光学课程设计望远镜系统结构设计
光学课程设计--双筒棱镜望远镜设计

《光路设计》课程设计报告题目:双筒棱镜望远镜设计院(系):信息科学与工程学院专业班级:光电1202班学生姓名:学号:***********指导教师:20 14 年 12 月 29 日至20 15 年 1 月 9 日目录设计任务与要求 (3)设计步骤 (4)一、外形尺寸计算 (4)二、光学系统选型 (6)三、物镜的设计 (7)1、用PW法计算双胶合物镜初始结构: (7)(1)求h,z h,J (7)(2)求平板像差 (7)(3)求物镜像差 (7)(4)计算P,W (8)(5)归一化处理 (8)(6)选玻璃 (8)(7)求形状系数Q (9)(8)求归一化条件下透镜各面的曲率 (9)(9)求薄透镜各面的球面半径 (9)(10)求厚透镜各面的球面半径 (9)2、物镜像差容限的计算 (10)3、物镜像差校正 (11)4、物镜像差曲线 (13)四、目镜的设计 (14)1、用PW法计算凯涅尔目镜初始结构 (14)(1)接目镜的相关参数计算 (14)(2)场镜的相关参数计算 (15)2、目镜像差容限的计算 (16)3、目镜像差校正 (17)4、目镜像差曲线 (20)五、光瞳衔接与像质评价 (20)1、光瞳衔接 (20)2、像质评价 (21)3、总体设计评价 (21)学习体会 (22)设计任务与要求设计题目:双筒棱镜望远镜设计设计技术要求:双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为:1、望远镜的放大率Γ=6倍;2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D=30mm);3、望远镜的视场角2ω=8°;4、仪器总长度在110mm左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离>=14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。
6、lz ′>8~10mm设计步骤一、外形尺寸计算由入瞳直径30D mm =及相对孔径'1:4Df =,可得: 物镜焦距'14120f D mm =⨯=由6Γ=,知:出瞳直径'5DD mm ==Γ目镜焦距''12120206f f mm ===Γ 由物方视场2ω=8,可得:目镜通光口径'''312[()]222.084D D f f tg mm ω=++⨯= 分划板直径'21216.7824D f tg mm =ω=分划板半径28.39122D = 又由:'64tg tg tg ω=Γω=,可得:像方视场'245.5ω=该望远系统采用普罗I 型棱镜转像,普罗I 型棱镜如下图:将普罗I 型棱镜展开,等效为两块平板,如下图:普罗I 型棱镜由设计要求:视场边缘允许50%的渐晕,可利用分划板拦去透镜下部25%的光,利用平板拦去透镜上部的25%的光,这样仅有透镜中间的50%的光能通过望远系统,使像质较好。
光学设计实验望远镜系统设计实验

