高压输电线路铁塔结构设计

合集下载

110kv输电线路铁塔标准化设计

110kv输电线路铁塔标准化设计

110kv输电线路铁塔标准化设计随着电力行业的迅速发展和电力供应的不断增长,输电线路也成为了电力传输的重要环节。

而输电线路铁塔作为输电线路的支撑组件,起到了稳定输电线路的重要作用。

为了保证输电线路的安全、稳定和高效传输,需要对输电线路铁塔进行标准化设计。

首先,110kV输电线路铁塔标准化设计要考虑输电线路的特点。

110kV输电线路通常用于中高压的电力传输,一般存在于城市或乡村,所以铁塔设计要适应不同地形和条件的复杂情况。

设计要考虑到铁塔的受力分析和结构强度计算,确保其能够在恶劣环境下保持结构的稳定性。

其次,110kV输电线路铁塔标准化设计要考虑材料的选择。

为了保证铁塔的耐候性和抗腐蚀性,常常采用热浸镀锌钢材作为主要材料。

热浸镀锌钢材具有良好的抗腐蚀性和耐候性能,能够有效延长铁塔的使用寿命。

同时,设计中还要考虑到材料的成本和可获得性,以保证设计的可实施性和经济性。

第三,110kV输电线路铁塔标准化设计要考虑线路的电流负荷和绝缘距离。

铁塔的高度和横担的布置要根据线路的电流负荷来确定,以确保输电线路的安全运行。

另外,设计还要考虑到绝缘子的选择和布置,以保证绝缘距离符合电力传输的安全要求。

此外,110kV输电线路铁塔标准化设计还要考虑对环境的影响。

铁塔的标准化设计应该考虑到对生态环境的保护和对社会的适应性。

例如,在设计中可以考虑铁塔的外观美观性和与周围环境的协调性,以减少对风景区和居民区的影响。

最后,标准化设计还要考虑到施工和维护的便捷性。

铁塔的标准化设计应该考虑到施工的工艺和工序,以提高施工的效率和质量。

另外,还需要考虑到铁塔的日常检修和维护的方便性,以确保铁塔的安全运行。

总之,110kV输电线路铁塔的标准化设计是电力行业发展的重要组成部分。

通过合理的设计,能够保证输电线路的安全、稳定和高效传输,为电力供应提供坚实的支撑。

未来随着技术的不断进步和经验的积累,铁塔的标准化设计还将继续完善,为电力行业的发展做出更大的贡献。

高压输电线路铁塔结构设计分析

高压输电线路铁塔结构设计分析

高压输电线路铁塔结构设计分析发表时间:2016-04-22T11:33:29.540Z 来源:《电力设备》2015年第10期供稿作者:卢燕坤[导读] 广西泰能工程咨询有限公司笔者对高压输电线路铁塔进行了简要的概述,随后分析了高压输电线路铁塔的设计结构。

(广西泰能工程咨询有限公司)摘要:高压输电线路中,铁塔是其中最常见的一种输电设施,起到了支撑还有保护高压输电线的作用。

文中,笔者对高压输电线路铁塔进行了简要的概述,随后分析了高压输电线路铁塔的设计结构。

关键词:高压输电线路铁塔结构设计基本原则要点引言:在现代电力系统中,高压输电线铁塔起到了非常重要的作用。

它是架起和保护高压输电线路的重要组成部分,其设计结构是否合理,直接关系到电力系统运行的安全与发展。

目前我国电力事业发展迅速,对铁塔的设计结构也有了更高的要求。

一高压输电线路铁塔概述在我国的经济建设中,远距离的电力输送主要运用高压输电线路,高压输电线路已经成为了目前我国经济建设中的主要命脉。

高压输电线路中的铁塔主要起到支撑和保护高压输电线路的作用,使高压输电线路上的避雷针以及导线可以保持在安全距离之内,同时使的地面上的跨越物以及其他的建筑物可以与高压导线处在安全距离之内。

导线的自重、其上的覆冰以及风载、还有年平均气温对其的影响,都是铁塔本身需要承受的荷载。

一定情况下,风的作用会使得导线发生微幅的震动,这种震动会直接引起塔身震动,风力比较大时,铁塔可能会由于震动而造成塔身的破坏。

为了避免这种情况的发生,铁塔一般都需要确保自身有足够抗破坏的轻度。

还有一些特殊的原因,例如导线产生断裂,面对这种情况,铁塔是否有足够的强度来应对由于导线断裂而造成的塔身破坏,这也是铁塔性能的一个重要的衡量标准。

由于我国输电电压等级的不断提高,铁塔的体积和重量都随之越来越大,很多地区都建成了500kV的输电网,而且其电压等级还在逐渐增加,很多山区还有需要过江等的一些大跨越的铁塔的应用,对现下的铁塔提出了更高的要求。

高压输电线路铁塔结构设计几点解析 杨晓持

高压输电线路铁塔结构设计几点解析 杨晓持

高压输电线路铁塔结构设计几点解析杨晓持摘要:随着我国经济水平的高速发展,城镇化的速度也随之加快。

这对于改变城乡之间的差距有着重要的意义,然而这就要求电力部门对此加以重视。

针对电网进行改造使其升级来调整战略,但是随着电网建设改造力度的加大,城镇化老旧的问题成为线路路径的最大制约因素之一。

输电线路铁塔承受着下压力的同时还承受着上拔力,因此就要对这一基础设计等方面进行全面的设计降低工程造价、施工难度和保护危害等缺点。

关键词:高压;输电线路;铁塔结构;设计;几点解析1、概述高压输电线路铁塔输电线路铁塔简称电力铁塔,根据结构型式和受力特点,铁塔可分为拉线塔和自立塔两大类。

按其形状一般分为:酒杯型、猫头型、上字型、干字型等,按用途分有:耐张塔、直线塔、转角塔、换位塔(更换导线相位位置塔)、终端塔和跨越塔等。

它们的结构特点是各种塔型均属空间桁架结构,杆件主要由单根等边角钢或组合角钢组成,材料一般使用Q235(A3F)和Q345(16Mn)两种(随着电压等级的不断提高,Q390、Q420、Q460等高强钢也常在铁塔中使用),杆件间连接采用螺栓连接,靠螺栓受剪力连接,整个塔由角钢、连接钢板和螺栓组成,个别部件如塔脚等由几块钢板焊接成一个组合件,因此热镀锌防腐、运输和施工架设极为方便。

对于呼高在60m以下的铁塔,在铁塔的其中一根或两根(双回路塔)主材上设置脚钉,以方便施工作业人员登塔作业。

2、输电线路铁塔结构原理和选型基本原则输电线路铁塔又叫电力铁塔,按照一般形状来分可以分为:酒杯型、上字型、干字型、桶型和猫头型五种。

按照用途来划分的话就是:耐张塔、转角塔、换位塔等,结构特点均属于空间桁架结构。

使用材料一般为Q235和Q345两种,杆件由单根等边角钢或者组合角钢组成。

杆件之间是靠着螺栓受剪力而连接的,而整个塔就是由角钢、连接钢板和螺栓组成的。

对于个别的部件如塔角等就是由几块钢板焊接成一个组合件的,不同的铁塔型式在造价、施工等方面的要求也是不同的,铁塔工程建造的费用大概是整个工程的百分之三十或者百分之四十。

高压输电线路铁塔结构设计要点分析

高压输电线路铁塔结构设计要点分析

高压输电线路铁塔结构设计要点分析摘要:高压输电线路铁塔作为架空高压输电线路的重要组成部分,其结构的合理设计是现代电力系统运行与发展的重要保障。

随着我国电力事业的快速发展,对铁塔的结构提出了更高的要求。

基于此,本文对高压输电线路铁塔结构设计要点进行分析。

关键词:高压输电线路;铁塔结构;设计要点引言随着国内电网建设规模的逐步扩大,在电力系统发展进程中推动高压输电线路的建设已经成为必然趋势。

高压输电线路在整个供配电系统中扮演着非常重要的角色,它能够把电能从遥远的山区地方输送给城市电力负荷区域,为城市提供平衡的供电,对国民经济发展促进作用不言而喻。

一、输电线路铁塔结构设计遵循原则作为电力供应与输送系统中起着关键作用的输电线路铁塔,分布在各个电力系统的干线与分支线路中,起着不可估量的桥梁作用。

在电力输送系统中扮演着重要角色的输电铁塔,在结构设计方面更是需要高标准,这对设计人员来说就是一个相当严峻的考验,如何能使设计出来的电力铁塔更适合当地的工况要求,一直是困扰设计人员的难题。

任何一条线路工程的杆塔型式主要取决于线路的电压等级、外荷载大小、沿线的地形、交通运输以及经济发展状况。

(1)电压等级越高,其电气间隙、绝缘要求、对地距离等就越大,则,塔头尺寸就越大,铁塔高度也越高;同时,电压等级越高,输送容量就越大,要求的导线截面也越大,导线截面增大则意味着杆塔所承受的外荷载也越大。

同时,外荷载的大小还受气象条件的影响,如风速、覆冰厚度等。

(2)杆塔型式还取决于线路所经地区的地形情况,地形越差,杆塔的刚度要求则越高,根据以往工程经验,对于平原地区多用扁塔,而对于山区地形,为了加强杆塔的纵向刚度,则多用方塔。

(3)沿线的交通运输状况决定了杆塔的型式和材料要求,如交通运输不方便的山区线路,采用钢管塔和混凝土塔的运输及施工费用往往是角钢塔的数倍甚至数十倍。

(4)沿线的经济发展状况同样影响到杆塔型式的选择。

经济发达地区,征地费用是影响到投资的主要因素,因此,拉线塔则不如自立式塔;同时,沿线的经济状况也影响到导线的排列方式,经济越发达的地区由于走廊紧张,铁塔型式的选择上则要求尽可能缩小线路走廊宽度。

