x+y- 5= 02. (2016 泰·安二中高一检测)已知 2a2+2b2= c2,则直线 ax+ by+ c= 0 与圆 x2+y2= 4 的位置关系是() A .相交但不过圆心B.相交且过圆心C.相切D.相离3.若过点A(4,0)的直线 l 与曲线 (x- 2)2+ y2= 1 有公共点,则直线l 的斜率的取值范围为 ()A .(- 3, 3)B. [- 3, 3]3, 3D . [ -3, 3 C. (-3 3)3 3]4.设圆 (x- 3)2+ (y+ 5)2= r2( r>0) 上有且仅有两个点到直线4x- 3y-2= 0 的距离等于1,则圆半径 r 的取值范围是 ()A .3<r<5B. 4<r <6C. r>4 D . r >5二、填空题5. (2016 ~2017 ·宜昌高一检测 )过点 P(1, 1)的直线 l 与圆 C: ( x- 1)2+y2= 4 交于 A, B 两点, C 为圆心,当∠2ACB 最小时,直线 l 的方程为 ____.6. (2016 ~2017 ·福州高一检测 )过点 ( -1,- 2)的直线 l 被圆 x2+ y2- 2x- 2y+ 1=0截得的弦长为2,则直线 l 的斜率为 ____.C 级能力拔高1.求满足下列条件的圆x2+y2= 4 的切线方程:(1)经过点 P( 3, 1);(2)斜率为- 1;(3)过点 Q(3,0) .2.设圆上的点A(2,3)关于直线x+ 2y= 0 的对称点仍在圆上,且与直线x- y+ 1= 0 相交的弦长为 2 2,求圆的方程 .第四章4.24.2.2A 级基础巩固一、选择题1.已知圆 C1: (x+1) 2+ (y- 3)2= 25,圆 C2与圆 C1关于点 (2,1)对称,则圆 C2的方程是 ()A .(x- 3)2+( y-5) 2= 25B. (x- 5) 2+ (y+ 1)2= 25C. (x-1) 2+ (y-4) 2= 25D. (x- 3)2+ (y+2) 2= 252.圆 x2+y2-2x- 5= 0 和圆 x2+ y2+ 2x- 4y- 4= 0 的交点为 A、 B,则线段 AB 的垂直平分线方程为 ()A .x+ y- 1=0B. 2x- y+ 1=0C. x- 2y+ 1=0D. x- y+ 1=03.若圆 (x-a) 2+( y-b)2=b2+ 1 始终平分圆 (x+ 1)2+ (y+ 1)2= 4 的周长,则a、b 应满足的关系式是()A .a2- 2a- 2b- 3= 0B. a2+ 2a+ 2b+5= 0C. a2+ 2b2+ 2a+ 2b+ 1= 0D. 3a2+ 2b2+ 2a+2b+ 1=04. (2016 ~2017 ·太原高一检测 )已知半径为 1 的动圆与圆 (x-5)2+( y+7) 2= 16 相外切,则动圆圆心的轨迹方程是 ()A .(x- 5)2+( y+7) 2= 25B. (x- 5) 2+ (y+ 7)2= 9C. (x-5) 2+ (y+7) 2= 15D. (x+ 5)2+ (y-7) 2= 255.两圆 x2+ y2= 16 与 (x- 4)2+ (y+ 3)2= r2(r>0) 在交点处的切线互相垂直,则r =A .5B. 4C. 3 D . 2 26.半径长为 6 的圆与 y 轴相切,且与圆 (x- 3)2+ y2= 1 内切,则此圆的方程为()A .(x- 6)2+( y-4) 2= 6B. (x- 6) 2+ (y±4)2= 6C. (x-6)2+ (y-4) 2= 36D. (x- 6)2+ (y±4) 2=36二、填空题7.圆 x2+y2+6x- 7= 0 和圆 x2+ y2+ 6y- 27= 0 的位置关系是 ____.8.若圆 x2+ y2= 4 与圆 x2+ y2+ 2ay- 6= 0(a>0) 的公共弦长为2 3,则 a= ____.三、解答题9.求以圆C1: x2+y2-12x- 2y- 13= 0 和圆C2: x2+ y2+ 12x+16y- 25= 0 的公共弦为直径的圆 C 的方程.10.判断下列两圆的位置关系.(1)C1: x2+ y2- 2x- 3= 0, C2: x2+y2- 4x+ 2y+ 3=0;(2)C1: x2+ y2- 2y= 0, C2: x2+ y2- 2 3x- 6=0;(3)C1: x2+ y2- 4x- 6y+ 9= 0,C2: x2+ y2+ 12x+6y- 19= 0;(4)C1: x2+ y2+ 2x- 2y- 2= 0,C2: x2+ y2- 4x- 6y- 3= 0.B 级素养提升一、选择题1.已知 M 是圆 C:(x- 1)2+ y2= 1 上的点, N 是圆 C′:(x- 4)2+ (y- 4)2= 82上的点,则|MN|的最小值为()A .4B. 4 2- 1C. 2 2-2 D . 22.过圆 x2+ y2= 4 外一点 M(4,- 1)引圆的两条切线,则经过两切点的直线方程为()A .4x- y- 4= 0B. 4x+ y- 4= 0C. 4x+ y+ 4=0 D . 4x-y+ 4= 03.已知两圆相交于两点A(1,3), B(m,- 1),两圆圆心都在直线x- y+ c= 0 上,则 m+ c 的值是 ()A .- 1B. 2C. 3 D . 04. (2016 山·东文 )已知圆 M: x2+ y2- 2ay=0(a>0)截直线 x+ y= 0 所得线段的长度是22,则圆 M 与圆 N: (x - 1)2+ (y-1) 2= 1 的位置关系是 ()A .内切B.相交C.外切 D .相离[二、填空题5.若点 A(a, b)在圆 x2+ y2= 4上,则圆 (x- a)2+ y2= 1 与圆 x2+ (y-b) 2=1 的位置关系是 ____.6.与直线 x+ y-2= 0 和圆 x2+y2-12x- 12y+54= 0 都相切的半径最小的圆的标准方程是____.C 级能力拔高1.已知圆 M: x2+ y2- 2mx-2ny+ m2-1= 0 与圆 N: x2+ y2+2x+ 2y- 2= 0 交于 A、 B 两点,且这两点平分圆N 的圆周,求圆心M 的轨迹方程 .2. (2016 ~2017 ·金华高一检测 )已知圆 O: x2+ y2= 1 和定点 A(2,1),由圆 O 外一点 P(a, b)向圆 O 引切线 PQ,切点为 Q, |PQ|= |PA|成立,如图 .(1)求 a, b 间的关系;(2)求 |PQ|的最小值.第四章4.24.2.3A 级基础巩固一、选择题1.一辆卡车宽 1.6 m,要经过一个半圆形隧道(半径为 3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过()A .1.4 m B. 3.5 m C. 3.6 m D . 2.0 m2.已知实数 x、y 满足 x2+ y2- 2x+4y- 20= 0,则 x2+ y2的最小值是 ()A .30- 10 5B. 5- 5C. 5 D . 253.方程 y=-4- x2对应的曲线是 ()4. y= |x|的图象和圆x2+ y2= 4 所围成的较小的面积是()πB.3πC.3πD .πA .442 5.方程 1- x2=x+ k 有惟一解,则实数k 的范围是 ()A .k=- 2B. k∈ (- 2,2)C. k∈ [- 1,1) D . k=2或- 1≤k<16.点 P 是直线 2x+ y+10= 0 上的动点,直线 PA、PB 分别与圆x2+ y2= 4 相切于 A、B 两点,则四边形PAOB(O 为坐标原点 )的面积的最小值等于 ()A .24B. 16C. 8 D . 4二、填空题7.已知实数 x、y 满足 x2+ y2= 1,则y+2的取值范围为 ____ x+ 18.已知 M= {( x,y)|y=9-x2,y≠ 0} ,N= {( x,y)|y= x+ b} ,若 M∩N≠ ?,则实数 b 的取值范围是 __]__.三、解答题9.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图 ),它的附近有一条公路,从基地中心O 处向东走 1 km 是储备基地的边界上的点A,接着向东再走 7 km 到达公路上的点 B;从基地中心 O 向正北走8 km 到达公路的另一点 C.现准备在储备基地的边界上选一点D,修建一条由 D 通往公路 BC 的专用线 DE,求 DE 的最短距离10.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP是6 m,在建造时,每隔 3 m需用一个支柱支撑,求支柱A2P2的长.(精确到0.01 m)1. (2016 葫·芦岛高一检测 )已知圆 C 的方程是2222的最大值为 () x + y + 4x-2y- 4= 0,则 x+ yA .9B. 14C. 14- 6 5 D . 14+ 6 52.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1: ax+ 3y+ 6= 0, l 2: 2x+ (a+ 1)y+ 6=0与圆 C: x2+y2+ 2x= b2- 1(b>0) 的位置关系是“平行相交”,则实数 b 的取值范围为()A .( 2,322)B. (0,322)C. (0, 2)3232,+∞ ) D. ( 2,2 )∪ ( 23.已知圆的方程为x2+ y2- 6x- 8y=0.设该圆过点 (3,5)的最长弦和最短弦分别为AC 和 BD,则四边形 ABCD 的面积为 ()A .10 6B. 20 6C. 30 6 D . 40 64.在平面直角坐标系中,A,B 分别是 x 轴和 y 轴上的动点,若以AB 为直径的圆 C 与直线 2x+ y- 4= 0 相切,则圆 C 面积的最小值为()4πB.3πC. (6- 2 5) π5πA .54 D .4二、填空题5.某公司有 A、 B 两个景点,位于一条小路(直道 )的同侧,分别距小路 2 km 和 2 2 km,且 A、 B 景点间相距 2 km,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于____.6.设集合 A= {( x, y)|(x- 4)2+y2= 1} ,B= {( x, y)|(x- t) 2+ (y- at+ 2)2= 1} ,若存在实数t,使得 A∩ B≠ ?,则实数 a 的取值范围是 ___.C 级能力拔高1.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东 40 km 的 A 处出发,径直驶向位于海监船正北30 km 的 B 处岛屿,速度为 28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法 )。
【人教A版】高中数学必修二:课时提升作业(二十八) 4.2.3
温馨提示:此套题为Word版,请按住Ctr l,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(二十八)直线与圆的方程的应用(25分钟60分)一、选择题(每小题5分,共25分)1.圆x2+y2-4x+2y+c=0,与直线3x-4y=0相交于A,B两点,圆心为P,若∠APB=90°,则c的值为( )A.8B.2C.-3D.3【解析】选C.由题意得C<5,圆心P(2,-1),r=,圆心到直线的距离d==2,由于∠APB=90°,所以r=d=2,从而=2,c=-3.【补偿训练】若P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是( ) A.x-y-3=0 B.2x+y-3=0C.x+y-1=0D.2x-y-5=0【解析】选A.已知圆心为O(1,0),根据题意:又k AB·k OP=-1,所以k AB=1,故直线AB的方程是x-y-3=0.2.如果实数x,y满足等式(x-1)2+y2=,那么的最大值是( )A. B. C. D.【解析】选D.的几何意义是圆上的点P(x,y)与原点连线的斜率,结合图形得,斜率的最大值为,所以=.3.台风中心从A地以20千米/时的速度向东北方向移动,离台风中心30千米内的地区为危险区域,城市B在A的正东40千米处,B城市处在危险区域的时间为( ) A.0.5小时 B.1小时C.3.6小时D.4.5小时【解析】选B.受影响的区域长度=2=20千米,故影响时间是1小时.4.点P(x0,y0)在圆x2+y2=r2内,则直线x0x+y0y=r2和已知圆的公共点个数为( ) A.0 B.1C.2D.无法确定【解析】选A.因为+<r 2,圆心到直线x0x+y0y=r2的距离d=>r,故直线与圆相离.【延伸探究】若将本题改为“点P(x0,y0)在圆x2+y2=r2外”,其余条件不变,又如何求解?【解析】选C.因为+>r 2,圆心到直线x0x+y0y=r2的距离d =< r,故直线与圆相交,所以公共点的个数为两个.5.已知集合M={(x,y)|y=,y≠0},n={(x,y)|y=x+b},若M∩N≠ ,则实数b的取值范围是( )A.[-3,3]B.[-3,3]C.(-3,3]D.[-3,3)【解题指南】解得本题的关键是注意到y=,即x2+y2=9(y>0),图形是半圆.【解析】选C.由于M∩N≠ ,说明直线y=x+b与半圆x2+y2=9(y>0)相交,画图探索可知-3<b≤3.【方法技巧】数形结合在求解直线与圆交点个数中的应用直线与圆的一部分有交点时,如果采用代数法去研究,则消元以后转化成了给定区间的二次方程根的分布问题,求解过程相对复杂,而如果采用数形结合及直线与圆的几何法求解,先找出边界,然后结合直线或圆的变化特征求解,相对来说就简单多了.二、填空题(每小题5分,共15分)6.过点A(11,2)作圆x2+y2+2x-4y-164=0的弦,其中弦长为整数的共有条.【解析】方程化为(x+1)2+(y-2)2=132,圆心为(-1,2),到点A(11,2)的距离为12,最短弦长为10,最长弦长为26,所以所求弦长为整数的条数为2+2×(25-11+1)=32.答案:32【补偿训练】过直线x+y-2=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是.【解析】设P(x,y),则由已知可得PO(O为原点)与切线的夹角为30°,则|PO|=2, 由可得答案:(,)7.设村庄外围所在曲线的方程可用(x-2)2+(y+3)2=4表示,村外一小路方程可用x-y+2=0表示,则从村庄外围到小路的最短距离为.【解析】因为圆心到直线的距离为,从村庄外围到小路的最短距离为-2. 答案:-2【补偿训练】(2015·保定高一检测)已知实数x,y满足2x+y+5=0,那么的最小值为( )A. B. C.2 D.2【解析】选A.表示点(x,y)与原点的距离,所以其最小值为原点到2x+y+5=0的距离,故d==.8.已知x+y+1=0,那么的最小值是.【解析】表示点(x,y)与点(-2,-3)之间的距离,又点(x,y)在直线x+y+1=0上,故最小值为点(-2,-3)到直线x+y+1=0的距离,即d==2.答案:2三、解答题(每小题10分,共20分)9.等边△ABC中,点D,E分别在边BC,AC上且=,=,AD,BE相交于点P.求证:AP⊥CP.【解题指南】要证AP⊥CP,可转化为直线AP,CP的斜率之积等于-1即可,由此以B为原点,BC边所在直线为x轴,线段BC长的为单位长,建立平面直角坐标系. 【证明】以B为原点,BC边所在直线为x轴,线段BC长的为单位长,建立平面直角坐标系.则A(3,3),B(0,0),C(6,0).由已知,得D(2,0),E(5,).直线AD的方程为y=3(x-2).直线BE的方程为y=(x-5)+.解以上两方程联立成的方程组,得x=,y=.所以,点P的坐标是.直线PC的斜率k PC=-,因为k AP·k PC=3×=-1,所以,AP⊥CP.10.如图所示是某圆拱形桥一孔圆拱的示意图.这个圆的圆拱跨度AB=20m,拱高OP=4m,建造时每间隔4m需要用一根支柱支撑,求支柱A2P2的高度(精确到0.01m).【解析】建立如图所示直角坐标系,使圆心在y轴上,只要求出P2的纵坐标,就可得出支柱A2P2的高度.设圆心的坐标是(0,b),圆的半径是r,那么圆的方程是x2+(y-b)2=r2.因为P,B都在圆上,所以它们的坐标(0,4),(10,0)都满足方程x2+(y-b)2=r2.于是得到方程组解得b=-10.5,r2=14.52,所以,圆的方程是x2+(y+10.5)2=14.52.把点P2的横坐标x=-2代入圆的方程,得(-2)2+(y+10.5)2=14.52,即y+10.5=(P2的纵坐标y>0,平方根取正值).所以y≈3.86,故支柱A2P2的高度约为3.86m.【补偿训练】设有半径为3公里的圆形村落,A,B两人同时从村落中心出发,A向东而B向北前进,A离开村后不久,改变前进方向,斜着沿切于村落周界的方向前进,后来恰好与B相遇.设A,B两人的速度都一定,其比为3∶1,问A,B两人在何处相遇?【解析】如图所示,以村落中心为坐标原点,以东西方向为x轴建立直角坐标系,又设A向东走到D 转向到C恰好与B相遇,设CD方程为+=1(a>3,b>3),设B的速度为v,则A的速度为3v,依题意有解得,所以B向北走3.75公里时相遇.(20分钟40分)一、选择题(每小题5分,共10分)1.直线2x-y=0与圆C:(x-2)2+(y+1)2=9交于A,B两点,则△ABC(C为圆心)的面积等于( )A.2B.2C.4D.4【解析】选A.因为圆心到直线的距离d==,所以|AB|=2=4,所以S△ABC=×4×=2.【补偿训练】已知圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( )A.10B.20C.30D.40【解析】选B.圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1,根据题意最短弦BD和最长弦(即圆的直径)AC垂直,故最短弦的长为2=4,所以四边形ABCD的面积为×AC×BD=×10×4=20.2.如图所示,已知直线l的解析式是y=x-4,并且与x轴、y轴分别交于A,B两点.一个半径为1.5的圆C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y 轴向下运动,当圆C与直线l相切时,该圆运动的时间为( )A.6sB.6s或16sC.16sD.8s或16s【解析】选B.