第八章生物能学与生物氧化2

合集下载

第八章生物氧化_conv

第八章生物氧化_conv

内容第一节生物氧化概述第二节线粒体及其内部氧化体系第三节氧化磷酸化第四节其他末端氧化体系(自学)第八章生物氧化要求:1、掌握高能磷酸化合物;呼吸链的组成和功能;氧化磷酸化的概念分类,氧化磷酸化的机理(化学渗透学说),氧化磷酸化物质的转运2、了解生物氧化的概念、特点和作用方式;生物氧化的酶类;氧化还原电位和自由能的改变。

3、了解其他末端氧化体系(一)概念物质在体内的氧化分解过程,主要是糖、脂、蛋白质等在体内分解时逐步释放能量、最终生成二氧化碳和水的过程。

生物氧化讨论的内容:1、细胞如何在酶的作用下将有机化合物中的碳变成CO2?2、在酶的作用下,细胞怎样利用分子氧将有机化合物的氢氧化成水?3、当有机物被氧化成二氧化碳和水时,释放的能量怎样贮存与ATP中?一、生物氧化的概念、特点与方式第一节、生物氧化的概述1、生物氧化与体外氧化的相同点生物氧化中物质的氧化方式有加氧、脱氢、失电子,遵循氧化还原反应的一般规律。

物质在体内外氧化时所消耗的氧量、最终产物(CO2,H2O)和释放能量均相同。

(二)生物氧化的特点2、生物氧化与体外氧化的不同点生物氧化是在生物细胞内进行的酶促氧化过程,反应条件温和(水溶液,中性pH和常温)。

氧化进行过程中,必然伴随生物还原反应的发生。

水是许多生物氧化反应的氧供体。

通过加水脱氢作用直接参予了氧化反应。

在生物氧化中,碳的氧化和氢的氧化是非同步进行的。

氧化过程中脱下来的氢质子和电子,通常由各种载体,如NADH等传递到氧并生成水。

生物氧化是一个分步进行的过程。

每一步都由特殊的酶催化,每一步反应的产物都可以分离出来。

这种逐步进行的反应模式有利于在温和的条件下释放能量,提高能量利用率。

生物氧化释放的能量,通过与ATP合成相偶联,转换成生物体能够直接利用的生物能ATP。

(三)、生物氧化中物质氧化的方式氧化反应还原反应脱电子脱氢加氧得电子加氢脱氧氧化剂:还原剂:递电子(递氢)体:接受电子,H (还原反应)供给电子,H (氧化反应)酶/辅酶在电子传递中:供电子(供氢)体+ 受电子(受氢)体Fe2+ Fe3+(供电子体)(受电子体)(还原剂)(氧化剂)二、生物氧化中CO2的生成方式:糖、脂、蛋白质等有机物转变成含羧基的中间化合物,然后在酶催化下脱羧而生成CO2。

医学生物化学(第八章)生物氧化

医学生物化学(第八章)生物氧化

* 铁硫蛋白为单电子传递体 ( Fe2+-e Fe3+)
+e
20
3. 泛醌(ubiquinone , Q) 又称辅酶Q (Coenzyme Q , CoQ)
21
**泛醌的特点 1)是双电子传递体 2)不与蛋白结合的游离存在的电子载体 3)是复合物Ⅰ、Ⅱ、Ⅲ之间的连接者,
是多种底物的电子进入呼吸链的中心点
53
四、 ATP与能量的释放、储存和利用
H2O+CO2 ATP
有机物氧化 产能
生物大分子 主动
合成
运输
肌肉 收缩
遗传信 息传递
O2 ADP+Pi
54
一、 ATP分子中的高能磷酸基的来源 (一) 氧化磷酸化: 主要来源 (二) 底物水平磷酸化 概念: 在反应过程中,由于分子内部能 量重新分配,形成高能磷酸化合物,进一 步将高能磷酸基转移给ADP,形成ATP
67
AH2
2H+
2Cu2+
O2-
H2O
A 2Cu+
1/2O2
属氧化酶主要有:细胞色素氧化酶、 酚氧化酶、 抗坏血酸氧化酶等
68
(二)需氧脱氢酶 (aerobic dehydrogenase)
特点: 使作用物氢活化, 受氢体:除氧以外还有其他试剂 产物之一是H2O2
69
AH
FMN(FAD)
H2O2
氧化磷酸化
4