浅析高压输电线路铁塔结构设计选型

浅析高压输电线路铁塔结构设计选型
关键 词 : 输 电 ; 结 构 ; 高压 铁塔 设计 ; 选型
电力事业是 中国的一个重要支柱产业 , 它直 接关系到国民经济的发展。高压输 电铁塔是电力 部 门主要的电力传输工具 ,随着我国经济的迅速 发展, 铁塔的需求量也在逐渐增加 。 需要大量质量 好、 适应性强的铁塔。 这不仅给电力行业的施工企 业提供了广阔的市场 . 同时也给国内其它行业的 施工企业带来了新的机遇和挑战。输电铁塔结构 设计的质量目前只能靠铁塔 出厂前的铁塔试组装 把关。如何在铁塔出厂前通过合理的设计使铁塔
措施 。
捉高 螺栓 强度 等级 。 可减 少螺 栓数 量 , 果 但效 并不明显 , 经验证 , L 受 壁挤压控制者较多。参考 国外 铁塔 杆件 连接 方式 , 多螺 栓连 接 的斜 材杆 件 , 般与主材直接相连, 不仅可减少连接板用量, 主 材与板的连接螺栓也随之减少 ,而 且其螺栓抗鲍 强度和孔壁挤压强度取值均 比我园要高 值得学 习研究 。 23加长杆件构造长度, . 减少包铁连接数量 以前铁塔杆件长度受到塔厂镀锌设 备的限 制, 杆件长度一般不超过 8 塔材需多段连接。目 m, 前 , 多塔 厂 已更 新 改进 , 用 较大 的镀 锌 锅 , 很 采 镀 锌杆件长度 可达到 】 ~】m,为设计采用较长杆 0 2 件创造 了 条件,可减少杆件包铁数量和减小因连 接构造误差难免产生的不利影 响,能进一步降低 塔材耗量, 节约加工成本。 3结 论 在高压输电线路铁塔结构设计选型过程 中, 随着计算机容量的扩大, 铁塔电算速度加快 , 机时 明显缩短。 只要优化过程编制合理 , 设计参数选择 恰当, 先编好~个塔的基本电算数据 , 全部优化过 程最多可在一天内完成。f动态规划与满应力计 = } j 算棚结合, 将铁塔几何尺寸 、 结构布置优化和杆件 强 度及 稳 定计 算 同 时应 用 于送 电线 路 铁 塔设 计 成为现实。 加之基础设计程序化 甚至可扩大到铁 塔和基础同时进行方案优化设计 , 不仅证明可行 , 而且确实有效 。 其以数据论证 , 说服力较强 , 优越 性比凭借经验和判断进行设计的传统方法 日益显 著。

高压输电线路铁塔结构设计几点解析

高压输电线路铁塔结构设计几点解析

高压输电线路铁塔结构设计几点解析摘要:近几年来,我国的经济、政治都有了较好的发展,也取得了一定的成绩。

但是,我国经济事业的发展离不开众多资源的支持,对于电力资源来说,也是经济发展不可缺少的一项。

所以,在现阶段,我国电力企业发展迅速,并建立了大量的电力企业,在电力企业的建设中,线路铁塔结构设计显得尤为重要。

第一,简要阐述了输电线路铁塔结构设计的原则。

然后着重分析了我国线路铁塔结构设计应坚持的原则。

其次,探讨了我国输电线路铁塔结构设计现状。

并深入剖析了输电线路铁塔结构设计优化措施。

关键词:线路;铁塔结构;优化措施引言:随着我国电网建设规模的逐步扩大,高压输电线路在电力系统发展中的推广已成为必然趋势。

高压线在整个供配电系统中起着举足轻重的作用,它能将山区远山地区的电能输送到城市电力负荷区,为城市提供均衡的电力供应,其对整个农业和工业的发展作用不言而喻。

由于高压输电线路工程中,其施工环境有一定的特殊性,如何按照设计单位提供的图纸,有效地保证了工程的施工质量和进度,这也是工程建设中值得关注的问题。

对输电线路铁塔结构的优化设计进行了分析和探讨。

1.国内输电线路铁塔结构设计现状通常情况下,人们把输电线路铁塔称为电力铁塔,根据用途不同,可分为耐张塔、直线塔、转角塔、换位塔、端塔和跨塔,这些类型的塔杆具有一定的共性,从结构和特性上讲,它们都属于空间桁架结构,通常由单根等边角钢构成。

基本材质也均采用一种材料,塔件主要由三部分组成,一部分为角钢,一部分为连接钢板,最后一部分为螺栓。

制造过程中杆脚通常选用几块钢板焊接在一起,因此一般都要采用热镀锌的方法来防止金属的腐蚀,同时在施工架设等方面也有很大的方便。

近年来,我国电力设计部门已设计了多种形式的塔杆,并将其与满应力电算程序相结合,并利用各种方法对其组合布置进行进一步优化,从而实现了塔杆结构的最轻量化,并与满应力电算程序相结合,并与满应力计算程序相结合,并对其组合布局进行进一步优化。

