大物(2)期末复习

合集下载

大学物理期末备考要点

大学物理期末备考要点

大学物理期末备考要点一、力学1. 牛顿运动定律a. 第一定律:惯性定律b. 第二定律:力的大小与加速度的关系c. 第三定律:作用力与反作用力2. 动能与动量a. 动能定理b. 质点系的动量定理c. 动量守恒定律3. 万有引力与重力a. 万有引力定律b. 重力加速度c. 重力势能d. 行星运动4. 平衡与静力学a. 平衡条件b. 杠杆原理c. 原则与应用5. 力学中的摩擦a. 特点与原因b. 静摩擦力与滑动摩擦力c. 摩擦力的计算与应用二、热学1. 热与温度a. 热量的传递方式b. 温标与温度转换2. 热力学第一定律a. 能量守恒定律b. 内能变化与热交换c. 等容、等压、等温过程3. 热力学第二定律a. 热机与卡诺定理b. 极限温度与热机效率c. 热力学不可逆性4. 热力学第三定律a. 绝对零度的定义与测量b. 熵及其性质c. 热力学函数及其应用5. 气体状态方程a. 状态方程的表示与转换b. 理想气体状态方程c. 一般气体状态方程三、电磁学1. 静电学a. 电荷与电场b. 电场强度c. 高斯定理d. 电势与电势能e. 电容与电容器2. 电流与电阻a. 电流的定义与测量b. 电阻与电阻器c. 欧姆定律d. 串、并联电路3. 磁场与电磁感应a. 磁场的产生与性质b. 电流产生的磁场c. 安培环路定理d. 磁感应强度e. 法拉第电磁感应定理4. 电磁波与光学a. 电磁波的性质与传播b. 光的传播与反射c. 光的折射与色散d. 几何光学5. 电磁波谱a. 可见光与光学仪器b. 红外线与微波c. 紫外线与X射线d. γ射线与辐射治疗四、量子物理1. 微观粒子的波粒二象性a. 波粒二象性的实验证据b. 普朗克常数与光子能量c. 德布罗意假设与波长2. 波函数与薛定谔方程a. 波函数的本质与物理意义b. 波函数的概率解释与测量c. 薛定谔方程及其应用3. 稳定原子结构a. 氢原子能级与能量b. 多电子原子的壳层结构c. 系统的波函数与能量4. 分子结构与化学键a. 原子、分子与化学键的关系b. 电子云模型与共价键c. 键的强度与化学键理论5. 核物理与放射性a. 原子核的组成与性质b. 放射性衰变与半衰期c. 核反应与核能的利用五、相对论与宇宙学1. 狭义相对论a. 狭义相对论的基本原理b. 时间与空间的相对性c. 相对论动力学与质能关系2. 广义相对论a. 弯曲时空与引力b. 爱因斯坦场方程c. 引力透镜效应与黑洞3. 宇宙的结构与演化a. 宇宙学原理与宇宙模型b. 宇宙的膨胀与暗能量c. 大爆炸理论与宇宙学红移以上为大学物理期末备考的要点,涵盖了力学、热学、电磁学、量子物理、相对论与宇宙学的基本知识。

大物2知识点总结

大物2知识点总结

大物2知识点总结大气物理学是研究地球大气现象及其规律的一门科学。

这门学科涉及到大气的结构、运动、热量传递、湿气平衡以及各种气象现象的生成原理和发展规律。

在大气物理学的学习中,我们需要掌握许多基础知识和理论,接下来将对大气物理学的一些重要知识点进行总结。

1. 大气结构大气结构是大气科学的基础。

大气分为对流层、平流层、中间层、热层和外大气层。

对流层是最接近地球表面的一层大气,海拔范围为0-15公里;平流层的海拔范围为15-50公里;中间层为50-80公里;热层为80-500公里;外大气层则超过500公里。

对流层与平流层的隔离位置在对流层顶上的对流层顶温的转折上升压力高度,称为对流层顶,又称对流层隔离位置。

平流层对流层细微隔离位置在平流层上的直接上升压力高度,称为平流层顶。

2. 气压和气压分布气压是大气分布状态的一项基本参数。

气压是指大气对于单位面积的压力。

气压是一个变量参数,一般情况下以帕斯卡(Pa)为单位。

在大气静力学中,我们还需要了解气压的垂直分布规律,即随着海拔的升高,气压是如何变化的。

气压的垂直分布规律不仅与地球的地理位置有关,还与气温、密度、重力加速度等因素有关。

3. 温度和温度分布温度是大气中分子活动强烈程度的一种度量,是表示气体热量的物理量。

在大气物理学中,我们需要了解大气温度的测量单位和方法,以及大气的温度分布规律。

温度分布与地表的纬度、季节、海拔高度等因素密切相关,不同的地区和时间,大气的温度分布规律是不同的。

4. 湿度和湿度分布湿度是大气中水分子含量的一个量度,也是一个重要的气象要素。

了解大气湿度的测量方法,以及大气湿度的分布规律对于预测气象变化、计算气象条件等方面具有重要意义。

湿度在大气中的分布是随着时间和地域的变化而变化的,需要认真研究。

5. 大气稳定性大气稳定性是指大气在受到扰动后能够恢复到平衡状态的能力。

了解大气稳定性对于气象灾害预警、飞行气象等有重要意义。

在大气物理学的学习中,我们需要掌握大气稳定性的测定方法,以及大气稳定性与地表气温、湿度等因素之间的关系。

上海大学《大学物理》大物2 2019B卷

上海大学《大学物理》大物2 2019B卷

2019年上海大学社区学院大学物理(2)期中考试试卷(B 卷) 姓名 学号 班级 分数一、选择题 (每题3分,共27分)1. (3分)质量为m 、电荷为e -的电子以圆轨道绕静止的氢原子核旋转,其轨道半径为r ,旋转频率为ν,动能为E ,则下列几种关系中正确的是[ ](A) re E 0π8ε= (B) 2320432E me εν=(C) re E 02π4ε= (D) 320232E me εν=.2. (3分) 半径为R 的均匀带电球面,若其电荷面密度为σ,则在距离球面R 处的电场强度大小为: (A)0εσ. (B) 02εσ. (C) 04εσ. (D) 08εσ. [ ] 3. (3分)有一带电球体,其电荷体密度为kr ρ=,k 为一正的常量,r 为球内任一点到球心的距离. 如图所示,球体外A 、B 两点的电势分别为A V 、B V ,则[ ]4. (3分) 静止电荷将在其周围激发 [ ](A) 无旋电场 (B) 有旋电场 (C)) 稳恒磁场 (D) 非保守力场.5. (3分)电荷均匀分布在半径为R 的半圆环上,电荷线密度为λ。

现将点电荷q 由无限远处移至半圆环圆心,则这一过程中电场力做功为[ ](A) 02q λε (B) 02q λε- (C) 04q λε (D) 04q λε-.6. (3分)一电偶极子的电偶极矩p 的方向与一均匀电场E 的方向相平行,当将它转到与电场方向反平行时,外力所做的功为[ ](A) pE (B) 2pE (C) 3pE (D) 4pE .7. (3分)如图所示,A 、B 和C 为三个半径分别为a 、b 和c 的同轴导体长圆柱面,A 和C 接地,B 带电量为Q ,若忽略边缘效应,则B 的内表面的电量Q '和外表面的电量Q ''的比值为[ ] (A) 0 (B) 1 (C) lnln b ca b(D) ln ln c b b a .8. (3分)下列材料中,哪一种是由有极分子构成的?[ ] (A) 氢气 (B) 二氧化碳 (C) 一氧化碳 (D) 甲烷.9. (3分)在半径为R 、带电量为q 的金属球壳内充有相对介电常数为1r ε的电介质,在球壳外充满相对介电常数为2r ε的电介质,设无穷远处为电势零点,则球壳内的一点A (到球心距离为r )处的电势为[ ](A)014πr q rεε (B)0211()4πr qr Rεε- (C)014πr q R εε (D) 024πr q R εε.二、 填空题(共23分)10.(2+2=4分)—半径为R 的带电球体,其电荷体密度为2kr ρ=(其中,k 为正常量,0 < r < R ),则球外任一点的场强大小 ,电势大小 。

大物实验期末考题填空和大题

大物实验期末考题填空和大题

1.用米尺测得某物体的长度为4.32cm,现用精度为的量具测量,则测量结果的有效数字有(5)位;若用精度为的量具测量,则应有(6)位有效数字。

2.用扭摆法测量物体的转动惯量先要测出一个转动惯量已知物体摆动的(摆动周期),再算出本仪器弹簧的(扭转常数)。

若要测量其它形状物体的转动惯量,只要将待测物体放在本仪器项目的各种夹具上,测定其(摆动周期)。

3.三线摆法测物体的转动惯量具有较好的物理思想,其优点有(设备简单,直观,测试方便)。

4.光栅由许多的(等间距)狭逢构成的,两透光狭逢间距称为(光栅常数),当入射光垂直入射到光栅上时,衍射角k ,衍射级次K 满足的关系式是(λϕK b a K =+sin )(),用此式可通过实验测定(光的波长)。

5.在光栅衍射实验中,光栅方程是(λϕK b a K =+sin )(),其中a+b 是(光栅常数)φK是(衍射角),K是(条纹级数).6.一个物理量必须由(测量数据)和(单位)组成,二者缺一不可。

物理量的测量一般可分为(直接测量)和(间接测量)。

测量结果的三要素是(测量数据)、(测量单位)和(测量不确定度)。

绝对误差是(测量量)与(标准值)之差;相对误差是(测量量)与(标准值)之比的百分数。

7.对某一量进行足够多次的测量,则会发现其随机误差服从一定的统计规律分布。

其特点是:(单峰性)、(对称性)、(有界性)、(抵偿性)8.不确定度是指(对测量误差的一种评定方式)不确定度一般包含多个分量,按其数值的评定方法可规并为两类(A 类不确定度和B 类不确定度)9.扭摆实验中当转动角度很小时,物体作的是(简谐运动)。

本实验的计时器默认计时个数是(10)周期,状态指示应调节在(计时)位置10.测量结果包含有三要素,即(测量工具)、(测量数值)和(测量单位)11.牛顿环实验中测量两条纹直径的平方差是为了消除(半径)和(弦长)测量的不确定性,在测量过程中保持单方向性是为了避免(空回误差)。

大物期末公式总结

大物期末公式总结

大物期末公式总结一、力学部分公式总结1. 速度与位移的关系:v = Δs/Δt其中,v为速度,Δs为位移,Δt为时间。

2. 加速度与速度的关系:a = Δv/Δt其中,a为加速度,Δv为速度变化量,Δt为时间。

3. 速度与加速度的关系:v = u + at其中,v为最终速度,u为初始速度,a为加速度,t为时间。

4. 位移与加速度的关系:Δs = ut + 1/2at²其中,Δs为位移,u为初始速度,a为加速度,t为时间。

5. 牛顿第一定律:F = ma其中,F为物体所受合力,m为物体质量,a为物体加速度。

6. 牛顿第二定律:F = dp/dt其中,F为物体所受合力,p为物体动量,t为时间。

7. 牛顿第三定律:F12 = -F21其中,F12为物体1对物体2的作用力,F21为物体2对物体1的作用力。

8. 力对应的功:W = F·s其中,W为力对应的功,F为力,s为位移。

9. 动能定理:W = ΔK其中,W为力对应的功,ΔK为动能的变化量。

10. 动能与动量的关系:K = 1/2mv²其中,K为动能,m为物体质量,v为物体速度。

11. 惯性力公式:F = -m•a'其中,F为惯性力,m为物体质量,a'为非惯性系中观察到的加速度。

12. 圆周运动的向心力公式:F = mv²/r其中,F为向心力,m为运动物体质量,v为物体速度,r为运动半径。

13. 圆周运动的角速度公式:ω = v/r其中,ω为角速度,v为物体速度,r为运动半径。

14. 动量守恒定律:Σmv1 = Σmv2其中,Σmv1为系统在初始时刻的总动量,Σmv2为系统在末时刻的总动量。

15. 能量守恒定律:ΣE1 = ΣE2其中,ΣE1为系统在初始时刻的总能量,ΣE2为系统在末时刻的总能量。

二、热学部分公式总结1. 温度变化公式:ΔT = Q/(mc)其中,ΔT为温度变化,Q为热量,m为物体质量,c为物体比热容。

《大学物理》2017(I1)期末复习题(1)

《大学物理》2017(I1)期末复习题(1)

2017级大物期末复习题(I1)一、单项选择题1、质量为0.5m kg =的质点,在oxy 坐标平面内运动,其运动方程为25,0.5x t y t ==,从t=2s 到t=4s 这段时间内,外力对质点做的功为(B )A 、 1.5JB 、 3JC 、 4.5JD 、 -1.5J2、对功的概念有以下几种说法:①作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

②保守力作正功时,系统内相应的势能增加。

③质点运动经一闭合路径,保守力对质点作的功为零。

在上述说法中:(D )(A)①、②是正确的。

(B)②、③是正确的。

(C)只有②是正确的。

(D)只有③是正确的。

3、如图3所示1/4圆弧轨道(质量为M )与水平面光滑接触,一物体(质量为m )自轨道顶端滑下,M 与m 间有摩擦,则 (D)A 、M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒。

