数字图像处理实验报告 (2)

合集下载

数字图像处理实验实验报告 实验二

数字图像处理实验实验报告 实验二

数字图像处理实验实验报告(实验一)一、实验目的:1、直方图显示2、计算并绘制图像直方图3、直方图均衡化二.程序脚本clear all;RGB=imread('me.jpg');figure;imshow(RGB);title('图1 彩色图');%========================================================== I=rgb2gray(RGB);figure;imshow(I);title('图2 灰度图');%========================================================= figure;imhist(I);title('灰度直方图');%========================================================= hi=imhist(I);j=1;%为使画出的直方图更好看,在此进行了抽样for(i=1:256)if(mod(i,10)==1)h(j)=hi(i);j=j+1;endendn=0:10:255;figure;stem(n,h);axis([0 255 0 2500]);title('图3.1 stem显示直方图');figure;bar(n,h);axis([0 255 0 2500]);title('图3.2 bar显示直方图');figure;plot(n,h);axis([0 255 0 2500]);title('图3.3 plot显示直方图');%========================================================= I=rgb2gray(RGB);figure;subplot(3,2,1);imshow(I);title('图4.1 原始灰度图');subplot(3,2,2);imhist(I);title('图4.2 原始灰度直方图');%=============================J1=imadjust(I);subplot(3,2,3);imshow(J1);title('调整对比度以后的图');subplot(3,2,4);imhist(J1);title('调整对比度以后的灰度直方图');%=================================J2=histeq(I);subplot(3,2,5);imshow(J2);title('均衡化以后的的图');subplot(3,2,6);imhist(J2);title('均衡化以后的灰度直方图');三.实验结果图1 彩色图图2 灰度图010002000灰度直方图10020010020005001000150020002500图3.1 stem 显示直方图10020005001000150020002500图3.2 bar 显示直方图10020005001000150020002500图3.3 plot 显示直方图图4.1 原始灰度图10002000图4.2 原始灰度直方图0100200调整对比度以后的图010002000调整对比度以后的灰度直方图0100200均衡化以后的的图02000均衡化以后的灰度直方图100200。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告数字图像处理实验报告1一. 实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:具体组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pixels DIB图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图, 用函数创建兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数 ,一般放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或打印机上显示DIB. 在显示时不进行缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。

数字图像处理实验报告

数字图像处理实验报告

实 验 内 容
3-2 根据直方图定义,通过结构化编程方式给出 3-1)中灰度图像像素点统计形式的直方图,并与利用 函数调用方式获得的直方图在两个不同窗口中进行比较,两窗口图像名称分别为”编程直方图”、”函 数调用直方图”; 参考函数 imread、size、bar、imhist、image I=imread('panda.jpg'); B=rgb2gray(I); A=uint8(B); [m n]=size(B); s=zeros(m,n); for i=1:m for j=1:n for rank=0:255 if B(i,j)==rank s(rank+1)=s(rank+1)+1; end
在水平和垂直方 列的方式同时显
I=imread('panda.jpg');
subplot(1,3,1);imshow(I)
subplot(1,3,2);imshow(I)
colorbar
subplot(1,3,3);imshow(I)
colorbar('horizontal')
实 验 1)、实验采用的原始图片要求是包含自己头像的照片,图片大小控制在 640×480 之内; 要 2)、实验中的当前工作目录采用 MATLAB 目录下的 work 文件夹。 求
学号
12109940423 指导教师
实验地点
1C06-329
实验成绩
图像灰度统计特性及其相关变换
12 级 1 班 杜云明
实 理解直方图的形成原理,掌握绘制灰度直方图的方法;熟悉图像灰度直方图的变换及直方图均衡化方 验 法;理解图像灰度变换处理在图像增强中的作用;熟悉图像灰度分布统计与图像视觉质量之间的关系; 目 通过工具箱函数调用和结构化编程两种方式实现图像的相关处理,在加深理解基本原理的同时,提高 的 编程实践的技巧和能力。