110KV输电线路铁塔组立施工方案设计

110KV输电线路铁塔组立施工方案设计

前言为了满足110KV输电线路铁塔组立施工方案设计的任务要求,编写了《110KV输电线路铁塔组立施工方案设计》说明书.本说明书系统的应用了输电线路铁塔组立基本知识、塔材受力分析、起重等工具的受力特点以及有关规程、规范.技术规范符合国家标准,并严格按照国家标准GBJ233-90《110kV-500kV架空电力线路施工及验收规范》、DL/T875-2004《输电线路施工机具设计、试验基本要求》、DL/T5092-1999《110~500kV架空送电线路设计技术规程》、JGJ82-91《钢结构高强度螺栓连接的设计、施工及验收规范规范》、GB50017-2003《钢结构设计规范》,相关的技术规程及技术规范的要求,进行设计.《110KV输电线路铁塔组立施工方案设计》,本次设计的110KV铁塔组立设计在通过工程概况、铁塔确定、主要工器具及材料准备、施工三措施、劳动组织安排及工程进度、铁塔组立、质量要求.对所学知识的复习巩固、深化和应用.这个过程中,使学生全方位能力有所提高,如调查研究、收集、查询和阅读文献资料;综合运用专业理论与知识分析解决实际问题;能进行定性、定量想结合的独立研究与论证,对数据进行采集与分析处理;包括使用计算机的能力;撰写设计说明书或毕业论文的文字表达能力,这样,既可使学生对本专业的发展现状、技术水平有所了解,有使学生具有了一定的工程意识,为今后的工作奠定了基础.本设计由本人设计完成,我本着认真负责的态度,按质按量的完成该设计.同时得到指导xxx老师的大力支持与鼓励,在此表示感谢目录前言摘要第一章总述1.1设计依据 (8)1.2设计规模及范围 (8)第二章铁塔及组立方法的确定2.1线路路径分析 (9)2.2铁塔型号选择 (9)2.3铁塔组立方法的选择 (11)第三章人员配备及材料准备3.1人员配备 (12)3.2工器具及仪器仪表配置 (12)第四章铁塔组立4.1施工准备 (14)4.2内拉线悬浮抱杆分解组立技术措施 (17)第五章施工三措施5.1铁塔组立安全措施 (29)5.2文明施工 (35)5.3工程防火 (35)5.4危险点辨识 (36)5.5紧急救援计划 (39)第六章质量要求6.1质量保证措施 (41)6.2铁塔组立的质量要求 (42)6.3铁塔组立的质量检查方法 (44)附录后记 (46)参考文献………………………………………………………………………^47摘要本设计包括本设计分为初步设计和施工图设计两个阶段,其初步设计共六章,包括总述、铁塔组立及组立方法的确定、人员配备及材料准备、铁塔组立、施工三措施、质量要求.施工图设计包括干字型铁塔图、猫头型铁塔图、内拉线抱杆单吊组塔现场布置图、内拉线抱杆双吊塔现场布置、抱杆位置示意图、长横担的吊点绳及补强方式图、扒杆组立图、构件绑扎方法图、吊装塔颈示意图、吊装横担示意图. [关键词]:图纸;铁塔组立;施工;质量;内拉线悬浮抱杆;工器具;起重第一章总述1.1设计依据1.1.1 110KV输电线路铁塔组立施工措施设计任务.1.1.2 已经浇筑好的铁塔基础.1.2设计规模及范围1.2.1设计规模长沙地区某在建的110kV变电站4条110kV的进线铁塔组立施工方案设计,每条110kV线路有5基铁塔,共有20基.两个耐张段.线路自西向东,架设长度为5公里,途经××村,单回路架设,导线采用LGJ-2×185双分裂导线.1.2.2设计范围1.铁塔的选择2.铁塔的组立方法3.铁塔组立具体施工方案第二章铁塔及组立方法的确定2.1线路路径分析2.1.1根据已浇筑好的基础可知线路路径已确定,经现场勘察得线路路径具体情况如下:4条110kV的线路从在建变电站的龙门架起,由西向东,架设长度为5公里,途经××村,每条线路5基铁塔,共20基.每条线路两个耐张段,铁塔基础为现浇混凝土基础.交通方便,地势较为平坦.2.1.2其交叉跨越情况如下表2.1.3本工程主干运输道路条件较好,大部分桩号可利用乡间公路运输.2.1.4本工程线路前进方向及塔腿编号规定如下图,各塔位的前后左右均以此为2.2铁塔型号选择2.2.1铁塔的结构铁塔分为塔腿、塔身、塔头三大部分.常将铁塔分解成若干段,每长度一般不超过8m.铁塔构件连接处称为节点,构件的连接方式有电焊连接和螺栓连接两种.(1)塔腿构造:塔腿位于铁塔最下部,塔腿上端与塔身连接,下端与基础连接,有时采用高度不同的塔腿.塔腿与基础的连接方式有塔腿插入混凝土基础、塔腿插入土层与金属式预制基础连接式及底脚螺栓式和铰接式.(2)塔身构造:塔身由主材、斜材、水平材、横膈材和辅助材组成,如图3-11所示.主材是铁塔受力的主要构件.斜材中单斜材用于塔身较窄、受力较小情况.横膈材能增强塔身的抗扭能力、减少水平横材的支承长度、当塔身分段组装时保证塔身的截面形状不变.(3)塔头构造:铁塔横担下平面以上或瓶口以上结构统称为塔头,由身部、导线横担、地线支架等组成.(4)铁塔各受力构件都应交于一点,该点即为节点;连接构造的空隙,当中间有螺栓连接时,中间应垫上与构造空隙等厚的垫圈.主材与主材的连接都采用对接,当受力较大时,在连接主材角钢里侧加上衬板或角钢.主材与斜材、横膈材的连接,按受力大小,采用螺栓直接连接或经节点板连接两种方式.2.2.2铁塔的分类架空送电线路的铁塔一般根据其用途、导线回路数、进行分类.1.按其用途分类为如下三类1>直线型铁塔位于线路的直线地段,主要承受导线及避雷线的垂直和水平风压荷重.2>耐张型铁塔位于线路的直线、转角及进变电所终端处,除承受直线杆塔所承受的荷载外,还承受断线拉力而不致扩展到相邻的耐张段,控制事故范围.3>特殊型铁塔.跨越铁塔,当线路跨越河流、铁路、公路或其他电力线等障碍物时,常常需要较高的直线塔或耐张塔,一般以直线塔较多.换位铁塔,主要起导线换位作用,有直线换位塔和耐张换位塔两种.分支铁塔.用于线路分支处,有直线分支和耐张分支塔两种.2.按导线回路数分1>单回路铁塔,导线仅有一回三相、避雷线为一根或两根铁塔.2>双回路铁塔,导线为两条线路共六相、避雷线为两根的铁塔.3>多回路铁塔,导线为三条及以上线路共用的铁塔.2.2.3铁塔的选择根据任务要求和现场勘查,铁塔选择为单回路干字型和猫头型两种.每条线路三基耐张猫头型塔,两基跨越干字型塔.共12基耐张猫头型塔,8基跨越干字型塔.2.3铁塔组立方法的选择2.3.1杆塔组立施工方法简介组立杆塔的方法分为两大类:整体起立和分解组立.整体起立是将杆塔在地面上组成整体,而后一次性地立于杆塔基础之上,其优点是一次立塔成功,高处作业量少,缺点是占用场地大,要求地面平整,立塔工具专用性强且复杂;分解组立是将杆塔分段、片、角起吊升空,在高空安装就位,其优点是对地形适应性广,不需要大量的起吊索具,工具简单,缺点是高处作业多,安全性较差.常见整体起立方法有固定式抱杆整立、倒落式抱杆整立和机械整立;常见分解组立方法有固定式抱杆分解组立电杆、倒落式抱杆分解组立电杆、外拉线抱杆分解组塔、内拉线抱杆分解组塔和无拉线抱杆组塔等.2.3.2铁塔组立方法选择原则组塔方案的选择需要从经济效益、安全可靠和安装质量三个方面来进行考虑.组塔施工方案应满足以下要求:1)应适应输电线路杆塔型变化多样的要求.线路的地形、地质、气象条件、荷载条件及杆塔的适用范围使得输电线路中杆塔型多样化;2)应满足沿线杆塔位的地质、地形条件变化的要求.同样的杆塔在不同的塔位上可能需要不同的施工方法;3)为简化组塔工艺,每一套组塔工艺都应有较宽的适用范围.即在机具及工艺不变或少变的前提下组立较多的杆塔型;4)机具设备应尽量简单、轻巧,便于加工制作、装卸使用,且稳定可靠,安全性高;5)组立杆塔方案的效率高;6)尽量发挥现有机具的潜力,适当照顾传统施工工艺.2.3.3铁塔组立方法确定根据任务要求和现场勘查,决定选择内拉线悬浮抱杆分解组立技术.第三章人员配备及材料准备3.1人员配备3.2工器具及仪器仪表配置用.第四章铁塔组立4.1 施工准备4.1.1技术准备1、铁塔组立施工前,必须对全体施工人员进行技术交底.2、施工人员熟悉铁塔组装施工图纸,并对所负责铁塔组立的桩位的地形、地貌、适宜采用哪种组立方法,应做到心中有数.3、做好立塔试点工作.每个立塔组对每种塔型的首基都要进行试点.立塔试点需项目部技术、安全、质量负责人和施工队长、技术员、质安员及工程监理人员参加.试点的目的是为了检验技术交底的内容是否可行,总结经验,为全面开展组立作好准备.4.1.2机具准备1、立塔施工所使用的工具应经项目部安监部和工程部进行检验,并标识.检验合格者方可在本工程施工中使用.使用前必须进行外观检查,并进行标识.不合格者严禁使用,并且不得以小代大.2、本工程使用的计量仪器(游标卡尺、经纬仪、扭矩扳手、钢尺)应经有相应资格的检测单位检验,检验合格者方可使用.3、各种工器具运往现场前必须清理检查,主要工器具检查要求如下:(1)机动绞磨在使用前必须仔细检查各部件,特别是刹车装置是否完好.(2)各种抱杆必须确认符合组立要求方准使用,抱杆必须无裂纹、脱皮、严重锈蚀及弯曲等缺陷.(3)抱杆顶、底座的各焊缝应完好无裂纹,转动部分应灵活无卡滞,连接螺栓不得变形.(4)钢丝绳有下列情况之一者应报废或截除:A、在一个节距内(每股钢丝绳捻一周的长度)的断丝根数超过规定报废标准者.B、钢丝绳中有断股者.C、钢丝磨损或腐蚀深度达到原直径40%以上者,或本身受过严重火烧或局部电烧者.D、压扁变形和表面毛刺严重者.E、断丝数量虽不多,但断丝增加很快者.钢丝绳一节距内断丝数报废标准4、编插钢丝绳套时,插接段长度不得小于钢丝绳直径的15倍,且不得小于300mm.5、滑车必须经常检查及加润滑油,其边缘有裂纹或严重磨损、轴承变形者、吊钩外观检查有裂纹或明显变形者均不得使用.4.1.3材料准备1、组立铁塔前必须对运往现场的塔材进行清点数量和检查质量,质量不合格者不得使用,缺少主材和包钢者不得组立.2、组立用的螺栓、垫圈、脚钉必须齐全,同时注意螺栓种类的不同.3、地面已组装好的塔段,经检查合格后方准吊装.5.1.4现场布置1、根据铁塔结构及组立现场,做好场地平整,清除影响立塔的障碍物.2、现场布置应符合文明施工要求,材料堆放整齐,现场设置施工标志牌和安全警示牌.3、施工现场必须设置安全警示牌和施工标志牌,并插彩旗及安全标语.在邻近公路、村庄等施工现场设置有效的安全作业围闭,.4、拉线、绞磨必须使用地锚,严禁使用角铁桩锚固.地锚坑的开挖应满足下述要求:(1)地锚坑深度可视土质及地锚受力大小确定.可参照下表选择使用:地锚坑深度表(m)(2)地锚坑必须开挖马道.马道对地面夹角应尽量与受力方向一致,一般不应大于40°.马道宽度不得太宽,以0.1~0.3m为宜.(3)当地锚坑位于松软地质或泥沼地带时,必须根据地锚受力情况采取下述方法加固,必要时要求项目部技术人员确认;A、增加地锚坑深度.B、加大地锚规格或用双地锚.4.1.5地面组装1、铁塔地面组装前必须清点运往桩位的构件及螺栓、垫圈等数量是否齐全,质量是否符合要求.2、塔构件的清点应遵守下列规定(1)清点构件的数量,核实实物与材料清单、组装图是否相符,并做好缺料、余料的填表登记,及时上报项目部.