B 、M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒。

C 、M 与m 组成的系统动量不守恒,水平方向动量不守恒,M 、m 与地组成的系统机械能守恒。

D 、M 与m 组成的系统动量不守恒,水平方向动量守恒,M 、m 与地组成的系统机械能不守恒。

4、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场中,另一半位于磁场之外,如图所示。

磁场的方向垂直指向纸内。

预使圆环中产生逆时针方向的感应电流,应使(C )A 、线环向右平移B 、线环向上平移C 、线环向左平移D 、磁场强度 减弱5、若尺寸相同的铁环与铜环所包围的面积中穿过相同变化率的磁通量,则在两环中( A )(A) 感应电动势相同,感应电流不同.(B) 感应电动势不同,感应电流也不同.(C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流也相同.6、线圈与一通有恒定电流的直导线在同一平面内,下列说法正确的是(A)A 、当线圈远离导线运动时,线圈中有感应电动势B 、当线圈上下平行运动时,线圈中有感应电流C 、直导线中电流强度越大,线圈中的感应电流也越大D 、以上说法都不对7. 真空带电导体球面与一均匀带电介质球体,它们的半径和所带的电量都相等,设带电球面的静电能为W1,球体的静电能为W2,则( B )A 、W1>W 2;B 、W 1<W 2;C 、 W 1=W2D 、无法比较8. 关于高斯定理的理解有下面几种说法,其中正确的是:(D )(A)如果高斯面上E 处处为零,则该面内必无电荷(B)如果高斯面内无电荷,则高斯面上E 处处为零(C)如果高斯面上E 处处不为零,则高斯面内必有电荷(D)如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零9.两个同心的均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面半径为R 2、带有电荷Q 2,则在内球面里面、距离球心为r (r<R 1<R 2)处的P 点的场强大小E为:(D ) (A)20214r Q Q πε+ (B)2202210144R Q R Q πεπε+ (C)2014r Q πε (D)0 10.如图所示,螺绕环截面为矩形,通有电流I ,导线总匝数为N ,内外半径分别为R1和R2,则当 R2 >r >R1时,磁场的分布规律为(B )(A)0 (B) 02πNI r N S μ∙ (C) 0πNIr μ (D) 111. 4、一根很长的电缆线由两个同轴的圆柱面导体组成,若这两个圆柱面的半径分别为R 1和R 2(R 1<R 2),通有等值反向电流,那么下列哪幅图正确反映了电流产生的磁感应强度随径向距离的变化关系?( C )A12、一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为( D )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π213. 带电导体达到静电平衡时,其正确结论是(D )A 、导体表面上曲率半径小处电荷密度小B 、表面曲率较小处电势较高C 、导体内部任一点电势都为零D 、导体内任一点与其表面上任一点的电势差等于零14. 在电场中的导体内部的 ( C )12R 112R 12R(A )电场和电势均为零; (B )电场不为零,电势均为零;(C )电势和表面电势相等; (D )电势低于表面电势。

中国石油大学华东2012年期末大物2-1试卷

中国石油大学华东2012年期末大物2-1试卷

中国⽯油⼤学华东2012年期末⼤物2-1试卷2011—2012学年第⼆学期《⼤学物理(2-1)》期末试卷⼀、选择题1、(本题3分)两辆⼩车A 、B ,可在光滑平直轨道上运动.第⼀次实验,B 静⽌,A 以0.5 m/s 的速率向右与B 碰撞,其结果A 以 0.1 m/s 的速率弹回,B 以0.3 m/s 的速率向右运动;第⼆次实验,B 仍静⽌,A 装上1 kg 的物体后仍以 0.5 m/s 的速率与B 碰撞,结果A 静⽌,B 以0.5 m/s 的速率向右运动,如图.则A 和B 的质量分别为(A) m A = 2 kg m B = 1 kg . (B) m A = 1 kg m B = 2 kg .(C) m A = 3 kg m B = 4 kg . (D) m A = 4 kg m B = 3 kg .[]2、(本题3分)有⼀劲度系数为k 的轻弹簧,原长为l 0,将它吊在天花板上.当它下端挂⼀托盘平衡时,其长度变为l 1.然后在托盘中放⼀重物,弹簧长度变为l 2,则由l 1伸长⾄l 2的过程中,弹性⼒所作的功为(A)-21d l l x kx . (B)21d l l x kx .(C)---0201d l l l l x kx . (D)--0201d l l l l x kx .[]3、(本题3分)⼀圆盘绕过盘⼼且与盘⾯垂直的光滑固定轴O 以⾓速度ω按图⽰⽅向转动.若如图所⽰的情况那样,将两个⼤⼩相等⽅向相反但不在同⼀条直线的⼒F 沿盘⾯同时作⽤到圆盘上,则圆盘的⾓速度ω(A) 必然增⼤. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定.[]4、(本题3分)在狭义相对论中,下列说法中哪些是正确的?(1) ⼀切运动物体相对于观察者的速度都不能⼤于真空中的光速.(2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态⽽改变的.(3) 在⼀惯性系中发⽣于同⼀时刻,不同地点的两个事件在其他⼀切惯性系中也是同时发⽣的.(4)惯性系中的观察者观察⼀个与他作匀速相对运动的时钟时,会看到这时钟⽐与他相对静⽌的相同的时钟⾛得慢些.(A) (1),(3),(4).(B) (1),(2),(4).(C) (1),(2),(3).(D) (2),(3),(4).[]5、(本题3分)某核电站年发电量为100亿度,它等于36×1015 J的能量,如果这是由核材料的全部静⽌能转化产⽣的,则需要消耗的核材料的质量为(A) 0.4 kg.(B) 0.8 kg.(C) (1/12)×107 kg.(D) 12×107 kg.[]6、(本题3分)已知⼀定量的某种理想⽓体,在温度为T1与T2时的分⼦最概然速率分别为v p1和v p2,分⼦速率分布函数的最⼤值分别为f(v p1)和f(v p2).若T1>T2,则(A) v p1 > v p2, f (v p1)> f (v p2).(B) v p1 > v p2, f (v p1)< f (v p2).(C) v p1 < v p2, f (v p1)> f (v p2).(D) v p1 < v p2, f (v p1)< f (v p2).[]7、(本题3分)关于热功转换和热量传递过程,有下⾯⼀些叙述:(1) 功可以完全变为热量,⽽热量不能完全变为功;(2) ⼀切热机的效率都只能够⼩于1;(3) 热量不能从低温物体向⾼温物体传递;(4) 热量从⾼温物体向低温物体传递是不可逆的.以上这些叙述(A)只有(2)、(4)正确.(B)只有(2)、(3) 、(4)正确.(C)只有(1)、(3) 、(4)正确.(D)全部正确.[]8、(本题3分)频率为 100 Hz ,传播速度为300 m/s 的平⾯简谐波,波线上距离⼩于波长的两点振动的相位差为π31,则此两点相距(A ) 2.86 m .(B) 2.19 m .(C ) 0.5 m .(D) 0.25 m .[] 9、(本题3分)如图,S 1、S 2是两个相⼲光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过⼀块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另⼀介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )() (111222t n r t n r +-+.(B) ])1([])1([211222t n r t n r -+--+. (C) )()(111222t n r t n r ---. (D) 1122t n t n -.[]10、(本题3分)⼀束平⾏单⾊光垂直⼊射在光栅上,当光栅常数(a+b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9等级次的主极⼤均不出现?(A ) a+b =2a .(B ) a+b =3a .(C ) a+b =4a .(D ) a+b =6a .[]⼆、简单计算与问答题(共6⼩题,每⼩题5分,共30分) 1、(本题5分)⼀质点作直线运动,其x- t 曲线如图所⽰,质点的运动可分为OA 、AB 、BC 和CD 四个区间,AB 为平⾏于t 轴的直线,CD 为直线,试问每⼀区间速度、加速度分别是正值、负值,还是零?PS 1S 2 r 1n 1n 2t 2r 2t 1x2、(本题5分)⼀车轮可绕通过轮⼼O 且与轮⾯垂直的⽔平光滑固定轴,在竖直⾯内转动,轮的质量为M ,可以认为均匀分布在半径为R 的圆周上,绕O 轴的转动惯量J =MR 2.车轮原来静⽌,⼀质量为m 的⼦弹,以速度v 0沿与⽔平⽅向成α⾓度射中轮⼼O 正上⽅的轮缘A 处,并留在A 处,如图所⽰.设⼦弹与轮撞击时间极短.问:(1) 以车轮、⼦弹为研究系统,撞击前后系统的动量是否守恒?为什么?动能是否守恒?为什么?⾓动量是否守恒?为什么? (2) ⼦弹和轮开始⼀起运动时,轮的⾓速度是多少?3、(本题5分)经典⼒学的相对性原理与狭义相对论的相对性原理有何不同?4、(本题5分)试从分⼦动理论的观点解释:为什么当⽓体的温度升⾼时,只要适当地增⼤容器的容积就可以使⽓体的压强保持不变?5、(本题5分)⼀质点作简谐振动,其振动⽅程为x = 0.24)3121cos(π+πt (m),试⽤旋转⽮量法求出质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间?t .6、(本题5分)让⼊射的平⾯偏振光依次通过偏振⽚P 1和P 2.P 1和P 2的偏振化⽅向与原⼊射光光⽮量振动⽅向的夹⾓分别是α和β.欲使最后透射光振动⽅向与原⼊射光振动⽅向互相垂直,并且透射光有最⼤的光强,问α和β各应满⾜什么条件?三.计算题(共4⼩题,每⼩题10分,共40分) 1、(本题10分)两个质量分别为m 1和m 2的⽊块A 和B ,⽤⼀个质量忽略不计、劲度系数为k 的弹簧联接起来,放置在光滑⽔平⾯上,使A 紧靠墙壁,如图所⽰.⽤⼒推⽊块B 使弹簧压缩x 0,然后释放.已知m 1 = m ,m 2 = 3m ,求: (1) 释放后,A 、B 两⽊块速度相等时的瞬时速度的⼤⼩;(2) 释放后,弹簧的最⼤伸长量.2、(本题10分)1 mol 双原⼦分⼦理想⽓体从状态A (p 1,V 1)沿p -V 图所⽰直线变化到状态B (p 2,V 2),试求:(1)⽓体的内能增量.(2)⽓体对外界所作的功.(3)⽓体吸收的热量.(4)此过程的摩尔热容.3、(本题10分)已知⼀平⾯简谐波的表达式为 )24(cos x t A y +π= (SI). (1) 求该波的波长λ,频率ν和波速u 的值;(2) 写出t = 4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;(3) 求t = 4.2 s 时离坐标原点最近的那个波峰通过坐标原点的时刻t .4、(本题10分)(1)单缝夫琅⽲费衍射实验中,垂直⼊射的光含有两种波长,λ 1 = 400 nm ,λ2 = 760 nm (1 nm =10 -9 m).已知单缝宽度a = 1.0×10 -2 cm ,透镜焦距f = 50 cm .求两种光第⼀级衍射明纹中⼼之间的距离.(2)⽤光栅常数-3101.0?=d cm 的光栅替换单缝,其他条件和上⼀问相同,求两种光第⼀级主极⼤之间的距离.p 1p p 12答案⼀、1、B 2、C 3、A 4、B 5、A 6、B 7、A 8、C 9、B 10、B ⼆、1、1、答: OA 区间:v > 0 , a < 0 2分AB 区间:v = 0 , a = 0 1分 BC 区间:v > 0 , a > 0 1分 CD 区间:v > 0 , a = 0 1分2、答:(1) 系统动量不守恒.因为在轴O 处受到外⼒作⽤,合外⼒不为零. 1分动能不守恒.因为是完全⾮弹性碰撞(能量损失转化为形变势能和热运动能).1分⾓动量守恒.因为合外⼒矩为零. 1分 (2) 由⾓动量守恒 m v 0R cos α = (M + m )R 2ω∴()Rm M m +=αωcos 0v 2分3、答:经典的⼒学相对性原理是指对不同的惯性系,⽜顿定律和其它⼒学定律的形式都是相同的. 2分狭义相对论的相对性原理指出:在⼀切惯性系中,所有物理定律的形式都是相同的,即指出相对性原理不仅适⽤于⼒学现象,⽽且适⽤于⼀切物理现象。