脂肪
葡萄糖 脂肪酸 + 甘油
乙 酰CoA
蛋白质
氨基酸
TCA cycle
CO2
H++e (进 入 呼 吸 链 )
生成H2O 及释 放 出 能 量
5

生物化学 第8章 生物氧化

生物化学 第8章 生物氧化

天冬 氨酸
①苹果酸脱氢酶
②天冬氨酸氨基转移酶
存在部位:肝脏、心肌组织
两种穿梭系统的比较
α-磷酸甘油穿梭 穿梭 物质 进入线粒 体后转变 成的物质 进入 呼吸链 α-磷酸甘油 磷酸二羟丙酮 苹果酸-天冬氨酸穿梭 苹果酸、 谷氨酸 天冬aa、α-酮戊二酸
FADH2
琥珀酸 氧化呼吸链
NADH+ H+
NADH 氧化呼吸链
琥珀酸由琥珀酸脱氢酶催化脱下的2H经复合 体Ⅱ(FAD,Fe—S)使COQ形成COQH2, 再往下传递与NADH氧化呼吸链相同。(见 上图)
NADH氧化呼吸链和琥珀酸氧化呼 吸链总图
FADH2
NADH
FMN
CoQ
Cyt-b c1
c
aa3
O2 H2O
3、分别进入两条呼吸链的底物
苹果酸 异柠檬酸 β -羟丁酸 谷氨酸 NAD+ FMN 琥珀酸 FAD(Fe-S) CoQ b c1 c aa3 O2
10
血红素b、c1 Fe-S 血红素c 血红素a 血红素a3 Cu2+ O2
Q
Cytc
13
1
Cytc Cyta

细胞色素C氧化酶
13
(一)尼克酰胺核苷酸类(NAD+)
NAD+ 和NADP+的结构
NAD+:R=H NADP+:R=PO32-
尼克酰胺核苷酸的作用原理
H
H H CONH 2
C CONH2 N R
AH2 2H(2H++2e)
吸 链
1 2 O2
H2O
氧化
A
ADP+Pi
能量 ATP 磷酸化

生物化学 第八章 生物氧化(共83张PPT)

生物化学 第八章 生物氧化(共83张PPT)
HO– CHCOOH
苹果酸
△ G0′≈0(变化很小)
(八)苹果酸脱氢生成草酰乙酸
TCA循环
CH2COOH HO CHCOOH
苹果酸
NAD+
NADH+H+
苹果酸脱氢酶
CH2COOH O C COOH
草酰乙酸
△ G0′
完整的三羧酸循环
小结
TCA循环
8步反应(10步) 8种酶催化 反应类型:缩合1、氧化4、底物水平磷酸化1、
S
Fe
S
铁硫簇(Fe4S4) C
功能:参与电子传递
3、细胞色素:以铁卟啉为辅基的结合蛋白
+e
Fe3+
Fe2+
-e
功能:传递电子
第四节 三羧酸循环(TCA循环)
淀粉、糖原
葡萄糖
脂肪
甘油、脂肪酸
蛋白质 氨基酸
TCA循环
乙酰CoA
2H ADP+Pi
CO2
ATP H2O
1/2O2
概念:
乙酰辅酶A的乙酰基部分通过一种循环, 在有氧 条件下被彻底氧化为CO2和H2O,由于该途径的第一个 代谢物是含有三个羧基的柠檬酸, 故称之为三羧酸循环
或柠檬酸循环,简称为TCA 循环。
为了纪念德国科学家Hans Krebs在阐明TCA循 环中所做出的突出贡献,又称之为Krebs循环。
TCA 循环也称为柠檬酸循环和Krebs循环
糖酵解产生的丙酮酸(实际上是乙酰CoA)被降 解成CO2
产生一些ATP
产生更多的NADH和FADH2
NADH和FADH2进入呼吸链,通过氧化磷酸化产 生更多的ATP。
4 KJ/mol),这部分能量可推动ADP与Pi合成ATP。

