《数字电子技术基础》课后习题及参考答案

合集下载

数字电子技术基础课后习题及参考答案

数字电子技术基础课后习题及参考答案

《数字电子技术基础》课后习题及参考答案(总90页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1);(2);(3);(4)解:(1)=177(2)=170(3)=241(4)=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)21(2)(9C)16=()2(3)(B1)16=(1011 0001)2(4)(AF)16=()2【题1-5】将下列二进制数转换为十进制数。

(1);(2);(3);(4)解:(1)()2=(2)()2=(3)()2=【题1-6】将下列十进制数转换为二进制数。

(1);(2);(3);(4)解:(1)=()2(2)=()2(3)=()2(4)=()2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

(1)01101100;(2);(3);(4)解:(1)01101100是正数,所以其反码、补码与原码相同,为01101100(2)反码为,补码为(3)反码为,补码为(4)反码为,补码为【题1-8】将下列自然二进制码转换成格雷码。

(全)数字电子技术基础课后答案夏路易

(全)数字电子技术基础课后答案夏路易

(全)数字电子技术基础课后答案夏路易《数字电子技术基础教程》习题与参考答案(2010.1)1第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF2解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

(全)数字电子技术基础课后答案解析夏路易

(全)数字电子技术基础课后答案解析夏路易

《数字电子技术基础教程》习题与参考答案(2010.1)第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101 解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

《数字电子技术基础》课后习题及参考答案

《数字电子技术基础》课后习题及参考答案

第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1);(2);(3);(4)解:(1)=177(2)=170(3)=241(4)=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=()2(3)(B1)16=(1011 0001)2(4)(AF)16=()2【题1-5】将下列二进制数转换为十进制数。

(1);(2);(3);(4)解:(1)()2=(2)()2=(3)()2=【题1-6】将下列十进制数转换为二进制数。

(1);(2);(3);(4)解:(1)=()2(2)=()2(3)=()2(4)=()2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

(1)01101100;(2);(3);(4)解:(1)01101100是正数,所以其反码、补码与原码相同,为01101100(2)反码为,补码为(3)反码为,补码为(4)反码为,补码为【题1-8】将下列自然二进制码转换成格雷码。

000;001;010;011;100;101;110;111解:格雷码:000、001、011、010、110、111、101、100【题1-9】将下列十进制数转换成BCD码。