大物(2)期末复习

大物(2)期末复习

练习一 静电场中的导体三、计算题1. 已知某静电场在xy 平面内的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向.解:. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3 y 轴上点(x =0) E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32.如图,一导体球壳A (内外半径分别为R 2,R 3),同心地罩在一接地导体球B (半径为R 1)上,今给A 球带负电-Q , 求B 球所带电荷Q B 及的A 球的电势U A .静电场中的导体答案解: 2. B 球接地,有 U B =U ∞=0, U A =U BAU A =(-Q+Q B )/(4πε0R 3)U BA =[Q B /(4πε0)](1/R 2-1/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3- R 1R 3)U A =[Q/(4πε0R 3)][-1+R 1R 2/(R 1R 2+R 2R 3-R 1R 3)]=-Q (R 2-R 1)/[4πε0(R 1R 2+R 2R 3-R 1R 3)]练习二 静电场中的电介质三、计算题1. 如图6.6所示,面积均为S 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1×10-9C, Q 2×10-9C.忽略边缘效应,求:(1) 两板共四个外表的面电荷密度 σ1, σ2, σ3, σ4;(2) 两板间的电势差V =U A -U B .解:1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四-Q图5.6Q2σ 2 σ 4个外表的电荷产生的,应为零,有E A =σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0E A =σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0而 S (σ1+σ2)=Q 1 S (σ3+σ4)=Q 2 有 σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0 σ1+σ2=Q 1/S σ3+σ4=Q 2/S解得 σ1=σ4=(Q 1+Q 2)/(2S ⨯10-8C/m 2σ2=-σ3=(Q 1-Q 2)/(2S ⨯10-8C/m 2两板间的场强 E=σ2/ε0=(Q 1-Q 2)/(2ε0S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题1. 如图所示,置于静电场中的一个导体,在静电平衡后,导体外表出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.解:1.ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅AB l E d 2=⎰⋅ACBl E d ≠0与静电场的环路定理=⋅⎰l E d l0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习三 电容 静电场的能量三、计算题1. 半径为R 1的导体球带电Q ,球外一层半径为R 2相对电容率为εr 的同心均匀介质球壳,其余全部空间为空气.如图所示.求:(1)离球心距离为r 1(r 1<R 1), r 2(R 1<r 1<R 2), r 3(r 1>R 2)处的D 和E ;(2)离球心r 1, r 2, r 3,处的U ;(3)介质球壳内外外表的极化电荷. 解:1. (1)因此电荷与介质均为球对称,电场也球对称,过场点作与金属球同心的球形高斯面,有iSq0d ∑=⋅⎰S D4πr 2D=∑q 0i当r=5cm <R 1, ∑q 0i =0得 D 1=0, E 1=0 当r=15cm(R 1<r <R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 2=Q /(4πr 2)×10-8C/m 2E 2=Q /(4πε0εr r 2)=7.99×103N/C 当r=25cm(r >R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 3=Q /(4πr 2)=1.27×10-8C/m 2 E 3=Q /(4πε0r 2)=1.44×104N/C D 和E 的方向沿径向. (2) 当r=5cm <R 1时 U 1=⎰∞⋅rl E d⎰=R rr E d 1⎰++dR Rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr R )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=540V当r=15cm <R 1时U 2=⎰∞⋅rl E d ⎰+=dR rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr r )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=480V当r=25cm <R 1时U 3=⎰∞⋅rl E d ⎰∞=rr E d 3=Q/(4πε0r )=360V(3)在介质的内外外表存在极化电荷,P e =ε0χE=ε0(εr -1)E σ'= P e ·nr=R 处, 介质外表法线指向球心σ'=P e ·n =P e cos π=-ε0(εr -1)Eq '=σ'S =-ε0(εr -1) [Q /(4πε0εr R 2)]4πR 2=-(εr -1)Q /εr =-0.8×10-8Cr=R+d 处, 介质外表法线向外σ'=P e ·n =P e cos0=ε0(εr -1)Eq '=σ'S =ε0(εr -1)[Q /(4πε0εr (R+d )2]4π(R +d )2=(εr -1)Q /εr =0.8×10-8C2.两个相距很远可看作孤立的导体球,半径均为10cm ,分别充电至200V 和400V ,然后用一根细导线连接两球,使之到达等电势. 计算变为等势体的过程中,静电力所作的功. 解;2.球形电容器 C =4πε0RQ 1=C 1V 1= 4πε0RV 1 Q 2=C 2V 2= 4πε0RV 2W 0=C 1V 12/2+C 2V 22/2=2πε0R (V 12+V 22)两导体相连后 C =C 1+C 2=8πε0RQ=Q 1+Q 2= C 1V 1+C 2V 2=4πε0R (V 1+V 2)W=Q 2/(2C )= [4πε0R (V 1+V 2)]2/(16πε0R )=πε0R (V 1+V 2)2静电力作功 A=W 0-W=2πε0R (V 12+V 22)-πε0R (V 1+V 2)2=πε0R (V 1-V 2)2=1.11×10-7J练习六 磁感应强度 毕奥—萨伐尔定律三、计算题1. 如图所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO '上方距导体薄片为a 的磁感强度.解:1.取宽为d x 的无限长电流元d I=I d x/(2a ) d B=μ0d I/(2πr )=μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r ) =μ0I d x/(4πr 2)= μ0I d x/[4π(x 2+a 2)] d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==aax x a x xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )a a-=μ0I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[μ0I/(8πa )]ln(x 2+a 2)aa-=02. 如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.解:2. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ =(2IN/π)d θd B=μ0d Ir 2/[2(r 2+x 2)3/2]r=R sin θ x=R cos θd B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B=μ0NI/(4R )xr练习七 毕奥—萨伐尔定律(续) 磁场的高斯定理三、计算题S 1和S 2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比.解: 1.取窄条面元d S =b d r , 面元上磁场的大小为 B =μ0I /(2πr ),Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ Φ2=⎰-=aabI bdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 半径为R 的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为ω,求轴线上距盘心x 处的磁感强度的大小和旋转圆盘的磁矩.解;2. 在圆盘上取细圆环电荷元d Q =σ2πr d r , [σ=Q /(πR 2) ],等效电流元为d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为 d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=RRx rx r r x r rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++Rx rx r x r23222222d 4σωμ-()()⎰++Rx rx r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RRx r x x r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2)求磁距. 电流元的磁矩d P m =d IS=σωr d r πr 2=πσωr 2d r⎰=Rm dr r P 03πσω=πσωR 4/4=ωQR 2/4练习八 安培环路定律三、计算题1. 如图所示,一根半径为R 的无限长载流直导体,其中电流I 沿轴向流过,并均匀分布在横截面上. 现在导体上有一半径为R '的圆柱形空腔,其轴与直导体的轴平行,两轴相距为 d . 试求空腔中任意一点的磁感强度.解:1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R '的无限长圆柱电流I 2组成. I 1=J πR 2 I 2=-J πR '2 J =I/[π (R 2-R '2)] 它们在空腔内产生的磁感强度分别为 B 1=μ0r 1J/2 B 2=μ0r 2J/2B x =B 2sin θ2-B 1sin θ1=(μ0J/2)(r 2sin θ2-r 1sin θ1)=0 B y =B 2cos θ2+B 1cos θ1=(μ0J/2)(r 2cos θ2+r 1cos θ1)=(μ0J/2)d 所以 B = B y = μ0dI/[2π(R 2-R '2)] 方向沿y 轴正向2. 设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反. 求: (1) 载流平面之间的磁感强度; (2) 两面之外空间的磁感强度.解;2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为 B 1=μ0J /2在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为 B 2=μ0J /2 在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有 B=B 1+B 2=μ0J (2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有 B=B 1-B 2=0练习九 安培力图I 1 I 2①②1. 一边长a =10cm 的正方形铜导线线圈(铜导线横截面积S mm 2, 铜的密度ρg/cm 3), 放在均匀外磁场中. B 竖直向上, 且B = ⨯10-3T, 线圈中电流为I =10A . 线圈在重力场中 求:(1) 今使线圈平面保持竖直, 则线圈所受的磁力矩为多少. (2) 假假设线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.解:1. (1) P m =IS=Ia 2 方向垂直线圈平面.线圈平面保持竖直,即P m 与B M m =P m ×BM m =P m B sin(π/2)=Ia 2B=×10-4m ⋅N(2) 平衡即磁力矩与重力矩等值反向 M m =P m B sin(π/2-θ)=Ia 2B cos θ M G = M G 1 + M G 2 + M G 3= mg (a/2)sin θ+ mga sin θ+ mg (a/2)sin θ =2(ρSa )ga sin θ=2ρSa 2g sin θ Ia 2B cos θ=2ρSa 2g sin θ tan θ=IB/(2ρSg )= θ=15︒2. 如图13.5所示,半径为R 的半圆线圈ACD 通有电流I 2, 置于电流为I 1的无限长直线电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流I 1的磁力. 解:2.在圆环上取微元 I 2d l = I 2R d θ 该处磁场为B =μ0I 1/(2πR cos θ)I 2d l 与B 垂直,有d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ) d F x =d F cos θ=μ0I 1I 2d θ /(2π) d F y =d F sin θ=μ0I 1I 2sin θd θ /(2πcos θ)⎰-=22102πππθμd I I F x =μ0I 1I 2/2因对称F y =0.故 F =μ0I 1I 2/2 方向向右.练习十 洛仑兹力I图13.5I1. 如图所示,有一无限大平面导体薄板,自下而上均匀通有电流,已知其面电流密度为i(即单位宽度上通有的电流强度)(1) 试求板外空间任一点磁感强度的大小和方向.(2) 有一质量为m,带正电量为q的粒子,以速度v沿平板法线方向向外运动. 假设不计粒子重力.求:(A) 带电粒子最初至少在距板什么位置处才不与大平板碰撞.(B) 需经多长时间,才能回到初始位置..解:1. (1)求磁场.用安培环路定律得B=μ0i/2在面电流右边B的方向指向纸面向里,在面电流左边B的方向沿纸面向外.(2) F=q v×B=m a qvB=ma n=mv2/R带电粒子不与平板相撞的条件是粒子运行的圆形轨迹不与平板相交,即带电粒子最初位置与平板的距离应大于轨道半径.R=mv/qB= 2mv/(μ0iq)t=T=2πR/v= 4πm/(μ0iq)2. 一带电为Q质量为m的粒子在均匀磁场中由静止开始下落,磁场的方向(z轴方向)与重力方向(y轴方向)垂直,求粒子下落距离为y时的速率.并讲清求解方法的理论依据.解:2. 洛伦兹力Q v×B垂直于v,不作功,不改变v的大小;重力作功.依能量守恒有mv2/2=mgy,得v=(2gy)1/2.练习十一磁场中的介质三、计算题1. 一厚度为b的无限大平板中通有一个方向的电流,平板内各点的电导率为γ,电场强度为E,方向如图15.6所示,平板的相对磁导率为μr1,平板两侧充满相对磁导率为μr2的各向同性的均匀磁介质,试求板内外任意点的磁感应强度.解:1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l lH d=ΣI02∆LH=ΣI0(1)介质内,0<x<b/2. ΣI0=2x∆lJ=2x∆lγE,有H=xγE B=μ0μr1H=μ0μr1xγE(2)介质外,|x|>b/2. ΣI0=b∆lJ=b∆lγE,有H=bγE/2B=μ0μr2H=μ0μr2bγE/2i v•图2. 一根同轴电缆线由半径为R 1的长导线和套在它外面的半径为R 2的同轴薄导体圆筒组成,中间充满磁化率为χm 的各向同性均匀非铁磁绝缘介质,如图所示. 传导电流沿导线向上流去, 由圆筒向下流回,电流在截面上均匀分布. 求介质内外外表的磁化电流的大小及方向.解:2. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅ll H d =ΣI 0在介质中(R 1<r <R 2),ΣI 0=I ,有 2πrH = I H = I /(2πr ) 介质内的磁化强度 M =χm H =χm I /(2πr )介质内外表的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1⋅2πR 1=χm I (与I 同向) 介质外外表的磁化电流J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2⋅2πR 2=χm I (与I 反向)练习十二 电磁感应定律 动生电动势三、计算题1. 如图所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如下图. 求此线框中产生的感应电动势的大小和方向.解: 1.d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a b Il ln 20πμ图图图εi =-d Φm /d t=()dtdIa b a ba b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =-×10-8V负号表示逆时针2. 一很长的长方形的U 形导轨,与水平面成θ 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的最大速度v m .解:2. (1) 导线ab 的动生电动势为εi = ⎰l v×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/RF 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B e l B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习十三 感生电动势 自感三、计算题1. 在半径为R 的圆柱形空间中存在着均匀磁场B ,B R 的金属棒MN 放在磁场外且与圆柱形均匀磁场相切,切点为金属棒的中点,金属棒与磁场BB 随时间的变化率d B /d t 为大于零的常量.求:棒上感应电动势的大小,并指出哪一个端点的电势高. (分别用对感生电场的积分εi =⎰l E i ·d l 和法拉第电磁感应定律εi =-d Φ/d t 两种方法解). .解:(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ), 该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/R εi =⎰⋅NMl E i d =⎰NMi x E θcos d=()⎰-⋅RRr R r x t B R 22d d d =⎰-+⋅RR R x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R-=πR 2(d B/d t )/4因εi =>0,故N 点的电势高. (2) 用法拉第电磁感应定律εi =-d Φ/d t 解: 沿半径作辅助线OM ,ON 组成三角形回路MONM=⎰⋅NMl E i d =⎰⋅-MNl E i dεi=-⎢⎣⎡⋅⎰MNl E i d +⎰⋅OM l E i d +⎥⎦⎤⋅⎰NO l E i d =-(-d ΦmMONM /d t ) =d ΦmMONM /d t而 ΦmMONM =⎰⋅Sd S B =πR 2B/4故 εi =πR 2(d B/d t )/4 N 点的电势高.2. 电量Q 均匀分布在半径为a ,长为L (L >>a )的绝缘薄壁长圆筒外表上,圆筒以角速度ωa ,电阻为R 总匝数为N ω=ω0(1-t/t 0)的规律(ω0,t 0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.解:2. .等效于螺线管B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω /d t=μ0ω 0Q a 2 /(2 L t 0)I i =εi /R=μ0ω 0Q a 2 /(2 LR t 0)方向与旋转方向一致.练习十四 自感〔续〕互感 磁场的能量三、计算题1. 两半径为a 的长直导线平行放置,相距为d ,组成同一回路,求其单位长度导线的自感系数L 0.解:1. 取如下图的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=μ0Ir/(2πa 2)+ μ0I/[2π(d -r )] a ≤r ≤d -a B 2=μ0I/(2πr )+μ0I/[2π(d -r )] d -a ≤r ≤d B 3=μ0I/(2πr )+ μ0I (d -r )/(2πa 2) 取窄条微元d S=l d r ,由Φm =⎰⋅SS B d 得Φml =⎰aa r Irl 0202d πμ+()⎰-a r d r Il 002d πμ +⎰-ad ar r Il πμ2d 0+()⎰--a d ar d r Il πμ2d 0+⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d -a )]+[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[(d -a )/a ]+[μ0Il/(2π)]ln[d/(d -a )]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a )由L l =Φl /I ,L 0= L l /l=Φl /(Il ).得单位长度导线自感 L 0==μ0l/(2π)+(μ0l/π)ln(d/a )2 内外半径为R 、r 的环形螺旋管截面为长方形,共有N 匝线圈.另有一矩形导线线圈与其套合,如图19.4(1)所示. 其尺寸标在图19.4(2) 所示的截面图中,求其互感系数.解:2. 设环形螺旋管电流为I , 则管内磁场大小为B =μ0NI/(2πρ) r ≤ρ≤RS=h d ρ,由Φm =⎰⋅SS B d 得Φm =⎰RrNIh πρρμ2d 0=μ0NIh ln(R/r )/(2π) M =Φm /I ==μ0Nh ln(R/r )/(2π)(1)。

2014.11大物_2_电学测试卷 - 含答案

2014.11大物_2_电学测试卷 - 含答案
D C
19、设有一“无限大”均匀带负电荷的平面.取 x 轴 垂直带电平面,坐标原点位于带电平面上,则其周围 空间各点的电场强度 E 随距离平面的位置坐标 x 变化 的关系曲线为(规定场强方向沿 x 轴正向为正、反之 为负): B
(C )
E O E ∝ -x x
(D )
E O x E ∝ - 1 /| x |
21、如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金 属板的插入及其相对极板所放位置的不同,对电容器电容的影响为: (A) 使电容减小,但与金属板相对极板的位置无关. (B) 使电容减小,且与金属板相对极板的位置有关. (C) 使电容增大,但与金属板相对极板的位置无关. (D) 使电容增大,且与金属板相对极板的位置有关.
Dd S 0



(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零. (D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷. 3 、 电 场 中 一 个 高 斯 面 S 内 有 电 荷 q1 、 q2 , S 面 外 有 电 荷 q3 、 q4 , 关 于 高 斯 定 理 :
(B)导体内 E 0 , q 在导体内产生电场;

q A
(B)积分号内 E 是 q1、q2、q3、q4 共同激
(D) 以上说法都不对.
发的.
(C) 积分号内 E 是 q3、q4 共同激发的.