第八章生物氧化

第八章生物氧化

27
2.黄素蛋白(flavin protein,FP)
黄素蛋白的辅基有两种:FMN和FAD, 其分 子中的异咯嗪环可以进行可逆的加氢和脱氢反应, 故黄素蛋白在呼吸链中属于递氢体,在加氢反应 时接收2个氢原子。
28
H3C H3C
N
CH 2 O H C OH H C OH H C OH
O PO O-
36
37
细胞色素c (Cytochrome C)
➢13kD球形蛋白 ➢唯一能溶于水的细胞色素 ➢流动电子载体,可在线粒 体内膜外侧移动
38
呼吸链中常见的几种蛋白质或酶
名称
特点
主要功能
黄素蛋白
以FAD或FMN为辅基 传递H和电子
铁硫蛋白
辅基为铁硫中心(Fe-S) 传递单个电子
泛醌(CoQ)
脂溶性,能在内膜中自 由扩散
ATP、热能
10ion and storage of ATP
ATP在能量代谢中的核心作用 ATP的生成
底物水平磷酸化 氧化磷酸化 ATP的储存和利用
11
一、 ATP在能量代谢中的核心作用
生物体能量代谢的特点:
1. 生物体不能承受能量大量增加、能量大量 释放的化学过程,所以代谢反应都是依序 进行,能量逐步得失的反应
⊿G′
(kcal/mol) (-14.8) (-12.3) (-11.8) (-10.3) (-7.3) (-7.5) (-6.6) (-6.6) (-5.0)
14
二、 ATP的生成 (一)底物水平磷酸化 定义:代谢物在氧化分解过程中,因脱氢或
脱水而引起分子内能量重新分布,产 生高能键,然后将高能键转移给ADP (或GDP)生成ATP(或GTP)的过 程,称为底物水平磷酸化(substrate phosphorylation)。

第八章 生物氧化

第八章  生物氧化

第八章生物氧化一、内容提要生物氧化是指糖、脂肪、蛋白质等供能物质在生物细胞中彻底氧化分解为CO2和H2O 并逐步释放能量的过程。

CO2的生成方式为有机酸脱羧。

脱羧反应根据其发生在α碳原子及β碳原子,分为α脱羧和β脱羧。

有的脱羧反应涉及氧化,因此脱羧反应又可分为不伴氧化的单纯脱羧和伴氧化的氧化脱羧。

线粒体内膜存在多种具有氧化还原功能的酶和辅酶,排列组成呼吸链。

细胞的线粒体中,代谢物脱下的2H以质子和电子形式通过呼吸链逐步传递给O2生成H2O。

从细胞内膜分离得到四种功能的呼吸链复合体:NADH-泛醌还原酶(复合体Ⅰ)、琥珀酸-泛醌还原酶(复合体Ⅱ)、泛醌-细胞色素C还原酶(复合体Ⅲ)和细胞色素C氧化酶(复合体Ⅳ)。