数字电子技术基础(第4版)_课后习题答案

数字电子技术基础(第4版)_课后习题答案

第一章1.1二进制到十六进制、十进制(1)(10010111)2=(97)16=(151)10 (2)(1101101)2=(6D)16=(109)10(3)(0.01011111)2=(0.5F)16=(0.37109375)10 (4)(11.001)2=(3.2)16=(3.125)10 1.2十进制到二进制、十六进制(1)(17)10=(10001)2=(11)16 (2)(127)10=(1111111)2=(7F)161621016210)3.19()1010 1(11001.101(25.7)(4))A D7030.6()0101 0000 0111 1101 0110 (0.0110(0.39)(3) B ====1.8用公式化简逻辑函数(1)Y=A+B (3)Y=1)=+(解:1A A 1)2(=+++=+++=+++=C B A C C B A C B Y CB AC B A Y ADC C B AD C B C B AD DC A ABD CD B A Y =++=++=++=)()(Y )4(解:(5)Y=0 (7)Y=A+CDE ABCD E C ABCD CE AD B BC CE AD B BC Y CE AD B BC B A D C AC Y =+=⋅+=+⋅=++++=)()()()()()6(解:CB AC B C B A A C B A C B A C B A C B C B A A C B A C B A C B A Y C B A C B A C B A Y +=++=+++=++++=++++⋅+=++++++=)())(())()(())()((8解:)(D A D A C B Y ++=)9(E BD E D BF E A AD AC Y ++++=)10(1.9 (a) C B C B A Y += (b) C B A ABC Y +=(c) ACD D C A D C A B A Y D AC B A Y +++=+=21,(d) C B A ABC C B A C B A Y BC AC AB Y +++=++=21, 1.10 求下列函数的反函数并化简为最简与或式(1)C B C A Y += (2)DC A Y++=CB C B AC C B AC B A BC AC C A B A BC AC C A B A Y BCAC C A B A Y +=++++=⋅+++=+++=+++=))((]))([())(())(()3(解: (4)C B A Y ++=DC ABD C B D C A D C B D A C A C D C B C A D A Y CD C B C A D A Y =++=+++=++++=+++=)())(())()(()5(解: (6)0=Y1.11 将函数化简为最小项之和的形式CB AC B A ABC BC A C B A C B A C B A ABC BC A CB A AC B B A BC A C B AC BC A Y CB AC BC A Y +++=++++=++++=++=++=)()()1(解:D C B A CD B A D C B A ABCD BCD A D C B A Y +++++=)(2)13()()()(3CD B A BCD A D BC A D C B A D C B A ABCD D ABC D C AB D C AB CD B A D C B A D C B A D C B A CD AB B A B A B A ACD D AC D C A D C A CD A D C A D C A D C A B BCD D BC D C B D C B CD B D C B D C B D C B A Y CDB A Y ++++++++++++=+++++++++++++++++++=++=解:)((4)CD B A D ABC D BC A D C AB D C AB CD B A ABCD BCD A Y +++++++= (5)MN L N M L N LM N M L N M L N M L Y +++++=1.12 将下列各函数式化为最大项之积的形式(1)))()((C B A C B A C B A Y ++++++= (2)))()((C B A C B A C B A Y ++++++= (3)76430M M M M M Y ⋅⋅⋅⋅= (4)13129640M M M M M M Y ⋅⋅⋅⋅⋅= (5)530M M M Y ⋅⋅=1.13 用卡诺图化简法将下列函数化为最简与或形式:(1)D A Y +=(3)1=Y (2)D C BC C A B A Y +++= (4)B AC B A Y ++=B A DC Y ++=AC B A Y +=(5)D C B Y ++= (6)C B AC B A Y ++=(7)C Y = (9)D C A C B D A D B Y +++=(8))14,11,10,9,8,6,4,3,2,1,0(),,,(m D C B A Y ∑= (10)),,(),,(741m m m C B A Y ∑=D A D C B Y ++=ABC C B A C B A Y ++=1.14化简下列逻辑函数(1)D C B A Y +++= (2)D C A D C Y += (3)C A D AB Y ++= (4)D B C B Y += (5)E D C A D A E BD CE E D B A Y +++++=1.20将下列函数化为最简与或式(1)AD D C B D C A Y ++= (2)AC D A B Y ++= (3)C B A Y ++= (4)D B A Y +=第二章2.1解:Vv v V V v T I mA I mA Vv T V v a o B o B BS B o B 10T 3.0~0(2.017.0230103.0207.101.57.05I V 5v 1021.5201.510V 0v )(i i ≈≈∴<=×≈=−≈∴−=×+−=截止,负值,悬空时,都行)饱和-=时,=当截止时,=当都行)=饱和,,-=悬空时,都行)饱和。

数字电子技术基础课后习题及参考答案

数字电子技术基础课后习题及参考答案

第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

夏路易---数字电子技术基础课后答案

夏路易---数字电子技术基础课后答案

《数字电子技术---基础教程》习题与参考答案第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

《数字电子技术基础》课后习题及参考答案#(精选.)

《数字电子技术基础》课后习题及参考答案#(精选.)

第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

《数字电子技术基础》课后习题及参考答案

《数字电子技术基础》课后习题及参考答案

【题

(2) ;
(3) ;

【题

(2) =
(3) =
【题

(2) =
(3) =
第3章习题与参考答案
【题3-1】试画出74HC与74LS系列逻辑门电路的输出逻辑电平与输入逻辑电平示意图。
解:74HC系列(5V):74LS系列:
【题3-2】某逻辑门的输入低电平信号范围为3~12V,输入高电平范围为3~12V。若该逻辑门的输入电压值为5V、8V、+5V、+8V,对于正逻辑约定,这些电压值各代表什么逻辑值?若是采用负逻辑约定,这些电压值各代表什么逻辑值?
【题
解:
【题
解:若使上拉高电平与74LS输出高电平VOHmin相同,则有
Rmax=(Vcc-VOHmin)/(15×IIHmax)=(5-2.7)/(15×20μA)=7.66kΩ
选为7.5kΩ。
对于所选7.5kΩ电阻,有上拉高电平=5-(7.5kΩ×(15×20μA))=2.75V,因此有噪声容限为0.75V。



【题
000;001;010;011;100;101;110;111
解:格雷码:000、001、011、010、110、111、101、100
【题
(1)
解:(1)25=(0010 0101)BCD