4、已知一高斯面所包围的体积内电量代数和 q i 0 ,则可肯定 (A)高斯面上各点场强均为零 . (C)穿过高斯面上每一面元的电通量为零 . (B)穿过整个高斯面的电通量为零. (D)以上说法都不对

期末复习 —— 大物公式总结

期末复习 —— 大物公式总结
长度缩短
Δx ′ =
Δx − uΔt
1− u2 c2
Δt ′ =
Δ t − uΔ x
1−
u c2
c 2 时间膨 2

Δt =
τ
u2 1− 2 c
τ为原时
l = l0
u2 1− 2 c
l0为原长
质速关系
m=
m0 v2 1− 2 c
E = mc 2 − − − 总能量 E 0 = m0 c 2 − − − 静能 E k = mc 2 − m0 c 2 − − − 动能,v << c时,E k →
七、循环:1、正循环:
η=
Q A Q1 − Q2 = = 1− 2 Q1 Q1 Q1
2、逆循环: w =
Q2 Q2 = A Q1 − Q2
T2 T1 w= T2 T1 − T2
3、卡诺循环:η = 1 −
*八、熵及其计算: ΔS = S B − S A =

dQr A T
B
第三篇
一、
电磁学
v v F q v ˆ 点电荷产生的电场: E p = = r 2 q0 4πε 0 r
∑m r
i
2
i i
连续质量分布的刚体
J = ∫ r 2 dm P59 表格 3.1
平行轴定理: J = J c + mh 2 刚体的角动量: L = Jω 刚体角动量守恒: M = 0
r
r
v
v Jω = 恒量
六、洛仑兹变换:
x′ =
x − ut 1− u2 c2
t′ =
t − ux
c2 u2 1− 2 c
n2 , 反射光为线偏振光,角i0 称为布儒斯特角 n1 2π 2π *七、晶片与波片: δ = no − ne ⋅ d 相应的相位差 Δϕ = δ = no − ne ⋅ d λ λ 当入射角满足 tani0 =

中国石油大学大物2-2专题总结

中国石油大学大物2-2专题总结

v ρr 3ε 0
下面求空腔内部任意一点的场强的大小:
v v v E P = E 补全的大球 + E 带负电的小球 v v ρ rop ρ rpo′ ρ v v (rop + rpo′ ) = = + 3ε 0 3ε 0 3ε 0 ρ v = roo′ 3ε 0
P
o′
o
由此可见, 空腔内部是一个匀强电场.
2π (R2 − r2 )
在空腔内部填充正负方向相反的电流,则:
µ0Ia
R I o ar ′
o
v v v BO′ = B补全的圆柱体在O′点激发的磁场 + B补充的半径为r的反向电流圆柱体在O′点激发的磁场 v = B补全的圆柱体在O′点激发的磁场 + o
由安培环路定理: 由安培环路定理: B 2πa = µ 0 I ′
[1] 把一个带负电的导体A靠近一个不带电的孤立导体B时, 结果使: A、导体B的电势降低。 B、导体B的电势升高。 C、导体B的右端电势比左端高。 D、导体B的电势不变。
+
− − −

+ + +
析: 在A没有靠近B之前,UB=0
B
A
在A靠近B后, 将在两端感应出等量异号的电荷,不考量外部电场的情况下,将会有等量的 电场线起始于右端正电荷,终止于左端负电荷.这是由高斯定理决定的.
电势升高。
− + + v− + E −−
+
A
+ + +
B
v E
[3] 在带电量为3C的导体空腔A内,放入两个带电量分别为 2C和-1C的导体B和C。则A、B两导体电势间的关系为:

大物考题完整版

大物考题完整版

静电场〔一〕1. 有一带负电荷的金属球,其附近某点的场强为E ,假设在该点放一带正电的点电荷q ,测得所受的电场力为f ,则〔3〕(1) E=f/q (2)E> f/q (3)E< f/q2、在闭合高斯面内有一带电量Q 的点电荷,将电荷从面内移到高斯面外后,高斯面上的电场强度_ 变化___(填变化或不变),通过闭合高斯面的电通量为__0__。

3、如图,直角三角形ABC 的A 点上,有正电荷q 1,B 点上有负电荷q 2,求C的大小和方向。

〔设AC=l 1,BC =l 2〕解:112014q E lπε=222024q E l πε=2201214E l l πε==,212221q l arctg q l θ=4、电荷Q 均匀分布在长为l 的细杆AB 上,P 点位于AB 的延长线上,且与B 相距为d ,求P 点的电场强度。

解:⎰+-===)11(444122ld d l Q x dx E xdxdE πεπελλπε5、设电量Q 均匀分布在半径为R 的的半圆周上〔如图〕,求圆心O 处的电场强度E⃗ 。

解:如下图,在半圆周上去电荷元dl ,dq =λdl =λ=Q πR,所以dq =Qπdθ,dq 在O 点产生的场强E⃗ ,大小为E ⃗ ,dE =14πε0dqR 2各电荷元在O 以O 为顶点的半圆内,由对称性,各电荷元在O 为dE ⊥相互抵消,而平行x 轴的分类dE ∥则相互加强,对给定点O 处,R 为常量,则有E ⊥=∫E ⊥=0E O =∫E ∥=14πε0∫dq R 2 sinθdθ=Q4π2ε0R 2∫sinθdθπ=−Q 4π2ε0R 2cosθ|0π=Q 2π2ε0R 2于是得均匀带电半圆环圆心处O 点的场强方向沿X 轴正向,大小为E O=Q 2π2ε0R 2+q 1C -q 2l E 1ABPQ ·q ·S静电场强度〔二〕1、 如下图, 把单位正电荷从一对等量异号电荷的连线中点, 沿任意路径移到无穷远处时,电场力作功为___0__。

大物二NO.4答案

大物二NO.4答案

《大学物理AII 》作业 No.4 光的偏振班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”和“F ”表示)[ F ] 1.横波具有偏振性,纵波不具有偏振性。

解:由横波、纵波、偏振定义P91可得。

[ T ] 2.偏振片让平行于偏振化方向的电场分量通过,吸收垂直于这个方向的电场分量。

解:由偏振片性质P94知。

[ F ] 3.自然光入射到介质分界面时,如果入射角大于它的布儒斯特角,则反射光为线偏振光。

解:由光入射到介质分界面时形成反射、折射的起偏规律P95知。

[ T ] 4.双折射晶体中,光沿光轴方向传播,不发生双折射现象。

解:由双折射晶体中光轴定义P96知。

[ T ] 5.光是一种电磁波,我们把电场强度矢量称为光矢量。

解:由P90只有电场强度矢量引起视觉和感光作用知。

二、选择题:1.如图所示的偏振片可以得到偏振化方向平行于y 轴的偏振光。

当自然光入射时,将偏振片绕如图所示的光传播的方向顺时针转动︒40,通过偏振片的光强是: [ ] (A) 增大 (B) 减小(C) 不变 (D) 不能确定解:因自然光是非偏振光,故将偏振片绕如图所示的光传播的方向顺时针转动︒40,并没改变自然光振动方向与偏振片偏振化方向关系,故光强不变。

故选C2.当第三块偏振片以45º插入两块偏振方向正交的偏振片时,会有部分的光出射。

如果不是用单一的一块45º偏振片插入,而是中间插入N 块偏振片组,每片的偏振化方向平均转过90º/(N+1)。

[ ] (A) 没有光出射 (B) 出射的光更少(C) 出射的光一样多 (D) 出射的光更多解:设两块偏振方向正交的偏振片放置在 x 方向y ,自然光入射,则当第三块偏振片以45º插入时由偏振片起偏规律和右偏振化方向关系有 自然光通过偏振片1后光强为:21I I =强度为1I 线偏振光通过偏振片2后光强为:(马吕期定律))45(cos 2)45(cos 20212︒=︒=I I I 强度为2I 线偏振光通过偏振片3后光强为:)45(cos )45(cos 2)45(cos 220223︒︒=︒=I I I 80I =若中间插入N 块偏振片组,每片的偏振化方向平均转过90º/(N+1),由偏振片起偏规律和y x︒45右偏振化方向关系有出射光光强为)190(cos 2)190(cos )190(cos )190(cos 2)1(202220+︒=+︒+︒+︒=+N I N N N I I N(其中:共有N +1项)190(cos 2+︒N 连乘) 例:若N=1,则有0)11(20125.0)1190(cos 2I I I =+︒=+若N=2,则有0)12(20211.0)1290(cos 2I I I =+︒=+若N=3,则有0)13(20265.0)1390(cos 2I I I =+︒=+上述例子表明N 越大,透射光强越多。

西安工大期中大物2试题

西安工大期中大物2试题

6题图西安工业大学试题纸学年学期 2021-2022(1)课程名称 大学物理Ⅱ 命题教师 审批考试形式闭卷考试类型考试使用班级考试时间考试地点未央学生班级姓 名学号备 注说明:本试题总分为100分;考生必须将所有解答写在答题纸上(00,με分别为真空中的介电常数、真空中的磁导率)。

一、选择题:(每题2分,共20分)1.一点电荷,放在球形高斯面的球心处,下列哪一种情况,通过高斯面的电通量发生变化( ) A. 将另一点电荷放在高斯面外 B.将另一点电荷放在高斯面内 C.将球心处的点电荷移至高斯面内的另一位置 D.将高斯面半径增大 2、若取无限远处电势为0,则真空中半径为R ,带电量为q 的均匀带电球面球心处的电势为( ) A.04q Rπε B.204q Rπε C.0 D. 04q Rπε3.两个点电荷相距一定距离, 若这两个点电荷连线的中垂线上电势为零, 则这两个点电荷的带电情况为( )A .电荷量相等, 符号相同B .电荷量相等, 符号不同C .电荷量不同, 符号相同D .电荷量不等, 符号不同 4.稳恒磁场中的安培环路定理说明磁场是( ).A.无旋场B.有旋场C.无源场D.有源场5.两根长直载流导线平行放置,电流大小分别为I 与2I ,方向相反,导线间距为2a .则导线连线中点P 处的磁感应强度的大小为( ).A.a I πμ20B.a I 20μC.a I πμ230D.aI230μ6.如图所示,两条长直载流导线交叉放置,相互绝缘,AB 固定不动,CD 可绕O 点在纸面内转动,当电流方向如图所示时,CD 的转动方向为( ) A. 逆时针 B. 顺时针 C. 不动 D. 垂直纸面旋转7.如图,边长为a 的正三角形线圈载有电流I ,可沿OO’轴转动,放在匀强磁场中,线圈所受对OO’轴的力矩大小和方向分别为( ) A.243a BI ,沿纸面向下 B. 243a I ,垂直纸面向外 C.243a I ,垂直纸面向里 D.243a BI ,沿纸面向上8、如图所示圆形导线环,一半放在方形区域的匀强磁场中,另一半位于磁场之外,磁场的方向垂直向纸内,欲使圆环中产生逆时针方向的感应电流,应使() A 、 圆环向右平移 B 、 圆环向上平移 C 、 圆环向左平移 D 、 磁场强度变弱9. 关于感应电动势的大小,下列说法中正确的是( )A 、 磁通量越大,则感应电动势越大B 、 磁通量减小,C 、 磁通量增加,感应电动势一定增加D 、 磁通量变化越快,则感应电动势越大 10.一带电量为q 的粒子在均匀磁场中运动,下列哪种说法是正确的?( ) A.只要带电粒子的速度大小相同,粒子所受的洛仑兹力就相同B.在速度不变的前提下,若电荷q 变为-q ,则粒子受力反向,数值不变C.粒子进入磁场后,其动能和动量都不变D.洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆二、填空题:(每空2分,共20分) 11、真空中半径为R ,带电量为q 的均匀带电球面在距其球心R 2处的电场强度大小为____; 12、若在静电场中,某一电场的电场线为均匀分布的平行直线,则在某一电场线方向上任意两点的电势_______。