CoQ、Cytc不包含在这些复合体中。

体内存在两条呼吸链,即NADH氧化呼吸链及琥珀酸氧化呼吸链。

ATP的生成方式有两种:底物水平磷酸化和氧化磷酸化,以氧化磷酸化为主。

氧化磷酸化是呼吸链电子传递过程中产生的能量,使ADP磷酸化生产ATP的过程。

实验结果表明,每2H经NADH氧化呼吸链传递可产生约2.5个ATP,经琥珀酸氧化呼吸链传递可产生约1.5个ATP。

氧化磷酸化受到甲状腺素和ADP/ATP比值的调节,同时易受呼吸链抑制剂、解偶联剂和ATP合酶抑制剂等抑制。

底物水平磷酸化是代谢物分子中能量直接转移给ADP生成ATP的过程。

除ATP外还存在其它高能化合物,但生物体内能量的生成、转化、储存和利用都是以ATP为中心。

在肌肉和脑组织中,磷酸肌酸可作为ATP的能量储存形式。

胞质中物质代谢生成的NADH不能直接进入线粒体,必须通过α-磷酸甘油和苹果酸-天冬氨酸两种穿梭机制进入线粒体进行氧化。

生物氧化过程中有时会生成反应活性氧类,他们具有强氧化性,对细胞有损伤作用。

微粒体中的氧化酶类可以将某些底物分子羟基化,增强其极性,便于从体内排出;过氧化物酶体中的氧化酶类和超氧化物歧化酶对反应活性氧类具有一定的清除作用。

Q第八章生物氧化

Q第八章生物氧化

FAD
CoQ
ADP+Pi Cyt b ATP c1 c
ADP+Pi aa3 ATP O2
ATP
氧化磷酸化偶联部位
三、氧化磷酸化偶联机制---化学渗透假说
在氧化磷酸化中,电子从一个载体到另一个载 体的传递过程中究竟怎样促使ADP磷酸化成 ATP的? 目前最为流行的是化学渗透假说(Peter Mitchell于1961年提出 ):
例: CH3CH2OH
乙醇脱氢酶
CH3CHO
NAD+
NADH+H+
NAD+ 2H+
2e
电子传递链
1\2 O2 O=
H 2O
一、 呼吸链(respiratory chain) 概念:
代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所 催化的连锁反应逐步传递,最终与氧结合生成水,这 一系列的酶和辅酶称为呼吸链(respiratory chain)又称电 子传递链(electron transfer chain)。 组成:脱氢酶、传递体和氧化酶 各组分按一定顺序排列在线粒体内膜
~P 甘油酸 ~P ATP
~P
磷酸肌酸 (磷酸基团储备物)
~P ~P
6-磷酸葡萄糖 3-磷酸甘油醛
0
二、ATP的生成方式(重点) • 生物氧化不仅仅是消耗O2生成CO2和H2O,更重 要的是在这个过程中有能量的释放。 • 释放出的能量在细胞内以ATP的形式贮存,以 供细胞代谢活动。
底物水平磷酸化 呼吸链磷酸化(最主要)
1、α—磷酸甘油穿梭(1NADH :1.5ATP)
•主要存在于脑、骨骼肌
2、苹果酸穿梭(1NADH:2.5ATP)
主要存在于肝、心肌组织中。

第八章生物氧化

第八章生物氧化

2.细胞色素 Cyt 细胞色素(Cyt 细胞色素 Cyt) 细胞色素是属于色蛋白类的结合蛋白, 细胞色素是属于色蛋白类的结合蛋白,其辅基是 含铁卟啉的衍生物(血红素A,血红素B,血红素 血红素A,血红素B,血红素C) 含铁卟啉的衍生物 血红素A,血红素B,血红素C) 细胞色素共有五种,分别为Cyt 细胞色素共有五种,分别为Cyt a, Cyt b, c, Cyt c1, Cyt c, Cyt a3. 细胞色素在呼吸链中是通过铁卟啉中的铁原子氧 化还原作用而往复传递电子, 化还原作用而往复传递电子,细胞色素是单电子 传递体方程式如下 方程式如下: 传递体方程式如下: ( b, c1, c) 2Cyt·Fe 2Cyt Fe3+ + 2e2Cyt·Fe 2Cyt Fe2+
一. 生物氧化的涵义 由前述分解代谢的总方程式: 由前述分解代谢的总方程式:
有机物 + O2 能量( ATP) CO2 + H2O + 能量( ATP)
则有机物的分解是一种有氧参与的氧化反应, 则有机物的分解是一种有氧参与的氧化反应, 且反应发生在生物体内, 且反应发生在生物体内,故称为生物氧化 定义 有机物质在生物体细胞内的 氧化分解作用称为生物氧化 由于此过程消耗氧生成CO2 ,且在细 由于此过程消耗氧生成CO 胞中进行, 胞中进行,因此又称为细胞呼吸
(二)反应历程复杂 例 葡萄糖的氧化反应方程式: 葡萄糖的氧化反应方程式: C6H12O6 +6O2 6CO2 + 6H2O
在体内和体外都是一样的, 在体内和体外都是一样的,但各自的反 应历程不同,体外氧化是一次反应完全的 应历程不同 体外氧化是一次反应完全的 而生物氧化是在活细胞的水溶液中进 生物氧化是在活细胞的水溶液中进 行的,途径迂回曲折,有条不紊, 行的,途径迂回曲折,有条不紊,反 应历程复杂, 应历程复杂,都是酶促反应

生物化学 第八章 生物氧化

生物化学  第八章 生物氧化

第二节 线粒体氧化体系
一、呼吸链(respiratory chain) 二、呼吸链的组成成分和作用 三、呼吸链的蛋白质复合体 四、呼吸链中各组分的排列顺序
Go on~
一、呼吸链(respiratory chain)
• 呼吸链是代谢物上的氢原子被脱氢酶激活 脱落后,经过一系列的传递体,最后传递 给被激活的氧原子,而生成水的全部体系。 • 在真核生物细胞内,它位于线粒体内膜上, 原核生物中,它位于细胞膜上。
功能:将底物上的氢激活
并脱下。
辅酶:NAD+或NADP+
NAD+ 和NADP+的结构
OR
NAD+:R=H NADP+:R=PO32-
尼克酰胺核苷酸的作用原理:
H
H H CONH 2
C CONH2 N R
+
+ H + e + H+
N R
+ H+
H
2H
H
e
H+
NAD(P)+
+2H
-2H
NAD(P)H+H+