【题
解:4位数格雷码;
0000、0001、0011、0010、0110、0111、0101、0100、1100、1101、1111、1010、1011、1001、1000、
1
1
1
1
0
1
1
1
1

(全)数字电子技术基础课后答案夏路易

(全)数字电子技术基础课后答案夏路易

《数字电子技术基础教程》习题与参考答案(2010.1)第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

数字电子技术基础(数电)课后习题解答

数字电子技术基础(数电)课后习题解答
题1.1 完成下面的数值转换: (1)将二进制数转换成等效的十进制数、八进制数、十六进制数。 ①(0011101)2 ②(11011.110)2 ③(110110111)2
解: ① (0011101)2 =1×24+ 1×23+ 1×22+ 1×20=(29)10
(0011101)2 =(0 011 101)2= (35)8 (0011101)2 =(0001 1101)2= (1D)16 同理:② (27.75)10,(33.6)8,(1B.C)16; ③ (439)10,(667)8,(1B7)16;
(1) Y=AB+BC+A'C'
=B+A'C'
BC
A
00 01 11 10
0
1
11
1
11
(2) Y=AB'C'+A'B'+A'D+C+BD =B’+C+D (或用圈0法)
CD 00 01 11 10
AB
00 1
1
1
1
01
1
1
1
11
1
1
1
10 1
1
1
1
(3) Y=A' (B'C+B(CD'+D))+ABC'D
1
010
1
011
1
100
1
101
1
110
1
111
0
题1.9 在举重比赛中,有甲、乙、丙三名裁判,其中甲为主裁判,乙、丙为副裁判,当主裁判 和一名以上(包括一名)副裁判认为运动员上举合格后,才可发出合格信号。列出该函数的 真值表。

(全)数字电子技术基础课后答案夏路易

(全)数字电子技术基础课后答案夏路易

(全)数字电子技术基础课后答案夏路易《数字电子技术基础教程》习题与参考答案(2010.1)1第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF21【题1-8】将下列自然二进制码转换成格雷码。

000;001;010;011;100;101;110;111解:格雷码:000、001、011、010、110、111、101、100【题1-9】将下列十进制数转换成BCD码。

(1)2 5;(2)34;(3)78;(4)152解:(1)25=(0010 0101)BCD(2)34=(0011 0100)BCD(3)78=(0111 1000)BCD(4)152=(0001 0101 0010)BCD【题1-10】试写出3位和4位二进制数的格雷码。

解:4位数格雷码;0000、0001、0011、0010、0110、0111、0101、0100、1100、1101、1111、1010、1011、1001、1000、1第2章习题与参考答案【题2-1】试画出图题2-1(a)所示电路在输入图题2-1(b)波形时的输出端B、C的波形。

(全)数字电子技术基础课后答案夏路易

(全)数字电子技术基础课后答案夏路易

《数字电子技术基础教程》习题与参考答案(2010.1)第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101 解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

数字电子技术基础课后答案夏路易

数字电子技术基础课后答案夏路易
【题
解:去耦电容的作用是消除芯片动作对电源电流的影响,或是消除电源电压波动对芯片的影响,因此越接近芯片的电源引脚越好。
【题
解:一个是输出瞬变时间,门电路的输出从一个状态向另外一个状态转换需要的过渡时间。
另外一个是传输延迟时间,是输入信号变化到输出信号变化之间需要的时间。
【题
解:忽略开漏输出门的管压降,上拉电阻R≈(5-1.8)/5=0.64kΩ
(4)A=1,B=0或C=1
【题

解:(1)A=0,B=0
(2)A=0,B=1或C=1
(3)A=1,B=0,C=1
(4)A=0,B=1或C=0
【题

解:(1)
A
B
C
Y
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
1
1
0
1
1
1
1
0
0
1
1
1
1
(2)
当A取1时,输出Y为1,其他情况Y=0。
【题


解:(1)左边 右边
【题








解:(1)电源电压范围4.75~5.25V
(2)输出高电平范围:当|IOH|≤0.4mA时:2.7V~5V
(3)输出低电平范围:当IOL≤8mA时:0~0.5V



5.5V
5.5V时:ICCL=4.4mA/每封装
(7)典型传播延迟时间;
tPHL=10ns;
tPLH=9ns;