设运动的时间为ts,则ts后圆心的坐标为(0,1.5-0.5t).因为圆C 与直线l:y=x-4相切,所以=1.5.解得t=6或16.即该圆运动的时间为6s或16s.二、填空题(每小题5分,共10分)3.若点P(x,y)满足x2+y2=25,则x+y的最大值是.【解析】令x+y=z,则=5,所以z=±5,即-5≤x+y≤5,所以x+y的最大值是5.答案:5【拓展延伸】数形结合思想在解题中的运用利用数形结合求解问题时,关键是抓住“数”中的某些结构特征,联想到解析几何中的某些方程、公式,从而挖掘出“数”的几何意义,实现“数”向“形”的转化,如本题由x+y联想直线的截距.4.若点P在直线l1:x+y+3=0上,过点P的直线l2与曲线C:(x-5)2+y2=16相切于点M,则|PM|的最小值为.【解析】曲线C:(x-5)2+y2=16是圆心为C(5,0),半径为4的圆,连接CP,CM,则在△MPC中,CM⊥PM,则|PM|==,当|PM|取最小值时,|CP|取最小值,又点P在直线l1上,则|CP|的最小值是点C到直线l1的距离,即|CP|的最小值为d==4,则|PM|的最小值为=4.答案:4【补偿训练】圆(x-2)2+(y+3)2=4上的点到x-y+3=0的最远的距离为. 【解析】圆心C(2,-3)到直线的距离d==4>2,所以直线与圆相离.过圆心C作直线x-y+3=0的垂线,垂足设为H,则圆上的点A到直线的距离最远为4+2.答案:4+2三、解答题(每小题10分,共20分)5.已知圆C:(x-3)2+(y-4)2=4和直线l:x+2y+2=0,直线n经过圆C外定点A(1,0).若直线n与圆C相交于P,Q两点,与l交于N点,且线段PQ的中点为M,求证:|AM|·|AN|为定值.【解析】方法一:设P(x1,y1),Q(x2,y2),又由题意知直线与圆相交,斜率必定存在,且不为0,可设直线n的方程为kx-y-k=0,由得N.再由得(1+k2)x2-(2k2+8k+6)x+k2+8k+21=0,所以x1+x2=得M.所以|AM|·|AN|=·=·=6为定值.方法二:由题意知直线与圆相交,斜率必定存在,且不为0,可设直线n的方程为kx-y-k=0,由得N,又直线CM与n垂直,由得M.所以|AM|·|AN|=|y M-0|·|y N-0|=|y M·y N|==6,为定值.6.已知圆C的方程为x2+(y-4)2=4,点O是坐标原点.直线l:y=kx与圆C交于M,N 两点.(1)求k的取值范围.(2)设Q(m,n)是线段MN上的点,且=+.请将n表示为m的函数. 【解题指南】(1)求解时要抓住直线与圆有两个交点,所以在求解k的取值范围时可以利用判别式进行求解.(2)利用=+找到m,n的关系.【解析】(1)将y=kx代入x2+(y-4)2=4中,得(1+k2)x2-8kx+12=0.(*)由Δ=(-8k)2-4(1+k2)×12>0,得k2>3.所以,k的取值范围是(-∞,-)∪(,+∞).(2)因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1),(x2,kx2),则|OM|2=(1+k2),|ON|2=(1+k2),又|OQ|2=m2+n2=(1+k2)m2.由=+,得=+,即=+=.由(*)式可知,x1+x2=,x1x2=,所以m2=.因为点Q在直线y=kx上,所以k=,代入m2=中并化简,得5n2-3m2=36. 由m2=及k2>3,可知0<m2<3,即m∈(-,0)∪(0,).根据题意,点Q在圆C内,则n>0,所以n==.于是,n与m的函数关系为n=(m∈(-,0)∪(0,)).关闭Word文档返回原板块。
(完整版)圆与方程知识点整理(可编辑修改word版)
矣于圆与方程的知识点整理一、标准方程:(x-rt)0+(y-b)・=厂 二一般方程:A"+r+Dx+£y + F = 0(D - +F--4F>0)1・ AF + By- + + Dx+Ey+F = 0 表示圆方程则「A — B 工 O O <5 U - O2 _ 4 F > O [Q 2 + £2 _ 4 A F > O 2•求圆的一般方程一般可采用待定系数法。
3・D" + £- -4F > 0常可用来求有关参数的范帀 三'点与圆的位g 矢系1・判断方法:点到圆心的距离d 与半径『的大小:〃<厂=> 点在圆内:d = r=>点在圆上:J>r=>点在圆外2•涉及最值:(1)圆外一点圆上一动点P,讨论|PB|的最值max四、S 线与圆的位置矣系L 判断方法(d 为圆心到宜线的距离〉:(1)柑离O 没有公共点=>△< OodAr : (2)相切O 只有一 个公共点oA = 0od = r : (3)柑交O 有两个公共点>0od<r 。
这一知识点可以出如此题型:告诉你直线与圜相交让你求有关参数的范围.2 •宜线均圆相切(1)知识要点:①基本图形②主要元素:切点坐标、切线方程、切线长等问题:直线/与圆C 相切意味着什么?圜心C 到直线/的距离恰好等于半径r (2) 常见题型一一求过世点的切线方程① 切线条数:点在圆外一两条:点在圆上……一条:点在圆内……无 ② 求切线方程的方法及注意点f n 、 2 "E 、k V z+ TV I z 『3 仁=|BN| = |BC|-r卜 |BC|+厂讨谐中的最值U - Oi)点在圆外J 如泄点 P(X ,)* 圆:(x-aY +(y-hy =r . [(x -aY+(y -/?)" >r-] 0 0 0 0第一步:设切线/方程y-yo = k (兀一小):第二步:通过〃 =『=>«,从而得到切线方程 特別I 注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上……千万不要漏了! 如:过点P (l, 1)作圆F + r — 4x — 6y+12 = 0的切线,求切线方程.ii )点在圆上J <1)若点(xo, yo )在阿x+j = r 上,则切线方程为x x + yy = r^■ ■ ■ ■U 0(2)若点 a ,y )在圆(.<-«)■ +(y-/?)' = r 则切线方程为 a -")(兀 一 ")+(y -方)(,一方)=八由上述分析:过一定点求某圆的切线方程,非常磴要的第一步——判断点与圆的位置关系,得出切线的条数. 件Jf AC\= r求切点坐标:利用两个关系列出两个方程<' 如心=-1J (l + P )[(西+£)2-4 气 xj(2) 判断直线与圆相交的一种特殊方法:直线过定点,而;1^点恰好在圆内. (3) 关于点的个数问题例:若E^(.v-3/+(y + 5/ = r 上有且仅有两个点到直线4%-3>'-2 = 0的距离为1,则半径厂的取值范用是4•直线与圆相离:会对宜线与圆相离作出判断(特别是涉及一些参数时)五、対称间题1. 若圆疋+尸+(川2 -l )x + 2加$—加=0,关于直线X — y + l = 0,则实数加的值为答案:3 (注意:m = -\时,D- + £--4F<0.故舍去)变式:已知点A 是圆C:“+r + ar + 4y -5 = 0匕任意一点・A 点关于宜线x + 2y-\ =0的对称点在圆C 上,则实数《= _________ ・2•圆(x-l/+(y-3/= 1关于宜线x + y = 0对称的曲线方程是 变式:已知圆(x-4)2+(y-2)2 = I 与圆C2: (x-2/+(y-4)'= 1关于宜线/对称,则直线/的方程为 3•圆(—3)2+0 + 1)2 =1关于点(2. 3)对称的曲线方程是, 4•已知直线y = x + h^圆C : F+r=l,问:是否存在实数b 使自A (3,3)发出的光线被直线/反射后与③求切线长:利用基本图形,AP-=|CPF CP"-r-3 •直线与圆相交 (1)求弦长及弦长的应用问题:垂径定理及勾股定理——常用弦长公式:/=ViTPiv'■/f 24 7、 B ' .1?若存在,求出b 的值:若不存在,试说明理由.1 25 25 I 丿方法主要有三种:(1)数形结合:(2〉代换:(3)参数方程(1) 丄 的最大值和最小值:一一看作斜率 (2) y-X 的报小值;一一截距(线性规划) X-5(3) X- + y-的最大值和最小值.一一两点间的距离的平方 2•已知 AAOB 中,\OB\ = 3 , \OA\ = 4. \AB\ = 5 •点 P 是AAOB 内切圆上一点,求以 pA|, |PB|, pO|为直径的三个圆而枳之和的最大值和最小值.数形结仟和参数方程两种方法均可!3 •设P (x. y )为圆x-+{y-\Y = 1上的任一点,欲使不等式犬+ y + c>0恒成立,则e 的取值范用是,■答案:(数形结合和参数方程两种方法均可!)L 若直线"u ・ + 2ny — 4 = 0 ( m , neR 始终平分圆,+ y2-4x-2y-4 = 0的周长,则的取值范围是2. 已知圆C : x-+r _2x + 4y-4 = 0.问:是否存在斜率为1的宜线/,使/被圆C 截得的弦为AB .以AB为直径的圆经过原点,若存在,写出宜线/的方程,若不存在,说明理由. 提示:XX +3' y =0或弦长公式d = Jj+ E2 -v 一X3•已知圆C : (x-3/+(y-4/=b 点A((U). 3(0.1),设P 点是圆C 上的动点,d = \PA\"+\PB\\ 求 d的最值及对应的P 点坐标.4 •已知圆 C J (X-1)'+(3'-2)" =25 r 宜线 / :(2加 + 1)兀+ (w + l)y-7〃?一4 = 0 (weR) (1) 证明:不论也取什么值,宜线/与圆C 均有两个交点; (2) 求苴中弦长最短的直线方程.5•若宜线y = -x + k^曲线x = -/-f 恰有一个公共点,则R 的取值范I 利.6 •已知圆£ + y2+x-6y +加=0与宜线x + 2y-3 = 0交于P. 0两点,O 为坐标原点,问:是否存在实数也,使OP 丄OQ,若存在,求出W 的值;若不存在,说明理由.圆c 相切于点 L 已知实数X, y 满足方程宀严一4兀+1=0,求:七'圆的参数方程r...Z c\ |x=/・cos X ・+y ・=/*-(r>0)Oy =为参数:(%-«) +(y-h) =r (r>0)o1 M Jx=a+rcos y = b + rsin为参・答案J x-y+1 = 0或大一y — 4 = 0I •判断方法:几何法(d 为圆心距):(1) dA 打+厂20外离 (3) |打一巧[vdv 斤+巧0相交 (4) t/= r-zs O 内切 2 •两圆公共弦所在直线方程圆C : }r+y-+Dx+Ey + F=0.圆C : jr+y^+Dx + Ey + F =0,I I I I 2 2 2 2则(D,-D2)x + (£,-£2)y + (F,-F2)= 0为两相交圆公共弦方程.补充说明:若G 与C2相切,则表示其中一条公切线方程:若G 与C2相离,则表示连心线的中垂线方程.3圆系问题(1)过两圆 C J jr+y- + Dx + Ey + F = 0 和 C J X - +y- + D X + E y + F =0 交点的圆系方程为 J I I I 2 22 2 F + ))2 + Dj.v + 耳y + 斤+ (“+>^ + D;v + gy + g)=0 ( H-说明:1)上述圆系不包括C2 : 2)当 =-1时,表示过谢圆交点的直线方程(公共弦)(2)过宜线?b ・+B.\・+C=0打圆 十Dx+£> + F = 0交点的圆系方程 x-+y^+Dx+Ey+F+ (Ax+By + C)= Q(3)两圆公切线的条数问题:①相内切时,有一条公切线:②相外切时,有三条公切线:③相交时,有两条公切线:④相离时,有四条公切线 十、轨迹方程(1) 世义法(圆的定义)(2) 直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式…轨迹方程•例:过圆F + y? =1外一点人(2, 0)作圆的割线,求割线被圆截得的弦的中点的轨迹方程.(3)相关点法(平移转换法):一点随列一点的变动而变动 特点为:主动点一宦在某一已知菇亘所表示的(固崔)轨迹上运动.例1 •如图,已知定点A (2,0),点2是圆F+r= I 上的动点,ZA0Q 的平分线交AS 于当0点在圆上 移动时,求动点M 的轨迹方程.分析:角平分线;^^理和泄比分点公式・例2 •已知圆O : x-+y-=9,点A (3,0), B 、C 是圆Ot:的两个动点,A 、B 、C 呈逆时针方向排列,且(2) </ =八+^0外切(5) d< n -ri o 内含分析:|0円'+4"|=4^2|AABAC = _ ,求MBC的重心G的轨迹方程. 3法I:-ZBAC=-, :.\BC\为定长且等于3^/3X A+X B +X C 3 +X B +X Cx =——3 ----- =——3——Xi+Vfl+yc^yB+Jc3 3「33) (2厂31取BC的中点为址€|-一卩£€| -込」IL24 丿 1 4 2J94••• \OE" + \CE" = ]pC : /.兀£ + >£'"=(1)XB + XC 尸—2- y+y >■ =^- £ 23 + 2XE 兀=—3—J XB + XC=2XE n I y+y =2y,••(3x-3"\ (3 V 93x-3富=—-3 \y =_yI E 2故由(1)得: ____ I +1 I =_n(Z)I 2丿l2丿4 + r =1 xe 0,3、-,y €2)-邑112 I法2:(参数法) 2设B(3cos Jsin )•由ZBOC=2ZBAC= _3C 3cos|\ I 2 ) ( + L3sin| + '丿VX + X + Xy- A B C_A ——(2 }3 + 3cos +3cos . + — II 3(2、=I + cos +cos|「+ 」•••(!)3(2_'3s】n +3sin|l+ 3 丿.• ( “ /八y =〉l +)4+)S = ----------- --------- = sin +sin | + —・・「・(2)2 22 「3、+(2)得:(X-1) +y = 1 xe 0,-」€-2^3 12 I参数法的本质是将动点坐标(x,y)中的X和y都用第三个变量(即参数)表示,通过消参得到动点轨迹方程, 通过参数的范围得出X , y的范(4) 求轨迹方程常用到得知识心 + XB + XCIX = ________ 4 ___ .②中点I匕分点公式:磊 ⑤韦达世理•高中数学圜的方程典型例题类型一:圓的方程例1求过两点A(l,4)、8(3,2)且圆心在直线j = 0 I;的圆的标准方程并判断点P(2,4)与圆的关系.圆的方程为(X+1)2+),2 =20:点P 在圆外.例2求半径为4.与圆* + y2-4x-2y-4 = 0相切,且和直线y = 0相切的圆的方程.圆的方程为(兀一2 — 2^/^)2+0 + 4)2 =42,或(x-2 + 275)2 + (y + 4)2 = 42 . 例3求经过点A(0,5),且与宜线x-2y = 0和2兀+ y = 0都相切的圆的方程.分析:欲确世圆的方程.需确崔圆心坐标与半径,由于所求圆过世点A ,故只需确;^^圆心坐标・又圆与两 已知宜线相切,故圆心必在它们的交角的平分线上・解:•「圆和直线x-2y = (Pj2x+y = 0相切• •••圆心C 在这两条直线的交角平分线上.又圆心到两直线X -2y = 0和2x+y = 0的距离相等.•••两直线交角的平分线方程是x + 3y = 0或3x-y =0.又T 圆过点4(0,5),•••圆心C 只能在直线3»•-y = 0③内角平分线世理:BD\ _ \AB\x-2y x+2y r ■75・XI +X2上.设圆心C{t, 3r)V C到宜线2x + y = 0的距离等于AC\二1?£^ =护+(3一5)2 . v5化简整理得t--6t + 5 =0-解得:21或f = 5•••圆心是(1,3),半径必或圆心是(5.15),半径为5j^・•••所求圆的方程为(X-1)2+0-3)2 = 5 或(兀一5)2+0-15)2= 125 ・说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确;4^圆心坐标得到圆的方程, 这是过;^点且与两已知直线相切的圆的方程的常规求法• 例4 -设圆满足:(1)截y轴所得弦长为2: (2)被兀轴分成两段弧,其弧长的比为3:1,在满足条件⑴⑵的所有圆中,求圆心到直线X-2y = 0的距离最小的圆的方程.分析:要求圆的方程.只须利用条件求出圆心坐标和半径,便可求得圆的标准方程-满足两个条件的圆有无数个•其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确世圆的半径,求出圆的方程•解法一:设圆心为P(« ■ h),半径为I 则P到X轴、y轴的距离分卩1为PI和由题设知:圆截X轴所得劣弧所对的圆心角为90。
2020版新高考数学二轮复习-练习-直线与圆 Word版含解析