(2)清点构件时,应逐段按编号顺序排好.(3)构件应镀锌完好,如因运输造成局部镀锌层磨损时,应涂上厂家提供的防锈涂料,进行防锈处理.涂刷前,应将磨损处清洗干净保持干燥.(4)检查构件的弯曲度,角钢的弯曲度不应超过相应长度的1/800.(5)严格按设计图纸组装,注意角铁的里、外的区分.3、根据地形及设备条件,确定地面的组装方法及铁塔组立方法,确定构件的布置方向.4、根据抱杆可能的提升高度、抱杆的允许承载能力等,合理确定吊装构件的分片及应带附铁(附助材).5、地面组装的塔片,由于地形的限制,需要重叠放置的,必须注意先吊装的塔片后组装,后吊装的先组装.塔片之间应支垫平衡,防止变形.6、如果发现塔型的部分构件容易变形时,应用圆木进行补强.7、每段塔片两主材之间的各辅助材应尽可能装齐,连接螺栓要拧紧.8、两塔片之间的各种辅助材尽可能连带在主材上.附铁在两片之间的分配要均衡.附铁与主材的连接螺栓不要拧得太紧,螺帽带平即可.活动的附铁应活动端向下与主材用麻绳绑扎在一起.4.2内拉线悬浮抱杆分解组立技术措施4.2.1现场布置1、内拉线抱杆单吊组塔现场布置示意如下图(图4—1)至绞图4—1内拉线悬浮抱杆组塔法1-抱杆;2-拉线;3-被吊构件;4-控制绳;5-承托绳;6-起吊绳;7-起吊滑车组;8-地滑车;2、内拉线抱杆双吊塔现场布置示意如下图(图4—2)31—被吊塔片; 2—起吊钢绳; 3—起吊滑车组; 4—腰滑车;5—地滑车; 6—承托绳; 7—攀根绳; 8—抱杆;9—控制绳; 10—朝地滑车 11—平衡滑车 12—绞磨.举例使用500mm×500mm×24m角钢格构式抱杆,抱杆额定负荷为284KN(最大轴向压力),根据抱杆的试验数据及本工程具体塔型的构造,经验算后确定,图4—3抱杆位置示意吊重应限制在2000kg 以下.受力分析:当抱杆倾斜5°, 起吊角15°,拉线对地夹角60°时,起吊重量2000kg ,则偏拉绳受力6.2kN ,吊点千斤受力28.3N ,抱杆内拉线受力18.7 kN ,抱杆轴向压力68.6kN. 4.2.2抱杆布置1、内拉线抱杆的组成:⑴ 由朝天滑车、朝地滑车及抱杆本身组成.在抱杆两端的适当位置上,设有连接拉线系统和承托系统用的固定装置.⑵ 朝天滑车联接于抱杆顶端,其主要作用是穿过起吊绳以提升铁塔构件并将起吊重力以轴向传递给抱杆.单吊法用单轮朝天滑车,双吊法用双轮朝天滑车. 朝天滑车与抱杆的联接,一般采用套接方式.要求朝天滑车还能在抱杆顶端 沿抱杆轴线水平转动,以适应起吊绳在任何方向都能顺利通过. ⑶ 朝地滑车联接于抱杆下端,其作用在于提升抱杆.2、抱杆宜分段联接于抱杆下端,当用花兰连接时,应使用内花兰,以便在提升抱杆时,能顺利通过腰环.如果为外花兰接头,提升抱杆过程中,腰环应随时解开,以利接头通过.3、本工程选用抱杆为角钢格构式500mm ×500mm ×24m 抱杆.根据本工程具体塔型的构造,经验算后确定,500mm ×500mm 抱杆的吊重应限制在2000kg 以下.4、抱杆在塔上位置如图:抱杆露出已组塔段的长度及插入已组塔段上平 面的长度应保持一定比例.一般是:L1∶L2=7∶ 3.为了方便构件安装就位,抱杆可以稍向吊件 侧倾斜,其倾角不得大于5°.5、根据铁塔的实际分段长度及其根开尺寸,抱杆长 度选取为:L=1.5~1.75Hi ,式中,L —抱杆长度;Hi —铁塔分段中最长一段高度.4.2.3抱杆上拉线的布置1、抱杆拉线的长度计算:L 4—抱杆拉线露出拉线绑扎点的高度,m; E1—拉线绑扎点塔身断面的对角线距离,m.2、抱杆上拉线是由四根钢丝绳及相应卡具所组成.钢丝绳的一端用卡具分别固定于已组塔段四根主材的上端.3、上拉线与塔身的连接点,一定要先在分段接头处的水平材附近,或颈部K 节点的连接板附近. 4.2.4承托系统的布置承托绳的长度计算:L 3—抱杆底与承托绳绑扎点的高差,3.2m;E2—承托绳绑扎点塔身断面的对角线距离,4.6 m.承托系统(亦称下拉线)由承托钢绳、平衡滑车、卡具和手板葫芦等组成.承托系统示意如下图:下拉线由两根钢绳穿越各自的平衡滑车,其端头直接缠绕在已组塔段主材的上端,用U 形环固定.也可以通过专用夹具固定于铁塔主材上.1—塔段主材 2—承托钢绳 3—平衡滑车 4—抱杆 5—垫木 6—麻袋65.022124+⎪⎭⎫⎝⎛+=E L L 拉线5.022223+⎪⎭⎫⎝⎛+=E L L 承托下拉线在已组塔段上的固定点,一定要选择在铁塔接头处的水平材附近,或者颈部的K节点附近.为了保持抱杆根部处于铁塔结构中心,应尽可能使承托系统的两分肢拉线及手板葫芦为等长.两平衡滑车根据吊物位置可以前后或左右布置.当被吊构件在塔的左右侧起吊时,平衡滑车应布置在抱杆的左、右方向,前、后侧起吊时,平衡滑车应布置在抱杆的前、后方向,即前、后布置方式.采取这样的布置方式,在起吊过程中可使抱杆的下拉线受力接近均匀,还可防止抱杆在提升过程中其底部沿平衡滑车滑动.5.2.5起吊绳的布置单吊组塔时,起吊绳是由被吊构件经朝天滑车、腰滑车、地(或底)滑车引到牵引设备间的钢丝绳.双吊组塔时,起吊绳在地滑车之后还应通过平衡滑车.单吊组塔时,起吊绳必须与牵引绳分开,牵引磨绳不能直接与塔材连接.双吊组塔时,起吊绳与牵引绳通过平衡滑车相连接.起吊绳的规格,应按每次最大受力工况来选取.5.2.6牵引设备的布置绞磨应尽可能顺线路或横线路方向设置.距塔位的距离一般应不小于1.2倍塔高.牵引设备尽可能设在平坦地带.牵引机手应能观测到起吊构件的操作.5.2.7攀根绳和控制绳的布置绑扎在被吊塔片下端的绳为攀根绳.当被吊塔片重量超过500kg时,必须选用钢绳.其作用是控制被吊塔片不与已组塔段相碰.绑扎在被吊塔片上端的绳习惯称为控制大绳,通常选用φ16~20的棕绳.其作用是调整被吊构件的位置及协助塔上操作人员就位时对孔找正.在正常起吊构件中,控制大绳不受力,处于备用状态.攀根绳的受力大小,对抱杆拉线系统及承托系统的受力有较大影响.而攀根绳与地面夹角的大小,直接影响着自身的受力,一般要求夹角不大于45°.攀根绳一般只有一根,用V型钢绳套与被吊塔片相连接.攀根绳必须连在V形套的顶点处.控制大绳一般用2根,分别绑于被吊塔片两侧主材上端.当塔片较宽,为协助塔片就位,也可以用4根,2根绑在主材上端,2根绑在主材下端.4.2.8地滑车(或底滑车)和腰滑车腰滑车是为了减少抱杆所受轴向压力以及避免牵引绳与塔段或抱杆相碰所设置的一种转向装置.每根牵引绳都应有自己的腰滑车,不可共用.一般情况下,腰滑车应布置在已组塔段上端接头处(起吊构件对侧)的主材上.固定腰滑车的钢绳套越短越好,以增大牵引绳与抱杆轴线间的夹角,从而减少抱杆所受的水平力.地滑车是将通过内部腰滑车的牵引绳引向塔外,直至绞磨.若为双吊组塔时,两条起吊绳引至塔外后应穿过平衡滑车后与牵引绳相连接.4.2.9腰环1、内拉线抱杆提升过程中,采用上下两副腰环以稳定抱杆,使抱杆始终保持竖直状态;采用单腰环时,抱杆顶部应设临时拉线控制.2、腰环与抱杆接触处应设置滚轮,以利抱杆顺利提升.3、同一根抱杆,上下两副腰环间的垂直距离,一般应保持在3m以上,抱杆越长,垂直距离也应增大.4、上腰环应布置在已组塔身的最上端,下腰环应布置在相应抱杆根部最终提升的位置.5、腰环一般用棕绳固定在已组塔段主材上.4.2.10塔腿组立1、使用地脚螺栓式基础的铁塔,应首先将铁塔腿组立好,以便固定抱杆,再进行塔片吊装作业.2、塔腿组立一般有两种方法:⑴分件组装法,即先立主材而后逐一装辅材的方法.该法适用于塔腿较重,根开较大的铁塔;需用工器具较少,适用于山区地形.⑵半边塔腿整体组立方法.该法适用于地形平坦的桩位,使用工具较多.3、分件组装塔腿的方法:⑴先将铁塔脚底座置放在基础上用地脚螺栓固定好.然后将塔腿主材下端与底座立板连上一个螺栓,利用此螺栓作为起立塔腿主材的支点.⑵使用叉杆将主材立起,将主材与底板相连的螺栓全部装上,并打好临时拉线.用同样的方法组立其余三根主材.4.2.11竖立抱杆1、竖立抱杆之前,应作好如下准备工作:⑴将运到现场的各段抱杆按顺序组合起来并进行调整,使其成为一个完整而正直的整体.连接螺栓应拧紧.⑵将提升抱杆用的腰环套在抱杆上.⑶将朝天滑车、朝地滑车、承托系统平衡滑车等装在抱杆上,把各部连接螺栓及止动螺栓拧紧.⑷将起吊钢绳穿入朝天滑车.⑸将抱杆临时拉线(上拉线)与抱杆头部连接.2、利用塔腿竖立内拉抱杆⑴竖立抱杆时,抱杆根应用攀根绳控制,使抱杆慢慢移向塔身内.⑵当抱杆立至80°时,停止牵引,在塔腿上方收紧抱杆拉线达到抱杆立正的目的.同时将抱杆拉线固定于塔腿主材上.⑶抱杆立正后,利用抱杆腰环及套绳调正抱杆.然后拆除立抱杆的牵引绳索.3、抱杆竖立后,还应完成如下工作:⑴将塔腿的开口面辅助材补装齐全并拧紧螺栓.⑵将上拉线及承托系统固定在塔腿的规定位置上.⑶如抱杆够高时,可作吊装构件准备;如抱杆不够高时,则准备提升抱杆.4.2.12提升抱杆1、提升抱杆的布置一般有两种方式:一种是利用原有的起吊索具,另一种是另外准备一套抱杆提升索具.两种方式均可满足提升抱杆的需要.2、提升抱杆的布置:⑴将提升抱杆的提升钢绳的一端绑扎在已组塔段上端的主材节点处.⑵反向腰滑车应布置在已组塔段上端与提升钢绳绑扎点成对角,且与之对称的一侧.如此,抱杆可在提升中始终处在铁塔结构中心.⑶地滑车应位于腰滑车的下方基础边.3、提升抱杆的操作步骤如下:⑴绑好上腰环及下腰环,使抱杆直立在铁塔结构中心位置.⑵将四根上拉线由原绑扎点解下,提升到新的绑扎位置上予以固定.一般情况下,上拉线应固定在已组塔段各主材最上端的节点处,各拉线固定方式应相同,拉线呈松弛状态.⑶将提升钢丝绳4从已组塔段最上端绑扎点经朝地滑车5、反向腰滑车3、地滑车10至绞磨.⑷启动绞磨及牵引绳(即提升钢绳)4,使抱杆提升一个小高度,解去原抱杆受力状态下的承托系统.⑸继续启动绞磨使抱杆逐步升高至预定位置.⑹将四条承托绳串联手板葫芦后固定于已组塔段主材顶端的上拉线绑扎点之下,收紧承托绳使受力一致.⑺由四人登塔调整抱杆上拉线,使抱杆达到所需要的倾斜度,然后收紧4条上拉线并固定之.⑻松开上下腰环.⑼拆去提升抱杆的工器具,为起吊塔片做好准备.4、抱杆提升高度的控制⑴抱杆提升高度,既要方便塔片就位,又要使上拉线及承托绳受力较小.⑵一般经验是:塔片就位时,抱杆顶高出被吊构件吊点位置约3m为适当.⑶抱杆伸出已组塔体的高度不得超过抱杆长度的2/3.5、抱杆倾斜度的控制⑴应尽量使抱杆顶的铅垂线接近于塔片就位点.⑵一般经验是:抱杆与铅垂线的夹角应小于5°.6、铁塔侧向断面尺寸较小时,仅用腰环不能确保抱杆提升的稳定性,此时,应在抱杆顶端增加顺线路的落地临时拉线.4.2.13构件的绑扎1、构件的绑扎抱括三项内容:⑴吊点钢绳与构件的绑扎.⑵对需要进行补强的构件进行补强绑扎.⑶攀根绳及控制大绳在构件上的绑扎.2、吊点绳系以钢丝绳组成的V形绳套.构成V形的两肢可以是一根钢绳也可以是两根钢绳.在V形套的顶点穿一只卸扣,其上端与起吊绳相连.。