大物期末复习题

大物期末复习题

1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零 (B) 不一定都为零.(C) 处处不为零.(D)无法判定 .2. 下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处同. (C) 场强可由q F E / =定出,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受的电场力.(D) 以上说法都不正确. 3.如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是y 轴上的一点,坐标为(0,y ).当y >>a 时,该点场强的大小为:(A) 204y qεπ. (B) 202y q επ. (C) 302y qa επ. (D) 304y qa επ. [ ]4.设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]x5.有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为 (A) 03εq . (B) 04επq(C) 03επq . (D) 06εq6. 已知一高斯面所包围的体积内电荷代数和∑q =0,则可肯定:(A) 高斯面上各点场强均为零.(B) 穿过高斯面上每一面元的电场强度通量均为零.(C) 穿过整个高斯面的电场强度通量为零.(D) 以上说法都不对.7.半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ ]8. 半径为R 的均匀带电球面,若其电荷面密度为σ,则在距离球面R 处的电场强度大小为:(A)εσ. (B) 02εσ. (C) 04εσ. (D) 08εσ. 9. 如图所示,两个同心的均匀带电球面,内球面半径为R 1、带有电荷1Q , 外球面半径为R 2、带有电荷Q 2,则在内球面里面、距离球心为r 处的P 点的场强大小E 为: q EOr (A)E ∝1/r(A) 20214r Q Q επ+. (B) 2202210144R Q R Q εεπ+π (C) 2014r Q επ. (D) 0.10. 如图所示,两个“无限长”的共轴圆柱面,半径分别为R 1和R 2,其上均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在两圆柱面之间、距离轴线为r 的P 点处的场强大小E 为:(A) r012ελπ. (B) r 0212ελλπ+. (C) ()rR -π2022ελ. (D) ()1012R r -πελ.[ ]11.半径为R 的均匀带电球面,总电荷为Q .设无穷远处电势为零,则该带电体所产生的电场的电势U ,随离球心的距离r 变化的分布曲线为 [ ]12.在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M点的电势为(A) a q 04επ. (B) aq 08επ. (C) a q 04επ-. (D) a q 08επ- 13. 如图,在点电荷q 的电场中,选取以q 为中心、R 为半径的球面上一点P 则与点电荷q 距离为r 的P'点的电势为(A)rq 04επ (B) ⎪⎭⎫ ⎝⎛-πR r q 1140ε (C) ()R r q -π04ε (D) ⎪⎭⎫ ⎝⎛-πr R q 1140ε (A) (B) (C)2 (D) 2(E)14. 如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c、d 处都是正电荷.(B) 顶点a 、b 处是正电荷,c 、d 处是负电荷.(C) 顶点a 、c 处是正电荷,b 、d 处是负电荷.(D) 顶点a 、b 、c 、d 处都是负电荷. [ ]15.如图所示,边长为 0.3 m 的正三角形abc ,在顶点a 处有一电荷为10-8 C 的正点电荷,顶点b 处有一电荷为-10-8 C 的负点电荷,则顶点c 处的电场强度的大小E 和电势U 为: (041επ=9×10-9 N m /C 2) (A) E =0,U =0.(B) E =1000 V/m ,U =0.(C) E =1000 V/m ,U =600 V .(D) E =2000 V/m ,U =600 V .16. 如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,RQ U 04επ=. (C) 204r Q E επ=,rQ U 04επ= . (D)204r Q E επ=,R Q U 04επ=. 17. 有N 个电荷均为q 的点电荷,以两种方式分布在相同半径的圆周上:一种是无规则地分布,另一种是均匀分布.比较这两种情况下在过圆心O 并垂直于圆平面的z 轴上任一点P (如图所示)的场强与电势,则有(A) 场强相等,电势相等.(B) 场强不等,电势不等.b a(C) 场强分量E z 相等,电势相等.(D) 场强分量E z 相等,电势不等.18. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的场强大小及电势分别为:(A) E =0,U =104R Q επ. (B) E =0,U =⎪⎪⎭⎫ ⎝⎛-π210114R R Q ε. (C) E =204r Q επ,U =rQ 04επ. (D) E =204r Q επ, U =104R Q επ. 19. 如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A) r Q Q 0214επ+. (B) 20210144R Q R Q εεπ+π. (C) 0. (D) 1014R Q επ. 20.点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 (A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大.(C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等.21. 在已知静电场分布的条件下,任意两点P 1和P 2之间的电势差决定于(A) P 1和P 2两点的位置.(B) P 1和P 2两点处的电场强度的大小和方向.(C) 试验电荷所带电荷的正负.(D) 试验电荷的电荷大小.22.半径为r 的均匀带电球面1,带有电荷q ,其外有一同心的半径为R 的均匀带电球面2,带有电荷Q ,则此两球面之间的电势差U 1-U 2A为:(A) ⎪⎭⎫ ⎝⎛-πR r q 1140ε . (B) ⎪⎭⎫ ⎝⎛-πr R Q 1140ε . (C) ⎪⎭⎫ ⎝⎛-πR Q r q 041ε . (D) r q 04επ . 23. 面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) Sq 022ε. (C) 2022S q ε. (D) 202S q ε. 24.充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F与两极板间的电压U 的关系是:(A) F ∝U . (B) F ∝1/U .(C) F ∝1/U 2. (D) F ∝U 2.25. 如图所示,在真空中半径分别为R 和2R 的两个同心球面,其上分别均匀地带有电荷+q 和-3q .今将一电荷为+Q的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为:(A) R Qq 04επ. (B) RQq 02επ. (C) R Qq 08επ. (D) RQq 083επ. 26. 密立根油滴实验,是利用作用在油滴上的电场力和重力平衡而测量电荷的,其电场由两块带电平行板产生.实验中,半径为r 、带有两个电子电荷的油滴保持静止时,其所在电场的两块极板的电势差为U 12.当电势差增加到4U 12时,半径为2r 的油滴保持静止,则该油滴所带的电荷为:(A) 2e (B) 4e(C) 8e (D) 16e27.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的:(A) 2倍. (B) 22倍.(C) 4倍. (D) 42倍. 28. 真空中有两个点电荷M 、N ,相互间作用力为F ,当另一点电荷Q 移近这两个点电荷时,M 、N 两点电荷之间的作用力(A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改.29. 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则 (A) F / q 0比P 点处场强的数值大.(B) F / q 0比P 点处场强的数值小.(C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定.30.有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电荷为q 的点电荷,如图所示,则(A) 只有当q > 0时,金属球才下移.(B) 只有当q < 0时,金属球才下移.(C) 无论q 是正是负金属球都下移.(D) 无论q 是正是负金属球都不动.31. 半径分别为R 和r 的两个金属球,相距很远.用一根细长导线将两球连接在一起并使它们带电.在忽略导线的影响下,两球表面的电荷面密度之比σR / σr 为(A) R / r . (B) R 2 / r 2.(C) r 2 / R 2. (D) r / R . q 0P32. 如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B) 02εσ.(C) 0εσh .(D) 02εσh . 33. 一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 则导体球壳的电势(设无穷远处为电势零点)为 (A) 104R qεπ . (B) 204R q επ . (C) 102R q επ . (D) 20R q ε2π . 34. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为: (A) E = 0,U > 0. (B) E = 0,U < 0. (C) E = 0,U = 0. (D) E > 0,U < 0.35. 同心导体球与导体球壳周围电场的电场线分布如图所示,由电场线分布情况可知球壳上所带总电荷(A) q > 0. (B) q = 0.(C) q < 0. (D) 无法确定.36.一长直导线横截面半径为a ,导线外同轴地套一半径为b 的薄圆筒,两者互相绝缘,并且外筒接地,如图所示.设导线单位长度的电荷为+λ,并设地的电势为零,则两导体之间的P 点( OP = r )的场强大小和电势分别为:q(A) 204r E ελπ=,a b U ln 20ελπ=. (B) 204rE ελπ=,r b U ln 20ελπ=. (C) r E 02ελπ=,ra U ln 20ελπ=. (D) r E 02ελπ=,rb U ln 20ελπ=. [ ] 37. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零.(B) 高斯面上处处D 为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确.38. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E .39. 在一点电荷q 产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面S ,则对此球形闭合面: (A) 高斯定理成立,且可用它求出闭合面上各点的场强.(B) 高斯定理成立,但不能用它求出闭合面上各点的场强.(C) 由于电介质不对称分布,高斯定理不成立.(D) 即使电介质对称分布,高斯定理也不成立.40. 设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E2,U2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E1 = E2,U1 = U2.(B) E1 = E2,U1 > U2.(C) E1 > E2,U1 > U2.(D) E1 < E2,U1 < U2.41.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U12、电场强度的大小E、电场能量W将发生如下变化:(A)U12减小,E减小,W减小.(B) U12增大,E增大,W增大.(C) U12增大,E不变,W增大.(D) U12减小,E不变,W不变.42. C1和C2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C1中插入一电介质板,如图所示, 则(A) C1极板上电荷增加,C2极板上电荷减少.(B) C1极板上电荷减少,C2极板上电荷增加.(C) C1极板上电荷增加,C2极板上电荷不变.(D) C1极板上电荷减少,C2极板上电荷不变.43.如果某带电体其电荷分布的体密度 增大为原来的2倍,则其电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 4倍.(D) 1/4倍.44.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q >B P >B O (C )B Q > B O > B P . (D) B O > B Q > Bp45. 一个电流元l Id 位于直角坐标系原点 ,电流沿z 轴方向 ,点P (x ,y ,z )的磁感强度沿x 轴的分量是:(A) 0. (B) 2/32220)/(d )4/(z y x l Iy ++π-μ. (C) 2/32220)/(d )4/(z y x l Ix ++π-μ.(D) )/(d )4/(2220z y x l Iy ++π-μ. 46. 电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021≠+B B.(D) B ≠ 0,因为虽然021=+B B,但B 3≠ 0. 47. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?(A) Ⅰ区域. (B) Ⅱ区域. (C) Ⅲ区域. (D) Ⅳ区域.(E) 最大不止一个. 48. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( rⅠⅡⅢⅣ< R )的磁感强度为B i ,圆柱体外( r > R )的磁感强度为B e ,则有 (A) B i 、B e 均与r 成正比. (B) B i 、B e 均与r 成反比. (C) B i 与r 成反比,B e 与r 成正比. (D) B i 与r 成正比,B e 与r 成反比.49.磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?50. 如图,一个电荷为+q 、质量为m 的质点,以速度v沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v-从磁场中某一点出来,这点坐标是x = 0 和(A) qB m y v +=. (B) qBm y v 2+=. (C) qB m y v 2-= (D) qBm y v -=. 51. 一电子以速度v垂直地进入磁感强度为B的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v . 52. α 粒子与质子以同一速率垂直于磁场方向入射到均匀磁场中,它们各自作圆周运动的半径比R α / R p 和周期比T α / T p 分别为:Bx OR(D) Bx O R(C) BxOR (E)(A) 1和2 ; (B) 1和1 ; (C) 2和2 ; (D) 2和1 .53.如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将(A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab . (C) 逆时针转动同时离开ab . (D) 逆时针转动同时靠近ab . 54. 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A)R r I I 22210πμ. (B)R r I I 22210μ.(C) rR I I 22210πμ. (D) 0.55. 三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是:(A) 7/16. (B) 5/8.(C) 7/8. (D) 5/4. [ ] 56. 把通电的直导线放在蹄形磁铁磁极的上方,如图所示.导线可以自由活动,且不计重力.当导线内通以如图所示的电流时,导线将 (A) 不动.O r R I 1 I 2F 1F 2F 31 A2 A3 AⅠⅡⅢI(B) 顺时针方向转动(从上往下看). (C) 逆时针方向转动(从上往下看),然后下降. (D) 顺时针方向转动(从上往下看),然后下降. (E) 逆时针方向转动(从上往下看),然后上升. 57. 四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=2μ. (C) B = 0. (D) I aB π=μ.58. 如图两个半径为R 的相同的金属环在a 、b 两点接触(ab 连线为环直径),并相互垂直放置.电流I 沿ab 连线方向由a 端流入,b端流出,则环中心O 点的磁感强度的大小为(A) 0.(B)R I40μ. (C) R I 420μ. (D) R I0μ.(E)RI820μ. 59.一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B的方向沿z 轴正方向.如果伏特计与导体平板均以速度v向y 则伏特计指示的电压值为(A) 0. (B)21v Bl . (C) v Bl . (D) 2v Bl . 60. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.IaI Ib a(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D)两环中感应电动势相等.61. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B中,另一半位于磁场之外,如图所示.磁场B的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. 62. 在如图所示的装置中,把静止的条形磁铁从螺线管中按图示情况抽出时 (A) 螺线管线圈中感生电流方向如A 点处箭头所示. (B) 螺线管右端感应呈S 极.(C) 线框EFGH 从图下方粗箭头方向看去将逆时针旋转.(D) 线框EFGH 从图下方粗箭头方向看去将顺时针旋转. [ ]63.如图所示,一矩形线圈,以匀速自无场区平移进入均匀磁场区,又平移穿出.在(A)、(B)、(C)、(D)各I --t 曲线中哪一种符合线圈中的电流随时间的变化关系(取逆时针指向为电流正方向,且不计线圈的自感)? [ ] 64. 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ]磁极磁极 0 t I0 t I0 t I 0t I(A) (B)(C) (D)c ab d N M B65. 一根长度为L 的铜棒,在均匀磁场 B中以匀角速度ω绕通过其一端O 的定轴旋转着,B的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212.(C) )cos(22θωω+t B L . (D) B L 2ω.(E) B L 221ω.66. 自感为 0.25 H 的线圈中,当电流在(1/16) s 内由2 A 均匀减小到零时,线圈中自感电动势的大小为: (A) 7.8 ×10-3 V . (B) 3.1 ×10-2 V .(C) 8.0 V . (D) 12.0 V . 67. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使 (A) 两线圈平面都平行于两圆心连线. (B) 两线圈平面都垂直于两圆心连线. (C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(D) 两线圈中电流方向相反. 68. 在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa ′和bb ′,当线圈aa ′和 bb ′如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是(A) M 1 = M 2 ≠0. (B) M 1 = M 2 = 0. (C) M 1 ≠M 2,M 2 = 0.(D) M 1 ≠M 2,M 2 ≠0.B(2)69. 如图所示,两个线圈P 和Q 并联地接到一电动势恒定的电源上.线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计.当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是 (A) 4. (B) 2. (C) 1. (D)21. 选择题答案:填空题答案:70.静电场中某点的电场强度,其大小和方向与(单位正试验电荷在该点所受的静电力相同).71.由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =_______0______. 72.两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2如图所示,则场强等于零的点与直线1的距离a 为+σ +2σ.73.“无限大”均匀带电平面,σ和+2 σ,如图所示,则A 、B 、C 三个区域的电场强度分别为:E A =,E B =,E C= 设方向向右为正).74.R 的均匀带电球面带有电荷Q (Q >0).今在球面上挖去非常小块的面积△S (连同电荷),如图所示,假设不影响其他处原来的挖去△S 后球心处电场强度的大小E =,其方向为_(由球心指向△S )__. 电荷线密度为λ,其单位长度上总共发出的电场线条数(即电场强度通量).76.静电场中某点的电势,其数值等于_单位正试验电荷在该点的电势能___或 _把单位正电荷由该点沿任意路_径移到零势点时电场力所作的功__.77.图中曲线表示一种轴对称性静电场的场强大小E 的分布,r 表示离对称轴的距离,这是由_半径为R 的无限长均匀带电圆柱面___产生的电场.78.真空中,有一均匀带电细圆环,电荷线密度为λ,其圆心处的电场强度E 0= 0 ,电势U 0=.(选无穷远处电势为零)79.+Q r 1吹胀到r 2,则半径为R (r 1<R <r 2=的球面上任一点的场强大小E变为_0_;电势U 由80.,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×10­8C间另一电势为零的球面半径r = 10 cm ___.81.半径为0.1 m 的孤立导体球其电势为300 V ,则离导体球中心30 cm 处的电势U = 100V (以无穷远为电势零点).82.在点电荷q 的电场中,把一个-1.0×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J ,则该点电荷q =7102-⨯-.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 ) 83.如图所示.试验电荷q , 在点电荷+Q 产生的电场中,沿半径为R 的整个圆弧的3/4圆弧轨道由a 点移到d 点的过程中电场力作功为S____0____________;从d 点移到无穷远处的过程中,电场力作功为.84.图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段R BA =B 点沿半圆弧轨道BCD 移到D 点,则电功为.85.(带电荷e =1.6×10-19 C)沿四分之一的圆弧轨道从A 点移到B 点(如图),电场力作功8.0×10-15 J .则当质子沿四分之三的圆弧轨道从B 点回到A 点时,电场力作功A =-8.0×10-15 J .设A 点电势为零,则B 点电势U =-5×104V . 86.一电子和一质子相距2×10-10 m (两者静止),将此两粒子分开到无穷远距离(两者仍静止)所需要的最小能量是_7.2_eV . (041επ=9×109 N ·m 2/C 2 , 质子电荷e =1.60×10-19C, 1 eV=1.60×10-19J )87.在点电荷q 的静电场中,若选取与点电荷距离为r0的一点为电势零点,则点电荷距离为r 处的电势U 88.如图所示, 在场强为E的均匀电场中,A 、B 两点间距离为d .AB连线方向与E方向一致.从A 点经任意路径到B 点的场强线积分⎰⋅ABl Ed =Ed . 89.静电场中有一质子(带电荷e =1.6×10-19 ) 沿图示路径从a 点经c 点移动到b 点时,电场力作功8×10-15 J .则当质子从b 点沿另一路径回到a 点过程中,电场力作功A =-8×10-15 J ;若设a 点电势为零,则b 点电势U b =5×104V90.真空中,一边长为a 的正方形平板上均匀分布着电荷q ;在其中垂线上距离平板d 处放一点电荷q 0如图所示.在d 与a 满足____d >>a___条件下,q 0所受的电场力可写成q 0q / (4πε0d 2).91.一电矩为p 的电偶极子在场强为E 的均匀电场中,p与E 间的夹角为α,则它所受的电场力F=0,力矩的大小M =__pEsin α__.92.一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U ' .93.在一个不带电的导体球壳内,先放进一电荷为+q 的点电荷,点电荷不与球壳内壁接触.然后使该球壳与地接触一下,再将点电荷+q 取走.此时,球壳的电荷为_-q __,电场分布的范围是_球壳外的整个空间.Aa 094.带有电荷q 、半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置如图.则图中P 点的电场强度=EA 、B 连接起来,则A 球的电势U(设无穷远处电势为零)95.半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D,电场强度的大小 E96. 1、2是两个完全相同的空气电容器.将其充电后与电源断开,再将一块各向同性均匀电介质板插入电容器1的两极板间,如图所示, 则电容器2的电压U 2,电场能量W 2如何变化?(填增大,减小或不变) U 2减小,W 2减小97. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =_6.67×10-7T __,该带电轨道运动的磁矩p m.(μ0 =4π×10-7 H ·m -1)98.一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l I d ,则该电流元在(a ,0,0)__沿Z轴负向____.99.如图,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为_0__.100.如图所示,有两个半径相同的均匀带电绝缘体球面,O 1为左侧球面的球心,带的是正电;O 2为右侧球面的球心,它带的是负电,两者的面电荷密度相等.当它们绕21O O 轴旋转时,两球面相切处A 点的磁感强度B A =__0___.101.一长直螺线管是由直径d = 0.2 mm 的漆包线密绕而成.当它通以I = 0.5 A的电流时,其内部的磁感强度B =_T310-⨯π_.(忽略绝缘层厚度)(μ0 =4π×10-7 N/A2)102. 两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅lBd等于:-μ0I(对环路a).__0__(对环路b).2μ0I(对环路c).103.如图所示,一半径为R,通有电流为I的圆形回路,位于Oxy平面内,圆心为O.一带正电荷为q的粒子,以速度v 沿z轴向上运动,当带正电荷的粒子恰好通过O点时,作用于圆形回路上的力为__0______,作用在带电粒子上的力为__0______.104.两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是1:2,运动轨迹半径之比是1:2.105. 如图所示的空间区域内,分布着方向垂直于纸面的匀强磁场,在纸面内有一正方形边框abcd(磁场以边框为界).而a、b、c三个角顶处开有很小的缺口.今有一束具有不同速度的电子由a缺口沿ad方向射入磁场区域,若b、c两缺口处分别有电子射出,则此两处出射电子的速率之比v b/v c =1:2.106.如图,半圆形线圈(半径为R)通有电流I.线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为,方向为_在图面中向上,O107.有两个竖直放置彼此绝缘的圆形刚性线圈(它们的直径几乎相等),可以分别绕它们的共同直径自由转动.把它们放在互相垂直的位置上.若给它们通以电流(如图),则它们转动的最后状态是_两线圈平面平行(磁矩方向一致)__.108.如图所示,在真空中有一半径为a的3/4圆弧形的导线,其c以稳恒电流I,B中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为.109.一弯曲的载流导线在同一平面内,形状如图(O点是半径为R1和R2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O点磁感强度的大小是.110.在xy平面内,有两根互相绝缘,分别通有电流I3和I的长直导线.设两根导线互相垂直(如图),则在xy平面内,磁感强度为零的点的轨迹方程为111.试写出下列两种情况的平面内的载流均匀导线在给定点P处所产生的磁感强度的大小.(1) B0_______.112.一根无限长直导线通有电流I,在P点处被弯成了一个半径为R 的圆,且P点处无交叉和接触,则圆心O处的磁感强度大小为,方向为垂直于纸面向里.113.用导线制成一半径为r=10 cm的闭合圆形线圈,其电阻R=10 Ω,均匀磁场垂直于线圈平面.欲使电路中有一稳定的感应电流i = 0.01 A,B的变化率应为d B /d t =__3.185 T/S_.114.一段导线被弯成圆心在O点、半径为R的三段圆弧ab、bc、ca,它们构成了一个闭合回路,ab位于xOy平面内,bc和ca分别位于另两个坐标面中(如图).均匀磁场B沿x轴正方向穿过圆弧bcK(K>0),则闭合回路abca弧bc中感应电流的方向是由C 流向b115.半径为a的无限长密绕螺线管,单位长度上的匝数为n,通以交变电流i =I m sinωt,则围在管外的同轴圆形回路(半径为r)上的感生电动势为)cos(2tnIamωωμπ-.116.已知在一个面积为S的平面闭合线圈的范围内,有一随时间变化的均匀磁场)(tB,则此闭合线圈内的感应电动势.yx×××××xy。