第1讲 直线与圆[做真题]题型一 圆的方程1.(2016·高考全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C . 3D .2解析:选A.由题可知,圆心为(1,4),结合题意得|a +4-1|a 2+1=1,解得a =-43.2.(2015·高考全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析:由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2,解得⎩⎨⎧m =32,r 2=254.所以圆的标准方程为(x-32)2+y 2=254. 答案:(x -32)2+y 2=2543.(2018·高考全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k 2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎨⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16, 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144. 题型二 直线与圆、圆与圆的位置关系1.(2018·高考全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]解析:选A.圆心(2,0)到直线的距离d =|2+0+2|2=22,所以点P 到直线的距离d 1∈[2,32].根据直线的方程可知A ,B 两点的坐标分别为A (-2,0),B (0,-2),所以|AB |=22,所以△ABP 的面积S =12|AB |d 1=2d 1.因为d 1∈[2,32],所以S ∈[2,6],即△ABP 面积的取值范围是[2,6].2.(2015·高考全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )A .2 6B .8C .4 6D .10解析:选C.设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20. 所以圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y =-2+26或y =-2-26,所以M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26),所以|MN |=46,故选C.3.(2016·高考全国卷Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.解析:设圆心到直线l :mx +y +3m -3=0的距离为d ,则弦长|AB |=212-d 2=23,得d =3,即||3m -3m 2+1=3,解得m =-33,则直线l :x -3y +6=0,数形结合可得|CD |=|AB |cos 30°=4.答案:4[学习指导意见]1.直线与方程(1)理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式.能根据斜率判定两条直线平行或垂直.(2)根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式).体会斜截式与一次函数的关系.(3)探索并掌握两点间的距离公式.点到直线的距离公式,会求两条平行直线间的距离,会求两直线的交点坐标.2.圆与方程(1)由圆的几何要素,探索并掌握圆的标准方程与一般方程. (2)能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系. (3)能用直线和圆的方程解决一些简单的问题. 3.空间直角坐标系了解空间直角坐标系,明确感受建立空间直角坐标系的必要性,会用空间直角坐标系刻画点的位置,会用空间两点间的距离公式.直线的方程 [考法全练]1.若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A .1±2或0 B .2-52或0C .2±52D .2+52或0解析:选A.因为平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,所以k AB =k AC ,即a 2+a 2-1=a 3+a 3-1,即a (a 2-2a -1)=0,解得a =0或a =1±2.故选A. 2.若直线mx +2y +m =0与直线3mx +(m -1)y +7=0平行,则m 的值为( ) A .7 B .0或7 C .0D .4解析:选B.因为直线mx +2y +m =0与直线3mx +(m -1)y +7=0平行,所以m (m -1)=3m ×2,所以m =0或7,经检验,都符合题意.故选B.3.已知点A (1,2),B (2,11),若直线y =⎝⎛⎭⎫m -6m x +1(m ≠0)与线段AB 相交,则实数m 的取值范围是( )A .[-2,0)∪[3,+∞)B .(-∞,-1]∪(0,6]C .[-2,-1]∪[3,6]D .[-2,0)∪(0,6]解析:选C.由题意得,两点A (1,2),B (2,11)分布在直线y =⎝⎛⎭⎫m -6m x +1(m ≠0)的两侧(或其中一点在直线上),所以⎝⎛⎭⎫m -6m -2+1⎣⎡⎦⎤2⎝⎛⎭⎫m -6m -11+1≤0,解得-2≤m ≤-1或3≤m ≤6,故选C.4.已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则直线l 的方程为__________________.解析:由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 1与l 2的交点为(1,2).显然直线x =1不符合,即所求直线的斜率存在,设所求直线的方程为y -2=k (x -1),即kx -y +2-k =0,因为P (0,4)到直线l 的距离为2,所以|-4+2-k |1+k 2=2,所以k =0或k =43.所以直线l 的方程为y=2或4x -3y +2=0.答案:y =2或4x -3y +2=05.(一题多解)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于直线l 对称,则直线l 2的方程是________.若直线l 3与l 关于点(1,1)对称,则直线l 3的直线方程是________.解析:法一:l 1与l 2关于l 对称,则l 1上任意一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上的一点,设其关于l 的对称点为(x ,y ),则 ⎩⎪⎨⎪⎧x 2-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1.即(1,0),(-1,-1)为l 2上两点,故可得l 2的方程为x -2y -1=0. 因为l 3∥l ,可设l 3的方程为x -y +c =0,则 |1-1-1|2=|1-1+c |2. 所以c =±1,所以l 3的方程为x -y +1=0.法二:设l 2上任一点为(x ,y ),其关于l 的对称点为(x 1,y 1),则由对称性可知⎩⎨⎧x +x 12-y +y 12-1=0,y -y 1x -x 1×1=-1,解得⎩⎪⎨⎪⎧x 1=y +1,y 1=x -1.因为(x 1,y 1)在l 1上,所以2(y +1)-(x -1)-2=0,即l 2的方程为x -2y -1=0. 因为l 3∥l ,可设l 3的方程为x -y +c =0,则 |1-1-1|2=|1-1+c |2.所以c =±1,所以l 3的方程为x -y +1=0. 答案:x -2y -1=0 x -y +1=0(1)两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断.(2)轴对称问题的两种类型及求解方法圆的方程 [典型例题]在平面直角坐标系xOy 中,曲线Γ:y =x 2-mx +2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C .(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由. (2)求证:过A ,B ,C 三点的圆过定点.【解】 由曲线Γ:y =x 2-mx +2m (m ∈R ),令y =0,得x 2-mx +2m =0. 设A (x 1,0),B (x 2,0),则可得Δ=m 2-8m >0,x 1+x 2=m ,x 1x 2=2m . 令x =0,得y =2m ,即C (0,2m ).(1)若存在以AB 为直径的圆过点C ,则AC →·BC →=0,得x 1x 2+4m 2=0,即2m +4m 2=0,所以m =0或m =-12.由Δ>0得m <0或m >8,所以m =-12,此时C (0,-1),AB 的中点M ⎝⎛⎭⎫-14,0即圆心,半径r =|CM |=174, 故所求圆的方程为⎝⎛⎭⎫x +142+y 2=1716. (2)证明:设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0, 将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0, 整理得x 2+y 2-y -m (x +2y -2)=0. 令⎩⎪⎨⎪⎧x 2+y 2-y =0,x +2y -2=0,可得⎩⎪⎨⎪⎧x =0,y =1或⎩⎨⎧x =25,y =45,故过A ,B ,C 三点的圆过定点(0,1)和⎝⎛⎭⎫25,45.求圆的方程的2种方法[对点训练]1.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( ) A .(-∞,-2) B .⎝⎛⎭⎫-23,0 C .(-2,0)D .⎝⎛⎭⎫-2,23 解析:选D.若方程表示圆,则a 2+(2a )2-4(2a 2+a -1)>0,化简得3a 2+4a -4<0,解得-2<a <23.2.经过原点且与直线x +y -2=0相切于点(2,0)的圆的标准方程是( ) A .(x -1)2+(y +1)2=2B .(x +1)2+(y -1)2=2C .(x -1)2+(y +1)2=4D .(x +1)2+(y -1)2=4解析:选A.设圆心的坐标为(a ,b ),则a 2+b 2=r 2①,(a -2)2+b 2=r 2②,ba -2=1③,联立①②③解得a =1,b =-1,r 2=2.故所求圆的标准方程是(x -1)2+(y +1)2=2.故选A.3.(2019·山东青岛模拟)已知圆M :x 2+y 2-2x +a =0,若AB 为圆M 的任意一条直径,且OA →·OB →=-6(其中O 为坐标原点),则圆M 的半径为( )A . 5B . 6C .7D .2 2解析:选C.圆M 的标准方程为(x -1)2+y 2=1-a (a <1),圆心M (1,0),则|OM |=1,因为AB 为圆M 的任意一条直径,所以MA →=-MB →,且|MA →|=|MB →|=r ,则OA →·OB →=(OM →+MA →)·(OM →+MB →)=(OM →-MB →)·(OM →+MB →)=OM →2-MB →2=1-r 2=-6,所以r 2=7,得r =7,所以圆的半径为7,故选C.直线与圆、圆与圆的综合问题[典型例题]命题角度一 切线问题已知圆O :x 2+y 2=1,点P 为直线x 4+y2=1上一动点,过点P 向圆O 引两条切线P A ,PB ,A ,B 为切点,则直线AB 经过定点( )A .⎝⎛⎭⎫12,14B .⎝⎛⎭⎫14,12C .⎝⎛⎭⎫34,0D .⎝⎛⎭⎫0,34 【解析】 因为点P 是直线x 4+y2=1上的一动点,所以设P (4-2m ,m ).因为P A ,PB 是圆x 2+y 2=1的两条切线,切点分别为A ,B ,所以OA ⊥P A ,OB ⊥PB ,所以点A ,B 在以OP 为直径的圆C 上,即弦AB 是圆O 和圆C 的公共弦.所以圆心C 的坐标是⎝⎛⎭⎫2-m ,m2,且半径的平方r 2=(4-2m )2+m24,所以圆C 的方程为(x -2+m )2+⎝⎛⎭⎫y -m22=(4-2m )2+m 24,① 又x 2+y 2=1,②所以②-①得,(2m -4)x -my +1=0,即公共弦AB 所在的直线方程为(2x -y )m +(-4x +1)=0,所以由⎩⎪⎨⎪⎧-4x +1=0,2x -y =0得⎩⎨⎧x =14,y =12,所以直线AB 过定点⎝⎛⎭⎫14,12.故选B. 【答案】 B过一点求圆的切线方程的方法(1)过圆上一点(x 0,y 0)的圆的切线的方程的求法若切线斜率存在,则先求切点与圆心连线所在直线的斜率k (k ≠0),由垂直关系知切线斜率为-1k,由点斜式方程可求切线方程.若切线斜率不存在,则可由图形写出切线方程x =x 0.(2)过圆外一点(x 0,y 0)的圆的切线的方程的求法当切线斜率存在时,设切线斜率为k ,切线方程为y -y 0=k (x -x 0),即kx -y +y 0-kx 0=0.由圆心到直线的距离等于半径,即可得出切线方程.当切线斜率不存在时要加以验证.命题角度二 弦长问题已知圆C 经过点A (-2,0),B (0,2),且圆心C 在直线y =x 上,又直线l :y =kx+1与圆C 相交于P ,Q 两点.(1)求圆C 的方程;(2)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M ,N 两点,求四边形PMQN 面积的最大值.【解】 (1)设圆心C (a ,a ),半径为r ,因为圆C 经过点A (-2,0),B (0,2),所以|AC |=|BC |=r ,即(a +2)2+(a -0)2=(a -0)2+(a -2)2=r ,解得a =0,r =2,故所求圆C的方程为x 2+y 2=4.(2)设圆心C 到直线l ,l 1的距离分别为d ,d 1,四边形PMQN 的面积为S .因为直线l ,l 1都经过点(0,1),且l 1⊥l ,根据勾股定理,有d 21+d 2=1.又|PQ |=2×4-d 2,|MN |=2×4-d 21,所以S =12|PQ |·|MN |=12×2×4-d 2×2×4-d 21=216-4(d 21+d 2)+d 21d 2=212+d 21d 2≤212+⎝ ⎛⎭⎪⎫d 21+d 222=212+14=7,当且仅当d 1=d 时,等号成立, 所以四边形PMQN 面积的最大值为7.求解圆的弦长的3种方法命题角度三 直线与圆的综合问题已知圆C 经过点A (0,2),B (2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x+4y +5=0被圆C 所截得的弦长为2 3.点P 为圆C 上异于A ,B 的任意一点,直线P A 与x 轴交于点M ,直线PB 与y 轴交于点N .(1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求BA 1→·BA 2→;(3)求证:|AN |·|BM |为定值.【解】 (1)易知圆心C 在线段AB 的中垂线y =x 上, 故可设C (a ,a ),圆C 的半径为r .因为直线3x +4y +5=0被圆C 所截得的弦长为23,且r =a 2+(a -2)2,所以C (a ,a )到直线3x +4y +5=0的距离d =|7a +5|5=r 2-3=2a 2-4a +1,所以a =0或a =170.又圆C 的圆心在圆x 2+y 2=2的内部,所以a =0,此时r =2,所以圆C 的方程为x 2+y 2=4. (2)将y =x +1代入x 2+y 2=4得2x 2+2x -3=0. 设A 1(x 1,y 1),A 2(x 2,y 2), 则x 1+x 2=-1,x 1x 2=-32.所以BA 1→·BA 2→=(x 1-2)(x 2-2)+y 1y 2=x 1x 2-2(x 1+x 2)+4+(x 1+1)(x 2+1)=2x 1x 2-(x 1+x 2)+5=-3+1+5=3.(3)证明:当直线P A 的斜率不存在时,|AN |·|BM |=8. 当直线P A 与直线PB 的斜率都存在时,设P (x 0,y 0), 直线P A 的方程为y =y 0-2x 0x +2,令y =0得M ⎝ ⎛⎭⎪⎫2x 02-y 0,0. 直线PB 的方程为y =y 0x 0-2(x -2),令x =0得N ⎝ ⎛⎭⎪⎫0,2y 02-x 0.所以|AN |·|BM |=⎝ ⎛⎭⎪⎫2-2y 02-x 0⎝ ⎛⎭⎪⎫2-2x 02-y 0=4+4⎣⎢⎡⎦⎥⎤y 0x 0-2+x 0y 0-2+x 0y 0(x 0-2)(y 0-2)=4+4×y 20-2y 0+x 20-2x 0+x 0y 0(x 0-2)(y 0-2)=4+4×4-2y 0-2x 0+x 0y 0(x 0-2)(y 0-2)=4+4×4-2y 0-2x 0+x 0y 04-2y 0-2x 0+x 0y 0=8,综上,|AN |·|BM |为定值8.讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.[对点训练]1.自圆C :(x -3)2+(y +4)2=4外一点P (x ,y )引该圆的一条切线,切点为Q ,PQ 的长度等于点P 到原点O 的距离,则点P 的轨迹方程为( )A .8x -6y -21=0B .8x +6y -21=0C .6x +8y -21=0D .6x -8y -21=0解析:选D.由题意得,圆心C 的坐标为(3,-4),半径r =2,如图.因为|PQ |=|PO |,且PQ ⊥CQ , 所以|PO |2+r 2=|PC |2,所以x 2+y 2+4=(x -3)2+(y +4)2,即6x -8y -21=0,所以点P 的轨迹方程为6x -8y -21=0,故选D.2.(2019·江苏南师大附中期中改编)在平面直角坐标系xOy 中,已知圆C 过点A (0,-8),且与圆x 2+y 2-6x -6y =0相切于原点,则圆C 的方程为________________,圆C 被x 轴截得的弦长为________________.解析:将已知圆化为标准式得(x -3)2+(y -3)2=18,圆心为(3,3),半径为3 2.由于两个圆相切于原点,圆心连线过切点,故圆C 的圆心在直线y =x 上.由于圆C 过点(0,0),(0,-8),所以圆心又在直线y =-4上.联立y =x 和y =-4,得圆心C 的坐标(-4,-4).又因为点(-4,-4)到原点的距离为42,所以圆C 的方程为(x +4)2+(y +4)2=32,即x 2+y 2+8x +8y =0.圆心C 到x 轴距离为4,则圆C 被x 轴截得的弦长为2×(42)2-42=8.答案:x 2+y 2+8x +8y =0 83.在平面直角坐标系xOy 中,已知圆C 与y 轴相切,且过点M (1,3),N (1,-3). (1)求圆C 的方程;(2)已知直线l 与圆C 交于A ,B 两点,且直线OA 与直线OB 的斜率之积为-2.求证:直线l 恒过定点,并求出定点的坐标.解:(1)因为圆C 过点M (1,3),N (1,-3), 所以圆心C 在线段MN 的垂直平分线上,即在x 轴上, 故设圆心为C (a ,0),易知a >0, 又圆C 与y 轴相切, 所以圆C 的半径r =a ,所以圆C 的方程为(x -a )2+y 2=a 2. 