输电线路铁塔结构设计选型浅述

输电线路铁塔结构设计选型浅述

输电线路铁塔结构设计选型浅述前言:如今是一个科技信息的时代,在这样的时代中,电力是必不可少的能源支柱,如今也是一个灯红酒绿到处繁荣的时代,生活中到处都离不开电,因此,國家也特别重视我国电力行业的发展,电力行业的发展推动了我国经济的发展。

电力建设中输电线路塔桥的建设是电力建设的重要组成部分,如何用最少的资本获得最优秀的塔桥设计已经成为电力建设的重要内容。

1. 高压输电线路铁塔结构设计选型的基本项目目前,我国设计的高压输电线路铁塔基本都是固定的模式,只是根据当地的自然条件,改变塔身高度以适应环境要求,且应用时很少铁塔会用到其能承受的最大垂直或者水平档距,所以结构中裕度是有的。

同类铁塔,塔身高度可能不同塔底部设计也可能因地而异,其他部位结构基本上都相同。

高压输电时,会有大电流通过导线,导线弧垂会加大,增加了对塔的压力,塔与塔之间的安全距离受到限制,因此设计铁塔的关键就是选择较高杆塔,择位而立,保证安全距离,同时对塔身坡度、塔身隔面、塔身曲臂、塔身横担的设计也尤为重要,而这些才是高压输电线路铁塔结构设计选型的基本项目。

1.1中横担结构铁塔结构选型横担是铁塔中重要的组成部分,它的作用是用来安装绝缘子及金具,以支承导线、避雷线,并使之按规定保持一定的安全距离。

横担的类型有很多,按用途可分为:直线横担;转角横担;耐张横担,按材料可分为:铁横担;瓷横担;合成绝缘横担。

横担高度的选择尤为重要,横担立面高度高,主材受力越小,但斜材长度增加;反之,主材受力加大,斜材长度减小,因此选择合适的高度不仅能节约材料,而且能够保证铁塔安全。

设计时,中导横担平面选择矩形布置,具体内容如下:宽度逐步递增,铁塔耗量线型增加,无极值存在。

为了保证后续人员操作方便,横担宽度取1.2米,边横担呈现鸭嘴型,并且边横担平面导线挂点处开口宽度取500mm。

选用这种选型时,如果横担主材按平行轴设计,铁塔电算重量6596Kg;按最小轴设计时铁塔电算重量6619Kg,以节约为原则,应选取平行轴设计为最优。

高压输电线路铁塔结构设计

高压输电线路铁塔结构设计

塔型选型的必要条件 : 1 电压等级 2 回路数 3 导、地线牌号 4 导线排列方式 5 基本呼称高及其规划使用的塔高 6 电气间隙圆 7 地线保护角 8 电气负荷
其中电气间隙圆的确定在于以下条件: 雷电过电压(风速 10 m / s) 操作过电压(1/2最大设计风速 ) 工频电压 (最大设计风速 )
例: 试计算塔身如图所示主材内力。 解:先计算支座反力。 求出反力后,从包含二杆的结点开始,逐次截取各结点求出各杆的内力。 分离体为平面汇交力系。 一般用投影二个方程可求解
3) 灵活运用 (1)结点法、截面法可以联合使用; (2)零杆判断应充分利用,可以简化计算。 (3)利用对称性;
2 杆塔荷载 按性质分
经过调整,γR 统一取:3号钢、16Mn、16Mnq 钢,γR = 1.087 GB 50017—2003 在条文说明中改为Q235取γR = 1.087 , Q345取γR = 1.111
钢结构设计取钢材屈服强度作为强度极限。(GBJ17-88)规范规定,抗拉、压、弯强度设计值分别为 (fk/γR)
输电线路铁塔结构内力 计算分析完全基于经典力学 ,即《理论力学》、《结构 力学》、《材料力学》三门 力学的基础上来进行的。
因此,输电线路铁塔结 构,被看成由理想的铰接杆 件组成的空间塔架结构。
1 输电线路铁塔结构计算常用的力学概念知识 1) 理论力学——静力学公理
1、二力平衡公理:作用在刚体上的二力使刚体平衡的充要条件是:大小相等、方向相反 、作用在一条直线上
永久荷载:杆塔自重、导地线、金具、绝缘子自重及其它固定设备的重力。 可变荷载:风荷载、覆冰荷载、电线张力、施工及检修的临时荷载。 特殊荷载:断线所引起的荷载、地震所引起的荷载。 按作用方向分可将它们分解成作用于杆塔上的 横向荷载:风荷载、角度荷载。 纵向荷载:风荷载、张力荷载。 垂直荷载:重力荷载。

电网高压输电线路铁塔基础设计解析

电网高压输电线路铁塔基础设计解析

电网高压输电线路铁塔基础设计解析【摘要】输电线路铁塔具有长期野外运行、使用条件复杂、长距离分布等特点。

铁塔是通过基础将荷载传递到地基中去,无论地质或基础哪一部分出现问题或发生破坏,都将对上部铁塔造成恶劣影响甚至造成重大事故。

由于地基条件的复杂性,土的物理力学性质的特殊性,人们至今对它的认识还在探索和深入。

因此,地基基础的设计在高压送电线路设计中占有极为重要的地位,而基础型式的选择又是影响工程总体造价主要因素之一。

本文分析了各种基础的技术特点及经济比较,山区地段铁塔基础设计,山区线路铁塔基础施工应注意的几个问题。

【关键词】电网高压输电线路铁塔基础设计技术特点及经济比较输电线路基础的设计原则。

线路经由各段基础型式的选择,应结合各段地形、水文地质情况、施工条件以及铁塔型式加以确定,并且应在满足规程、规范的前提下,尽可能地降低工程造价。

为使线路能安全、稳定地运行,铁塔基础结构设计应满足如下的功能要求:能承受正常施工和正常运行时可能出现的各种工况下的荷载:在正常使用时具有良好的工作性能,正常维护下具有足够的耐久性能:在偶然事件发生及发生后,仍能保持必须的整体稳定。

一、各种基础的技术特点及经济比较1、一般地段铁塔基础设计适用于一般地段的基础类型比较多,有充分利用岩土力学性能掏挖类基础,还有最普通的大开挖基础等,各类基础的优缺点及适用条件见表1、表2。

经上述比较,只要地质条件满足要求,应该优先采用掏挖类基础,当不能满足时采用太开挖基础。

2、掏挖类基础掏挖类基础分为全掏挖和半掏挖两种型式。

当地表土不易成型时,采用半掏挖基础。

这两种基础的最大特点是能够充分利用地基原状土的力学性能,提高基础的抗拔、抗倾覆承载能力。

具有开挖土方量小,钢材用量少,节省模板,施工简单,节省投资等优点。

按我们设计和使用经验,掏挖类基础仅用于各种直线型塔及0~30度转角塔。

3、大开挖基础(1)各种大开挖基础的技术经济比较大开挖基础型式较多,按基础对地基的影响可分为:轴心基础(基础中心在塔脚的垂直线上)和偏心基础(基础中心在塔腿主材的延长线上);按基础本体受力状态可分为刚性基础和柔性基础;按基础主柱的形态又可分为直柱基础和斜(斜插)基础,各种型式的优缺点比较分别见表3和表4。