922008-工科大学物理-大物 2

922008-工科大学物理-大物 2

气体模型总结
理想气体
理想气体+自 由度修正
理想气体+分子 体积修正
实际气体
分子当作质点
分子为刚性、 分子为刚性球, 考虑分子的体积、
计分子的形状
半径为d
形状
分子运动服从牛顿定律
分子运动服从 牛顿定律
分子运动服从牛 顿定律
分子运动服从牛顿 定律
分子间的相互吸引作用 不计、碰撞为完全弹性
分子间的相互 吸引作用不计、 碰撞为完全弹
2
)
势能: 总机械能:
Ep
1 2
kx2
1 2
kA2
cos2 ( t
)
E
Ek
Ep
1 kA2 2
平均能量:
Ek
Ep
1 2
E
1 kA2 4
6. 谐振动的旋转矢量表示
A
x(t) Acos(ω t )
· · t
o
x
7. 简谐谐振动的合成
(1) 同方向同频率谐振动的合成 合振动仍为简谐振动,和振动的振幅取决于两个分 振动的振幅及相差,即
x(t) Acos(ω t )
2. 简谐振动的相位
( t + ) 是 相位,决定 t 时刻简谐振动的运动状态.
3. 简谐振动的运动微分方程
d2x dt2
2x
0
4. 由初始条件振幅和初相位
A
x02
v
2 0
2
tan1( v0 ) x0
5. 弹簧振子的能量
动能:
Ek
1 mv 2 2
1 m 2 A2 sin 2 ( t
Q1
Q1
致冷系数
Q2 | A|
|

大物上册期末复习第4、5部分:热学习题

大物上册期末复习第4、5部分:热学习题

第4部分 气体动理论1.理想气体能达到平衡态的原因是[ ](A) 各处温度相同 (B) 各处压强相同(C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 2. 如果氢气和氦气的温度相同, 物质的量也相同, 则这两种气体的[ ](A) 平均动能相等 (B ) 平均平动动能相等 (C) 内能相等 (D) 势能相等3. 某气体的分子具有t 个平动自由度, r 个转动自由度, s 个振动自由度, 根据能均分定理知气体分子的平均总动能为[ ](A) kT t21 (B ) kT s r t 21)(++ (C) kT r 21 (D) kT s r t 21)2(++ 4. 在标准状态下, 体积比为2121=V V 的氧气和氦气(均视为刚性分子理想气体)相混合, 则其混合气体中氧气和氦气的内能比为[ ] (A)21 (B)35 (C )65 (D)103 5. 压强为p 、体积为V 的氢气(视为理想气体)的内能为[ ](A)pV 25 (B) pV 23 (C) pV 21(D) pV 6.温度和压强均相同的氦气和氢气, 它们分子的平均动能k ε和平均平动动能k ε有如下关系[ ](A) k ε和k ε相同 (B) k ε相等而k ε不相等(C) k ε相等而k ε不相等 (D) k ε和k ε都不相等7.两瓶不同种类的气体,分子平均平动动能相等,但气体密度不同,则[ ] (A) 温度和压强都相同 (B) 温度相同,压强不等 (C) 温度和压强都不同 (D) 温度相同,内能也一定相等8.容器中储有1mol 理想气体,温度t =27℃,则分子平均平动动能的总和为[ ] (A) 3403 J (B ) 3739.5 J (C) 2493 J (D) 6232.5 J9.在一定速率v 附近麦克斯韦速率分布函数f (v )的物理意义是: 一定量的理想气体在给定温度下处于平衡态时的[ ](A) 速率为v 时的分子数 (B) 分子数随速率v 的变化(C) 速率为v 的分子数占总分子数的百分比(D ) 速率在v 附近单位速率区间内的分子数占总分子数的百分比10.如图所示,在平衡态下, 理想气体分子速率区间v 1 ~ v 2内的分子数为[ ](A) ⎰21d )(v v v v f (B ) ⎰21d )(v v v v Nf (C) ⎰21d )(v vv v v f (D) ⎰21d )(v vv v fO111.气缸内盛有一定量的氢气, 当温度不变而压强增大一倍时, 氢气分子的平均碰撞次数Z 和平均自由程λ的变化情况是[ ](A) Z 和λ都增大一倍 (B) Z 和λ都减为原来的一半 (C ) Z 增大一倍λ减为原来的一半 (D) Z 减为原来的一半而λ增大一倍12.一定量的理想气体, 在容积不变的条件下, 当温度降低时, 分子的平均碰撞次数Z 和平均自由程λ的变化情况是[ ](A ) Z 减小λ不变 (B) Z 不变λ减小 (C) Z 和λ都减小 (D) Z 和λ都不变 二、填空题1.容器中储有氧气,温度t =27℃,则氧分子的平均平动动能=平ω__________,平均转动动能=转ω___________,平均动能=动ω___________。