光学设计实验报告——望远镜系统设计**:***学号:B********班级:B090103目录一、ZEMAX仿真二、设计优化三、数据比较和优化后参数四、公差分析五、光学系统图六、设计心得体会一ZEMAX仿真一、本次设计要求如下:1.焦距为100mm;2.光源为无穷远处;3.像空间F/﹟=4,相对孔径1/44.前一块玻璃为BAK1,后一块玻璃为F25.全视场角为8度先打开ZEMAX软件,根据设计要求修改系统设定,包括系统孔径,镜头单位,视场,和波长。
望远镜物镜要求校正的像差主要是轴向色差、球差、慧差。
根据要求采用的是折射式望远双胶合型(1)修改系统设定。
首先,根据要求的设计参数计算物方孔径EPD。
提供的有效焦距efl为100mm,像空间F/﹟=4。
由公式,得物方孔径EPD约等于25。
在ZEMAX主菜单软件中,选择系统> 通用配置,在弹出的对话框中,选择图象空间F/#,数值选择4。
(2)视场设定。
在ZEMAX主菜单软件中,选择系统> 视场,在弹出的对话框中,视场类型选择角度,并输入三组视场数据,(0,8), (0, 2.8)和 (0,4)。
第三步,波长设定。
在ZEMAX主菜单软件中,选择系统> 波长,在弹出的对话框中,单击选择完成配置,然后单击确定。
系统配置完毕,即可在LDE中输入数据。
选择分析>草图>2D草图,将出现2D草图LAYOUT。
第二部分设计优化从2D草图可以看出,镜头的性能参数并非最优。
选择编辑——》优化函数,反复进行修改权重,直到mtf达到最优。
选择工具 > 优化 > 优化在弹出的窗口中执行最终优化当优化开始时,ZEMAX 首先更新系统的评价函数。
第四部分:数据比较与优化后参数优化后2D草图:第五部分公差分析在菜单栏中点开Tools(工具)选中Tolerancing点OK然后点Editors选中Tolerance Data Editor在页面上点开Tools选中Default Tolerances点OK输入参数进行公差分析后得点开Tools 选中Test Plate Fitting出现对话框选择Best to woest 点OK,第五部分光学系统图第六部分设计心得体会通过光学课程设计,我不但学到了一些以前不懂的知识,而且更进一步学会使用了ZEMAX 常用的光学设计软件,同时,也锻炼了我们在学习新软件的能力,这不但是对新知识的学习,更是对新事物学习和接受能力的锻炼,因此我对此次光电课程设计感触和收获颇深!刚开始,我们对设计的总体思路都没有一个大概的印象,刚得到题目时,我们到图书馆和上网查阅资料,看了以前上试验课时的PPT和一些资料,才对要使用的软件有了较深入的了解,然后对着以前的设计课题,慢慢的探索和练习。
光学课程设计——望远镜系统-精品

光学课程设计——望远镜系统-精品2020-12-12【关键字】情况、方法、条件、空间、领域、质量、传统、认识、问题、焦点、系统、有效、现代、良好、优良、透明、保持、了解、研究、特点、位置、关键、网络、理想、地位、基础、需要、环境、工程、负担、方式、作用、结构、关系、分析、调节、形成、满足、保证、维护、指导、强化、取决于、方向、适应、实现、减轻、中心、重要性望远镜系统结构设计指导教师:张翔专业:光信息科学与技术班级:光信息08级1班姓名:学号:目录第一部分设计背景 (1)第二部分设计目的及意义 (1)第三部分望远镜介绍 (1)3.1望远镜定义 (1)3.2望远镜分类及相应工作原理 (2)第四部分望远镜系统设计 (3)4.1开普勒望远镜 (3)4.2望远镜系统常用参数 (4)4.3外形尺寸计算 (6)4.4伽利略望远镜 (8)4.5物镜组的选取 (9)4.6望远镜像差类型及主要结构 (10)4.7双胶物镜与双分离物镜分析 (12)4.8内调焦望远物镜分析 (14)4.9目镜组的选取 (14)4.10目镜主要像差及分析 (17)4.11棱镜转像系统 (17)4.12转折形式望远镜系统 (18)4.13光学系统初始结构参数计算方法 (18)4.14应用光学系统中的光栅 (20)第五部分设计总结 (21)第六部分参考文献 (21)一.设计背景在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。
如:天文、空间望远镜;地基空间目标探测与识别;激光大气传输、惯性约束聚变装置等等。
其中我国以高功率激光科研和激光核聚变研究为目的的光电系统——“神光二号”,颇具代表。
“神光二号”对于未来的能源危机和我国的军事领域有着重要意义。
二.设计目的及意义运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜外形尺寸、物镜组、目镜组及转像系统的简易或远离设计。
了解光学设计中的PW法基本原理。
倍的双目望远镜光学设计