数字图像处理 实验报告(完整版)【精选文档】

数字图像处理 实验报告(完整版)【精选文档】

数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily。

tif,存入一个数组中;2.利用whos 命令提取该读入图像flower。

tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:〉>I=imread('lily。

tif’)>〉whos I>〉imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily。

jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0—100.6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily。

bmp。

7.用imread()读入图像Sunset。

jpg和Winter。

jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter。

jpg显示出来,观察两幅图像的质量。

其中9的实验结果如下图:源代码:4~6(接上面两个)〉>I=imread('lily.tif’)>> imfinfo ’lily。

tif’;〉> imwrite(I,'lily.jpg’,’quality’,20);〉> imwrite(I,’lily。

bmp’);7~9 〉>I=imread('Sunset。

jpg');>>J=imread('Winter。

jpg')>>imfinfo 'Sunset。

jpg'>> imfinfo ’Winter。

图像处理实验报告

图像处理实验报告

数字图像处理实验报告姓名:学号:专业:[2015.6.25]一、彩色图BMP图像转灰度图1.实验要求打开一幅*.bmp图像, 并将彩色图像变灰度图像, 并读取图像数据。

2.实验内容(1)一般BMP图像的结构一般的bmp文件的结构可分为三部分: 表头、调色板和图像数据。

①BMP文件头(14字节) ,文件的第0字节到第13字节为BMP图像的文件头。

BMP文件头数据结构含有BMP文件的类型、文件大小和位图起始位置等信息。

其结构定义如下:Typedef struct tagBITMAPFILEHEADER {WORD bfType; // 位图文件的类型, 必须为BM(0-1字节)DWORD bfSize; // 位图文件的大小, 以字节为单位(2-5字节)WORD bfReserved1; // 位图文件保留字, 必须为0(6-7字节)WORD bfReserved2; // 位图文件保留字, 必须为0(8-9字节)DWORD bfOffBits; //位图阵列的偏移量, (10-13字节)// 位图阵列的偏移量, 以字节为单位, 说明从文件头开始到实际图像数据之间的字节偏移量} BITMAPFILEHEADER;②BMP信息头位图信息头(40字节), 文件的第14个字节到第53个字节为BMP图像的信息头, 位图信息头数据用于说明位图的尺寸等信息。

typedef struct tagBITMAPINFOHEADER{DWORD biSize; // 本结构所占用字节数(14-17字节)LONG biWidth; // 位图的宽度, 以像素为单位(18-21字节)LONG biHeight; // 位图的高度, 以像素为单位(22-25字节)WORD biPlanes; // 目标设备的级别, 值为1(26-27字节)WORD biBitCount; // 每个像素所需的位数, 必须是1(双色), 4(16色), 8(256色)或24(真彩色)之一(28-29字节)DWORD biCompression; // 位图压缩类型, 必须是0(不压缩), 1(BI_RLE8压缩类型)或2(BI_RLE4压缩类型)之一(30-33字节)DWORD biSizeImage; // 位图的大小, 以字节为单位(34-37字节)LONG biXPelsPerMeter; // 位图水平分辨率, 每米像素数(38-41字节)LONG biYPelsPerMeter; // 位图垂直分辨率, 每米像素数(42-45字节)DWORD biClrUsed; // 位图实际使用的颜色表中的颜色数(46-49字节)DWORD biClrImportant; // 位图显示过程中重要的颜色数(50-53字节)} BITMAPINFOHEADER;③调色板调色板用于说明位图中的颜色, 它有若干个表项, 每一个表项是一个RGBQUAD类型的结构, 定义一种颜色。

数字图像处理实验报告.doc

数字图像处理实验报告.doc

数字图像处理试验报告实验二:数字图像的空间滤波和频域滤波姓名: XX学号: 2XXXXXXX实验日期:2017年4月26日1. 实验目的1. 掌握图像滤波的基本定义及目的。

2. 理解空间域滤波的基本原理及方法。

3. 掌握进行图像的空域滤波的方法。

4. 掌握傅立叶变换及逆变换的基本原理方法。

5. 理解频域滤波的基本原理及方法。

6. 掌握进行图像的频域滤波的方法。

2. 实验内容与要求1. 平滑空间滤波:1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。

2)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。

3)使用函数 imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’ replicate ’、’ symmetric ’、’ circular ’)进行低通滤波,显示处理后的图像。

4) 运用 for 循环,将加有椒盐噪声的图像进行10 次, 20 次均值滤波,查看其特点, 显示均值处理后的图像(提示 : 利用 fspecial 函数的’ average ’类型生成均值滤波器)。