大物(2)期末复习

大物(2)期末复习

11练习一 静电场中的导体三、计算题1. 已知某静电场在xy 平面内的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向.解:. E x =U/x=C [1/(x 2+y 2)3/2+x (3/2)2x /(x 2+y 2)5/2]= (2x2y 2)C /(x 2+y 2)5/2E y =U/y=Cx (3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3y 轴上点(x =0) E x =Cy 2/y 5=C /y 3 E y =0E =C i /y 32.如图,一导体球壳A (内外半径分别为R 2,R 3),同心地罩在一接地导体球B (半径为R 1)上,今给A 球带负电Q , 求B 球所带电荷Q B 及的A 球的电势U A .静电场中的导体答案解: 2. B 球接地,有 U B =U =0, U A =U BAU A =(Q+Q B )/(40R 3)U BA =[Q B /(4)](1/R 21/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3 R 1R3)U A =[Q/(40R 3)][1+R 1R 2/(R 1R 2+R 2R 3R 1R 3)]图22 =Q (R 2R 1)/[4(R 1R 2+R 2R 3R 1R 3)]练习二 静电场中的电介质三、计算题1. 如图所示,面积均为S =的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1=×10-9C, Q 2=×10-9C.忽略边缘效应,求:(1) 两板共四个表面的面电荷密度1,2,3,4;(2) 两板间的电势差V =U A -U B .解:1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四个表面的电荷产生的,应为零,有E A =1/(2)2/(20)3/(2)4/(2)=0E A =1/(2)+2/(20)+3/(2)4/(2)=0而 S (1+2)=Q 1 S (3+4)=Q 2有 1234=01+2+34=01+2=Q 1/S 3+4=Q 2/S解得1=4=(Q 1+Q 2)/(2S )=108C/m 22=3=(Q 1Q 2)/(2S )=108C/m 2两板间的场强 E=2/=(Q 1Q 2)/(2S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1Q 2)d /(2S )=1000V四、证明题导体 图A Q 1图Q 21234331. 如图所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.解:1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅ABl E d 2=⎰⋅ACBlE d 0与静电场的环路定理=⋅⎰l E d l 0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习三 电容 静电场的能量三、计算题1. 半径为R 1的导体球带电Q ,球外一层半径为R 2相对电容率为r的同心均匀介质球壳,其余全部空间为空气.如图所示.求:(1)离球心距离为r 1(r 1<R 1), r 2(R 1<r1<R2), r 3(r 1>R 2)处的D 和E ;(2)离球心r 1, r 2, r 3,处的U ;(3)介质球壳内外表面的极化电荷. 解:1. (1)因此电荷与介质均为球对称,电场也球对称,过场点作与金属球同心的球形高斯面,有iSq0d ∑=⋅⎰S D4r 2D=q 0i当r=5cm <R 1, q 0i =0得 D 1=0, E 1=0 当r=15cm(R 1<r <R 1+d ) q 0i =Q=×108C 得D 2=Q /(4r 2)=×108C/m 2E 2=Q /(40rr 2)=×103N/C图R 2BA C当r=25cm(r>R1+d )q 0i=Q=×108C 得D3=Q/(4r2)=×108C/m2E3=Q/(40r2)=×104N/CD和E的方向沿径向.(2) 当r=5cm<R1时U1=⎰∞⋅r lE d⎰=R r r E d1⎰++d RRrE d2⎰∞++dRrE d3=Q/(40r R)Q/[40r(R+d)]+Q/[40(R+d)]=540V当r=15cm<R1时U2=⎰∞⋅r lE d⎰+=d RrrE d2⎰∞++dRrE d3=Q/(40r r)Q/[40r(R+d)]+Q/[40(R+d)]=480V当r=25cm<R1时U3=⎰∞⋅r lE d⎰∞=rrE d3=Q/(40r)=360V(3)在介质的内外表面存在极化电荷,P e=0E=0(r1)E =P e·n r=R处, 介质表面法线指向球心=P e·n =P e cos =0(r 1)Eq =S=0(r1) [Q /(40r R2)]4R2=(r1)Q/r=×108Cr=R+d处, 介质表面法线向外=P e·n =P e cos0=0(r1)Eq=S=0(r1)[Q /(40r(R+d)2]4(R+d)2=(r1)Q/r=×108C44552.两个相距很远可看作孤立的导体球,半径均为10cm ,分别充电至200V 和400V ,然后用一根细导线连接两球,使之达到等电势. 计算变为等势体的过程中,静电力所作的功. 解;2.球形电容器 C =4RQ 1=C 1V 1= 40RV 1 Q 2=C 2V 2= 4RV 2W 0=C 1V 12/2+C 2V 22/2=2R (V 12+V 22)两导体相连后 C =C 1+C 2=8RQ=Q 1+Q 2= C 1V 1+C 2V 2=40R (V 1+V 2)W=Q 2/(2C )= [4R (V 1+V 2)]2/(16R )=R (V 1+V 2)2静电力作功 A=W 0W=2R (V 12+V 22)R (V 1+V 2)2=R (V 1V 2)2=×107J练习六 磁感应强度 毕奥—萨伐尔定律三、计算题1. 如图所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO上方距导体薄片为a 的磁感强度.解:1.取宽为d x 的无限长电流元d I=I d x/(2a ) d B=0d I/(2r )=I d x/(4ar )d B x =d B cos =[0I d x/(4ar )](a/r )=I dx/(4r 2)= 0I d x/[4(x 2+a2)]xy d Bd IPr OO Ixy zP2a图66 d B y =d B sin =Ix d x/[4a (x 2+a 2)]()⎰⎰-+==aax x a x xI B B 2204d d πμ=[I/(4)](1/a )arctan(x/a )a a-=I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[I/(8a )]ln(x 2+a 2)a a-=02. 如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.解:2. 取宽为d L 细圆环电流, d I=I d N=I [N/(R/2)]R d =(2IN/)d d B=d Ir 2/[2(r 2+x 2)3/2]r=R sin x=R cosd B=NI sin 2 d /(R )⎰⎰==πππθθμ220d sin d RNI B B=0NI/(4R )练习七 毕奥—萨伐尔定律(续) 磁场的高斯定理三、计算题1.在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. 解: 1.取窄条面元d S =b d r ,O R 图图2aaaS 2S 1 bx d Bd I77面元上磁场的大小为B =0I /(2r ), 面元法线与磁场方向相反.有1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ 2=⎰-=aabI bdr r I 42002ln 2cos 2πμππμ 1/2=12. 半径为R 的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为,求轴线上距盘心x 处的磁感强度的大小和旋转圆盘的磁矩. 解;2. 在圆盘上取细圆环电荷元d Q =2r d r , [=Q /(R 2) ],等效电流元为d I =d Q /T =2r d r/(2/)=r d r(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与同向,大小为 d B=d Ir 2/[2(x 2+r 2)3/2]=r 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=R Rxrx r r xr rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++R xrx r x r 0232222220d 4σωμ()()⎰++R xrx r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RR x r x xr 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2)求磁距. 电流元的磁矩 d P m =d IS=r d r r 2=r 2d r ⎰=R m dr r P 03πσω=R 4/4=QR 2/488 练习八 安培环路定律三、计算题1. 如图所示,一根半径为R 的无限长载流直导体,其中电流I 沿轴向流过,并均匀分布在横截面上. 现在导体上有一半径为R 的圆柱形空腔,其轴与直导体的轴平行,两轴相距为 d . 试求空腔中任意一点的磁感强度.解:1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R 的无限长圆柱电流I 2组成.I 1=J R 2 I 2=J R2J =I/[ (R 2R2)]它们在空腔内产生的磁感强度分别为B 1=0r 1J/2 B 2=0r 2J/2方向如图.有 B x =B 2sin2B 1sin1=(J/2)(r 2sin2r 1sin1)=B y =B 2cos2+B 1cos1=(J/2)(r 2cos 2+r 1cos1)=(J/2)d所以 B = B y = 0dI/[2(R 2-R2)]方向沿y 轴正向2. 设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反. 求: (1) 载流平面之间的磁感强度; (2) 两面之外空间的磁感强度.解;2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为 B 1=J /2在平面①的上方向右,在平面①的下方向左; 电流②在空间产生的磁场为 B 2=J /2图O 2RdORI 1 I 2① ②OO Irr B B y xRRd在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=0J(2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1B2=0练习九安培力三、计算题1. 一边长a =10cm的正方形铜导线线圈(铜导线横截面积S=, 铜的密度=cm3), 放在均匀外磁场中. B竖直向上, 且B = 103T, 线圈中电流为I =10A . 线圈在重力场中求:(1) 今使线圈平面保持竖直, 则线圈所受的磁力矩为多少.(2) 假若线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.解:1. (1) P m=IS=Ia2方向垂直线圈平面.线圈平面保持竖直,即P m与B垂直.有M m=P m×BM m=P m B sin(/2)=Ia2B=×10-4m N(2) 平衡即磁力矩与重力矩等值反向M m=P m B sin(/2-)=Ia 2B cosM G= M G 1 + M G2 + M G 3= mg(a/2)sin+ mga sin+ mg(a/2)sin =2(Sa)ga sin=2Sa2g sinBn/2mgmgmg991010Ia 2B cos =2Sa 2g sintan=IB/(2Sg )==152. 如图所示,半径为R 的半圆线圈ACD 通有电流I 2, 置于电流为I 1的无限长直线电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流I 1的磁力.解:2.在圆环上取微元I 2d l = I 2R d该处磁场为B =0I 1/(2R cos )I 2d l 与B 垂直,有d F= I 2d lB sin(/2)d F=0I 1I 2d/(2cos )d F x =d F cos =0I 1I 2d/(2)d F y =d F sin =0I 1I 2sin d/(2cos )⎰-=222102πππθμd I I F x =0I 1I 2/2因对称F y =0.故 F =0I 1I 2/2 方向向右.练习十 洛仑兹力三、计算题1. 如图所示,有一无限大平面导体薄板,自下而上均匀通有电流,已知其面电流密度为i (即单位宽度上通有的电流强度)(1) 试求板外空间任一点磁感强度的大小和方向.(2) 有一质量为m ,带正电量为q 的粒子,以速度v 沿平板法线方向向外运动. 若不计粒子重力.求:(A) 带电粒子最初至少在距板什么位置处才不与大平板碰撞. (B) 需经多长时间,才能回到初始位置.. 解:1. (1)求磁场.用安培环路定律得 B =i/2iv图I 1 I 2图I 1I 2Rx y d F在面电流右边B的方向指向纸面向里,在面电流左边B的方向沿纸面向外.(2) F =q v×B=m a qvB=ma n=mv2/R带电粒子不与平板相撞的条件是粒子运行的圆形轨迹不与平板相交,即带电粒子最初位置与平板的距离应大于轨道半径.R=mv/qB= 2mv/(0iq)(3) 经一个周期时间,粒子回到初始位置.即t=T=2R/v= 4m/(0iq)2. 一带电为Q质量为m的粒子在均匀磁场中由静止开始下落,磁场的方向(z轴方向)与重力方向(y 轴方向)垂直,求粒子下落距离为y 时的速率.并讲清求解方法的理论依据.解:2. 洛伦兹力Q v×B垂直于v,不作功,不改变v的大小;重力作功.依能量守恒有mv2/2=mgy,得v=(2gy)1/2.练习十一磁场中的介质三、计算题1. 一厚度为b的无限大平板中通有一个方向的电流,平板内各点的电导率为,电场强度为E,方向如图所示,平板的相对磁导率为r1,平板两侧充满相对磁导率为r2的各向同性的均匀磁介质,试求板内外任意点的磁感应强度.解:1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l lH d=ΣI0 2LH=ΣI0(1)介质内,0<x<b/2. ΣI0=2x lJ=2x l E,有H=x E B=0r1H=0r1x E(2)介质外,x>b/2. ΣI0=b lJ=b l E,有H=b E/2 B=0r2H=0r2b E/2×EHHl111112122. 一根同轴电缆线由半径为R 1的长导线和套在它外面的半径为R 2的同轴薄导体圆筒组成,中间充满磁化率为m的各向同性均匀非铁磁绝缘介质,如图所示. 传导电流沿导线向上流去, 由圆筒向下流回,电流在截面上均匀分布. 求介质内外表面的磁化电流的大小及方向.解: 2. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅l l H d =ΣI 0在介质中(R 1r R 2),ΣI 0=I ,有2rH = I H = I /(2r )介质内的磁化强度M =mH =mI /(2r )介质内表面的磁化电流J SR 1= M R 1×n R 1= M R 1=mI /(2R 1)I SR 1=J SR 12R 1=mI (与I 同向)介质外表面的磁化电流J SR 2= M R 2×n R 2= M R 2=mI /(2R 2)I SR 2=J SR 22R 2=mI (与I 反向)练习十二 电磁感应定律 动生电动势三、计算题1. 如图所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示. 求此线框中产生的感应电动势的大小和方向.解: 1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元20cm10cm5cm 图bBla图rrrbE图OI图R 1R 21313d S =y d x =[(a+b x )l/b ]d xm=⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a bIl ln 20πμ εi =dm/d t=()dt dIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =×10-8V负号表示逆时针2. 一很长的长方形的U 形导轨,与水平面成 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的最大速度v m .解: 2. (1) 导线ab 的动生电动势为εi =lv×B ·d l=vBl sin(/2+)=vBl cos I i =εi /R = vBl cos /R方向由b 到a . 受安培力方向向右,大小为F =l(I i d l×B )= vB 2l 2cos /RF 在导轨上投影沿导轨向上,大小为F = F cos =vB 2l 2cos 2/R重力在导轨上投影沿导轨向下,大小为mg sinmg sin vB 2l 2cos 2/R=ma=m d v /d t dt=d v /[g sin vB 2l 2cos 2/(mR )]1414()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B el B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习十三 感生电动势 自感三、计算题1. 在半径为R 的圆柱形空间中存在着均匀磁场B ,B 的方向与柱的轴线平行.有一长为2R 的金属棒MN 放在磁场外且与圆柱形均匀磁场相切,切点为金属棒的中点,金属棒与磁场B 的轴线垂直.如图所示.设B 随时间的变化率d B /d t 为大于零的常量.求:棒上感应电动势的大小,并指出哪一个端点的电势高. (分别用对感生电场的积分εi =l E i·d l 和法拉第电磁感应定律εi =-d /d t 两种方法解)..解:(1) 用对感生电场的积分εi =l E i·d l 解:在棒MN 上取微元d x (R<x<R ),该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角满足tan =x/Rεi =⎰⋅NMl E i d =⎰NMi x E θcos d=()⎰-⋅RRr R r x t B R 22d d d =⎰-+⋅RR R x xt B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )RR-=R 2(d B/d t )/4因εi =>0,故N 点的电势高. (2) 用法拉第电磁感应定律εi =-d /d t 解:图×× × ×OR 2RBa2az图L× ×× ×OBMNd E × ×× ×OB1515沿半径作辅助线OM ,ON 组成三角形回路MONMεi =⎰⋅N Ml E i d =⎰⋅-MNl E i d=⎢⎣⎡⋅⎰M N l E i d +⎰⋅O M l E i d +⎥⎦⎤⋅⎰N O l E i d=-(-dmMONM/d t ) =dmMONM/d t而mMONM=⎰⋅S d S B =R 2B/4故 εi =R 2(d B/d t )/4N 点的电势高.2. 电量Q 均匀分布在半径为a ,长为L (L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度绕中心轴旋转.一半径为2a ,电阻为R 总匝数为N 的圆线圈套在圆筒上,如图所示.若圆筒转速按=(1t/t 0)的规律(,t 0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.解:2. .等效于螺线管B 内=nI=[Q /(2)]/L=Q /(2L )B 外=0=SB d S=B a 2=Q a 2 /(2 L )εi =-d /d t=-[Q a 2 /(2 L )]d /d t=Q a 2 /(2 L t 0)I i =εi /R=Q a 2 /(2 LR t 0)方向与旋转方向一致.练习十四 自感(续)互感 磁场的能量三、计算题1. 两半径为a 的长直导线平行放置,相距为d ,组成同一回路,求其单位长度导线的自感系数L 0.1616解:1. 取如图所示的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=Ir/(2a 2)+I/[2(d r )]a ≤r ≤d a B 2=0I/(2r )+0I/[2(d r )]d a ≤r ≤d B 3=I/(2r )+I (d r )/(2a 2)取窄条微元d S=l d r ,由m=⎰⋅S S B d 得ml =⎰aa r Irl 0202d πμ+()⎰-a r d rIl 002d πμ +⎰-ad ar r Il πμ2d 0+()⎰--a d ar d r Il πμ2d 0+⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =Il/(4)+[0Il/(2)]ln[d/(d a )]+[Il/(2)]ln[(d a )/a ] +[Il/(2)]ln[(d a )/a ]+[Il/(2)]ln[d/(d a )]+Il/(4)=Il/(2)+(Il/)ln(d/a )由L l =l/I ,L 0= L l /l=l/(Il ).得单位长度导线自感 L 0==0l/(2)+(l/)ln(d/a )2 内外半径为R 、r 的环形螺旋管截面为长方形,共有N 匝线圈.另有一矩形导线线圈与其套合,如图(1)所示. 其尺寸标在图(2) 所示的截面图中,求其互感系数.解:2. 设环形螺旋管电流为I , 则管内磁场大小为B =NI/(2) r ≤≤R图(1Rrh a b(21717方向垂直于截面; 管外磁场为零.取窄条微元d S=h d ,由m=⎰⋅S S B d 得m=⎰RrNIh πρρμ2d 0=0NIh ln(R/r )/(2)M =m/I ==Nh ln(R/r )/(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习一 静电场中的导体三、计算题1. 已知某静电场在xy 平面的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向. 解:. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0 E =2C i /x 3y 轴上点(x =0) E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32.