(全)数字电子技术基础课后答案

(全)数字电子技术基础课后答案
(4)A=1,B=0或C=1
【题

解:(1)A=0,B=0
(2)A=0,B=1或C=1
(3)A=1,B=0,C=1
(4)A=0,B=1或C=0
【题

解:(1)
A
B
C
Y
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
1
1
0
1
1
1
1
0
0
1
1
1
1
(2)
当A取1时,输出Y为1,其他情况Y=0。
【题


解:(1)左边 右边
【题
(1)
解:(1)25=(0010 0101)BCD



【题
解:4位数格雷码;
0000、0001、0011、0010、0110、0111、0101、0100、1100、1101、1111、1010、1011、1001、1000、

【题
图题2-1
解:
【题
图题2-2
解:
【题
图题2-3
解:
【题
图题2-4
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
1
1
0
0
0
1
1

【数字电子技术基础】课后习题集与参考答案解析

【数字电子技术基础】课后习题集与参考答案解析

第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

(1)01101100;(2)11001100;(3)11101110;(4)11110001解:(1)01101100是正数,所以其反码、补码与原码相同,为01101100 (2)11001100反码为10110011,补码为10110100(3)11101110反码为10010001,补码为10010010(4)11110001反码为10001110,补码为10001111【题1-8】将下列自然二进制码转换成格雷码。

000;001;010;011;100;101;110;111解:格雷码:000、001、011、010、110、111、101、100【题1-9】将下列十进制数转换成BCD码。

(1)25;(2)34;(3)78;(4)152解:(1)25=(0010 0101)BCD(2)34=(0011 0100)BCD(3)78=(0111 1000)BCD(4)152=(0001 0101 0010)BCD【题1-10】试写出3位和4位二进制数的格雷码。

解:4位数格雷码;0000、0001、0011、0010、0110、0111、0101、0100、1100、1101、1111、1010、1011、1001、1000、第2章习题与参考答案【题2-1】试画出图题2-1(a)所示电路在输入图题2-1(b)波形时的输出端B、C的波形。

图题2-1解:A.....B、C【题2-2】试画出图题2-2(a)所示电路在输入图题2-2(b)波形时的输出端X、Y的波形。

图题2-2解:..AB..XY...【题2-3】试画出图题2-3(a)所示电路在输入图题2-3(b)波形时的输出端X、Y的波形。

图题2-3解:.AB.YX....【题2-4】 试画出图题2-4(a )所示电路在输入图题2-4(b )波形时的输出端X 、Y 的波形。

图题2-4解:.A B.YX .....【题2-5】 试设计一逻辑电路,其信号A 可以控制信号B ,使输出Y 根据需要为Y =B 或Y =B 。

解:可采用异或门实现,B A B A Y +=,逻辑电路如下:=1ABY....【题2-6】 某温度与压力检测装置在压力信号A 或温度信号B 中有一个出现高电平时,输出低电平的报警信号,试用门电路实现该检测装置。

解:压力信号、温度信号与报警信号之间的关系为:B A Y +=,有如下逻辑图。

1≥AB.Y...【题2-7】 某印刷裁纸机,只有操作工人的左右手同时按下开关A 与B 时,才能进行裁纸操作,试用逻辑门实现该控制。

解:开关A 、B 与裁纸操作之间的关系为B A Y +=,逻辑图如下:&AB.Y...【题2-8】 某生产设备上有水压信号A 与重量信号B ,当两信号同时为低电平时,检测电路输出高电平信号报警,试用逻辑门实现该报警装置。

解:水压信号A 、重量信号B 与报警信号之间的关系为B A Y +=,逻辑图如下:1≥AB.Y...【题2-9】 如果如下乘积项的值为1,试写出该乘积项中每个逻辑变量的取值。

(1)AB ;(2)ABC ;(3)ABC ;(4)ABC解:(1)A=1,B=1(2)A=1、B=1、C=0 (3)A=0,B=1,C=0 (4)A=1,B=0或C=1【题2-10】 如果如下和项的值为0,试写出该和项中每个逻辑变量的取值。

(1)A B +;(2)A B C ++;(3)A B C ++;(4)A B C ++解:(1)A=0,B=0(2)A=0,B=1或C=1 (3)A=1,B=0,C=1 (4)A=0,B=1或C=0【题2-11】 对于如下逻辑函数式中变量的所有取值,写出对应Y 的值。

(1)Y ABC AB =+;(2)()()Y A B A B =++解:(1(2)()()Y A B A B =++A =当A 取1时,输出Y 为1,其他情况Y=0。