因为点M (1,3)在圆C 上, 所以(1-a )2+(3)2=a 2,解得a =2. 所以圆C 的方程为(x -2)2+y 2=4. (2)记直线OA 的斜率为k (k ≠0), 则其方程为y =kx .联立⎩⎪⎨⎪⎧(x -2)2+y 2=4,y =kx ,消去y ,得(k 2+1)x 2-4x =0,解得x 1=0,x 2=4k 2+1.所以A ⎝ ⎛⎭⎪⎫4k 2+1,4k k 2+1.由k ·k OB =-2,得k OB =-2k ,直线OB 的方程为y =-2kx ,在点A 的坐标中用-2k代替k ,得B ⎝ ⎛⎭⎪⎫4k 2k 2+4,-8k k 2+4.当直线l 的斜率不存在时,4k 2+1=4k 2k 2+4,得k 2=2,此时直线l 的方程为x =43.当直线l 的斜率存在时,4k 2+1≠4k 2k 2+4,即k 2≠2.则直线l 的斜率为4kk 2+1--8k k 2+44k 2+1-4k 2k 2+4=4k (k 2+4)+8k (k 2+1)4(k 2+4)-4k 2(k 2+1)=3k (k 2+2)4-k 4=3k2-k 2.故直线l 的方程为y -4kk 2+1=3k 2-k 2⎝ ⎛⎭⎪⎫x -4k 2+1.即y =3k 2-k 2⎝⎛⎭⎫x -43,所以直线l 过定点⎝⎛⎭⎫43,0. 综上,直线l 恒过定点,定点坐标为⎝⎛⎭⎫43,0.一、选择题1.已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3)D .⎝⎛⎭⎫1,32 解析:选C.直线l 1的斜率k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以直线l 2的斜率k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2),联立⎩⎪⎨⎪⎧y =33(x +2),y =-3(x -2),解得⎩⎪⎨⎪⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).2.圆C 与x 轴相切于T (1,0),与y 轴正半轴交于A 、B 两点,且|AB |=2,则圆C 的标准方程为( )A .(x -1)2+(y -2)2=2B .(x -1)2+(y -2)2=2C .(x +1)2+(y +2)2=4D .(x -1)2+(y -2)2=4解析:选A.由题意得,圆C 的半径为1+1=2,圆心坐标为(1,2),所以圆C 的标准方程为(x -1)2+(y -2)2=2,故选A.3.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离解析:选B.圆M :x 2+y 2-2ay =0(a >0)可化为x 2+(y -a )2=a 2,由题意,M (0,a )到直线x +y =0的距离d =a 2,所以a 2=a 22+2,解得a =2.所以圆M :x 2+(y -2)2=4,所以两圆的圆心距为2,半径和为3,半径差为1,故两圆相交.4.(多选)直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点的一个充分不必要条件是( )A .0<m <1B .m <1C .-2<m <1D .-3<m <1解析:选AC.圆x 2+y 2-2x -1=0的圆心为(1,0),半径为 2.因为直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点,所以直线与圆相交,因此圆心到直线的距离d =|1+m |1+1<2,所以|1+m |<2,解得-3<m <1,求其充分不必要条件,即求其真子集,故由选项易得AC 符合,故选AC.5.在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=( )A .102B .10C .5D .10解析:选D.由题意知P (0,1),Q (-3,0),因为过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以MP ⊥MQ ,所以|MP |2+|MQ |2=|PQ |2=9+1=10,故选D.6.(一题多解)(2019·潍坊模拟)在平面直角坐标系中,O 为坐标原点,直线x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM →=OA →+OB →,若点M 在圆C 上,则实数k 的值为( )A .-2B .-1C .0D .1解析:选C.法一:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -ky +1=0,x 2+y 2=4得(k 2+1)y 2-2ky -3=0,则Δ=4k 2+12(k 2+1)>0,y 1+y 2=2k k 2+1,x 1+x 2=k (y 1+y 2)-2=-2k 2+1,因为OM →=OA →+OB →,故M ⎝ ⎛⎭⎪⎫-2k 2+1,2k k 2+1,又点M 在圆C 上,故4(k 2+1)2+4k 2(k 2+1)2=4,解得k =0. 法二:由直线与圆相交于A ,B 两点,OM →=OA →+OB →,且点M 在圆C 上,得圆心C (0,0)到直线x -ky +1=0的距离为半径的一半,为1,即d =11+k2=1,解得k =0.二、填空题7.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.解析:令P (2,0),如图,易知|OA |=|OB |=1, 所以S △AOB =12|OA |·|OB |·sin ∠AOB=12sin ∠AOB ≤12, 当∠AOB =90°时,△AOB 的面积取得最大值,此时过点O 作OH ⊥AB 于点H ,则|OH |=22, 于是sin ∠OPH =|OH ||OP |=222=12,易知∠OPH 为锐角,所以∠OPH =30°,则直线AB 的倾斜角为150°,故直线AB 的斜率为tan 150°=-33. 答案:-338.已知圆O :x 2+y 2=4到直线l :x +y =a 的距离等于1的点至少有2个,则实数a 的取值范围为________.解析:由圆的方程可知圆心为(0,0),半径为2.因为圆O 到直线l 的距离等于1的点至少有2个,所以圆心到直线l 的距离d <r +1=2+1,即d =|-a |12+12=|a |2<3,解得a ∈(-32,32).答案:(-32,32)9.(2019·高考浙江卷)已知圆C 的圆心坐标是(0,m ),半径长是r .若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________.解析:法一:设过点A (-2,-1)且与直线2x -y +3=0垂直的直线方程为l :x +2y +t =0,所以-2-2+t =0,所以t =4,所以l :x +2y +4=0.令x =0,得m =-2,则r =(-2-0)2+(-1+2)2= 5.法二:因为直线2x -y +3=0与以点(0,m )为圆心的圆相切,且切点为A (-2,-1),所以m +10-(-2)×2=-1,所以m =-2,r =(-2-0)2+(-1+2)2= 5.答案:-2 5三、解答题10.已知点M (-1,0),N (1,0),曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍.(1)求曲线E 的方程;(2)已知m ≠0,设直线l 1:x -my -1=0交曲线E 于A ,C 两点,直线l 2:mx +y -m =0交曲线E 于B ,D 两点.当CD 的斜率为-1时,求直线CD 的方程.解:(1)设曲线E 上任意一点的坐标为(x ,y ), 由题意得(x +1)2+y 2=3·(x -1)2+y 2,整理得x 2+y 2-4x +1=0,即(x -2)2+y 2=3为所求.(2)由题意知l 1⊥l 2,且两条直线均恒过点N (1,0).设曲线E 的圆心为E ,则E (2,0),设线段CD 的中点为P ,连接EP ,ED ,NP ,则直线EP :y =x -2.设直线CD :y =-x +t ,由⎩⎪⎨⎪⎧y =x -2,y =-x +t ,解得点P ⎝ ⎛⎭⎪⎫t +22,t -22, 由圆的几何性质,知|NP |=12|CD |=|ED |2-|EP |2,而|NP |2=⎝ ⎛⎭⎪⎫t +22-12+⎝ ⎛⎭⎪⎫t -222,|ED |2=3, |EP |2=⎝ ⎛⎭⎪⎫|2-t |22,所以⎝⎛⎭⎫t 22+⎝ ⎛⎭⎪⎫t -222=3-(t -2)22,整理得t 2-3t =0,解得t =0或t =3, 所以直线CD 的方程为y =-x 或y =-x +3.11.在平面直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:BC 的中点坐标为(x 22,12),可得BC 的中垂线方程为y -12=x 2(x -x 22).由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m2.联立⎩⎨⎧x =-m2,y -12=x 2(x -x22),又x 22+mx 2-2=0,可得⎩⎨⎧x =-m2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为(-m 2,-12),半径r =m 2+92. 故圆在y 轴上截得的弦长为2r 2-(m2)2=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.12.在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解:(1)因为圆心在直线l :y =2x -4上,也在直线y =x -1上,所以解方程组⎩⎪⎨⎪⎧y =2x -4,y =x -1,得圆心C (3,2),又因为圆C 的半径为1,所以圆C 的方程为(x -3)2+(y -2)2=1,又因为点A (0,3),显然过点A ,圆C 的切线的斜率存在,设所求的切线方程为y =kx +3,即kx -y +3=0,所以|3k -2+3|k 2+12=1,解得k =0或k =-34,所以所求切线方程为y =3或y =-34x +3,即y -3=0或3x +4y -12=0.(2)因为圆C 的圆心在直线l :y =2x -4上, 所以设圆心C 为(a ,2a -4), 又因为圆C 的半径为1,则圆C 的方程为(x -a )2+(y -2a +4)2=1. 设M (x ,y ),又因为|MA |=2|MO |,则有 x 2+(y -3)2=2x 2+y 2,整理得x 2+(y +1)2=4,其表示圆心为(0,-1),半径为2的圆,设为圆D ,所以点M 既在圆C 上,又在圆D 上,即圆C 与圆D 有交点,所以2-1≤a 2+(2a -4+1)2≤2+1, 解得0≤a ≤125,所以圆心C 的横坐标a 的取值范围为⎣⎡⎦⎤0,125.。
(完整word版)一元一次方程应用题专项训练
(完整word版)⼀元⼀次⽅程应⽤题专项训练⼀元⼀次⽅程应⽤题专项训练4.2018元旦,王东和吴童相约⼀起去登⾹⼭.王东⽐吴童早18分钟到⾹⼭⼭脚,并以每分钟登⾼8⽶的速度直接开始登⼭;吴童到达⾹⼭⼭脚后没有休息,也直接以每分钟登⾼12⽶的速度开始登⼭,最后两⼈同时到达⼭顶.你能据此计算出⾹⼭⼭⾼多少⽶吗?5.列⼀元⼀次⽅程解应⽤题:社会是⼀个重要的学校和课堂,⽣活是⼀种重要的课程和教材,实践是⼀种重要的学习⽅式和途径.参加社会⽣活和社会实践,不仅可以学到很多在课堂上学不到的东西,也可以把课堂上学到的理论知识同社会实践联系起来,加深对课堂学习内容的理解,我区某校七年级学⽣在农场进⾏社会实践活动时,采摘了黄⽠和茄⼦共80千克,了解到这些蔬菜的种植成本共180元,还了解到如下信息:(1)求采摘的黄⽠和茄⼦各多少千克?(2)这些采摘的黄⽠和茄⼦可赚多少元?6.列⽅程解应⽤题:多少张?7.某市⾃来⽔公司为限制单位⽤⽔,每⽉只给某单位计划内⽤⽔300吨,计划内⽤⽔每吨收费3.4元,超过计划的部分每吨按4.6元收费.(1)当该单位每⽉⽤⽔250吨时,需付款元;当该单位每⽉⽤⽔350吨时,需付款元;(2)若某单位4⽉份缴纳⽔费1480元,则该单位⽤⽔多少吨?(3)若某单位5、6⽉份共⽤⽔700吨(6⽉份⽤⽔量超过5⽉份),共交⽔费2560元,则该单位5⽉份⽤⽔吨.8.随着经济的发展,能源与环境已成为⼈们⽇益关注的问题.据统计,全球每年⼤约会产⽣近3亿吨的塑料垃圾(例如平时⽤的矿泉⽔瓶⼦等)和约5亿吨的废钢铁(例如平时扔掉的易拉罐等),某中学为了培养学⽣的环保意识,开展了“环境保护,从我做起”的主题活动,七(2)班同学在活动中积极响应,在甲⼩区设⽴了回收塑料瓶和易拉罐的两个垃圾桶,班长⼩明对2个周的收集情况进⾏了统计,根据下列个周共收集了⽄塑料瓶,收集了⽄易拉罐.(2)班委会决定给贫困⼭区的孩⼦们捐赠⼀套价值43.8元的励志丛书,你认为按照这样的收集速度,需要收集⼏个周才能实现这个愿望?写出计算过程来⽀持你的答案.(3)七(1)班在⼄⼩区也设⽴了塑料瓶和易拉罐的回收点,两周收集塑料瓶和易拉罐共计440个,按相同价格出售后,所得⾦额⽐七(2)班两个周的废品回收⾦额多1.8元,求七(1)班同学两周收集的塑料瓶和易拉罐各多少个?9.商场将⼀批学⽣书包按成本价提⾼50%后标价,⼜按标价的80%优惠卖出,每个的售价是72元.每个这种书包的成本价是多少元?利润是多少元?利润率是多少?10.某学校组织安全知识竞赛,共设20道分值相同的选择题,每题必答,下表中记录了5位参赛选⼿的题,得分.(3)⽤⽅程知识解答:若某位选⼿F得64分,则他答对了⼏道题?(4)参赛选⼿G说他得78分,你认为可能吗?为什么?11.政府准备修建⼀条公路,若由甲⼯程队单独修需3个⽉完成,每⽉耗资12万元;若由⼄⼯程队单独修建需6个⽉完成,每⽉耗资5万元.若由甲⼯程队先做⼀段时间,剩下的由⼄⼯程队单独完成,⼀共⽤了4个⽉完成修建任务,这样安排共耗资多少万元?(时间按整⽉计算)12.根据图中情景,解答下列问题:(1)购买8根跳绳需元;购买11根跳绳需元;(2)⼩红⽐⼩明多买2根,付款时⼩红反⽽⽐⼩明少7元,你认为有这种可能吗?请结合⽅程知识说明理由.13.甲组的4名⼯⼈3⽉份完成的总⼯作量⽐此⽉⼈均定额的4倍多20件,⼄组的5名⼯⼈3⽉份完成的总⼯作量⽐此⽉⼈均定额的6倍少20件.(1)如果两组⼯⼈实际完成的此⽉⼈均⼯作量相等,那么此⽉⼈均定额是多少件?(2)如果甲组⼯⼈实际完成的此⽉⼈均⼯作量⽐⼄组此⽉⼈均⼯作量多2件,那么此⽉⼈均定额是多少件?14.根据国家发改委实施“阶梯电价”的有关⽂件要求,三明市结合地⽅实际,决定对居民⽣活⽤电试⾏(1)表中,a= ,b= ;(2)试⾏“阶梯电价”收费以后,该市⼀户居民2017年8⽉份平均电价每度为0.9元,求该⽤户8⽉⽤电多少度?15.新年快到了,贫困⼭区的孩⼦李明想给在“希望⼯程”中帮扶过他的王亮写封信,折叠长⽅形信纸装⼊标准信封时发现;若将信纸如图①五等分折叠后,沿着信封⼝边线装⼊时,宽绰有5.24cm,若将信封如图②三等分折叠后,同样⽅法装⼊时,宽绰有 1.4cm,试求信封的⼝宽20×1.65+(30﹣20)×2.48+(35﹣30)×3.30=74.3(元)(1)如果⼩东家2017年7⽉份的⽤⽔量为20吨,则需交⽔费多少元?(2)如果⼩明家2017年7⽉份的⽤⽔量为m吨,⽔价要按两级计算,则⼩明家该⽉应交⽔费多少元?《⽤含m的代数式表⽰,并化简)(3)若林安家2017年7⽉份应缴⽔费87.5元,则该户⼈家7⽉份⽤⽔多少吨?17.A、B两地相距70千⽶,甲从A地出发,每⼩时⾏15千⽶,⼄从B地出发,每⼩时⾏20千⽶.(1)若两⼈同时出发,相向⽽⾏,则经过⼏⼩时两⼈相遇?(2)若甲在前,⼄在后,两⼈同时同向⽽⾏,则⼏⼩时后⼄超过甲10千⽶?(3)若两⼈同时出发,相向⽽⾏,则⼏⼩时后两⼈相距10千⽶?18.为满⾜同学们课外阅读的需求,某中学图书馆向出版社邮购科普系列图书,每本书单价为16元,书的价钱和邮费是通过邮局汇款,相关的书价折扣、邮费和汇款的汇费如下表所⽰(总费⽤=总书价+总邮费本,共需总费⽤为元.(2)已知学校图书馆需购图书的总数是10的整倍数,且超过10本.①若分次邮购,分别汇款,每次邮购10本,总费⽤为1064元时,共邮购了多本图书?②若你是学校图书馆负责⼈,从节约的⾓度出发,在“每次邮购10本“与“⼀次性邮购”这两种⽅式中选择⼀种,你会选择哪⼀种?计算并说明理由.19.列⽅程解应⽤题:如图,现有两条乡村公路AB、BC,AB长为1200⽶,BC长为1600⽶,⼀个⼈骑摩托车从A处以200⽶/分的速度匀速沿公路AB、BC向C处⾏驶;另⼀⼈骑⾃⾏车从B处以100⽶/分的速度从B向C⾏驶,并且两⼈同时出发.(1)求经过多少分钟摩托车追上⾃⾏车?(2)求两⼈均在⾏驶途中时,经过多少分钟两⼈在⾏进路线上相距150⽶?20.某⼯程交由甲、⼄两个⼯程队来完成,已知甲⼯程队单独完成需要60天,⼄⼯程队单独完成需要40天(1)若甲⼯程队先做30天后,剩余由⼄⼯程队来完成,还需要⽤时天(2)若甲⼯程队先做20天,⼄⼯程队再参加,两个⼯程队⼀起来完成剩余的⼯程,求共需多少天完成该⼯程任务?21.某校组织学⽣⾛上街头宜传雾霾的危害,他们要复印⼀部分宣传资料(不少于20页),校门⼝有两家复印店。
2022年高考数学(浙江专用)总复习教师用书:第9章 第3讲 圆的方程 Word版含解析