Cys Cys
S S
Fe3+
S S
Fe3+S S来自Cys Cys+e-
Cys Cys
S S Fe3+
S S Fe2+
S S
Cys Cys
(4)泛醌(CoQ)
一种脂溶性的醌类化合物,其分子中的苯醌 结构能进行可逆的加氢反应,是氢传递体。
CoQ + 2H
CoQH2
(5)细胞色素(cytochrome,Cyt)

第八章BIOLOGICALOXIDATION

第八章BIOLOGICALOXIDATION
胞液中NADH必须经一定转运机制进入线粒 体,再经呼吸链进行氧化磷酸化。 转运机制主要有 α-磷酸甘油穿梭 (α-glycerophosphate shuttle) 苹果酸-天冬氨酸穿梭 (malate-asparate shuttle)
目录
1. α-磷酸甘油穿梭机制
目录
CH2OH
NADH+H+
提高ATP生成的效率。
中。
物质的氧化方式是脱氢反应,脱下的 产生的CO2、H2O由物质中的 氢在酶、辅酶和电子传递系统参与下经 碳和氢直接与氧结合生成。
一系列传递与水结合生成H2O;二氧化 碳(CO2 )是由于糖、脂类和蛋白质转
变成含羧基的化合物(有机酸)直接 脱羧或氧化脱羧产生。
◆场所:真核细胞在线粒体内膜,原核细胞在质膜上进行。
目录
* 生物氧化与体外氧化之不同点
生物氧化
体外氧化
是在细胞内温和的有水环境中(体温, 在高温、高压、干燥条件下进
pH接近中性),经一系列酶促反应逐步 行,是剧烈的自由基反应,
缓慢进行,能量逐步释放,以ATP形 能量突发式释放。产生的能量
式储存和转运,有利于机体捕获能量, 以光与热的形式散发在环境
高能化合物的共同特点是含有容 易断裂的“活泼键”,水解时释放能 量,常用符号表示。
电子和氢离子一起被接受,还原型CoⅠ将氢移 到NADH(黄素)脱氢酶上。
目录
NAD+和NADP+的结构
R=H: NAD+; R=H2PO3: NADP+
目录
NAD+(NADP+)和NADH(NADPH)相互转变
目录
②黄素蛋白
含FMN或FAD的蛋白质,每个FMN或FAD可 接受2个电子2个质子。呼吸链上具有FMN为辅基 的NADH脱氢酶,以FAD为辅基的琥珀酸脱氢酶。

生物化学第八章 生物氧化

生物化学第八章 生物氧化

1 O2 2
H2O
实测得FADH2呼吸链: P/O~ 2
FADH2
线粒体是真核细胞的一种细胞器,是生物氧化和能 量转换的主要场所。是组织细胞的“发电厂”。 线粒体内,外膜的化学组成有显著的区别; 外膜:磷脂,胆固醇含量高,蛋白质含量低 内外膜间隙:腺苷酸激酶,核苷酸激酶等 内膜:有些脱氢酶,氧化呼吸链有关的酶, ATP 合成酶 基质: 催化糖有氧分解,脂肪酸氧化,氨基酸分 解和蛋白质生物合成的酶
3
二、生物氧化的一般过程
主要解决三个问题:
1.代谢物中C如何在酶催化下生成CO2;
2.细胞如何利用O2将代谢物中的H氧化成H2O;
3.氧化产生的自由能怎样被收集、转换和储存。
4
生物氧化的三个阶段
脂肪 多糖 蛋白质
大分子降解 成基本结构 单位
脂肪酸、甘油
葡萄糖、 其它单糖
氨基酸
乙酰CoA

小分子化合物 分解成共同的 中间产物(如 丙酮酸、乙酰 CoA等)
31
2. 高能化合物
生化反应中,在水解时或基团转移反应中可释
放出大量自由能( >20 千焦 / 摩尔)的化合物称为 高能化合物。
32
高 能 化 合 物 类 型
33
3. ATP的特点
在 pH=7 环 境 中 , ATP 分子中的三个磷 酸基团完全解离成带 4个负电荷的离子形 式 ( ATP4-), 具 有 较大势能,加之水解 产物稳定,因而水解 自由能很大( ΔG°′= -30.5千焦/摩尔)。
34
4.ATP的特殊作用
在机体的能量代谢中, ATP 就好像能量通币, 高能化合物虽有多种,只有 ATP 可为一切生 理机能与生物合成反应提供能量; ATP是细胞内磷酸基团转移的中间载体

生物能学与生物氧化

生物能学与生物氧化
思考
学主 述 第
的要 基内

本容 内:

容介
和绍

高新 能陈

化代 合谢

物的 的概

概念 念和

和研

特究
点方

。法 ,

生 物

能 力















































第 一 节
代 谢 通 论 总 论
一、新陈代谢的概念
新陈代谢(metabolism)是生命最基本的特征之一,泛指生物与周围环境进行 物质交换、能量交换和信息交换的过程。生物一方面不断地从周围环境中摄取能 量和物质,通过一系列生物反应转变成自身组织成分,即所谓同化作用 (assimilation);另一方面,将原有的组成成份经过一系列的生化反应,分 解为简单成分重新利用或排出体外,即所谓异化作用(dissimilation ),通 过上述过程不断地进行自我更新。 特点:特异、有序、高度适应和灵敏调节、代谢途径逐步进行
腺嘌呤—核糖—
O
—OP+—
O
—O +P

O O —+ P

O-
O-
O-
O-

第八章 生物能学

第八章 生物能学

第八章生物能学内容提要生物细胞不断地做功,因此需要能量用于维持高度组织化的结构、细胞组分的合成、运动以及许多其他过程。

生物能学研究生物系统的能量关系和能量的定量转化。

生物能的转化遵循热力学定律。

所有化学反应受到两种力的影响:达到最稳定结合态的趋向(用焓H表示)和达到最大混乱度的趋向(用熵S表示)。

一个化学反应的净推动力是自由能的变化(△G),它代表了这两个因素的净效应:△G=△H-T△S。

细胞需要自由能以完成做功。

标准自由能的变化(△G0')对某一给定反应来说是一个特征性常数,能从一反应的平衡常数计算得到:△G0'=-RT ln K'eq. 实际自由能变化(△G)是可变的,它取决于△G0'和反应物和产物的浓度:△G=△G0'+RT ln([产物]/[反应物])。

当△G是很大负值时,反应趋向正向方向进行;当△G是很大正值时,反应趋向逆向方向进行;当△G是零时,该系统处在平衡状态。

一反应的自由能变化不取决发生反应的途径。

自由能的变化是可以相加的。

由几个连续反应所构成的总反应的自由能变化等于各分步反应的自由能变化之和。

生物氧化反应可根据两个半反应来描述,每个半反应都有它特有的标准还原(电)势(或称标准氧化还原电势),用E0'表示。

当两个电化学半电池(每个含有两个半反应组分)被连接时,电子趋于流向具有较高还原势的半电池。

这种趋势的强度与这两个还原势之间的差值(△E)成比例,它是氧化剂和还原剂浓度的函数。

一个氧化-还原反应的标准自由能变化直接与两个半电池的标准还原势的差成比例:△G0'=-nF△E0'.许多生物氧化反应是脱氢反应,来自底物的两个氢原子(电子和质子)被转移到氢受体上。

细胞内的氧化-还原反应涉及专一性的电子载体。

这些载体也是相应脱氢酶的辅酶。

细胞内的许多脱氢酶的辅酶是NAD+和NADP+,这两种辅酶能接受两个电子和一个质子(即一个氢负离子)。

第八章 生物氧化

第八章  生物氧化

Cyt c
e-
内外膜间隙侧
e-
Q e-

Ⅱ e-

e- 线粒体内膜

NADH+H+ NAD+
延胡索酸 琥珀酸
基质侧
H2O 1/2O2+2H+
四个蛋白复合体:复合体I ~ IV 两个可灵活移动的成分:泛醌(CoQ)和 Cyt c
三、主要的呼吸链
(一)NADH氧化呼吸链
NADH
FMN (Fe-S)
CoQ
解耦联蛋白作用机制(棕色脂肪组织线粒体)
H+
热能
内外膜间隙侧 + +++++
Cyt c
+
++
解耦联 蛋白

-
基质侧
Q
F

--
0
Ⅲ- - -

-
F1
ADP+Pi ATP
H+
寡霉素(oligomycin)
可阻止质子从F0质子通道回流,抑制ATP生成。
内外膜间隙侧
寡霉素
(三)ATP的利用和储存
为糖原、磷脂、蛋白质合成时提供能量的UTP、 CTP、GTP一般不能从物质氧化过程中直接生成, 它们的生成和补充都有赖于ATP。 NMP + ATP <=核苷单磷酸激酶=> NDP + ADP NDP + ATP <=核苷二磷酸激酶=> NTP + ADP
构成呼吸链的递氢体或递电子体通常以复合体的 形式存在于线粒体内膜上。
一、呼吸链的主要组分
Cyt c
内外膜间隙侧