如图5.6,一导体球壳A (外半径分别为R 2,R 3),同心地罩在一接地导体球B (半径为R 1)上,今给A 球带负电-Q , 求B 球所带电荷Q B 及的A 球的电势U A .静电场中的导体答案解: 2. B 球接地,有 U B =U ∞=0, U A =U BAU A =(-Q+Q B )/(4πε0R 3)U BA =[Q B /(4πε0)](1/R 2-1/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3- R 1R 3)U A =[Q/(4πε0R 3)][-1+R 1R 2/(R 1R 2+R 2R 3-R 1R 3)]=-Q (R 2-R 1)/[4πε0(R 1R 2+R 2R 3-R 1R 3)]练习二 静电场中的电介质三、计算题1. 如图6.6所示,面积均为S =0.1m 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1=3.54×10-9C, Q 2=1.77×10-9C.忽略边缘效应,求:(1) 两板共四个表面的面电荷密度 σ1, σ2, σ3, σ4;(2) 两板间的电势差V =U A -U B .-Q图5.6Q 2σ 2 σ 4解:1. 在A 板体取一点A , B 板体取一点B ,它们的电场强度是四个表面的电荷产生的,应为零,有E A =σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0E A =σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0而 S (σ1+σ2)=Q 1 S (σ3+σ4)=Q 2 有 σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0 σ1+σ2=Q 1/S σ3+σ4=Q 2/S解得 σ1=σ4=(Q 1+Q 2)/(2S )=2.66⨯10-8C/m 2σ2=-σ3=(Q 1-Q 2)/(2S )=0.89⨯10-8C/m 2 两板间的场强 E=σ2/ε0=(Q 1-Q 2)/(2ε0S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题1. 如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.解:1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l +⋅⎰ACBl E d ⎰⋅ABl E d 2=⎰⋅ACBl E d ≠0与静电场的环路定理=⋅⎰l E d l0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习三 电容 静电场的能量三、计算题1. 半径为R 1的导体球带电Q ,球外一层半径为R 2相对电容率为εr 的同心均匀介质球壳,其余全部空间为空气.如图7.1所示.求:(1)离球心距离为r 1(r 1<R 1), r 2(R 1<r 1<R 2), r 3(r 1>R 2)处的D 和E;(2)离球心r 1, r 2, r 3,处的U ;(3)介质球壳外表面的极化电荷.解:1. (1)因此电荷与介质均为球对称,电场也球对称,过场点作与金属球同心的球形高斯面,有iSq0d ∑=⋅⎰S D4πr 2D=∑q 0i当r=5cm <R 1, ∑q 0i =0得 D 1=0, E 1=0 当r=15cm(R 1<r <R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 2=Q /(4πr 2)=3.54×10-8C/m 2 E 2=Q /(4πε0εr r 2)=7.99×103N/C 当r=25cm(r >R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 3=Q /(4πr 2)=1.27×10-8C/m 2 E 3=Q /(4πε0r 2)=1.44×104N/C D 和E 的方向沿径向. (2) 当r=5cm <R 1时 U 1=⎰∞⋅rl E d ⎰=Rr r E d 1⎰++d R Rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr R )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=540V当r=15cm <R 1时U 2=⎰∞⋅rl E d ⎰+=dR rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr r )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=480V当r=25cm <R 1时U 3=⎰∞⋅rl E d ⎰∞=rr E d 3=Q/(4πε0r )=360V(3)在介质的外表面存在极化电荷,P e =ε0χE=ε0(εr -1)E σ'= P e ·nr=R 处, 介质表面法线指向球心σ'=P e ·n =P e cos π=-ε0(εr -1)Eq '=σ'S =-ε0(εr -1) [Q /(4πε0εr R 2)]4πR 2=-(εr -1)Q /εr =-0.8×10-8Cr=R+d 处, 介质表面法线向外σ'=P e ·n =P e cos0=ε0(εr -1)Eq '=σ'S =ε0(εr -1)[Q /(4πε0εr (R+d )2]4π(R +d )2=(εr -1)Q /εr =0.8×10-8C2.两个相距很远可看作孤立的导体球,半径均为10cm ,分别充电至200V 和400V ,然后用一根细导线连接两球,使之达到等电势. 计算变为等势体的过程中,静电力所作的功. 解;2.球形电容器 C =4πε0RQ 1=C 1V 1= 4πε0RV 1 Q 2=C 2V 2= 4πε0RV 2W 0=C 1V 12/2+C 2V 22/2=2πε0R (V 12+V 22)两导体相连后 C =C 1+C 2=8πε0RQ=Q 1+Q 2= C 1V 1+C 2V 2=4πε0R (V 1+V 2)W=Q 2/(2C )= [4πε0R (V 1+V 2)]2/(16πε0R )=πε0R (V 1+V 2)2静电力作功 A=W 0-W=2πε0R (V 12+V 22)-πε0R (V 1+V 2)2=πε0R (V 1-V 2)2=1.11×10-7J练习六 磁感应强度 毕奥—萨伐尔定律三、计算题1. 如图10.7所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO '上方距导体薄片为a 的磁感强度.解:1.取宽为d x 的无限长电流元d I=I d x/(2a ) d B=μ0d I/(2πr ) =μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r )=μ0I d x/(4πr 2)= μ0I d x/[4π(x 2+a 2)] d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==aax x a x xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )aa-=μ0I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[μ0I/(8πa )]ln(x 2+a 2)a a-=02. 如图10.8所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.解:2. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ =(2IN/π)d θd B=μ0d Ir 2/[2(r 2+x 2)3/2]图10.8xrr=R sin θ x=R cos θd B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B=μ0NI/(4R )练习七 毕奥—萨伐尔定律(续) 磁场的高斯定理三、计算题1.在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路, 回路旋转方向如图11.6所示, 两个回路与长直载流导线在同一平面, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. 解: 1.取窄条面元d S =b d r ,面元上磁场的大小为B =μ0I /(2πr ), 面元法线与磁场方向相反.有Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ Φ2=⎰-=aabI bdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 半径为R 的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为ω,求轴线上距盘心x 处的磁感强度的大小和旋转圆盘的磁矩.解;2. 在圆盘上取细圆环电荷元d Q =σ2πr d r , [σ=Q /(πR 2) ],等效电流元为d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为 d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=R Rxrx r r xr rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++R xrx r x r 0232222220d 4σωμ-()()⎰++R xrx r x 023222220d 4σωμ图11.6=⎪⎪⎭⎫⎝⎛+++RR x r x x r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2)求磁距. 电流元的磁矩 d P m =d IS=σωr d r πr 2=πσωr 2d r⎰=Rm dr r P 03πσω=πσωR 4/4=ωQR 2/4练习八 安培环路定律三、计算题1. 如图12.5所示,一根半径为R 的无限长载流直导体,其中电流I 沿轴向流过,并均匀分布在横截面上. 现在导体上有一半径为R '的圆柱形空腔,其轴与直导体的轴平行,两轴相距为 d . 试求空腔中任意一点的磁感强度.解:1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R '的无限长圆柱电流I 2组成. I 1=J πR 2 I 2=-J πR '2 J =I/[π (R 2-R '2)] 它们在空腔产生的磁感强度分别为 B 1=μ0r 1J/2 B 2=μ0r 2J/2 方向如图.有B x =B 2sin θ2-B 1sin θ1=(μ0J/2)(r 2sin θ2-r 1sin θ1)=0 B y =B 2cos θ2+B 1cos θ1=(μ0J/2)(r 2cos θ2+r 1cos θ1)=(μ0J/2)d 所以 B = B y = μ0dI/[2π(R 2-R '2)] 方向沿y 轴正向2. 设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反. 求: (1) 载流平面之间的磁感强度; (2) 两面之外空间的磁感强度.解;2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为 B 1=μ0J /2在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为 B 2=μ0J /2 在平面②的上方向左,在平面②的下方向右.图12.5I 1 I 2①②(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=μ0J(2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1-B2=0练习九安培力三、计算题1. 一边长a =10cm的正方形铜导线线圈(铜导线横截面积S=2.00mm2, 铜的密度ρ=8.90g/cm3), 放在均匀外磁场中. B竖直向上, 且B = 9.40⨯10-3T, 线圈中电流为I =10A . 线圈在重力场中求:(1) 今使线圈平面保持竖直, 则线圈所受的磁力矩为多少.(2) 假若线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.解:1. (1) P m=IS=Ia2方向垂直线圈平面.线圈平面保持竖直,即P m与B垂直.有M m=P m×BM m=P m B sin(π/2)=Ia2B=9.4×10-4m⋅N(2) 平衡即磁力矩与重力矩等值反向M m=P m B sin(π/2-θ)=Ia2B cosθM G= M G1 + M G2 + M G3= mg(a/2)sinθ+ mga sinθ+ mg(a/2)sinθ=2(ρSa)ga sinθ=2ρSa2g sinθIa2B cosθ=2ρSa2g sinθtanθ=IB/(2ρSg)=0.2694θ=15︒2. 如图13.5所示,半径为R的半圆线圈ACD通有电流I2, 置于电流为I1的无限长直线电流的磁场中, 直线电流I1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流I1的磁力.解:2.在圆环上取微元I2d l= I2R dθI图13.5该处磁场为B =μ0I 1/(2πR cos θ)I 2d l 与B 垂直,有d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ) d F x =d F cos θ=μ0I 1I 2d θ /(2π) d F y =d F sin θ=μ0I 1I 2sin θd θ /(2πcos θ)⎰-=22102πππθμd I I F x =μ0I 1I 2/2因对称F y =0.故 F =μ0I 1I 2/2 方向向右.练习十 洛仑兹力三、计算题1. 如图14.6所示,有一无限大平面导体薄板,自下而上均匀通有电流,已知其面电流密度为i (即单位宽度上通有的电流强度)(1) 试求板外空间任一点磁感强度的大小和方向.(2) 有一质量为m ,带正电量为q 的粒子,以速度v 沿平板法线方向向外运动. 若不计粒子重力.求:(A) 带电粒子最初至少在距板什么位置处才不与大平板碰撞. (B) 需经多长时间,才能回到初始位置.. 解:1. (1)求磁场.用安培环路定律得 B =μ0i/2在面电流右边B 的方向指向纸面向里,在面电流左边B 的方向沿纸面向外. (2) F =q v×B=m a qvB=ma n =mv 2/R带电粒子不与平板相撞的条件是粒子运行的圆形轨迹不与平板相交,即带电粒子最初位置与平板的距离应大于轨道半径.R =mv/qB= 2mv/(μ0iq )(3) 经一个周期时间,粒子回到初始位置.即 t =T=2πR/v= 4πm/(μ0iq )2. 一带电为Q 质量为m 的粒子在均匀磁场中由静止开始下落,磁场的方向(z 轴方向)与重力方向(y 轴方向)垂直,求粒子下落距离为y 时的速率.并讲清求解方法的理论依据.解:2. 洛伦兹力Q v ×B 垂直于v ,不作功,不改变v 的大小;重力作功.依能量守恒有 mv 2/2=mgy ,得 v =(2gy )1/2.练习十一 磁场中的介质iv•图14.6三、计算题1. 一厚度为b的无限大平板有一个方向的电流,平板各点的电导率为γ,电场强度为E,方向如图15.6所示,平板的相对磁导率为μr1,平板两侧充满相对磁导率为μr2的各向同性的均匀磁介质,试求板外任意点的磁感应强度.解:1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l lH d=ΣI02∆LH=ΣI0(1)介质,0<x<b/2. ΣI0=2x∆lJ=2x∆lγE,有H=xγE B=μ0μr1H=μ0μr1xγE(2)介质外,|x|>b/2. ΣI0=b∆lJ=b∆lγE,有H=bγE/2B=μ0μr2H=μ0μr2bγE/22. 一根同轴电缆线由半径为R1的长导线和套在它外面的半径为R2的同轴薄导体圆筒组成,中间充满磁化率为χm的各向同性均匀非铁磁绝缘介质,如图15.7所示. 传导电流沿导线向上流去, 由圆筒向下流回,电流在截面上均匀分布. 求介质外表面的磁化电流的大小及方向.解:2. 因磁场柱对称取同轴的圆形安培环路,有⎰⋅l lH d=ΣI0在介质中(R1<r<R2),ΣI0=I,有2πrH= I H= I/(2πr )介质的磁化强度M=χm H =χm I/(2πr)介质表面的磁化电流J SR1=|M R1×n R1|=| M R1|=χm I/(2πR1)I SR1=J SR1⋅2πR1=χm I(与I同向)介质外表面的磁化电流J SR2=|M R2×n R2|=| M R2|=χm I/(2πR2)I SR2=J SR2⋅2πR2=χm I(与I反向)练习十二电磁感应定律动生电动势三、计算题1. 如图17.8所示,长直导线AC中的电流I沿导线向上,并以d I /d t = 2 A/s的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示.求此线框中产生图15.7的感应电动势的大小和方向.解: 1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元 d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a bIl ln 20πμ εi =-d Φm /d t=()dt dIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ=-5.18×10-8V负号表示逆时针2. 一很长的长方形的U 形导轨,与水平面成θ 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图17.9所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的最大速度v m .解:2. (1) 导线ab 的动生电动势为εi = ⎰l v×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/RF 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B e l B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .页脚练习十三 感生电动势 自感三、计算题1. 在半径为R 的圆柱形空间中存在着均匀磁场B ,B 的方向与柱的轴线平行.有一长为2R 的金属棒MN 放在磁场外且与圆柱形均匀磁场相切,切点为金属棒的中点,金属棒与磁场B 的轴线垂直.如图18.6所示.设B 随时间的变化率d B /d t 为大于零的常量.求:棒上感应电动势的大小,并指出哪一个端点的电势高.(分别用对感生电场的积分εi =⎰l E i ·d l 和法拉第电磁感应定律εi =-d Φ/d t 两种方法解). .解:(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ), 该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/R εi =⎰⋅NMl E i d =⎰NMi x E θcos d=()⎰-⋅RRr R r x t B R 22d d d =⎰-+⋅RR R x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R-=πR 2(d B/d t )/4因εi =>0,故N 点的电势高. (2) 用法拉第电磁感应定律εi =-d Φ/d t 解: 沿半径作辅助线OM ,ON 组成三角形回路MONM=⎰⋅NMl E i d =⎰⋅-MNl E i dεi=-⎢⎣⎡⋅⎰MNl E i d +⎰⋅OM l E i d +⎥⎦⎤⋅⎰NO l E i d=-(-d ΦmMONM /d t ) =d ΦmMONM /d t而 ΦmMONM =⎰⋅Sd S B =πR 2B/4故 εi =πR 2(d B/d t )/4 N 点的电势高.图18.6图18.7页脚2. 电量Q 均匀分布在半径为a ,长为L (L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度ω绕中心轴旋转.一半径为2a ,电阻为R 总匝数为N 的圆线圈套在圆筒上,如图18.7所示.若圆筒转速按ω=ω0(1-t/t 0)的规律(ω0,t 0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向. 解:2. .等效于螺线管B=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω /d t=μ0ω 0Q a 2 /(2 L t 0)I i =εi /R=μ0ω 0Q a 2 /(2 LR t 0)方向与旋转方向一致.练习十四 自感(续)互感 磁场的能量三、计算题1. 两半径为a 的长直导线平行放置,相距为d ,组成同一回路,求其单位长度导线的自感系数L 0.解:1. 取如图所示的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=μ0Ir/(2πa 2)+ μ0I/[2π(d -r )] a ≤r ≤d -a B 2=μ0I/(2πr )+μ0I/[2π(d -r )] d -a ≤r ≤d B 3=μ0I/(2πr )+ μ0I (d -r )/(2πa 2) 取窄条微元d S=l d r ,由Φm =⎰⋅SS B d 得Φml =⎰aa r Irl 0202d πμ+()⎰-a r d r Il 002d πμ +⎰-ad ar r Il πμ2d 0+()⎰--a d ar d rIl πμ2d 0 +⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d -a )]+[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[(d -a )/a ]+[μ0Il/(2π)]ln[d/(d -a )]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a )由L l =Φl /I ,L 0= L l /l=Φl /(Il ).得单位长度导线自感L 0==μ0l/(2π)+(μ0l/π)ln(d/a )图19.4(1)页脚2 外半径为R 、r 的环形螺旋管截面为长方形,共有N 匝线圈.另有一矩形导线线圈与其套合,如图19.4(1)所示. 其尺寸标在图19.4(2) 所示的截面图中,求其互感系数.解:2. 设环形螺旋管电流为I , 则管磁场大小为B =μ0NI/(2πρ) r ≤ρ≤R方向垂直于截面; 管外磁场为零.取窄条微元d S=h d ρ,由Φm =⎰⋅SS B d 得Φm =⎰RrNIh πρρμ2d 0=μ0NIh ln(R/r )/(2π) M =Φm /I ==μ0Nh ln(R/r )/(2π)。

相关文档
最新文档