5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

6)自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。

2.锐化空间滤波1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 81;1,1, 1]对其进行滤波。

2) 编写函数 w = genlaplacian(n) ,自动产生任一奇数尺寸n 的拉普拉斯算子,如 5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]3) 分别采用5×5,9×9,15×15 和 25×25 大小的拉普拉斯算子对blurry_moon.tif进行锐化滤波,并利用式 g(x, y)2 f (x, y) 完成图像的锐化增强,观察其有何f (x, y)不同,要求在同一窗口中显示。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理试验报告实验二:数字图像的空间滤波与频域滤波姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日1、实验目的1、掌握图像滤波的基本定义及目的。

2、理解空间域滤波的基本原理及方法。

3、掌握进行图像的空域滤波的方法。

4、掌握傅立叶变换及逆变换的基本原理方法。

5、理解频域滤波的基本原理及方法。

6、掌握进行图像的频域滤波的方法。

2、实验内容与要求1、平滑空间滤波:1) 读出一幅图像,给这幅图像分别加入椒盐噪声与高斯噪声后并与前一张图显示在同一图像窗口中。

2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果, 要求在同一窗口中显示。

3) 使用函数 imfilter 时, 分别采用不同的填充方法( 或边界选项, 如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。

4) 运用for 循环,将加有椒盐噪声的图像进行10 次,20 次均值滤波,查瞧其特点, 显示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。

5) 对加入椒盐噪声的图像分别采用均值滤波法,与中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。

2、锐化空间滤波1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波。

2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]3) 分别采用5×5,9×9,15×15与25×25大小的拉普拉斯算子对blurry_moon、tiff (x, y) -∇2 f (x, y) 完成图像的锐化增强,观察其有何进行锐化滤波,并利用式g(x, y) =不同,要求在同一窗口中显示。

遥感数字图像处理实验报告(二)

遥感数字图像处理实验报告(二)

遥感数字图像处理实验报告(二)姓名:学号:班级:指导老师:1)项目名称:熟悉遥感软件、图像预处理2)实验目的:1. 熟悉遥感软件的使用,了解图像大小、投影、直方图等信息查看方法,了解相关软件的各项功能;2. 掌握遥感图像的几何精校正方法及步骤。

3)实验原理:几何校正就是将图像数据投影平面上,使其符合地图投影系统的过程。

而将地图坐标系统赋予到图像的过程,称为地理参考。

由于所有的地图投影系统都尊从于一定的地图坐标系统,所以几何校正的过程包含了地理参考过程。

对图像进行几何校正就是赋予其完整的地图坐标系统。

4)数据来源及数据基本信息:(下载源、波段数、对应的波长、分辨率、投影、地区)待校正图像来自Google Earth 2004年9月15日的影像,大致位置在东经116度20分,北纬33度57分,使用的是 DIGITAL GLOBLE 的QUICK BIRD卫星影像的0.6米分辨率的航拍照片,三波段,无投影。

待校正图像。

参考图像数据来自国际科学数据服务平台,Landsat5 2010年9月18日的图像,图像共7个波段,波段1-5和波段7的空间分辨率为30米,6波段(热红外波段)的空间分辨率为120米。

对应的波段、波长、分辨率、主要作用如表:图像采用的投影为WGS 84投影,条带号为122,行编号为36,覆盖豫东、皖北、苏北、鲁西四省交界地区。

5)实验过程:1)多波段合成:对参考图像数据进行波段组合2)打开图像,用两个Viewer窗口分别打开待校正图像和参考图像,查看其投影信息:待校正图像投影信息(无投影)参考图像投影信息(有投影)几何校正:————弹出图1窗口,点击Slecte Vewer——点击Viewer1,弹出图2窗口图1图4图3图2选择Polynomial多项式模型,OK——Polynomial Order选1,Map Units 选Meters,Apply, Close,弹出图3窗口,OK——点击Viewer窗口,选择要参考图像,弹出图4,点击OK,进入采点界面,开始采集地面控制点图5 图6图7采点完成后点击Geo Correction Tools 如(图5)中图标,弹出图6 对话框,输入保存路径,保存校正后的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理试验报告实验二:数字图像得空间滤波与频域滤波姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26日1、实验目得1、掌握图像滤波得基本定义及目得.2、ﻩ理解空间域滤波得基本原理及方法。