生物化学 生物氧化

生物化学 生物氧化
图8-19
氧化酶
举例:
细胞色素氧化酶 (Cytc氧化酶)
7
Cyt c氧化酶
FMN 560
图8-2
电子传递链
苹果酸
Cyt c氧化酶
8
(二) 不需氧脱氢酶 (anaerobic
dehydrogenase)
不是以氧, 而是以辅酶作为直接受氢/电子体
举例: * 苹果酸脱氢酶, G6PDH (需NAD+/NADP+的脱氢酶类)
* 琥珀酸脱氢酶, NADH脱氢酶
(需FAD/FMN的脱氢酶类)
* 细胞色素体系
(Cytb,Cytc)
9
(辅酶)
(辅酶)
SH2
受氢体1
不需氧 脱氢酶
受氢体2H2
1/2O2
S
受氢体1H2
(辅酶)
受氢体2
(辅酶)
H 2O
辅酶的作用:
* 作为呼吸链中的受氢(电子)体,将电子传递给O2 * 受氢(电子)体:既是受氢(电子)体又是供氢(电子)体
26
⑵ 复合体Ⅱ:
琥珀酸-CoQ还原酶
作用:将琥珀酸中的2H传递给CoQ
组成:黄素蛋白复合物(包括黄素蛋白,Fe-S,Cyt等) ● 黄素蛋白(复合物II中): 琥珀酸脱氢酶 (FAD) 递氢方式: 递H+(×2)、 递电子(×2)
● 铁硫蛋白 (iron-sulfur protein)
27
● 细胞色素b560 (cytochromosb560,cytb560) 一种色素蛋白(以铁卜啉为辅基)
(复合体III中)
CO、CN¯ 、N3¯ 2S : 、H
抑制细胞色素C氧化酶
(复合体IV中)
62
562
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢完全的还原伴随着O2的突然传导; ➢较早的氧化作用更接近呼吸链的末端;
➢使用快速而灵敏的分光光度技术跟随细 胞色素的氧化作用,发现最大吸收峰的波 长不同。
The UV absorption spectra of NAD and NADH. Reduction of the nicotinamide ring produces a new, broad absorption band with a maximum at 340 nm. The production of NADH during an enzymecatalyzed reaction can be conveniently followed by observing the appearance of the absorbance at 340 nm.
Path of electrons from NADH, succinate, fatty acyl–CoA, and glycerol 3-phosphate to ubiquinone. Electrons from NADH pass through a flavoprotein to a series of ironsulfur proteins (in Complex I) and then to Q. Electrons from succinate pass through a flavoprotein and several Fe-S centers (in Complex II) on the way to Q. Glycerol 3phosphate donates electrons to a flavoprotein (glycerol 3phosphate dehydrogenase) on the outer face of the inner mitochondrial membrane, from which they pass to Q. Acyl-CoA dehydrogenase (the first enzyme of oxidation) transfers electrons to electrontransferring flavoprotein (ETF), from which they pass to Q via ETF: ubiquinone oxidoreductase.
❖电子传递链在原核生物存在于质膜上,在真 核细胞存在于线粒体内膜上。
➢呼吸链由4个多蛋白的复合物(I, II,
III, 和 IV;3个是质子泵)和2个移动的电子 载体,泛醌(Q或辅酶Q)以及细胞色素c组 成。
➢呼吸链中蛋白质的辅基包括:
黄素类(FMN,FAD), 血红素(血红素 A,铁原卟啉IX ,血红素 C ), 铁硫聚簇( 2Fe-2S, 4Fe-4S) 和 铜 。
FMNH2 +NAD(P)+
NADH + 5H+N + Q
NADH dehydrogenase (Complex I)
NAD+ + QH2 + 4H+P
辅酶Q是呼吸链 电子传递的枢纽
Ubiquinone (Q) accepts electrons from both NADH and FADH2 in the respiratory chain
Cyt c
复合物 IV Cyt aa3 细胞色素
氧化酶 O2
1.NADH-Q还原酶(NADH脱氢酶、 复合体Ⅰ)
❖NADH-Q还原酶是一个大的蛋白质复合体,FMN 和铁-硫蛋白(Fe-S)是该酶的辅基,由辅基或辅酶 负责传递电子和氢。
传递氢机理:
NAD+ + 2H+ +2e
NADH + H+
NAD(P)H + H++FMN
方法三: 各种特异性抑制剂的作用,在阻止步骤 之前的处于还原态而阻止之后的处于氧化态。
鱼藤酮
Reduced Oxidized Reduced