第3讲圆的方程最新考纲把握确定圆的几何要素,把握圆的标准方程与一般方程.知识梳理1.圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)充要条件:D2+E2-4F>0圆心坐标:⎝⎛⎭⎪⎫-D2,-E2半径r=12D2+E2-4F2.平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.诊断自测1.推断正误(在括号内打“√”或“×”)(1)确定圆的几何要素是圆心与半径.()(2)方程x2+y2=a2表示半径为a的圆.()(3)方程x2+y2+4mx-2y+5m=0表示圆.()(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()解析(2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.(3)当(4m)2+(-2)2-4×5m>0,即m<14或m>1时才表示圆.答案(1)√(2)×(3)×(4)√2.(2021·北京卷)圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析由题意得圆的半径为2,故该圆的方程为(x-1)2+(y-1)2=2,故选D.答案 D3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是()A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.a=±1解析由于点(1,1)在圆的内部,所以(1-a)2+(1+a)2<4,所以-1<a<1.答案 A4.(2022·浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.解析由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a=-1时,原方程为x2+y2+4x+8y-5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(-2,-4)为圆心,半径为5的圆.答案(-2,-4) 55.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a +1)2+1=(a -1)2+9,解得a =2,所以圆心为C (2,0), 半径|CA |=(2+1)2+1=10,∴圆C 的方程为(x -2)2+y 2=10. 答案 (x -2)2+y 2=106.(2021·湖州调研)若圆C 与圆x 2+y 2+2x =0关于直线x +y -1=0对称,则圆心C 的坐标为________;圆C 的一般方程是________.解析 已知圆x 2+y 2+2x =0的圆心坐标是(-1,0)、半径是1,设圆C 的圆心(a ,b ),则有⎩⎨⎧ba +1=1,a -12+b2-1=0,由此解得a =1,b =2,即圆心C 的坐标为(1,2),因此圆C 的方程是(x -1)2+(y -2)2=1,即x 2+y 2-2x -4y +4=0. 答案 (1,2) x 2+y 2-2x -4y +4=0考点一 圆的方程【例1】 (1)(2021·金华调研)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为________.解析 (1)法一 由已知k AB =0,所以AB 的中垂线方程为x =3.①过B 点且垂直于直线x -y -1=0的直线方程为y -1=-(x -2),即x +y -3=0,② 联立①②,解得⎩⎪⎨⎪⎧x =3,y =0,所以圆心坐标为(3,0),半径r =(4-3)2+(1-0)2=2,所以圆C 的方程为(x -3)2+y 2=2.法二 设圆的方程为(x -a )2+(y -b )2=r 2(r >0),∵点A (4,1),B (2,1)在圆上,故⎩⎪⎨⎪⎧(4-a )2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2,又∵b -1a -2=-1,解得a =3,b =0,r =2,故所求圆的方程为(x -3)2+y 2=2.(2)设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得 ⎩⎪⎨⎪⎧2D -4E -F =20,3D -E +F =-10.①② 又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6,得D 2-4F =36,④由①,②,④解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0.故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.答案 (1)(x -3)2+y 2=2 (2)x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0规律方法 求圆的方程时,应依据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法: (1)几何法,通过争辩圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三共性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.【训练1】 (1)(2022·天津卷)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.(2)(2021·武汉模拟)以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________.解析(1)由于圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d=2a5=455,解得a=2,所以圆C的半径r=|CM|=4+5=3,所以圆C的方程为(x-2)2+y2=9.(2)抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.答案(1)(x-2)2+y2=9(2)(x-1)2+y2=4考点二与圆有关的最值问题【例2】已知实数x,y满足方程x2+y2-4x+1=0.(1)求yx的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.解原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,3为半径的圆.(1)yx的几何意义是圆上一点与原点连线的斜率,所以设yx=k,即y=kx.当直线y=kx与圆相切时,斜率k取最大值或最小值,此时|2k-0|k2+1=3,解得k=±3(如图1).所以yx的最大值为3,最小值为- 3.(2)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时|2-0+b|2=3,解得b=-2±6(如图2).所以y-x的最大值为-2+6,最小值为-2- 6.(3)x2+y2表示圆上的一点与原点距离的平方,由平面几何学问知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3).又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x2+y2的最大值是(2+3)2=7+43,x2+y2的最小值是(2-3)2=7-4 3.规律方法把有关式子进行转化或利用所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化极为常见:(1)形如m=y-bx-a的最值问题,可转化为动直线斜率的最值问题;(2)形如t=ax+by的最值问题,可转化为动直线截距的最值问题;(3)形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间距离的平方的最值问题.【训练2】(1)(2021·义乌市诊断)圆心在曲线y=2x(x>0)上,与直线2x+y+1=0相切,且面积最小的圆的方程为()A.(x-2)2+(y-1)2=25B.(x-2)2+(y-1)2=5C.(x-1)2+(y-2)2=25D.(x-1)2+(y-2)2=5(2)(2022·全国Ⅱ卷)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________.解析(1)设圆心坐标为C⎝⎛⎭⎪⎫a,2a(a>0),则半径r=2a+2a+15≥22a×2a+15=5,当且仅当2a=2a,即a=1时取等号.所以当a=1时圆的半径最小,此时r=5,C(1,2),所以面积最小的圆的方程为(x-1)2+(y-2)2=5.(2)如图所示,过点O作OP⊥MN交MN于点P.在Rt △OMP 中,|OP |=|OM |·sin 45°, 又|OP |≤1,得|OM |≤1sin 45°= 2. ∴|OM |=1+x 20≤2,∴x 20≤1.因此-1≤x 0≤1. 答案 (1)D (2)[-1,1] 考点三 与圆有关的轨迹问题【例3】 设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线相互平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎨⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上, 故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM上时的状况).规律方法 求与圆有关的轨迹问题时,依据题设条件的不同常接受以下方法: (1)直接法,直接依据题目供应的条件列出方程; (2)定义法,依据圆、直线等定义列方程; (3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.【训练3】 (2022·全国Ⅰ卷)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解 (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM→=(x ,y -4),MP →=(2-x ,2-y ).由题设知CM→·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 由于ON 的斜率为3,所以l 的斜率为-13, 故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105, 所以|PM |=4105,S △POM =12×4105×4105=165, 故△POM 的面积为165.[思想方法]1.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法,是指依据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.2.解答圆的问题,应留意数形结合,充分运用圆的几何性质,简化运算. [易错防范]1.求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.2.求轨迹方程和求轨迹是有区分的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨迹表示什么曲线.基础巩固题组 (建议用时:40分钟) 一、选择题1.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A.x 2+y 2=2 B.x 2+y 2= 2 C.x 2+y 2=1D.x 2+y 2=4解析 AB 的中点坐标为(0,0), |AB |=[1-(-1)]2+(-1-1)2=22,∴圆的方程为x 2+y 2=2. 答案 A2.(2021·嘉兴七校联考)圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为( ) A.(x -2)2+(y -1)2=1 B.(x +1)2+(y -2)2=1 C.(x +2)2+(y -1)2=1D.(x -1)2+(y +2)2=1解析 已知圆的圆心C (1,2)关于直线y =x 对称的点为C ′(2,1),∴圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为(x -2)2+(y -1)2=1,故选A. 答案 A3.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( ) A.(-∞,-2)∪⎝ ⎛⎭⎪⎫23,+∞B.⎝ ⎛⎭⎪⎫-23,0 C.(-2,0)D.⎝ ⎛⎭⎪⎫-2,23 解析 方程为⎝ ⎛⎭⎪⎫x +a 22+(y +a )2=1-a -3a 24表示圆,则1-a -3a 24>0,解得-2<a <23.答案 D4.(2021·绍兴一中检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A.(x -2)2+(y +1)2=1 B.(x -2)2+(y +1)2=4 C.(x +4)2+(y -2)2=4D.(x +2)2+(y -1)2=1解析 设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x 02,y =-2+y 02,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.由于点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1. 答案 A5.(2021·全国Ⅱ卷)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213 C.253D.43解析 由点B (0,3),C (2,3),得线段BC 的垂直平分线方程为x =1,① 由点A (1,0),B (0,3),得线段AB 的垂直平分线方程为 y -32=33⎝ ⎛⎭⎪⎫x -12,②联立①②,解得△ABC 外接圆的圆心坐标为⎝ ⎛⎭⎪⎫1,233, 其到原点的距离为 12+⎝ ⎛⎭⎪⎫2332=213.故选B. 答案 B 二、填空题6.若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是________. 解析 设圆心C 坐标为(2,b )(b <0),则|b |+1=4+b 2.解得b =-32,半径r =|b |+1=52,故圆C 的方程为:(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.答案 (x -2)2+⎝ ⎛⎭⎪⎫y +322=2547.(2021·广州模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________.解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1.所以,当k =0时圆C 的面积最大. 答案 (0,-1)8.(2021·丽水调研)已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________;最长弦所在直线的方程为________.解析 过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),∵k CM =1-02-1=1,∴最短弦所在直线的方程为y -0=-(x -1),即x +y -1=0.由于直线过圆心C (2,1)时弦最长,此弦与最短弦垂直,故其斜率为1,此弦所在的直线方程为y -0=x -1,即为x -y -1=0. 答案 x +y -1=0 x -y -1=0 三、解答题9.已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程.解 l 2平行于x 轴,l 1与l 3相互垂直.三交点A ,B ,C 连线构成直角三角形,经过A ,B ,C 三点的圆就是以AB 为直径的圆. 解方程组⎩⎨⎧x -2y =0,y +1=0得⎩⎨⎧x =-2,y =-1.所以点A 的坐标是(-2,-1). 解方程组⎩⎨⎧2x +y -1=0,y +1=0得⎩⎨⎧x =1,y =-1.所以点B 的坐标是(1,-1). 线段AB 的中点坐标是⎝ ⎛⎭⎪⎫-12,-1,又|AB |=(-2-1)2+(-1+1)2=3. 故所求圆的标准方程是⎝ ⎛⎭⎪⎫x +122+(y +1)2=94.10.在△ABC 中,已知|BC |=2,且|AB ||AC |=m ,求点A 的轨迹方程,并说明轨迹是什么图形. 解 如图,以直线BC 为x 轴、线段BC 的中点为原点,建立直角坐标系. 则有B (-1,0),C (1,0),设点A 的坐标为(x ,y ).由|AB ||AC |=m ,得(x +1)2+y 2=m (x -1)2+y 2.整理得(m 2-1)x 2+(m 2-1)y 2-2(m 2+1)x +(m 2-1)=0.①当m 2=1时,m =1,方程是x =0,轨迹是y 轴.当m 2≠1时,对①式配方,得⎝ ⎛⎭⎪⎫x -m 2+1m 2-12+y 2=4m 2(m 2-1)2.所以,点A 的轨迹是以⎝ ⎛⎭⎪⎫m 2+1m 2-1,0为圆心,2m|m 2-1|为半径的圆(除去圆与BC 的交点).力量提升题组 (建议用时:25分钟)11.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b 的最小值为( ) A.1 B.5 C.4 2D.3+2 2解析 由题意知圆心C (2,1)在直线ax +2by -2=0上, ∴2a +2b -2=0,整理得a +b =1, ∴1a +2b =(1a +2b )(a +b )=3+b a +2a b ≥3+2b a ×2ab =3+22,当且仅当b a =2ab ,即b =2-2,a =2-1时,等号成立. ∴1a +2b 的最小值为3+2 2. 答案 D12.已知圆心(a ,b )(a <0,b <0)在直线y =2x +1上的圆,其圆心到x 轴的距离恰好等于圆的半径,在y 轴上截得的弦长为25,则圆的方程为( ) A.(x +2)2+(y +3)2=9 B.(x +3)2+(y +5)2=25 C.(x +6)2+⎝ ⎛⎭⎪⎫y +732=499D.