国家电网公司110~500kV输电线路典型设计铁塔制图和构造规定

国家电网公司110~500kV输电线路典型设计铁塔制图和构造规定
国家电网公司110~500kV输电线路典型设计铁塔制图和构造规定
国家电网公司110~500kV输电线路典型设计
铁塔制图和构造规定
输电线路典型设计工作组
2005年11月
1.图纸幅面尺寸
基本幅面代号
0#
1#
2#
3#
4#
5#
长×宽(mm)
1189X841
841X594
594X420
420X297
297X210
注:组合角钢垫板距离不应大于下表数值:
组合型式
2L63
2L70
2L75
2L80
2L90
2L100
2L110
2L125
2L140
2L160
2L180
2L200
750
860
900
970
1080
1200
1330
1520
1700
1960
2200
2420
490
550
580
620
700
770
850
980
11Байду номын сангаас0
6、其它规定
1)材料表中的计量单位用“kg”、“mm”表示,单件保留2位小数,小计及合计保留1位小数。
2)材料表中的对齐方式:编号、数量采用中间对齐,规格、备注采用左对齐,长度、单重、小计采用右对齐。
3)结构图中杆件的负端距不宜出现小数(特殊情况出外),一般以5mm为级数,如-105,-110等;三角形尺寸以0.5mm为准,不得出现0.1、0.2等,奇数节间不得出现0.5mm,偶数节间允许出现0.5mm,材料表中构件长度不得出现小数。
3)图中正面、背面的构件编号不同时,应在编号圆圈内注明,编号中前后用F、R表示,或用前、后中文字书写,左右全用中文字书写。

输电线路铁塔设计规范

输电线路铁塔设计规范

输电线路铁塔设计规范 篇一:输电线路铁塔 输电线路铁塔 输电线路塔是支持高压或超高压架空送电线路的导线和避雷线的构筑物。

类型根据在线路上的位置、作用及受力情况分类如表: 还可根据不同的电压等级、线路回路数、导线及避雷线的布置方式、材料及结构形式来确定塔的名称,例如:220千伏单回路导线水平排列的门型耐张跨越塔。

常见的悬垂型塔或耐张型塔如图。

500千伏台山电厂至香山输变电工程的崖门大跨越钢管塔,该塔位于新会区西江崖门边,在两岸各建一高塔,两座高塔跨越距离公里,塔高米,所用钢管直径达米,单塔重1650吨。

常见的悬垂型塔或耐张型塔, 崖门大跨越钢管塔 塔的尺寸和档距须满足电路要求:导线与地面、建筑物、树木、铁路、公路、河流以及其他架空线路之间,导线与导线、导线与避雷线之间,均应保持必要的最小安全距离。

避雷线对导线的保护角及使用双避雷线时两根避雷线之间的水平最小距离应满足有关规定。

荷载输电线路塔主要承受风荷载、冰荷载、线拉力、恒荷载、 安装或检修时的人员及工具重以及断线、地震作用等荷载。

设计时应考虑这些荷载在不同气象条件下的合理组合,恒荷载包括塔、线、金具、绝缘子的重量及线的角度合力、顺线不平衡张力等。

断线荷载在考虑断线根数(一般不考虑同时断导线及避雷线)、断线张力的大小及断线时的气象条件等方面,各国均有不同的规定。

结构计算 塔一般均简化为静态进行分析,对于风、断线、地震等动荷载,通常在静力分析的基础上,分别乘以风振系数、断线冲击系数、地震力反应系数来考虑动力作用。

输电线路塔的内力计算,与塔式结构和桅式结构相同,但须考虑下列两个问题: ①导线风荷载对塔的作用。

由于导线的支点间距较大(一般为200~800米)而横向摆动的周期较长(一般为5秒左右),故应考虑风沿导线的不均匀分布及导线对塔的动力效应。

20世纪60年代初,许多国家的电力部门曾用实际的试验线路来测定导线在大风作用下的最大响应,并据此制订了实用计算法,其中有的已纳入本国的规程,但是由于受地形、测量仪器的精度、分析水平等各种因素的限制,这些实用计算方法还不能精确反映出真实情况。

高压输电线路铁塔结构基础设计分析

高压输电线路铁塔结构基础设计分析

高压输电线路铁塔结构基础设计分析摘要随着我国电力产业的快速发展,国家电网的覆盖范围越来越大,高压输电线路铁塔结构基础也逐渐向着多样化、复杂化的方向发展。

输电线路在使用过程中会受到各种各样的作用力,这些力都是依靠铁塔结构基础传输到地基当中,因此铁塔基础的任何部分出现问题或破损,都会对整个输电线路产生巨大的影响。

因此对铁塔结构基础的类型进行系统地分析探讨,详细说明铁塔结构基础的受力情况、经济效益和施工工艺,为高压输电线路铁塔结构基础设计提供了重要的理论指导。

关键词:高压输电线路;铁塔结构基础;设计一、铁塔结构基础的类型(一)混凝土台阶式基础混凝土台阶式基础底板内不置入受力钢筋,此外基础底板的台阶拥有不小于1.0的高宽比,是我国使用率最高的铁塔结构基础。

因为这种结构只有立柱配筋,台阶没有钢筋,因此这种结构的混凝土消耗量比较大,而钢筋的消耗量比较小,比较容易校正,通常将塔脚板和地脚螺栓连接起来固定铁塔,这种施工工艺比较简单,有助于缩短施工工期,提高施工效率。

(二)掏挖基础掏挖基础结构是在土胎中置入底板,能够充分发挥原状土的承载性能,这种结构不需要支模,也不需要土壤回填,有效减轻了施工模板的运输难度,减少了施工工程量。

从环境效益角度分析,掏挖基础能够避免对周围环境造成破坏,拥有较高的环境效益。

但是掏挖基础结构容易受到土壤性质、地下水分布等因素的影响,因此在使用时有着严格的规定。

(三)岩石嵌固式基础嵌固式基础通常应用在强风化或中等风化的岩石地段,此外由于其它因素的影响而无法使用直锚式岩石基础的地段,也可以使用嵌固式基础,该结构的使用范围比较宽泛,这种结构能够有效减少岩石的挖掘量,不需要回填土处理,因此非常有利于环境保护。

(四)斜柱板式基础斜柱板式基础在国内的使用频率比较高,是高压输电线路铁塔基础结构中最为常见的一种类型。

在施工过程中,斜柱板式基础的基础立柱坡度需要根据塔腿材料进行合理设计,因为塔腿主材角钢是直接插入底板的,能够有效减小来自基础柱顶的水平力,而且减小了立柱正截面的强度和立柱的截面。

高压输电线路铁塔结构设计几点解析

高压输电线路铁塔结构设计几点解析

高压输电线路铁塔结构设计几点解析摘要:电力系统在我国的社会经济发展中起着举足轻重的作用,为人们的日常生活和工作提供了充足的能源。

作为电力供应的基础保障性设施,架空输电线路在电力供应系统中发挥着十分重要的实际意义。

鉴于此,本文对高压输电线路铁塔结构设计进行了分析探讨,仅供参考。

关键词:高压输电线路;铁塔结构设计;分析一、铁塔塔头优化设计在以往常规500kV双回路线路中,塔头形式一般布置为鼓形。

该塔头布置形式较为简洁,传力清晰,由于导线采取垂直排列方式,塔头较高,当有跨越要求时,为满足电气对地距离要求,全塔高度较高,导致塔身风荷载和上层导地线风荷载较大,塔材耗量和基础作用力均较大。

另外一种形式为双层横担的V串塔型,塔头为三角形布置方式。

两种塔头形式的比较如下图1所示:鼓型塔:优点是铁塔挂点简单明确、由上而下受力传递清晰,导、地线的垂直荷载、水平荷载经塔头横担上相应挂点传递到铁塔的身部,同时走廊较窄。

缺点为导线采用垂直排列,上下相之间的电气距离要求使得塔头较高,塔重较重,约34800.0kg。

双层横担塔:优点为导线布置采用三角排列,比常规塔头布置减少了一层横担从而有效降低了塔高,导地线风荷载和塔身风荷载降低明显,塔重较轻,约29700.0kg,而且其基础作用力较小。

缺点是下导线横担较长,构造复杂,且走廊较宽。

通过以上两种形式的分析,同时参考已投运的工程中的成熟的设计成果,上述两种形式都有各自的优点及缺点。

鼓塔型塔头布置较为简洁,传力清晰且走廊较窄;V串双层横担塔,导线采取三角排列方式,能有效降低塔高近10m,塔材较鼓形塔降低约10%,同时其基础作用力也减少12%以上,综合经济效益明显。

500kV线路一般对走廊的要求不高且有高跨要求,采用两层横担的V串塔型对降低工程造价显得更有意义。

二、节间计算长度的设计当外荷载一定时,构件计算长度确定合适与否会严重影响其截面的选择,直接影响塔重。

塔身主材节间布置的合理化,可充分发挥构件的承载潜能。

高压输电线路铁塔选型与设计浅析

高压输电线路铁塔选型与设计浅析

高压输电线路铁塔选型与设计浅析摘要:本文就高压输电线路铁塔选型与设计的相关问题进行了探讨。

首先针对选型与设计过程中需要考虑的因素,包括线路参数、地形条件、环境要求等进行了详细说明。

同时强调了随着低碳、环保理念的推广,对铁塔选型与设计提出了更高的要求。

最后,提出了在设计中应注重降低材料的消耗与能源消耗,减少对环境的负面影响的建议,通过本文的研究,可以为相关工程师和决策者提供参考和借鉴,促进高压输电线路铁塔选型与设计水平的提升。