设计一个8倍的双目望远镜设计题目要求:设计一个8倍的双目望远镜,其设计要求如下:全视场:2ω=5º; 出瞳直径:D ´=5mm ; 出瞳距离:l z ´=20mm ; 分辨率:α=6";(R=5") 渐晕系数:K =0.64;棱镜的出射面与分划板之间的距离:a =10mm ; 棱镜:o 60-LJ D 屋脊棱镜;L=2.646D 材料:K10; 目镜:2-35一、目镜的计算目镜是显微系统和望远系统非常重要的一个组成部分,但目镜本身一般并不需要设计,当系统需要使用目镜时,只要根据技术要求进行相应类型的选取即可。
1、首先根据已知的视觉放大倍数Γ及视场2ω,求出2'ω'1159)(22tg ︒=⨯Γ='⇒⇒'=Γωωωωtg arctg tg2、因为目镜有负畸变(3%~5%),所以实际应取:'962%5)(2)(22︒=⨯⨯Γ+⨯Γ='ωωωtg arctg tg arctg3、根据实际所需要的2'ω数值。
出瞳直径值及镜目距值等,来选择合适的目镜类型。
在本次设计中所需的目镜的结构形式应该作为已知条件给出,如:目镜2-35。
图2-1目镜2-35(结构图见2-1)此外设计手册中还提供有相关的结构数据参数表2-1及主要的系统数据; 表2-10.6,298.7,502,00.25==︒==''d s f f ω等。
从图2-2中我们不难发现该目镜的出瞳位于整个系统的左侧,而在目镜的实际运用中,出瞳应位于系统右侧。
此种情况相当于将目镜倒置,故而它所给出的298.7='f s 我们不能直接加以运用,这里f s '是指F '与目镜最后一面之间的距离。
4、将手册中给的目镜倒置:由于将目镜倒置,则目镜的数据将发生一定的变化,以目镜2-35为例,原来的第一个折射面(650.1081=r )变为第八个面(650.1088=r ),原来的第二个折射面(31.332-=r )变为第七个折射面(31.337-=r )……,以此类推。
利用光学原理构建简易望远镜设计

望远镜的使用方法: 调整焦距,对准目 标,保持稳定
望远镜的维护方法: 定期清洁镜片,避 免潮湿和灰尘,轻 拿轻放
望远镜的存放:放 置在干燥通风处, 避免阳光直射
望远镜的故障处理: 如有故障,及时联 系专业人士进行维 修
简易望远镜的性能 测试与评估
测试目的:评估望远镜的分辨 能力
测试方法:使用标准分辨率测 试卡
尺寸设计:根据 观测需求,确定 镜筒长度和直径
固定方式:采用螺 纹、卡扣等方式, 保证镜筒的稳定性 和可调节性
作用:调整望远镜的焦距,使图像 清晰
工作原理:通过旋转调焦旋钮,带 动调焦齿轮转动,从而调整调焦筒 的长度,实现焦距的调整
添加标题
添加标题
添加标题
添加标题
结构:包括调焦筒、调焦旋钮、调 焦齿轮等
材料准备:透镜、镜筒、支架等 工具准备:螺丝刀、钳子、胶水等 场地准备:宽敞、明亮、通风良好的环境 安全准备:佩戴防护眼镜、手套等安全设备
透镜的安装: 选择合适的透 镜,安装在镜 筒的一端,确 保透镜与镜筒
紧密贴合。
反射镜的安装: 选择合适的反 射镜,安装在 镜筒的另一端, 确保反射镜与 镜筒紧密贴合。
原理:利用光的折射现象,使远处的物体在近处成像 结构:由物镜、目镜和筒身组成 优点:结构简单,成像清晰,易于操作 缺点:体积较大,携带不便,色散现象明显
原理:利用光的反射和折射原理,使光线汇聚到焦点 结构:由两个反射镜和一个折射镜组成,反射镜位于折射镜的两侧 优点:结构紧凑,成像质量高,适合观测天体 应用:广泛应用于天文观测和科研领域
亮度测试:测量望远 镜在不同环境下的亮 度,以评估其观测效 果和适用范围
测试方法:使用专 业仪器进行测试, 确保数据的准确性 和可靠性
光学课程设计望远镜系统结构参数设计