⎝ ⎛⎭⎪⎫x +232+⎝ ⎛⎭⎪⎫y +732=499 解析 由圆心到x 轴的距离恰好等于圆的半径知,所求圆与x 轴相切,由题意得圆的半径为|b |,则圆的方程为(x -a )2+(y -b )2=b 2.由圆心在直线y =2x +1上,得b =2a +1 ①,由此圆在y 轴上截得的弦长为25, 得b 2-a 2=5 ②,由①②得⎩⎪⎨⎪⎧a =-2,b =-3或⎩⎪⎨⎪⎧a =23,b =73(舍去).所以所求圆的方程为(x +2)2+(y +3)2=9.故选A.答案 A13.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|P A |2,其中A (0,1),B (0,-1),则d 的最大值为________.解析 设P (x 0,y 0),d =|PB |2+|P A |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74.答案 7414.在平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b (x ∈R )的图象与两个坐标轴有三个交点,经过这三点的圆记为C . (1)求实数b 的取值范围; (2)求圆C 的方程;(3)问圆C 是否经过定点(其坐标与b 无关)?请证明你的结论.解 (1)明显b ≠0,否则,二次函数f (x )=x 2+2x +b 的图象与两个坐标轴只有两个交点(0,0),(-2,0),这与题设不符.由b ≠0知,二次函数f (x )=x 2+2x +b 的图象与y 轴有一个非原点的交点(0,b ),故它与x 轴必有两个交点,从而方程x 2+2x +b =0有两个不相等的实数根,因此方程的判别式4-4b >0,即b <1.所以b 的取值范围是(-∞,0)∪(0,1).(2)由方程x 2+2x +b =0,得x =-1±1-b .于是,二次函数f (x )=x 2+2x +b 的图象与两个坐标轴的交点是(-1-1-b ,0),(-1+1-b ,0),(0,b ).设圆C 的方程为x 2+y 2+Dx +Ey +F =0,圆C 过上述三点,将它们的坐标分别代入圆C 的方程,得⎩⎪⎨⎪⎧(-1-1-b )2+D (-1-1-b )+F =0,(-1+1-b )2+D (-1+1-b )+F =0,b 2+Eb +F =0.又b ≠0,解上述方程组,得⎩⎨⎧D =2,E =-(b +1),F =b .所以圆C 的方程为x 2+y 2+2x -(b +1)y +b =0. (3)圆C 过定点,证明如下:假设圆C 过定点(x 0,y 0)(x 0,y 0不依靠于b ),将该点的坐标代入圆C 的方程,并变形为x 20+y 20+2x 0-y 0+b (1-y 0)=0(*).为使(*)式对全部满足b <1(b ≠0)的b 都成立,必需有1-y 0=0,结合(*)式得x 20+y 20+2x 0-y 0=0.解得⎩⎨⎧x 0=0,y 0=1或⎩⎨⎧x 0=-2,y 0=1.经检验知,点(0,1),(-2,1)均在圆C 上.因此,圆C 过定点.15.(2022·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程; (3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA→+TP →=TQ →,求实数t 的取值范围. 解 (1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25,圆心M (6,7),半径r =5, 由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0), 且(6-6)2+(b -7)2=b +5.解得b =1,∴圆N 的标准方程为(x -6)2+(y -1)2=1.(2)∵k OA =2,∴可设直线l 的方程为y =2x +m ,即2x -y +m =0. 又|BC |=|OA |=22+42=25,由题意,圆M 的圆心M (6,7)到直线l 的距离为d =52-⎝ ⎛⎭⎪⎫|BC |22=25-5=25,即|2×6-7+m |22+(-1)2=25,解得m =5或m =-15. ∴直线l 的方程为2x -y +5=0或2x -y -15=0. (3)由TA→+TP →=TQ →,则四边形AQPT 为平行四边形,又∵P ,Q 为圆M 上的两点,∴|PQ |≤2r =10. ∴|TA |=|PQ |≤10,即(t -2)2+42≤10, 解得2-221≤t ≤2+221.故所求t 的范围为[2-221,2+221].。
(word版)高中数学直线与圆的位置关系练习题
高中数学直线与圆的位置关系一、单选题1.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 42.从点P(m,3)向圆C:(x+2)2+(y+2)2=1引切线,则切线长的最小值为()A. 2√6B. √26C. 4+√2D. 53.圆x2+y2−4x+2y+1=0与圆x2+y2+4x−4y−1=0的公切线有()A. 1条B. 2条C. 3条D. 4条4.过点P(−2,4)作圆O:(x−2)2+(y−1)2=25的切线l,直线m:ax−3y=0与直线l平行,则直线l与m的距离为()A. 4B. 2C. 85D. 1255.已知圆C:x2−6x+y2+2ay+7+a2=0关于直线3x+y−1=0对称,则a=()A. 4B. 6C. 8D. 106.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A. 1条B. 2条C. 3条D. 4条7.设O为原点直线y=kx+2与圆x2+y2=4相交于A,B两点,当▵ABO面积最大值时,k=()A. ±√22B. ±1C. ±√2D. ±28.圆C1:(x+1)2+(y+2)2=4与圆C2:(x−1)2+(y+1)2=9的位置关系是()A. 内切B. 相交C. 外切D. 相离9.直线l:y=x+1上的点到圆C:x2+y2+2x+4y+4=0上的点的最近距离为()A. √2B. 2−√2C. 1D. √2−110.若点P(1,1)为圆C:x2+y2−6x=0的弦MN的中点,则弦MN所在的直线方程为()A. 2x+y−3=0B. x−2y+1=0C. x+2y−3=0D. 2x−y−1=011. 已知圆C 的圆心为原点O ,且与直线x +y +4√2=0相切.点P 在直线x =8上,过点P 引圆C 的两条切线PA ,PB ,切点分别为A ,B ,如图所示,则直线AB 恒过定点的坐标为( )A. (2,0)B. (0,2)C. (1,0)D. (0,1)12. 若圆C 的半径为1,圆心在第一象限,且与直线4x −3y =0和x 轴都相切,则该圆的标准方程是( )A. (x −2)2+(y −1)2=1B. (x −2)2+(y +1)2=1C. (x +2)2+(y −1)2=1D. (x −3)2+(y −1)2=1二、多选题(本大题共2小题,共10.0分) 13. 已知圆M:x 2+y 2−4x −1=0,点P (x,y )是圆M 上的动点,则下列说法正确的有( )A. 圆M 关于直线x +3y −2=0对称B. 直线x +y =0与M 的相交弦长为√3C. t =y x+3的最大值为12D. x 2+y 2的最小值为9−4√514. 已知A (−2,0),B (2,0),若圆(x −2a +1)2+(y −2a −2)2=1上存在点M 满足MA →⋅MB →=0,实数a 可以是( ) A. −1 B. −0.5 C. 0D. 1三、单空题15. 已知点P 是直线y =x 上一个动点,过点P 作圆(x +2)2+(y −2)2=1的切线,切点为T ,则线段PT 长度的最小值为 .16. 若过点P(1,√3)作圆O:x 2+y 2=1的两条切线,切点分别为A 和B ,则|AB |= .17. 与直线y =x +3平行且与圆(x −2)2+(y −3)2=8相切的直线的方程为________________________.18.已知坐标原点为O,过点P(2,6)作直线2mx−(4m+n)y+2n=0(m,n不同时为零)的垂线,垂足为M,则|OM|的取值范围是______.19.若P(2,1)是圆(x−1)2+y2=25的弦AB的中点,则直线AB的方程为.20.已知直线x−√3y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为______.21.已知点P在直线x−y+4=0上,由点P向圆x 2+y 2=4作两条切线,切点分别为A,B,则∠APB的最大值为__________.四、多空题(本大题共1小题,共5.0分)22.已知圆C1:x2+y2=4与圆C2:x2+y2−8x+6y+m=0外切,则m=(1),此时直线l:x+y=0被圆C2所截的弦长为(2).五、解答题23.已知点M(3,1),圆O1:(x−1)2+(y−2)2=4.(1)若直线ax−y+4=0与圆O1相交于A,B两点,且弦AB的长为2√3,求a的值;(2)求过点M的圆O1的切线方程.24.已知圆C1:x2+y2−2x=0和圆C2:x2+y2−6x−4y+4=0相交于A,B两点.(1)求公共弦AB的垂直平分线方程.(2)求ΔABC2的面积。
2021-2022高中数学人教版必修2作业:4.1.1圆的标准方程(系列三)Word版含解析
圆的标准方程〔45分钟100分〕一、选择题(每题6分,共30分)1.圆C:(x-2)2+(y+1)2=1,那么点C与圆x2+y2=4的位置关系是()A.在圆外B.在圆内C.在圆上D.不确定2.△ABC三个顶点的坐标分别是A(1,0),B(3,0),C(3,4),那么该三角形外接圆方程是()A.(x-2)2+(y-2)2=20B.(x-2)2+(y-2)2=10C.(x-2)2+(y-2)2=5D.(x-2)2+(y-2)23.圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程为()A.(x-2)2+y2=5B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=54.点P(a,10)与圆(x-1)2+(y-1)2=2的位置关系是()A.在圆外B.在圆上C.在圆内D.与a的值有关5.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=1二、填空题(每题8分,共24分)6.圆C经过A(5,1),B(1,3)两点,圆心在x轴上,那么圆C的方程为.7.如果圆(x-m)2+(y-2m)2=r2关于直线x+y-3=0对称,那么圆的圆心坐标为.8.假设实数x,y满足(x+5)2+(y-12)2=196,那么x2+y2的最小值是.三、解答题(9题,10题14分,11题18分)9.圆过点A(1,-2),B(-1,4),求(1)周长最小的圆的方程.(2)圆心在直线2x-y-4=0上的圆的方程.10.圆N的标准方程为(x-5)2+(y-6)2=a2(a>0).(1)假设点M(6,9)在圆上,求a的值.(2)点P(3,3)和点Q(5,3),线段PQ与圆N有且只有一个公共点(点P,Q不在圆上),求a的取值范围.11.(能力挑战题)三点A(3,2),B(5,-3),C(-1,3),以点P(2,-1)为圆心作一个圆,使A,B,C 三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程.答案解析1.【解析】选A.因为C(2,-1)且22+(-1)2=5>4,所以点C 在圆外.2.【解析】选C.易知△ABC 是直角三角形,∠ABC=90°,所以圆心是斜边AC 的中点(2,2),半径是斜边长的一半,即,所以外接圆的方程为(x-2)2+(y-2)2=5.3.【解析】选A.圆(x+2)2+y 2=5的圆心为(-2,0),那么关于(0,0)对称的圆的圆心为(2,0),半径不变.【举一反三】圆(x+2)2+y 2=5关于直线y=x 对称的圆的方程为.【解析】设圆心为(a,b),那么b 0a 2b 122a 2+-==-+,, 所以a 0b 2=⎧⎨=-⎩,,半径不变. 答案:x 2+(y+2)2=54.【解析】选A.把P(a,10)代入(x-1)2+(y-1)2可得(a-1)2+(10-1)2=(a-1)2+81>2,所以点P(a,10)在圆外.5.【解析】选A.设圆心坐标为(0,b),那么由题意知半径解得b=2,故圆的方程为x 2+(y-2)2=1.6.【解析】设圆心坐标为(a,0),=,解得a=2,所以圆心为(2,0),,所以圆C 的方程为(x-2)2+y 2=10.答案:(x-2)2+y 2=107.【解析】圆的圆心为(m,2m),由题意,圆心在直线上,即m+2m-3=0,解得m=1,所以圆心坐标为(1,2).答案:(1,2)8.【解析】表示圆上的点P(x,y)到原点的距离,的最小值即为圆心到原点的距离减去半径的绝对值,的最小值为-14|=1,所以x 2+y 2的最小值为1.答案:19.【解析】(1)当AB为直径时,过A,B的圆的半径最小,从而周长最小,即AB中点(0,1)为圆心,半径r=12,那么圆的方程为:x2+(y-1)2=10.(2)AB的斜率为k=-3,那么线段AB的垂直平分线的方程是y-1=13x,即x-3y+3=0,由x3y30,2x y40-+=⎧⎨--=⎩,得x3,y2=⎧⎨=⎩,即圆心坐标是C(3,2).=. 所以圆的方程是(x-3)2+(y-2)2=20. 【一题多解】待定系数法:设圆的方程为:(x-a)2+(y-b)2=r2.那么222222(1a)(2b)r,(1a)(4b)r,2a b40⎧-+--=⎪--+-=⎨⎪--=⎩,解得2a3,b2,r20⎧=⎪=⎨⎪=⎩,所以圆的方程为:(x-3)2+(y-2)2=20.10.【解析】(1)因为点M在圆上, 所以(6-5)2+(9-6)2=a2,又由a>0,可得.(2)由两点间距离公式可得=因为线段PQ与圆有且只有一个公共点,即P,Q两点一个在圆内,另一个在圆外,由于,所以即a的取值范围是11.【解析】要使A,B,C三点中一点在圆外,一点在圆上,一点在圆内,那么圆的半径是|PA|,|PB|,|PC|中的中间值.由于=5.即|PA|<|PB|<|PC|. 所以圆的半径故所求圆的方程为(x-2)2+(y+1)2=13.。
【高考特训】专题4.1.2 圆的一般方程-高一数学人教版(必修2)(Word版含解析)
一、选择题1.圆x2+y2+4x–6y–3=0的圆心和半径分别为A.(4,–6),r=16 B.(2,–3),r=4C.(–2,3),r=4 D.(2,–3),r=16【答案】C【解析】将圆x2+y2+4x–6y–3=0的方程化成标准形式,得(x+2)2+(y–3)2=16,∴圆x2+y2+4x–6y–3=0的圆心为C(–2,3),半径r=4,故选C.2.由方程x2+y2–4tx–2ty+5t2–4=0(t为参数)所表示的一组圆的圆心轨迹是A.一个定点B.一个椭圆C.一条抛物线D.一条直线【答案】D3.已知圆C的一般方程为x2+y2+2x–4y+1=0,其圆心坐标为(a,b),半径为r,则以下说法中,正确的是A.a=–1,b=2,r=2 B.a=–1,b=2,r=4C.a=1,b=–2,r=2 D.a=1,b=–2,r=4【答案】A【解析】圆C的一般方程为x2+y2+2x–4y+1=0,它的标准方程为(x+1)2+(y–2)2=4,表示以(–1,2)为圆心、半径等于2的圆.再根据其圆心坐标为(a,b),半径为r,可得a=–1,b=2,r=2,故选A.4.方程x2+xy=x表示的曲线是A.一个点B.一条直线C.两条直线D.一个点和一条直线【答案】C【解析】方程x2+xy=x即x(x+y–1)=0,化简可得x=0或x+y–1=0.而x=0表示一条直线,x+y–1=0也表示一条直线,故方程x2+xy=x的曲线是两条直线,故选C.5.已知实数x,y满足x2+y2–2x–2y+1=0,则x2+y2的最小值为A1B C.3-D.2【答案】C【解析】圆x2+y2–2x–2y+1=0,即(x–1)2+(y–1)2=1,表示以C(1,1)为圆心、半径等于1的圆.则x2+y2表示圆上的点和原点连线的距离的平方.由于CO∴CO2=2,∴x2+y2的最小值为)21=3–C.6.过三点A(–3,2),B(3,–6),C(0,3)的圆的方程为A.x2+y2+4y–21=0 B.x2+y2–4y–21=0C.x2+y2+4y–96=0 D.x2+y2–4y–96=0【答案】A7.已知方程x2+y2–2x+2y+a=0表示圆,则实数a的取值范围是A.(2,+∞)B.(–2,+∞)C.(–∞,2)D.(–∞,1)【答案】C【解析】∵方程x2+y2–2x+2y+a=0表示圆,∴22+22–4a>0,∴4a<8,∴a<2,故选C.8.曲线x2+y2––4=0关于A.直线x B.直线y=–x轴对称C.点(–2D0)中心对称【答案】B【解析】曲线x2+y2––4=0于圆心在直线y=–x上,∴曲线关于直线y=–x对称.∴A、C、D都不正确.故选B.9.在平面直角坐标系内,若曲线C:x2+y2+2ax–4ay+5a2–4=0上所有的点均在第二象限内,则实数a取值范围为A.(1,+∞)B.(2,+∞)C.(–∞,–2)D.(–∞,–1)【答案】B10.已知圆x2+y2–4x+6y=0的圆心坐标为(a,b),则a2+b2=A.8 B.16 C.12 D.13【答案】D【解析】圆x2+y2–4x+6y=0化为:(x–2)2+(y+3)2=13的圆心坐标为(2,–3),则a2+b2=4+9=13.故选D.二、填空题11.圆x2+y2–2x+4y=0的面积为___________.【答案】5π【解析】圆的方程即(x–1)2+(y+2)21,–2的圆,故圆的面积为π•r2=5π,故答案为:5π.12.圆x2+y2–2x+6y+8=0的周长为___________.【答案】【解析】圆x2+y2–2x+6y+8=0,即圆(x–1)2+(y+3)2=2,表示以(1,–3)为圆心,.13.圆x2+y2+6x–4y+12=0的圆心坐标是___________.【答案】(–3,2)【解析】圆x2+y2+6x–4y+12=0,即(x+3)2+(y–2)2=1,故圆的圆心为(–3,2),故答案为:(–3,2).14.