关键词:输电线路;路铁塔;选型与设计高压输电线路是将发电厂产生的电能远距离传输到用户终端的重要基础设施。

而作为高压输电线路的关键组成部分,铁塔的选型与设计对于线路的安全性、经济性和可靠性具有重要影响。

通过科学合理的选型与设计,可以有效提升线路的运行效率,降低运营成本,并确保线路的稳定供电。

探索低碳、环保的铁塔选型与设计方案,以期为相关工程师和决策者提供参考和借鉴。

1.高压输电线路杆塔分类和选型1.1输电线路杆塔分类按结构形式分类:钢管塔:主要由钢管组成的塔身,适用于平原和山区等不同地形条件。

角钢塔:主要由角钢组成的塔身,适用于平原地区和较小荷载的场合。

混凝土塔:主要由混凝土材料制成的塔身,具有较高的强度和稳定性,适用于需要长期使用或环境恶劣的场合。

组合塔:采用不同材料和结构相互组合而成的塔身,能够满足特定需求和条件。

按用途和功能分类:支撑塔(角塔):用于支撑导线、绝缘子串和地线等,承担主要荷载的传递任务。

触发塔(耐张塔):改变主干线导线的方向和传力方式,通常设置在转折点或终端塔附近。

跨越塔(跨越角塔):用于越过河流、道路、铁路和其他障碍物,在两侧延伸导线。

耐张塔(拉正塔):通过对导线进行拉力调整,使导线保持合适的拉力状态。

按电压等级分类:220kV塔:用于220千伏电压等级的输电线路,通常采用较高的塔身和绝缘子串。

500kV塔:用于500千伏电压等级的输电线路,需要具备更高的承载能力和稳定性。

高压输电线路杆塔基础设计

高压输电线路杆塔基础设计
斜插式地脚螺栓基础综合了主角钢插入式基础和地脚螺栓式基础的优点,是一种可以 推广应用的基础型式。至于基坑型式,本人认为斜掏式基坑对地质条件要求较高,开挖 过程存在着很大的安全隐患,且基坑斜度又难以控制,几何尺寸不易达到设计及验收规 范标准,因此还是以直柱挖掏型式为宜。 附: 照片1:斜插式地脚螺栓基础(来源:在建云广±800kV直流线路工程) 照片2:普通地脚螺栓基础(来源:在建宝德±500kV直流线路工程) 照片3:灾后修复主角钢插入式基础(来源:双瓯500kV线路灾后重建工程)
系列讲座4
高 压输 电线 路铁 塔结 构设 计琐 谈 高压输电线路杆塔基础设计
华北电力设计院 傅春蘅
概述
1 执行标准 DL/T 5219-2005《架空送电线路基础设计技术规定》 2 规范性引用文件
1) GB50007-2002《建筑地基基础设计规范》 2) GB50010《混凝土结构设计规范》 3) GB50021《岩土工程勘察规范》 4) GB50025《湿陷性黄土地区建筑规范》 4) GB50046《工业建筑防腐蚀设计规范》 5) GB50191《构筑物抗震设计规范》 6) GB50204 《混凝土结构工程施工及验收规范》 7) GBJ 112 《膨胀土地区建筑技术规范》 8) DL/T 5092-1999《110~500kV 架空送电线路设计技术规程》 9) JGJ 94-1994《建筑桩基础技术规范》 10)JGJ 106-2003 J256-2003《建筑桩基检测技术规范》 11)JGJ 118《冻土地区建筑地基基础设计规范》 12)SL 204-1998《开发建设项目水土保持方案技术规范》
3 冻涨土基础
土壤的冻结会对架空输电线路杆塔基础产生不同程度的影响。我国东北 地区《高寒及沼泽地区杆塔基础冻胀问题调查报告》统计资料表明,东北地 区110-220kV就有因地基土冻胀,杆塔基础失稳而倒杆或倒塔的灾害事故发 生。不由得人们不对这一问题引起重视。因此, 架空输电线路杆塔基础的防 冻在设计中应给予充分的考虑就势所必然了。 架空输电线路杆塔基础的防冻取决于对基础周围土层情况、土壤冻结深 度、冻胀性类别的判别或处于积水中的基础的水深、结冰的情况以及基础形

高压输电线路铁塔结构与基础设计的几点问题分析

高压输电线路铁塔结构与基础设计的几点问题分析

3 、 高压输 变 电塔 腿 平连杆 的使 用
8 O 年 代 中期 , 我 国对 塔腿 结 构加设 平 连杆 问题 进 行 了专 题研 究 和 试验 分 的应用 将 日益 增 多。 近期, 某5 0 0 k V 同塔双回输电线路工程, 曾因终端塔出现塔身斜材弯曲过 析, 推求出近似的实用公式 , 并写入s DG J 9 4 —9 O 《 架空送电线路杆塔结构设 大、 竣工拒不签收的问题 , 后以增设隔面支撑材, 改善塔 身斜材工作状态的方 计技术规定》 。此后 , 作为1 个增强塔腿结构承载能力的措施被推广应用。 回首国内近一二十年使用的宽身、 大坡度塔身塔 , 均存在着不 近年来 , 在 设计 和真 型塔 试验 中发现 , 塔 腿 结构 加 设平 连 杆后 , 力 学模 型 式进行了处理。 是设 计者 应 当解 决也 可 以解决 的 问题 。 发 生 了从 静定 到超 静 定的 变化 和仅 靠 8 O 年代 中期推 求 出 的近 似实 用 公式 , 已 同程度 的塔 身 斜材 弯 曲问题 , 近期 , 我们 在 三峡 送 出工 程 , 5 0 0 k V同塔 双 回大 坡度 塔 身塔 的 设 计 中, 就 不能 满足 内力 分 析 的需要 。 并考 虑 1 9 9 7 年4 月 在真 型塔 试验 中 , 曾因平 连杆 加 探讨 了几 个解 决 办法 : 工负误差偏大 , 出现将塔腿主材拉弯 , 不能满足试验荷载要求 的情况。 故平连 这 一 问题 和制 造 厂家进 行 了分 析研 究, ( 1 ) 在塔身主材和节点板之间或节点板和塔身斜材之间采用加斜垫的办 杆 的使用 直 接影 响到 杆系 的布 置 , 甚 至影 响 到相 邻杆 的 工作 状 态 。建 议在 新
1 、 高压输变 电塔头铰结点的设置
在国外输电线路铁塔结构设计中,已早有应用, 如美国5 0 0 k V 直线塔 、南非 6 、 高 压输变 电塔 身斜 材的布 置 4 0 0 k V 直线塔,都大范围使用 了三铰拱塔头,且中间铰部位下均未加设平连 杆 。建 议我 国在 修 订《 架 空送 电线 路杆 塔结 构设 计 技 术规 定 》 时, 在 基本 规 定 塔 身斜 材布 置形 式 , 一 直是 设计 者关 注 的课 题 。 笔 者认 为 : 制 约塔 身 斜材 节 中应 强调 指 出 , 杆塔 结构  ̄ J n q - 图必须 与 内力计 算 图保 持 一致 。不 得轻 易 的基本 条件 是斜 材对 外 荷载 抵抗 力矩 和计 算 长度 的 选择 。其 中 , 斜材 对 外荷 改 动结 构 布置 , 或添 加未 经计 算 和可 能影 响受 力 的杆 件 。 载 抵抗 力 矩 的大 小 , 即斜 材 和水 平 面 的夹 角大 小 , 将直 接 影 响 到该 节 间 主材 分 段及 主材 选 材 。从 国内外 科研 成 果 以及工 程设 计 实践 经 验看 , 塔身 斜 材和 2 、 高压输变电导线横担下平面斜材布置 水平面的夹角1  ̄4 0 0 5 0 0 为宜。当然 , 塔身斜材的布置形式, 还和塔身的宽度 近 些 年笔 者 看 到有 的 工程 新 设 计 的塔 身斜 材 布 置 , 全是 3 . 0 m1 个节问、 导 线横 担下 平 面斜 材常 见 的布 置形 式为 交叉 斜 材 ( 双斜材) 式, 且交 叉斜 有 关 , . 0 m1 个分段 , 有的塔身斜材和水平面的夹角只有3 0 0 左右 , 杆系布置几成网 材布置到导线横担根部时 , 大多连接到导线横担的主材上 。在纵 向荷载作用 6 . 0 m1 个 梯级 接腿 的要 求 , 但 未 能综 合 考虑 优 化杆 系 布置 、 充 分 下, 其 连 接部 位 的主材 或 节点 板极 易变 形 。 为此 , 常见设 计 者在 这一 部 位节 点 状 。 似是考 虑 3 在塔 型选 型时 , 要分 析控 制选 材 的条 件 , 塔身 主 材 上, 增设 了 l 根 短角 钢 , 以增强 这一 部位 抵 抗纵 向 荷载 的 能力 。虽 然 这 一办 法 发 挥 塔身 斜材 的 承载 能力 。 主材计算长度 , 以及不同的接腿配置不同的塔身等多因素 , 进 能解决问题 , 也没有因此引发事故 。 为使设计尽可能合理 , 满足杆系传力的要 节间分段情况 、 求, 只需设计者将横担下平面交叉斜材杆系布置到导线横担根部时, 与塔身 行 优化 组合 。

高压输电线路铁塔结构设计方案(PPT62页)

高压输电线路铁塔结构设计方案(PPT62页)