3、掌握进行图像得空域滤波得方法。

4、ﻩ掌握傅立叶变换及逆变换得基本原理方法。

5、ﻩ理解频域滤波得基本原理及方法。

6、掌握进行图像得频域滤波得方法。

2、实验内容与要求1、ﻩ平滑空间滤波:1) 读出一幅图像,给这幅图像分别加入椒盐噪声与高斯噪声后并与前一张图显示在同一图像窗口中。

2)ﻩ对加入噪声图像选用不同得平滑(低通)模板做运算,对比不同模板所形成得效果, 要求在同一窗口中显示。

3) 使用函数 imfilter时,分别采用不同得填充方法(或边界选项,如零填充、’replicate'、'symmetric’、’circular')进行低通滤波,显示处理后得图像.4)运用for循环,将加有椒盐噪声得图像进行10 次,20 次均值滤波,查瞧其特点,显示均值处理后得图像(提示:利用fspecial函数得’average’类型生成均值滤波器)。

5)ﻩ对加入椒盐噪声得图像分别采用均值滤波法,与中值滤波法对有噪声得图像做处理,要求在同一窗口中显示结果。

6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后得图像。

2、锐化空间滤波1)ﻩ读出一幅图像,采用3×3得拉普拉斯算子 w = [ 1, 1, 1;1– 8 1; 1, 1, 1]对其进行滤波。

2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 得拉普拉斯算子,如 5×5得拉普拉斯算子w =[ 1 1 1 1 11 1 1 111 1 —24 11 1 1 1 11 1 1 1 11]3)ﻩ分别采用5×5,9×9,15×15与25×25大小得拉普拉斯算子对blurry_moon、tif进行锐化滤波,并利用式g(x, y) = f (x, y) -∇2 f (x, y) 完成图像得锐化增强,观察其有何不同,要求在同一窗口中显示.4) 采用不同得梯度算子对该幅图像进行锐化滤波,并比较其效果.5)自己设计锐化空间滤波器,并将其对噪声图像进行处理,显示处理后得图像;3、傅立叶变换1)读出一幅图像,对其进行快速傅立叶变换,分别显示其幅度图像与相位图像。

仅对相位部分进行傅立叶反变换后查瞧结果图像.2) 仅对幅度部分进行傅立叶反变换后查瞧结果图像。

3) 将图像得傅立叶变换 F 置为其共轭后进行反变换,比较新生成图像与原始图像得差异。

4、平滑频域滤波1)ﻩ设计理想低通滤波器、巴特沃斯低通滤波器与高斯低通滤波器,截至频率自选,分别给出各种滤波器得透视图.2)读出一幅图像,分别采用理想低通滤波器、巴特沃斯低通滤波器与高斯低通滤波器对其进行滤波(截至频率自选),再做反变换,观察不同得截止频率下采用不同低通滤波器得到得图像与原图像得区别,特别注意振铃效应。

(提示:1)在频率域滤波同样要注意到填充问题;2)注意到(-1)x+y;)5、ﻩ锐化频域滤波1) 设计理想高通滤波器、巴特沃斯高通滤波器与高斯高通滤波器,截至频率自选,分别给出各种滤波器得透视图。

2)读出一幅图像,分别采用理想高通滤波器、巴特沃斯高通滤波器与高斯高通滤波器对其进行滤波(截至频率自选),再做反变换,观察不同得截止频率下采用不同高通滤波器得到得图像与原图像得区别。

3、实验具体实现1、平滑空间滤波:(1)、读出一幅图像,给这幅图像分别加入椒盐噪声与高斯噪声后并与前一张图显示在同一图像窗口中.img=imread('lena、png')figure,subplot(1,3,1); imshow(img);title('原始图像'); img2=imnoise(img,'salt &pepper',0、02); subplot(1,3,2);imshow(img2); title('椒盐噪声图像');img3=imnoise(img,'gaussian',0、02); subplot(1,3,3),imshow(img3);title('高斯噪声图像');(2)、对加入噪声图像选用不同得平滑(低通)模板做运算,对比不同模板所形成得效果,要求在同一窗口中显示。