若直线3x –4y +12=0与两坐标轴的交点为A ,B ,则以线段AB 为直径的圆的一般方程为___________.【答案】x 2+y 2+4x –3y =0【解析】由x =0得y =3,由y =0得x =–4,∴A (–4,0),B (0,3),∴以AB 为直径的圆的圆心是(–2,32),半径r 52=,∴以AB 为直径的圆的方程是(x +2)2+(y –32)2=254,即x 2+y 2+4x –3y =0.故答案为:x 2+y 2+4x –3y =0. 15.若方程x 2+y 2–2mx +(2m –2)y +2m 2=0表示一个圆,且圆心位于第一象限,则实数m 的取值范围是___________. 【答案】(0,12) 【解析】方程x 2+y 2–2mx +(2m –2)y +2m 2=0表示一个圆,可得:圆心为(m ,1–m ),r .∴12m <,由圆心位于第一象限,010m m >⎧⎨->⎩,解得0<m <1.∴实数m 的取值范围是0<m <12.故答案为:(0,12). 三、解答题16.若方程x 2+y 2+2mx –2y +m 2+5m =0表示圆,求:(1)实数m 的取值范围; (2)圆心坐标和半径.17.若圆过A(2,0),B(4,0),C(0,2)三点,求这个圆的方程.【解析】设所求圆的方程为x2+y2+Dx+Ey+F=0,则有420 1640 240D FD FE F++=⎧⎪++=⎨⎪++=⎩①②③,②–①得:12+2D=0,∴D=–6,代入①得:4–12+F=0,∴F=8,代入③得:2E+8+4=0,∴E=–6,∴D=–6,E=–6,F=8,∴圆的方程是x2+y2–6x–6y+8=0.18.求下列满足条件的圆的方程(1)圆心为C(2,–2)且过点P(6,3)的圆的方程;(2)已知点A(–4,–5),B(6,–1),求以线段AB为直径的圆的方程.【解析】(1=故圆的方程为(x–2)2+(y+2)2=41;(2)由中点坐标公式得线段AB的中点坐标为C(1,–3),即圆心的坐标,r=故圆的方程为(x–1)2+(y+3)2=29.19.已知实数x,y满足方程x2+y2–4x+1=0.(1)求yx的最值;(2)求y–x的最值;(3)求x2+y2的最值.(2)令y–x=t,即x–y+t=0对应直线l,将直线l平移,当l与圆C:(x–2)2+y2=3相切时,t达到最大或最小值,由d=t=–2∴t的最小值为–2(3)满足x2+y2–4x+1=0的点P(x,y)在以C(2,0x2+y2=|OP|2,∵当P、O、C三点共线时,|OP|达到最大值或最小值,∴当圆C上的点P在OC延长线上时,|OP|的最大值为|OC得到x2+y2的最大值为(2当圆C上的点P在线段OC上时,|OP|的最小值为|OC|得到x2+y2的最大值为(22=7–综上所述,x2+y2的最大值为7–20.m为何值时,方程x2+y2–4x+2my+2m2–2m+1=0表示圆,并求半径最大时圆的方程.。
选择性必修第一册《圆与方程》专题8 训练(Word版含解析)
《圆与方程》专题8-1 圆综合中下(3套,6页,含答案)1. 已知直线L 过点(-2,0),当直线L 与圆x ²+y ²=2x 有两个交点时,其斜率k 的取值范围是(i ) A ),(2222- B ),(22- C),(4242- D ),(8181-2. 圆0sin sin 2cos 22222=---+θθθa by ax y x 在x 轴上截得的弦长为( ii ) (A)a 22 (B)a 2 (C)a 2 (D)a 43. 如下图所示,一座圆拱桥,当水面在某位置时,拱顶离水面2 m ,水面宽12 m , 当水面下降1 m 后,水面宽为_____iii ___m.4. 已知圆x ²+y ²+Dx +Ey +F =0与y 轴切于原点,那么( iv )A .D =0,E =0,F ≠0B .D =0,E ≠0,F =0C .D ≠0,E =0,F =0 D .D ≠0,E ≠0,F =05. 两圆交于A(1,3)及B(m ,-1),两圆的圆心均在直线x -y +n =0上,则m +n 的值为___v _____.6. 已知点P 在圆x ²+y ²-8x -4y +11=0上,点Q 在圆x ²+y ²+4x +2y +1=0上,则|PQ|的最小值是__vi __.7. 圆:x ²+y ²-4x +6y =0和圆:x ²+y ²-6x =0交于A ,B 两点,则AB 的垂直平分线方程是(vii )A.x +y +3=0B.2x -y -5=0C.3x -y -9=0D.4x -3y +7=08. △ABC 的顶点A 在圆O :x ²+y ²=1上,B ,C 两点在直线3x +y +3=0上,若|4=-,则△ABC 面积的最小值为___viii __.9. 已知点P(x ,y)在直线x +2y =3上移动,当2x +4y 取得最小值时,过点P 引圆21412122=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-y x 的切线,则此切线段的长度为___ix _____.10. 圆(x -2)²+(y -1)²=1关于A(1,2)对称的圆的方程为 (x )11. 已知点A(-1,1)和圆C :(x -5)²+(y -7)²=4,一束光线从A 经x 轴反射到圆C 上的最短路程是 (xi ) A .62-2B .8C .4 6D .10《圆与方程》专题8-2 圆综合中下1. 已知圆N 的标准方程为(x -5)²+(y -6)²=a ²(a>0).(1)若点M(6,9)在圆上,求a 的值;(2)已知点P(3,3)和点Q(5,3),线段PQ(不含端点)与圆N 有且只有一个公共点,求a 的取值范围.xii2. 已知直线x +7y =10把圆x ²+y ²=4分成两段弧,这两段弧长之差的绝对值等于(xiii )A.π2B.2π3C .πD .2π3. 已知关于x ,y 的方程C :x ²+y ²-2x -4y +m =0.(1)当m 为何值时,方程C 表示圆;(2)若圆C 与直线L :x +2y -4=0相交于M ,N 两点,且|MN|=45,求m 的值.xiv4. 已知直线ax +by +c =0(abc ≠0)与圆x ²+y ²=1相切,则三条边长分别为|a|,|b|,|c|的三角形是( xv )A .锐角三角形B .直角三角形C .钝角三角形D .不存在5. 点M 在圆心为C 1的方程x ²+y ²+6x -2y +1=0上,点N 在圆心为C 2的方程x ²+y ²+2x +4y +1=0上,求|MN|的最大值.xvi6. 与直线x +y -2=0和圆x ²+y ²-12x -12y +54=0都相切的半径最小的圆的标准方程是____xvii ____.7. 已知A ={(x ,y)|x ²+y ²=1},B ={(x ,y)|(x -5)²+(y -5)²=4},则A ∩B 等于(xviii )A .∅B .{(0,0)}C .{(5,5)}D .{(0,0),(5,5)}8. 在平面直角坐标系中,圆M 的方程为x ²+(y -4)²=4,若直线x +my +2=0上至少存在一点P ,使得以点P 为圆心,2为半径的圆与圆M 有公共点,则实数m 的取值范围是(xix )A .4[,0)3- B .3[,)4+∞ C .3(,]4-∞ D .3[0,)49. 在平面直角坐标系xOy 中,已知圆C :(x -4)²+(y -3)²=4,点A 、B 在圆C 上,且23AB =,则OA OB +的最小值是 xx .10. 圆C 与圆(x -1)²+y ²=1关于直线y =-x 对称,则圆C 的方程为(xxi )A.(x +1)²+y ²=1B.x ²+y ²=1C.x ²+(y +1)²=1D.x ²+(y -1)²=111. 自点A(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x ²+y ²-4x -4y +7=0相切,求光线L 所在直线的方程.xxii《圆与方程》专题8-3 圆综合中下1. 已知直线ax -by +c =0(ax ≠0)与圆x ²+y ²=1相切,则三条边长分别为|a|,|b|,|c|的三角形( xxiii )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在2. 若直线ax +by =1与圆x ²+y ²=1相交,则点P(a ,b)的位置是( xxiv )A .在圆上B .在圆外C .在圆内D .都有可能3. 已知以点A(-1,2)为圆心的圆与直线L 1:x +2y +7=0相切.过点B(-2,0)的动直线L 与圆A 相交于M ,N 两点,Q 是MN 的中点.(1)求圆的方程;(2)当|MN|=219时,求直线L 的方程.(xxv )4.圆x ²+y ²+Dx +Ey +F =0与y 轴切于原点,则D 、E 、F 应满足的条件是_xxvi ____________.5. 在坐标平面内,与点A(1,2)的距离为1,且与点B(3,1)的距离为2的直线共有( xxvii )A.1条B.2条C.3条D.4条6. 两圆x ²+y ²=16与(x -4)²+(y +3)²=r ²(r>0)在交点处的切线互相垂直,则R =(xxviii ) A .5 B .4 C .3 D .227. 若圆(x -a)²+(y -a)²=4上,总存在不同的两点到原点的距离等于1,则实数a 的取值范围是( xxix )A.⎝⎛⎭⎫22,322B.⎝⎛⎭⎫-322,-22C.⎝⎛⎭⎫-322,-22∪⎝⎛⎭⎫22,322 D.⎝⎛⎭⎫-22,228.圆C的方程为x²+y²﹣8x+15=0.若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是(xxx) A.0 B.C. D.﹣19.已知圆C方程为(x-1)²+y²=r²(r>0),若p:1≤r≤3;q:圆C上至多有3个点到直线x=的距离为1,则p是q的(xxxi)+30A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件10.若圆C与圆(x+2)²+(y-1)²=1关于原点对称,则圆C的标准方程是____xxxii____.11.一束光线以A(-1,1)出发,经x轴反射到圆C:(x-2)²+(y-3)²=1上的最短路程为xxxiii。
高中数学必修二人教B版练习:2.3 圆的方程2.3.4 Word版含解析
第二章 2.3 2.3.4A级基础巩固一、选择题1.两圆x2+y2=r2,(x-3)2+(y+4)2=4外切,则正实数r的值为导学号92434866 (C)A.1B.2C.3D.4[解析]两圆心的距离d=5,由题意,得r+2=5,∴r=3.2.已知M是圆C:(x-1)2+y2=1上的点,N是圆C′:(x-4)2+(y-4)2=82上的点,则|MN|的最小值为导学号92434867(D)A.4 B.42-1C.22-2 D.2[解析]∵|CC′|=5<R-r=7,∴圆C内含于圆C′,则|MN|的最小值为R-|CC′|-r=2.3.圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A、B两点,则AB的垂直平分线的方程是导学号92434868(C)A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=0[解析]圆x2+y2-4x+6y=0和圆x2+y2-6x=0的圆心坐标分别为(2,-3)和(3,0),AB的垂直平分线必过两圆圆心,只有选项C正确.4.两圆C1:x2+y2+2x+2y-2=0和C2:x2+y2-4x-2y+1=0的公切线有且仅有导学号92434869(B)A.1条B.2条C.3条D.4条[解析]⊙C1圆心C1(-1,-1),半径r1=2,⊙C2圆心C2(2,1),半径r2=2,|C1C2|=13,0<13<4,∴两圆相交.5.圆(x -2)2+(y +3)2=2上与点(0,-5)距离最大的点的坐标是导学号 92434870( B )A .(1,-2)B .(3,-2)C .(2,-1)D .(2+2,2-3)[解析] 验证法:所求的点应在圆心(2,-3)与点(0,-5)确定的直线x -y -5=0上,故选B .6.动点P 与定点A (-1,0),B (1,0)连线的斜率之积为-1,则P 点的轨迹方程为导学号 92434871( B )A .x 2+y 2=1B .x 2+y 2=1(x ≠±1)C .x 2+y 2=1(x ≠0)D .y =1-x 2[解析] 直接法,设P (x ,y ),由k P A =yx +1,k PB =y x -1及题设条件y x +1·yx -1=-1(x ≠±1)知选B .二、填空题7.圆x 2+y 2+6x -7=0和圆x 2+y 2+6y -27=0的位置关系是__相交__. 导学号 92434872[解析] 圆x 2+y 2+6x -7=0的圆心为O 1(-3,0),半径r 1=4,圆x 2+y 2+6y -27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=(-3-0)2+(0+3)2=32,∴r 2-r 1<|O 1O 2|<r 1+r 2. 故两圆相交.8.两圆x 2+y 2-6x =0和x 2+y 2=4的公共弦所在直线的方程是__x =23导学号 92434873[解析] 两圆的方程x 2+y 2-6x =0和x 2+y 2=4相减,得公共弦所在直线的方程为x =23.三、解答题9.判断下列两圆的位置关系. 导学号 92434874 (1)C 1:x 2+y 2-2x -3=0,C 2:x 2+y 2-4x +2y +3=0; (2)C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0.[解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=(2-1)2+(-1)2= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),r1=2,圆C2的圆心坐标为(-6,-3),r2=8,d=|C1C2|=(2+6)2+(3+3)2=10.∵r1+r2=10,∴d=r1+r2,两圆外切.(4)∵C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),r1=2,圆C2的圆心坐标为(2,3),r2=4,d=|C1C2|=(2+1)2+(3-1)2=13.∵r1+r2=6,r2-r1=2,∴r2-r1<d<r1+r2,两圆相交.10.已知圆C1:x2+y2-2x-4y-13=0,C2:x2+y2-2ax-6y+a2+1=0(其中a>0)相外切,且直线l :mx +y -7=0与C 2相切. 导学号 92434875求:(1)圆C 2的标准方程; (2)m 的值.[解析] (1)由题知C 1:(x -1)2+(y -2)2=18, C 2:(x -a )2+(y -3)2=8.因为C 1与C 2相外切,所以圆心距d =r 1+r 2, 即(a -1)2+(3-2)2=32+22,所以a =8或-6(舍去).所以圆C 2的标准方程为(x -8)2+(y -3)2=8. (2)由(1)知圆心C 2(8,3),因为l 与C 2相切, 所以圆心C 2到直线l 的距离d =r , 即|8m +3-7|m 2+1=22, 所以m =1或17.B 级 素养提升一、选择题1.(2016~2017·太原高一检测)已知半径为1的动圆与圆(x -5)2+(y +7)2=16相外切,则动圆圆心的轨迹方程是导学号 92434876( A )A .(x -5)2+(y +7)2=25B .(x -5)2+(y +7)2=9C .(x -5)2+(y +7)2=15D .(x +5)2+(y -7)2=25 [解析] 设动圆圆心为P (x ,y ),则(x -5)2+(y +7)2=4+1,∴(x -5)2+(y +7)2=25. 故选A .2.过圆x 2+y 2-2x +4y -4=0内的点M (3,0)作一条直线l ,使它被该圆截得的线段最短,则直线l 的方程是导学号 92434877( A )A .x +y -3=0B .x -y -3=0C .x +4y -3=0D .x -4y -3=0[解析] 圆x 2+y 2-2x +4y -4=0的圆心C (1,-2),当CM ⊥l 时,l 截圆所得的弦最短,k CM =-2-01-3=1,∴k l =-1,故所求直线l 的方程为y -0=-(x -3),即x +y -3=0. 3.(2016·山东文)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是导学号 92434878( B )A .内切B .相交C .外切D .相离[解析] 由题知圆M :x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2. 圆M 、圆N 的圆心距|MN |=2,两圆半径之差为1、半径之和为3,故两圆相交.二、填空题4.⊙O :x 2+y 2=1,⊙C :(x -4)2+y 2=4,动圆P 与⊙O 和⊙C 都外切,动圆圆心P 的轨迹方程为__60x 2-4y 2-240x +225=0__. 导学号 92434879[解析] ⊙P 与⊙O 和⊙C 都外切,设⊙P 的圆心P (x ,y ),半径为R , 则|PO |=x 2+y 2=R +1, |PC |=(x -4)2+y 2=R +2,∴(x -4)2+y 2-x 2+y 2=1,移项、平方化简得:60x 2-4y 2-240x +225=0.5.已知集合A ={(x ,y )|y =49-x 2},B ={(x ,y )|y =x +m },且A ∩B ≠∅,则m 的取值范围是导学号 92434880[解析] 由A ∩B ≠∅,即直线y =x +m 与半圆y =49-x 2有交点,如图所示.如图可知,-7≤m ≤7 2.三、解答题6.求经过两圆x 2+y 2-2x -3=0与x 2+y 2-4x +2y +3=0的交点,且圆心在直线2x -y =0上的圆的方程. 