直线塔 (酒杯型塔)
北京8回500kV输电线路进顺义变
直线塔 (猫头型塔)
直线塔 (鼓型塔)
直线塔 (干字型塔)
直线塔(门型塔)
直线塔(门型塔)
直线塔(拉V型塔)
直线塔 (紧凑型塔)
转角塔
终端塔
塔型设计的步骤:
——确认或选择气象条件,导、地线牌号; ——依据给出的塔型规划或根据电压等级及路径条件规划塔型; ——绝缘配合; ——绘制电气间隙圆、提出负荷条件; ——根据电气间隙圆规划设计塔头; ——根据塔型规划完成整塔选型单线图(包含各种呼称高); ——进行负荷组合; ——按铁塔计算软件要求输入计算塔型的所有参数; ——依据塔型计算结果绘制司令图; ——依据司令图完成结构图。
的内力。 (3)结点分离体中,未知轴力设为拉力(正),结果为负时表示与所设方向相反。
已知力一般按实际方向画,标注其数值的绝对值,则平衡方程建立时看图确定其 正负。 零杆的判断: 三角构造内的辅助性杆件都是零杆。(如图所示)
2) 截面法 用截面切断拟求构件,取交叉斜材的交叉点为力矩中心,所有外力对这个中心取矩 建立平衡方程中只有一对大小相同方向相反的未知力。
≦ 强度设计值
塔架的计算 塔架特点:由直杆用铰链联接而成,在结点荷载作用下,各杆只有轴力。
1) 结点法 取结点为分离体――平面汇交力系
求解方法: (1)求解支座反力,零杆判断;
因几何组成的不同而不一定是必须的,零杆判定后,可以大大简化求解。 (2)再选取只含二个未知力的结点。顺次取二个未知力的结点分离体可求解每个杆
体的重量成反比,则此二物体必处于平衡状态。阿基米德是第一个使用严密推理来求出平行四边形、三角形
和梯形物体的重心位置的人。
著名的意大利艺术家、物理学家和工程师达·芬奇是文艺复兴时期首先跳出中世纪烦琐科学的人,他认为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高压输电线路铁塔结构设计
摘要:高压输电线路负责电厂与变电站、变电站与变电站之间电力传输和分配的主要电力设施,被称为电力事业的动脉。

由于我国资源和人口分布不均匀,因此,就更需要加强高压输电线路的建设工作,将电能有效输送到用电地区,完成电力事业肩负的任务。

电力产生要高质量传送到用电地,必须依靠电网的传输功能。

高压输电线路负责电厂与变电站、变电站与变电站之间电力传输和分配的主要电力设施,被称为电力事业的动脉。

由于我国资源和人口分布不均匀,因此,就更需要加强高压输电线路的建设工作,将电能有效输送到用电地区,完成电力事业肩负的任务。

高压输电线路设计是高压输电线路规划和准备工作阶段的重点,做好高压输电线路设计工作意义重大,电力工作者应该提高对压输电线路设计工作的重视,熟悉和了解高压输电线路铁塔结构设计、防雷设计和防污损等工作重点,切实提高高压输电线路设计质量,提升电力事业发展和进步的水平。

在实际的高压输电线路设计工作中电力工作者要做好力学分析、污损预计和引雷设计,通过踏实的基层工作,提升高压输电线路设计的实用性和功能性,为高压输电线路的稳定运行做好实际的基础性设计工作。

1、高压输电线路铁塔结构设计的要点
1.1 高压输电线路铁塔的布置形式
高压输电线路铁塔的布置形式以交叉斜材式为主,将交叉斜材布置到导线横担根部,在节点上增设 1 根短角钢,以增强其抵抗纵
向荷载的能力,与塔身横隔面侧面横材的中点相连接,使导线纵向荷载通过塔身横隔材直接传递到塔身上去,从而解决主材和节点板弯曲变形的问题。

1.2 高压输电线路铁塔斜材的选择条件
制约高压输电线路铁塔塔身斜材的基本条件是荷载力矩和长度。

其中,斜材对外荷载抵抗力矩的大小即斜材和水平面的夹角大小,将直接影响到该节间主材分段及主材选材。

1.3 高压输电线路铁塔塔型的选择
高压输电线路铁塔选型时应该对塔身主材、节间分段情况、接腿等多因素进行优化组合,高压输电线路铁塔的部位和布置形式等都是高压输电线路铁塔塔形选择的要点。

1.4 高压输电线路铁塔特别注意的问题
首先,在高压输电线路铁塔的主材和节点板、节点板和节点板、节点板和塔身斜材等关键部位应该加斜垫作为稳定的措施。

其次,高压输电线路铁塔身主材若是单角钢应该采用设置双排螺栓保证高压输电线路铁塔塔身稳定。

最后,如果用四角钢组合成十字断面,可直接采用制弯节点板的办法。

2、高压输电线路防污损的工作
2.1 确定高压输电线路污损的情况
首先,对高压输电线路设计地段污损的历史情况做以了解,掌握污损发生的规律和内在原因。

其次,对高压输电线路设计地段的污损进行必要的物理测量和化学分析,明确污损的治理的方向。

最后,
对高压输电线路进行防污损设计,采用各种办法防治污损和确保高压输电线路的正常运行。

2.2 高压输电线路防污损工作的要点
首先,确定高压输电线路污秽的类型。

其次,对高压输电线路不同型式绝缘子积污特性进行了解。

其三,优化高压输电线路的布置方式防止污损对线路的影响。

其四,确定高压输电线路污秽设计目标电压。

最后,在确定高压输电线路参照盘形绝缘子的基础上确定预选绝缘子串的结构高度和爬电距离。

3、路径优化选择
输电线路路径选择是整个线路设计工作中的关键,方案的合理性对线路的经济、技术指标和施工、运行条件起着重要作用。

在这个过程中,首先要了解当地的气象、水文、地质条件。

根据当地地形特点,合理选择路径。

在此基础上,对线路沿线地上、地下、在建、拟建的工程设施,尤其是采矿区的资料,进行充分的收集和调研。

并应用卫片选线技术,进行多方案路径比选。

应用全寿命周期成本(LCC)管理方法,比选出最优路径。

路径应避开不良地质、水文及气象地段,提高工程抵御自然灾害和突发事故的能力和水平;避让了危及线路安全可靠运行的设施,减少了线路建设对地方规划及其它设施的负面影响;尤其是最大程度地避让了采矿区,提高线路的安全运行条件。

在各方面条件允许的情况下,本次工程线路尽可能与已有及拟建电力线并行,减少交叉跨越,降低建设成本。

做好输电线路对环境影响的各项评价工作,对涉及外
部条件的环境影响评价、压覆矿产评估、地质灾害评估、文物调查及评估、地震安全性评价等工程前期工作都需得到相关行政管理部门的许可批准后,工程才能实施。

4、导地线选型
送电线路的导线长期在旷野、山区或湖海边缘运行,需要经常耐受风、冰等外荷载的作用,气温的剧烈变化以及化学气体等的侵袭,同时受国家资源和线路造价等因素的限制。

因此,在设计中,对电线的材质、结构等必须慎选取。

线路的输送容量、传输性能、环境影响问题对输电线路的技术经济指标都有很大的影响。

要从导线的电气特性、机械特性、投资分析及施工等多个方面对各种导线截面进行技术经济比较,特别在导线选型造价分析中按全寿命周期费用最小为原则分析比较,而不是只考虑基建初投资,这样可以全面考核各导线方案的技术经济性,最后推荐出在技术和经济上最优的导线型号及截面。

导线在线路建设投资中所占的比例较大,110kV线路一般要占工程本体投资的12%左右,且它也影响到铁塔荷载的大小和铁塔高度、地线支架高度的选择,如果再考虑因导线方案变化而相应造成的杆塔工程量和基础工程量的变化,其对整个工程的造价影响极其巨大。

合理选择导线截面是安全运行和降低建设投资的关键问题之一。

因此,按全寿命周期费用最小为原则选择导线结构,对降低输电线路投资具有重要的意义。

5、高压输电线路的防雷设计工作
5.1 优化高压输电线路间距离防止雷击发生
将高压输电线路间水平距离高压边相导线38m 以内的地面凸出物列入防雷工程设计,对有可能造成绕击雷害的地面凸出物应采取措施改善其引雷特性。

在水平距离高压边相导线38m 以内存在绕击雷害隐患的地面凸出物顶部设置避雷针,或在存有绕击雷害隐患的高压线路大跨越的雷电方向侧设置旁路避雷线,引雷接闪,防止雷电绕击高压导线。

5.2 做好高压输电线路避雷线的设计工作
在双避雷线可有效保护中相导线,减小边相导线的绕击范围;加强避雷线的机械强度,防止雷击避雷线断股尤其是雷击避雷线断线的恶性事故发生;杆塔顶部设置塔顶避雷针,控制雷击点,减小杆塔处的绕击范围及避雷线的落雷次数;在适当向边相导线侧外移避雷线的同时,要考虑到雷击避雷线时的雷电冲击作用有可能沿垂线方向击穿避雷线与高压导线之间的空气间隙问题,设计高压导线与避雷线之间在垂线方向保持一定的水平距离,采用具有消雷功能的塔顶新型避雷针,有效减弱线路的雷电强度,防止雷害。

6、结束语
高压输电线路负责电厂与变电站、变电站与变电站之间电力传输和分配的主要电力设施,被称为电力事业的动脉。

由于我国资源和人口分布不均匀,因此,就更需要加强高压输电线路的建设工作,将电能有效输送到用电地区,完成电力事业肩负的任务。

高压输电线路设计是高压输电线路规划和准备工作阶段的重点,做好高压输电线路设计工作意义重大,本文对高压输电线路关键的铁塔结构设计、防雷设
计和防污损等重点工作进行了简单探讨,希望可以有效提高高压输电线路设计质量,提升电力事业发展和进步的水平。

参考文献
[1]覃弘达.对高压输电线路工程设计施工问题的探讨[J].机电信息,2009(30).
[2]柴秀伟.500kV 输电线路施工管理数字化的实现[J].科技情报开发与经济, 2007(17).
[3]梁世奋.高压输电线路工程设计施工问题探讨[J].科技咨询导报. 2007(26).
[4]高丽娜,刘鑫,初宏,李雅平.高压输电线路对环境的污染及防护[J].科技资讯,2008(33).
[5]谢振刚. 高压输电线路工程施工问题研究[J].黑龙江科技信息,2008(07).。

相关文档
最新文档