抗霉素 A Oxidized
Reduced
方法四:分 离并鉴定 每个多蛋 白质复合 物:
链上组分 中特有的 电子供体 和受体可 以确定。
Separation of functional complexes of the respiratory chain. The outer mitochondrial membrane is first removed by treatment with the detergent digitonin(洋地黄皂苷). Fragments of inner membrane are then obtained by osmotic rupture of the mitochondria, and the fragments are gently dissolved in a second detergent. The resulting mixture of inner membrane proteins is resolved by ion-exchange chromatography into different complexes (I through IV) of the respiratory chain, each with its unique protein composition and the enzyme ATP synthase. The isolated Complexes I through IV catalyze transfers between donors (NADH and succinate), intermediate carriers (Q and cytochrome c), and O2, as shown. In vitro, isolated ATP synthase has only ATP-hydrolyzing (ATPase), not ATPsynthesizing, activity.
*Numbers of subunits in the bacterial equivalents in parentheses. + Cytochrome c is not part of an enzyme complex; it moves between Complexes III and IV as a freely soluble protein.
NADH+H+
(三)H2O的生成
代谢物在脱氢酶催化下脱下的氢由相应的氢载体 (NAD+、NADP+、FAD、FMN等)所接受,再通 过一系列递氢体或递电子体传递给氧而生成H2O 。
例:
乙醇脱氢酶
CH3CH2OH
CH3CHO
NAD+
NADH+H+
H+
1\2 O2 O= H2O
第三节 电子传递和氧化呼吸链
主要内容:重点讨论线粒体电 子传递体系的组成、电子传递机理 。
一、生物氧化概述
糖类、脂肪、蛋白质等有机物质在细胞中进行氧化 分解生成CO2和H2O并释放出能量的过程称为生物氧 化(biological oxidation),其实质是需氧细胞在呼 吸代谢过程中所进行的一系列氧化还原反应过程。
(一)生物氧化的特点
在活的细胞中(pH接近中性、体温条件下),有 机物的氧化在一系列酶、辅酶和中间传递体参与下 进行,其途径迂回曲折,有条不紊。 氧化过程中能 量逐步释放,其中一部分由一些高能化合物(如 ATP)截获,再供给机体所需。在此过程中既不会 因氧化过程中能量骤然释放而伤害机体,又能使释 放的能量尽可能得到有效的利用。
ADP-ATP转运载体 ATP合酶(FoF1) 其他载体
➢线粒体基质含有丙酮酸脱氢酶系
柠檬酸循环酶系、脂肪酸-氧化酶系 DNA、核糖体、其他酶 ATP、ADP、Pi、Mg2+ 、 Ca2+ 、 K+ 、很多可溶的中间代谢产物
Cristae (嵴、the infoldings of the inner membrane of mitochondria) is where the respiratory chain is located.
(二)电子传递链(呼吸链)的概念
线粒体基质是呼吸底物氧化的场所,底物在这 里氧化所产生的NADH和FADH2将质子和电子转 移到内膜的载体上,经过一系列氢载体和电子载 体的传递,最后传递给O2生成H2O。这种由载体 组 成 的 电 子 传 递 系 统 称 电 子 传 递 链 ( electron transfer chain),因为其功能和呼吸作用直接相关 ,亦称为呼吸链。
呼吸链上很多电子载体的顺序通 过多种研究得以阐明
• 方法一:测量标准还原电位(E’0)
• 电子倾向于从低还原电位的载体流向还原电 位高的载体(不过在真正的细胞中可能有偏 差)
Electron carriers may have an order of increasing E’0
方法二:氧化作用动力学研究
辅酶Q (CoQ)
Cyt b
Fe-S
Cyt c1
Cyt c
Cyt aa3 O2
两条主要呼吸链
琥珀酸等 FADH2 呼吸链
FAD Fe-S
复合物 II 琥珀酸-辅 酶Q还原酶
NADH
FMN 复合物 I Fe-S NADH
脱氢酶 CoQ
Cyt b Fe-S 复合物 III NADH
细胞色素 呼吸链 Cyt c1 还原酶
二、电子传递链(呼吸链)
(一)线粒体结构特点 (二)电子传递链(呼吸链)的概念 (三)呼吸链的组成 (四)机体内两条主要的呼吸链及其能量变化 (五)电子传递抑制剂
(一)线粒体结构特点
相关文档
最新文档