导学号 92434881[解析] 解法一:由两圆方程联立求得交点A (1,-2),B (3,0),设圆心C (a ,b ),则由|CA |=|CB |及C 在直线2x -y =0上,求出a =13,b =23.∴所求圆的方程为3x 2+3y 2-2x -4y -21=0.解法二:同上求得A (1,-2)、B (3,0),则圆心在线段AB 的中垂线y =-x +1上,又在y =2x 上,得圆心坐标⎝⎛⎭⎫13,23.∴所求圆的方程为3x 2+3y 2-2x -4y -21=0.C 级 能力拔高1.求⊙C 1:x 2+y 2-2y =0与⊙C 2:x 2+y 2-23x -6=0的公切线方程. 导学号 92434882[解析] ⊙C 1:x 2+(y -1)2=12,圆心C 1(0,1),半径r =1, ⊙C 2:(x -3)2+y 2=32,圆心C 2(3,0),半径R =3, 圆心距|C 1C 2|=2,∴|C 1C 2|=R -r ,故两圆内切,其公切线有且仅有一条过该两圆的公共点(切点),又由内切两圆的连心线过切点且垂直于两圆的公切线知,切点在直线C 1C 2上, ∵C 1C 2:x +3y -3=0,∴切线斜率k = 3.设切线方程为y =3x +b ,由圆心C 1(0,1)到切线距离d =1,得|-1+b |2=1,∴b =3或-1.由C 2(3,0)到切线距离d ′=3,得|3+b |2=3,∴b =3或-9,∴b =3,∴公切线方程为y =3x +3,即3x -y +3=0.2.已知圆A :x 2+y 2+2x +2y -2=0,若圆B 平分圆A 的周长,且圆B 的圆心在直线l :y =2x 上,求满足上述条件的半径最小的圆B 的方程. 导学号 92434883[解析] 解法一:设圆B 的半径为r ,∵圆B 的圆心在直线l :y =2x 上,∴圆B 的圆心可设为(t,2t ),则圆B 的方程是(x -t )2+(y -2t )2=r 2,即x 2+y 2-2tx -4ty +5t 2-r 2=0. ①∵圆A 的方程x 2+y 2+2x +2y -2=0.② ∴②-①,得两圆的公共弦方程(2+2t )x +(2+4t )y -5t 2+r 2-2=0.③又∵圆B 平分圆A 的周长,∴圆A 的圆心(-1,-1)必在公共弦上,于是,将x =-1,y =-1代入方程③,并整理得:r 2=5t 2+6t +6=5⎝⎛⎭⎫t +352+215≥215,所以t =-35时,r min =215. 此时,圆B 的方程是⎝⎛⎭⎫x +352+⎝⎛⎭⎫y +652=215.解法二:如图,设圆A 、圆B 的圆心分别为A 、B . 则A (-1,-1),B 在直线l :y =2x 上,连接AB ,过A 作MN ⊥AB ,且MN 交圆于M 、N 两点. ∴MN 为圆A 的直径.∵圆B 平分圆A ,∴只需圆B 经过M 、N 两点. ∵圆A 的半径是2,设圆B 的半径为r , ∴r =|MB |=|AB |2+|AM |2=|AB |2+4.欲求r 的最小值,只需求|AB |的最小值. ∵A 是定点,B 是l 上的动点, ∴当AB ⊥l ,即MN ∥l 时,|AB |最小. 于是,可求得B ⎝⎛⎭⎫-35,-65,r min =215, 故圆B 的方程是⎝⎛⎭⎫x +352+⎝⎛⎭⎫y +652=215.。
数学人教B必修二刷题首选卷:2.3.2 圆的一般方程 Word含解析含答案
►2.3.2 圆的一般方程1.若圆的方程是x 2+y 2-2x +10y +23=0,则该圆的圆心坐标和半径分别是( )A .(-1,5), 3B .(1,-5), 3C .(-1,5),3D .(1,-5),3 答案 B解析 解法一(化为标准方程):(x -1)2+(y +5)2=3; 解法二(利用一般方程):⎝ ⎛⎭⎪⎫-D2,-E 2为圆心,半径r =D 2+E 2-4F 2,-D2=1,-E2=-5,r =3.2.方程x 2+y 2+ax +2ay +54a 2+a -1=0表示圆,则a 的取值范围是( ) A .a<1 B .a>1C .-2<a<23 D .-2<a<0 答案 A解析 当a 2+4a 2-4⎝ ⎛⎭⎪⎫54a 2+a -1>0时表示圆的方程,故-a +1>0,解得a<1.A .x 2+y 2+8x +6y =0B .x 2+y 2-8x -6y =0C .x 2+y 2+8x -6y =0D .x 2+y 2-8x +6y =0 答案 D解析 设所求的圆的方程为x 2+y 2+Dx +Ey +F =0,因为A(0,0),B(1,1),C(4,2)三点在圆上,则⎩⎪⎨⎪⎧F =0,D +E +F +2=0,4D +2E +F +20=0,解得⎩⎪⎨⎪⎧D =-8,E =6,F =0,于是所求圆的一般方程是x 2+y 2-8x +6y =0.4.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为( )A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =0 答案 D解析 设圆心为(a ,0)(a>0),由题意知圆心到直线3x +4y +4=0的距离d =|3a +4|32+42=3a +45=r =2,解得a =2,所以圆心坐标为(2,0),则圆C 的方程为:(x -2)2+y 2=4,化简得x 2+y 2-4x =0,所以D 正确.轨迹问题5.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,那么点P 的轨迹所包围的图形的面积等于()A.π B.4π C.8π D.9π答案 B解析设点P的坐标为(x,y),则(x+2)2+y2=4[(x-1)2+y2],即(x-2)2+y2=4,所以点P的轨迹是以(2,0)为圆心,2为半径的圆,故面积为π×22=4π.6.已知等腰三角形ABC的顶点为A(3,20),一底角顶点为B(3,5),求另一底角顶点C的轨迹方程.解设另一底角顶点为C(x,y),则由等腰三角形的性质可知|AC|=|AB|,即(x-3)2+(y-20)2=(3-3)2+(5-20)2,整理得(x-3)2+(y-20)2=225.当x=3时,A,B,C三点共线,不符合题意,故舍去.综上可知,另一底角顶点C的轨迹方程为(x-3)2+(y-20)2=225(x≠3).一、选择题1.方程x2+y2-2x+m=0表示一个圆,则m的取值范围是()A.m<1 B.m<2 C.m≤12D.m≤1答案 A解析由圆的一般式方程可知(-2)2-4m>0,∴m<1.2.若圆x2+y2-2x-4y=0的圆心到直线x-y+a=0的距离为22,则a的值为()A .-2或2B .12或32 C .2或0 D .-2或0 答案 C解析 将圆的一般方程化为圆的标准方程为(x -1)2+(y -2)2=5,所以圆心(1,2)到直线的距离d =|1-2+a|2=22,解得a =0或a =2.3.点P(4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 答案 A解析 设圆上任一点为Q(x 0,y 0),PQ 中点为M(x ,y),根据中点坐标公式,得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为Q(x 0,y 0)在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,化为(x -2)2+(y +1)2=1,故选A .4.圆x 2+y 2-2x -1=0关于直线2x -y +3=0对称的圆的方程是( ) A .(x +3)2+(y -2)2=12 B .(x -3)2+(y +2)2=12 C .(x +3)2+(y -2)2=2 D .(x -3)2+(y +2)2=2 答案 C解析 已知圆的圆心为(1,0),半径等于2,圆心关于直线2x -y +3=0对称的点为(-3,2),此点即为对称圆的圆心,两圆的半径相等,故选C .5.与圆x 2+y 2-4x +6y +3=0同心,且过点(1,-1)的圆的方程是( ) A .x 2+y 2-4x +6y -8=0 B .x 2+y 2-4x +6y +8=0 C .x 2+y 2+4x -6y -8=0 D .x 2+y 2+4x -6y +8=0答案 B解析 设所求圆的方程为x 2+y 2-4x +6y +m =0,由该圆过点(1,-1),得m =8,所以所求圆的方程为x 2+y 2-4x +6y +8=0.二、填空题6.已知圆C :x 2+y 2+2x +23y -5=0,则圆心坐标为________;此圆中过原点的弦最短时,该弦所在的直线方程为________.答案 (-1,-3) x +3y =0解析 将圆C 的方程化为标准方程为(x +1)2+(y +3)2=9,故圆心为C(-1,-3).因为k CO =3,所以所求直线的斜率为k =-33,直线的方程为y =-33x ,即x +3y =0.7.已知点P 是圆C :x 2+y 2+4x +ay -5=0上任意一点,P 点关于直线2x +y -1=0的对称点也在圆C 上,则实数a =________.答案 -10解析 由题意知圆心⎝ ⎛⎭⎪⎫-2,-a 2应在直线2x +y -1=0上,代入解得a =-10,符合D 2+E 2-4F>0的条件.8.若圆x 2+y 2-4x +2y +m =0与y 轴交于A ,B 两点,且∠ACB =90°(其中C 为已知圆的圆心),则实数m 等于________.答案 -3解析 设A(0,y 1),B(0,y 2),在圆方程中令x =0得y 2+2y +m =0,y 1,y 2即为该方程的两根,由根与系数的关系及判别式得⎩⎪⎨⎪⎧Δ=4-4m>0,y 1+y 2=-2,y 1·y 2=m ,而∠ACB =90°,知C(2,-1),AC ⊥BC ,即得k AC ·k BC =-1,即y 1+1-2·y 2+1-2=-1,即y 1y 2+(y 1+y 2)+1=-4代入上面的结果得m -2+1=-4,∴m =-3,符合m<1的条件. 三、解答题9.试判断A(1,2),B(0,1),C(7,-6),D(4,3)四点是否在同一个圆上. 解 解法一:线段AB ,BC 的斜率分别是k AB =1,k BC =-1,得k AB ≠k BC ,则A ,B ,C 三点不共线,设过A ,B ,C 三点的圆的方程为x 2+y 2+Dx +Ey +F =0.因为A ,B ,C 三点在圆上,所以⎩⎪⎨⎪⎧D +2E +F +5=0,E +F +1=0,7D -6E +F +85=0,解得⎩⎪⎨⎪⎧D =-8,E =4,F =-5,所以过A ,B ,C 三点的圆的方程为x 2+y 2-8x +4y -5=0,将点D 的坐标(4,3)代入方程,得42+32-8×4+4×3-5=0,即点D 在圆上,故A ,B ,C ,D 四点在同一个圆上.解法二:因为k AB ·k BC =2-11-0×1+60-7=-1,所以AB ⊥BC ,所以AC 是过A ,B ,C 三点的圆的直径,|AC|=(1-7)2+(2+6)2=10,线段AC 的中点M 即为圆心M(4,-2).因为|DM|=(4-4)2+(3+2)2=5=12|AC|,所以点D 在圆M 上,所以A ,B ,C ,D 四点在同一个圆上.10.已知圆x 2+y 2=4上一定点A(2,0),B(1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解(1)设AP中点为M(x,y),由中点坐标公式可知,P点坐标(2x-2,2y).因为点P在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y).在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的方程练习题
1.圆x2+y2-4x+6y=0的圆心坐标是()A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)
2.将圆x2+y2-2x-4y+1=0平分的直线是() A.x+y-1=0 B.x+y+3=0 C.x-y+1=0 D.x-y+3=0
3.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为() A.(x+1)2+(y-1)2=2 B.(x-1)2+(y+1)2=2 C.(x-1)2+(y-1)2=2 D.(x+1)2+(y+1)2=2 4.若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限
5.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是() A.-1<a<1 B.0<a<1 C.a>1或a<-1 D.a=±1
6.若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为 () A.-1 B.1 C.3 D.-3
7.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()A.x2+(y-2)2=1 B.x2+(y+2)2=1 C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1
8.若直线ax+by=1与圆x2+y2=1相交,则P(a,b) () A.在圆上B.在圆外C.在圆内D.以上都有可能
9.已知圆C:x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为() A.8 B.-4 C.6 D.无法确定
10.已知圆的半径为2,圆心在x轴的正半轴上,且与直线3x+4y+4=0相切,则圆的方程是() A.x2+y2-4x=0 B.x2+y2+4x=0C.x2+y2-2x-3=0 D.x2+y2+2x-3=0 11.圆x2+y2-4x+6y=0的圆心坐标是().A.(2,3)B.(-2,3) C.(-2,-3)D.(2,-3)
12.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为().A.x2+(y-2)2=1B.x2+(y+2)2=1 C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1
13.过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是().A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4 14.若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为().A.-1 B.1 C.3 D.-3
15.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为() A. 3 B.2 C. 6 D.23
16.将圆x2+y2-2x-4y+1=0平分的直线是().A.x+y-1=0B.x+y+3=0 C.x-y+1=0D.x-y+3=0
17.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为().A.内切B.相交C.外切D.相离
18.直线x+3y-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于() A.2 5 B.2 3 C. 3 D.1
19.已知圆x2+y2+Dx+Ey=0的圆心在直线x+y=1上,则D与E的关系是() A.D+E=2 B.D+E=1C.D+E=-1 D.D+E=-2
20.圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+1=0的公切线有且仅有() A.1条B.2条C.3条D.4条
21.若方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则实数a的取值范围是______________.
22.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为______________.
23.以A(1,3)和B(3,5)为直径两端点的圆的标准方程为________.
24.过原点的直线与圆x2+y2-2x-4y+4=0相交所得弦的长为2,则该直线的方程为________.
25.若圆x2+y2=1与直线y=kx+2没有公共点,则实数k的取值范围为__________.
26.圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2)的圆的标准方程为.
27.经过P(-2,4)、Q(3,-1)两点,并且在x轴上截得的弦长等于6的圆的方程为.
28.经过点A(5,2),B(3,2),圆心在直线2x-y-3=0上的圆的方程为____________________.
29.经过点P(1,1)和坐标原点,并且圆心在直线2x+3y+1=0上的圆的标准方程为.
30.在△ABC中,A(1,12),B(7,10),C(-9,2),则△ABC的外接圆的标准方程为.
31.若PQ是圆O:x2+y2=9的弦,PQ的中点是M(1,2),则直线PQ的方程是____________.
32.已知圆心在x轴上,半径为5的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是________.33.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为________.
34.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则a=________.35.若圆x2+y2=4与圆x2+y2+2ay-6=0 (a>0)的公共弦长为23,则a=________.
36.一圆经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程.。