提高性价比
设计望远镜系统结构 确定望远镜系统结构参数
优化望远镜系统结构
验证望远镜系统结构优化效 果
望远镜系统结构优化设计:通过优化设计,提高了望远镜的成像质量、分辨率和观测效率。
优化方法:采用了光学设计软件和计算机辅助设计技术,对望远镜系统结构进行了优化设计。
空间探测:探索宇 宙、研究天体物理
望远镜系统向更高分辨率、更大视场、更高灵敏度方向发展 望远镜系统向多波段、多目标、多任务方向发展 望远镜系统向智能化、自动化、网络化方向发展 望远镜系统向小型化、轻量化、便携化方向发展
望远镜系统智能化:实现自动跟踪、自动聚焦等功能 望远镜系统小型化:降低体积和重量,提高便携性 望远镜系统多功能化:集成多种观测功能,如红外、紫外、X射线等 望远镜系统网络化:实现远程控制和数据传输,提高观测效率和共享性
优化效果:优化后的望远镜系统结构具有更高的成像质量、分辨率和观测效率,满足了科研 和观测需求。
优化建议:在优化过程中,需要考虑望远镜系统的整体性能、成本和制造工艺等因素,以实 现最优的设计效果。
望远镜系统制造与 检测
材料选择:选 择合适的光学 材料,如玻璃、
塑料等
切割成型:将 材料切割成所 需的形状和尺
添加标题
添加标题
添加标题
射电望远镜:通过接收无线电波进 行观测,如射电干涉仪、射电望远 镜阵列等
地面望远镜:在地面上运行的望远 镜,如凯克望远镜、甚大望远镜等
口径:望远镜的直径,决定了望远镜的 集光能力和分辨率
焦距:望远镜的焦距,决定了望远镜的 放大倍数和视场大小
光圈:望远镜的光圈,决定了望远镜的 进光量和成像质量
寸
光学课程设计望远镜系统结构参数设计说明

——望远镜系统结构参数设计设计背景:在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。
如:天文、空间望远镜;地基空间目标探测与识别;激光大气传输、惯性约束聚变装置等等……二设计目的及意义〔1、熟悉光学系统的设计原理及方法;〔2、综合应用所学的光学知识,对基本外形尺寸计算,主要考虑像质或者相差;〔3、了解和熟悉开普勒望远镜和伽利略望远镜的基本结构及原理,根据所学的光学知识〔高斯公式、牛顿公式等对望远镜的外型尺寸进行基本计算;〔4、通过本次光学课程设计,认识和学习各种光学仪器〔显微镜、潜望镜等的基本测试步骤;三设计任务在运用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或者原理设计。
并介绍光学设计中的PW 法基本原理。
同时对光学系统中存在的像差进行分析。
四望远镜的介绍1.望远镜系统:望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。
利用通过透镜的光线折射或者光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。
又称"千里镜"。
望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。
望远镜第二个作用是把物镜采集到的比瞳孔直径〔最大 8 毫米粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。
2.望远镜的普通特性望远镜的光学系统简称望远系统,是由物镜和目镜组成。
当用在观测无限远物体时,物镜的像方焦点和目镜的物方焦点重合,光学间隔 d=o。
当月在观测有限距离的物体时,两系统的光学问隔是一个不为零的小数量。
作为普通的研究,可以认为望远镜是由光学问隔为零的物镜和目镜组成的无焦系统。
这样平行光射入望远系统后,仍以平行光射出。
图9—9 表示了一种常见的望远系统的光路图。
为了方便,图中的物镜和目镜均用单透镜表示。
这种望远系统没有专门设置孔径光阑,物镜框就是孔径光阑,也是入射光瞳,出射光瞳位于目镜像方焦点之外,观察者就在此处观察物体的成伤情况。
光学课程设计-望远镜系统结构参数设计