【题2-12】 试证明如下逻辑函数等式。

(1)AB ABC AB +=;(2)ABC C AC AB AC ++=+(); (3)()()A BC BC AC A BC AC ++=+解:(1)左边==+=+=B A C B A C B A B A )(1右边 (2)左边==+=++AC AB AC C C AB )(右边 (3)左边=右边)()(=+=++AC BC A AC BC BC A【题2-13】 对如下逻辑函数式实行摩根定理变换。

(1)1Y A B =+;(2)2Y AB =;(3)3Y AB C D =+();(4)4Y A BC CD BC =+++()解:(1)B A B A Y =+=1 (2)B A B A Y +==2(3)D C B A D C B A D C BA Y ++=++=+=)()(3(4)BC B A BC C B A BC D C B A C B A BC D C C B A BC CD C B A Y +=+=++=++=+++=)(()(4【题2-14】 试用代数法化简如下逻辑函数式。

(1)1()Y A A B =+;(2)2Y BC BC =+;(3)3()Y A A AB =+解:(1)1()Y A A B =+=A(2)2Y BC BC =+=C (3)3()Y A A AB =+=A【题2-15】 试用代数法将如下逻辑函数式化简成最简与或式。

(1)1 Y AB ABC ABCD ABC DE =+++;(2)2Y AB ABC A =++; (3)3Y AB A B C AB =+++() 解:(1)1 Y AB ABC ABCD ABC DE =+++B A = (2)2Y AB ABC A =++=C A +(3)3Y AB A B C AB =+++()=C AB + 【题2-16】 试用代数法将如下逻辑函数式化简成最简与或式。

(1)1()Y A BC A B C A B CD =++++;(2)2Y ABCD ABCD ABCD =++;(3)3(())Y ABC AB C BC AC =++解:(1)1()Y A BC A B C A B CD =++++=B A(2)2Y ABCD ABCD ABCD =++=CD AB + (3)3(())Y ABC AB C BC AC =++=ABC【题2-17】 将如下逻辑函数式转换成最小项之和形式。

(1)1()()Y A B C B =++;(2)2()Y A BC C =+;(3)3Y AB CD AB CD =++(); (4)4()Y AB B C BD =+解:(1)1()()Y A B C B =++=∑),,,(7651m (2)2()Y A BC C =+=∑),(75m(3)3Y AB CD AB CD =++()=∑),,,,,,(151413121173m (4)4()Y AB B C BD =+∑),(1513m【题2-18】 试用卡诺图化简如下逻辑函数式。

(1)1Y ABC ABC B =++; (2)2Y A ABC AB =++; (3)3Y AC AB AB =++; (4)4 Y AB C AC C =++解:(1)1Y ABC ABC B =++BC A 0100011110.111...111...B A Y +=1(2)2Y A ABC AB =++;BC A 0100011110111..1...A Y =2(3)3Y AC AB AB =++BC A 0100011110111..1...A Y =3(4)4 Y AB C AC C =++BC A 0100011110.111...111...C A Y +=4【题2-19】 试用卡诺图化简如下逻辑函数式。

解:(1)(,,,)(0,1,2,8,9,10,12,13,14,15)F A B C D m =∑;AB CD 0001111000011110..111111111.1....C BD B AB Y ++=1(2)(,,,)(2,4,5,6,7,11,12,14,15)F A B C D m =∑;.AB CD0001111000011110.11111111.1..ACD D C A D B B A Y +++=2(3)(,,,)(0,2,4,6,7,8,12,14,15)F A B C D m =∑AB CD 0001111000011110..11111111.1..BC D A D C Y ++=3【题2-20】 试用卡诺图化简如下具有任意项的逻辑函数式。

解:(1)(,,,)(3,5,8,9,10,12)(0,1,2,13)F A B C D m d =+∑∑;AB CD 0001111000011110..X XX11111.1X..D C C A D B B A Y +++=1(2)(,,,)(4,5,6,13,14,15)(8,9,10,12)F A B C D m d =+∑∑;AB CD 0001111000011110..111X 11X1X.X...AB D B C B Y ++=2(3)(,,,)(0,2,9,11,13)(4,8,10,15)F A B C D m d =+∑∑AB CD 0001111000011110..1111X XX1.X...D B AD Y +=3【题2-21】 将如下逻辑函数式画成真值表。

相关文档
最新文档