平滑滤波就是低频增强得空间域滤波技术。

它得目得有两个,一就是模糊,二就是消除噪声。

将空间域低通滤波按线性与非线性特点有:线性、非线性平滑滤波器,线性平滑滤波器包括均值滤波器,非线性得平滑滤波器有最大值滤波器,中值滤波器,最小值滤波器.代码如下:img=imread(’lena、png’) img=rgb2gray(img);figure,subplot(1,3,1); imshow(img);title(’原始图像'); img2=imnoise(img,’salt& pepper’,0、02);subplot(1,3,2);imshow(img2);title('椒盐噪声图像'); img3=imnoise(img,'gaussian’,0、02);subplot(1,3,3),imshow(img3); title(’高斯噪声图像');%对椒盐噪声图像进行滤波处理h=fspecial(’average’,3); I1=filter2(h,img2)/255; I2=medfilt2(img2,[33]);figure,subplot(2,2,1),imshow(img),title('原图像'); subplot(2,2,2),imshow(img2),title(’椒盐噪声图’);subplot(2,2,3),imshow(I1),title(’3*3均值滤波图’); subplot(2,2,4),imshow(I2),title('3*3 中值滤波图');%对高斯噪声图像进行滤波处理 G1=filter2(h,img3)/255; G2=medfilt2(img3,[3 3]);figure,subplot(2,2,1),imshow(img),title(’原图像’);subplot(2,2,2),imshow(img3),title('高斯噪声图’); subplot(2,2,3),imshow(G1),title(’3*3 均值滤波图'); subplot(2,2,4),imshow(G2),title(’3*3 中值滤波图');(3)、使用函数imfilter 时,分别采用不同得填充方法(或边界选项,如零填充、'replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后得图像。

g = imfilter(f, w, filtering_mode, boundary_options, size_options),其中,f 为输入图像,w 为滤波掩模,g 为滤波后图像。

h=fspecial('motion',50,45); %创建一个运动模糊滤波器filteredimg=imfilter(img,h);boundaryReplicate=imfilter(img,h,'replicate');boundary0=imfilter(img,h,0);boundarysymmetric=imfilter(img,h,'symmetric');boundarycircular=imfilter(img,h,'circular');figure,subplot(3,2,1),imshow(img),title('Original Image');subplot(3,2,2),imshow(filteredimg),title('Motion Blurred Image');subplot(3,2,3),imshow(boundaryReplicate),title('Replicate');subplot(3,2,4),imshow(boundary0),title('0-Padding');subplot(3,2,5),imshow(boundarysymmetric),title('symmetric');subplot(3,2,6),imshow(boundarycircular),title('circular');实验结果如下:(4)、运用for循环,将加有椒盐噪声得图像进行10次,20 次均值滤波,查瞧其特点,显示均值处理后得图像(提示:利用fspecial 函数得’average'类型生成均值滤波器)。

代码如下:h=fspecial('average');实验结果:(5)、对加入椒盐噪声得图像分别采用均值滤波法,与中值滤波法对有噪声得图像做处理,要求在同一窗口中显示结果。

实验结果为:(6)、自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后得图像。

代码如下:[m n]=size(img2);figure,subplot(1,2,1),imshow(img2);s=zeros(1,9);代码如下:h1=fspecial('average');J=imfilter(img2,h1);J2=medfilt2(img2);figure,subplot(1,3,1),imshow(img2),title('salt & pepper Noise');subplot(1,3,2),imshow(J),title('Averaging Filtering');subplot(1,3,3),imshow(J2),title('Median Filtering');for i=1:10J1=imfilter(img2,h);endfor j=1:20J2=imfilter(img2,h);endfigure,subplot(1,3,1),imshow(img2),title('salt & pepper Noise');subplot(1,3,2),imshow(J1),title('10 Average Filtering');subplot(1,3,3),imshow(J2),title('20 Average Filtering');for i=2:1:m-1for j=2:1:n-1h=1;for p=i-1:1:i+1for q=j-1:1:j+1s(h)=img2(p,q);h=h+1;endends=sort(s);I(i,j)=s(5);endendsubplot(1,2,2),imshow(I);实验结果:2、锐化空间滤波(1)读出一幅图像,采用3×3得拉普拉斯算子w = [ 1, 1, 1; 1– 8 1; 1, 1, 1]对其进行滤波.代码如下:img=imread('lena、png');img=rgb2gray(img);img=im2double(img);w=[1,1,1;1,-8,1;1,1,1]k=conv2(img,w,'same');imshow(k);实验结果为:(2)编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 得拉普拉斯算子,如5×5得拉普拉斯算子w = [ 1 1 11 11 11 1 111—24 1 11 1 1 1 1代码如下:num=input('please enter anynum:');n=num;W=ones(n,n); fori=1:nforj=1:nif(i==fix(n/2)+1 && j==fix(n/2)+1)W(i,j)=n*n—1;endendenddisplay (W);代码运行结果为:进行锐化滤波,并利用式完成图像得锐化增强,观察其有何不同,要求在同一窗口中显示。

相关文档
最新文档