03
望远镜系统的设计流程
确定设计目标
望远镜系统的功能需求
望远镜系统的性能指标
望远镜系统的成本预算
望远镜系统的设计周期
望远镜系统的设计团队 和分工
望远镜系统的设计评审 和验收标准
选择合适的镜片材型:增透膜、反 射膜、偏振膜等
考虑因素:折射率、色 散、反射率、透射率等
统
定期保养
清洁镜片:使用专业清洁 剂和软布擦拭镜片,避免 刮伤
检查螺丝:检查所有螺丝 是否松动,如有松动及时 拧紧
调整焦距:定期调整望远 镜的焦距,确保清晰度
更换电池:定期更换望远 镜的电池,确保望远镜的 正常运行
存放环境:将望远镜存放 在干燥、通风的环境中, 避免潮湿和灰尘影响望远 镜的性能
感谢观看
望远镜系统通过调整物镜和目镜的距离, 实现对焦和放大功能
望远镜系统还可以通过调整物镜和目镜 的角度,实现对焦和放大功能的优化
02
望远镜系统的主要参数
焦距
焦距的作用:决定望远镜的 放大倍数和成像质量
焦距的定义:望远镜系统中, 从物镜到目镜的距离
焦距的选择:根据观测目标、 观测距离和观测环境等因素
进行选择
汇报人:
环境保护
监测大气污染:观测大气中的污染物浓度和分布 监测水质污染:观测水体中的污染物浓度和分布 监测土壤污染:观测土壤中的污染物浓度和分布 监测生物多样性:观测生物多样性的变化和保护情况
远程教育
远程教学:通 过望远镜系统 进行远程教学, 实现教育资源
的共享
远程会议:通 过望远镜系统 进行远程会议, 提高沟通效率
镜片形状:球面、非球 面、柱面等
镜片数量:单镜片、双 镜片、多镜片等
镜片安装方式:固定、 可调、自动等
应用光学课程设计-15倍双目望远镜

应用光学课程设计报告———15倍双目望远镜姓名:班级学号:指导教师:光电工程学院2016年01月04日一、望远镜系统的原理 (3)二、课程设计的内容及要求 (3)三、光学元件尺寸计算及数据处理总结 (4)(一)、目镜的计算 (4)(二)、物镜的结构形式及外形尺寸计算 (7)(三)、计算分划板 (7)(四)、计算棱镜 (8)(五)、像差计算 (9)(六)、建立数据文件 (15)一、望远镜系统的原理亥普勒望远镜的原理示意如下图1所示:图 1图中可见亥普勒望远镜是由正光焦度的物镜与正光焦度的目镜构成,与显微镜不同的是望远镜的光学间隔为0,平行光入射平行光射出。
其系统的视觉放大倍率为:'//D D f f e o-=''-=Γ 式中,0f '为物镜的焦距;e f '为目镜的焦距;D 为入瞳直径;'D 为出瞳直径。
在此成像过程中,有一个实像面位于分划面上,可以实现相应的瞄准或测量。
由于亥普勒望远镜成倒像不利于观察,故而需在系统中加入一个由透镜或棱镜构成的转像系统。
军用望远镜的转像系统多是用两个互相垂直放置的180-II D 棱镜(即保罗棱镜)组成。
伽利略望远镜是由正光焦度的物镜和负光焦度的目镜组成,其视觉放大率大于1,形成的是正立的像,无需加转像系统,也无法安装分划板,应用较少。
二、课程设计的内容及要求1、根据已知的一些技术要求,进行外型尺寸计算;1)目镜的选取及计算;2)物镜的结构型式及外型尺寸计算; 3)分划板的外型尺寸计算;4)棱镜的类型选取及外型尺寸计算; 2、像差计算1)求取棱镜的初级像差; 2)求取物镜的初级像差;3)根据物镜的像差求出双胶合物镜的结构参数。
3、计算象差容限;4、根据物镜的结构参数及棱镜的结构参数进行部分光线追迹,初步求出像点的位置及象差的大小;5、利用前几步计算出的初始结构参数制作数据文件;6、利用数据文件上机操作、计算。
并用像差容限加以评价系统的可实用性,如果结果不满足像差容限的要求,则需修改初始结构参数,再进行上机操作,如此反复,直至满足要求为止。
光学设计实验(一)望远镜系统设计实验

光学设计实验(一)望远镜系统设计实验1 实验目的(1)通过设计实验,加深对已学几何光学、像差理论及光学设计基本知识、一般手段的理解,并能初步运用;(2)介绍光学设计ZEMAX 的基本使用方法,设计实验通过ZEMAX 来实现 2 设计要求(1) 设计一个8倍开普勒望远镜的目镜,焦距f’=25mm ,出瞳直径D ’=4mm ,出瞳距>22mm ,视场角2ω’=25︒;考虑与物镜的像差补偿,目镜承担轴外像差的校正,物镜承担轴上像差的校正。
(总分:30分)(2)设计一个8倍开普勒望远镜的物镜,其焦距、相对孔径D/f ’、视场角、像差补偿要求根据设计(1)的要求来确定,要求给出计算过程。
(总分:30分)(3)将上述物镜与目镜组合成开普勒望远镜,要求望远镜的出射光束角像差小约3’左右。
如不符合要求,可结合ZEMAX 中paraxial 理想光学面,通过控制视觉放大倍率和组合焦距为无限大(如f ’>100000)等手段。
(总分:30分)(4)回答和分析设计中的相关问题(总分:10分)所有设计中采用可见光(F ,d ,C )波段。
问题1:望远光学系统和开普勒望远镜的特点问题2:目镜的光学特性和像差特点问题3:常用的目镜有哪些?常用的折射式望远物镜有哪些? 问题4:望远镜系统所需要校正的主要像差有那些?提示:目镜采用反向光路设计,目镜包括视场光阑,注意目镜孔径光阑的设置。
判定出射光束角像差小约3’左右的方法:在像面前插入一个paraxial 类型的面,若该面焦距(即与像面之间的距离)为1000mm ,则Spot diagram 的Geo Radius 则应小1mm 。
m 91512.5COS 343831000COS 3438322'μω=⨯⨯=⨯⨯≤f R 3 设计流程所谓光学系统设计就是根据使用要求,来决定满足使用要求的各种数据,即决定光学系统的性能参数、外形尺寸和各光组的结构等。
因此我们可以把光学设计过程分为4个阶段:外形尺寸计算、初始结构的计算和选择、象差校正和平衡以及象质评价。
光学

符合上式的视放大率称为望远镜的"有效放大率"。一般要求仪器的实际视放大率是有效放大率的2-3倍。
(5)、极限分辨角
表示观测仪器精度的指标是它的最小分辨角。人眼的极限分辨角为:
(3-9)
若以作为人眼的分辨极限,则望远镜的极限分辨角由式(3-7)可得:
(3-10)
1.Yb:YGG晶体激光器——光路分析实例
光路图如图2.1所示:
铱镓石榴石(YGG)是铱铝石榴石(YAG)的同行体,和YAG一样具有硬度高、稳定性强和热导率高等特点。但是Yb:YGG晶体的熔点很高,采用传统方式生长的晶体并不能满足激光实验的要求。如图2.1所示的Z型折叠腔结构。其中M1为双色输入镜,M2、M3为凹面反射镜,OC为输出镜,GTI1、GTI2镜片作为色散补偿器件,半导体可饱和吸收镜(SESAM)作为锁模元件。 Yb:YGG晶体长度为3mm,所用泵浦源为970nm半导体激光器,输出功率7W。
.光学课程设计 望远镜系统结构设计 2011-06-12 14:16:18| 分类: 原创推荐 | 标签: |字号大中小 订阅 .
成都信息工程学院光电技术学院 光学课程设计
望远镜系统结构设计
姓 名: 裴明亮
5. 棱镜转像系统 Porro prism erecting system 24
5.1 棱镜结构及特点 24
5.2 折转形式望远镜系统 24
5.3 类似棱镜结构晶体 25
6. 光学系统初始结构参数计算方法 25
于是有:
当望远镜的实际视放大率大于有效放大率时,虽然仪器视角分辨率提高了,但由于受衍射分辨率的限制,并不能看清更多的物体细节,对于实验室或者车间使用的建议仪器,为了保证检验精度和减轻操作人员的疲劳,一般取,即有:
光学天文望远镜结构设计及性能分析研究

光学天文望远镜结构设计及性能分析研究一、背景介绍光学天文望远镜作为天文学中最常用的观测工具之一,已经成为了现代天文学研究中不可或缺的组成部分。
光学望远镜利用天然光线在折射、反射、聚焦等方面的特性,可以使天体物理学的研究者们在研究恒星、行星、银河系等天体时,获得清晰而准确的观测结果。
在光学望远镜的结构和性能设计方面,需要综合考虑各种物理因素和技术因素,以达到最优的性能。
二、光学天文望远镜结构设计光学天文望远镜的结构设计主要包括望远镜主体、支架、平台、辅助设备等三个方面。
其中,主体是光学天文望远镜重要的组成部分,一般包括镜筒、镜盘、鏡片等。
1. 镜筒镜筒是光学望远镜的主体,一般由钢筋、钢板等材料制成。
镜筒的主要功能是将光束能最大地聚焦,达到更好的观测效果。
此外,还需要考虑镜筒的稳定性、振动等因素。
2. 镜盘镜盘是光学望远镜的重要组成部分,是支撑鏡片的核心。
一般由铝合金或有机玻璃等材料制成。
因为镜盘对光束聚焦的影响较大,所以设计时需要考虑材料的质量和表面精度,以保证望远镜的观测性能。
3. 镜片镜片是光学望远镜的核心部分,负责对光线进行折射和反射,使光线能够在焦点处集中,从而实现更准确的观测。
常用的材料有石英、硼硅玻璃等。
三、性能分析研究光学天文望远镜的性能与其结构设计密不可分,影响性能的因素主要包括镜面精度、镜面表面质量和光学设计等几个方面。
1. 镜面精度镜面精度是评价光学望远镜性能的重要因素之一。
它的准确度和表面精度会直接影响到望远镜的空间分辨率。
为了提高镜面精度,需要采用多种技术手段来进行研磨和加工。
同时,加强对镜体的检验和监测,以及对望远镜的镜面保养和维护,也是保证长期稳定性和性能的重要因素。
2. 镜面表面质量光学望远镜的表面质量也是影响性能的重要因素。
表面的平整度、光洁度、清洁度等都会影响到光线的聚焦质量和影像的清晰度。
因此,在望远镜的表面处理方面,需要充分考虑表面粗糙度和清洁度等因素,并采用适当的技术手段进行表面处理和保养。
应用光学课程设计---双筒棱镜望远镜设计

应用光学课程设计一、设计题目双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)二、本课程设计的目的和要求1、综合运用课程的基本理论知识,进一步培养理论联系实际的能力和独立工作的能力。
2、初步掌握简单的、典型的、与新型系统设计的基本技能,熟练掌握光线光路计算技能,了解并熟悉光学设计中所有例行工作,如数据结果处理、像差曲线绘制、光学零件技术要求等。
3、巩固和消化课程中所学的知识,初步了解新型光学系统的特点,为学习专业课与进行毕业设计打下好的基础。
三、设计技术要求双筒棱镜望远镜设计,采用普罗I 型棱镜转像,系统要求为:1、望远镜的放大率r= 6倍;2、物镜的相对孔径D/f丄1: 4(D为入瞳直径,D = 30mm);3、望远镜的视场角2宀=8°4、仪器总长度在110mm 左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离14mm,棱镜采用K9玻璃,两棱镜间隔为2〜5mm。
& lz '〜810mm四、设计报告撰写内容本课程设计要求以设计报告形式完成以下工作:1 、认真学习相关像差理论和光学设计知识,做好笔记,完成例题作业并上交;2、根据所讲内容进行本设计具体参数以及结构形式的选择,说明选择理论依据;3、进行本设计的外形尺寸计算,要求写明计算过程;4、使用PW 法进行初始结构参数r、d、n 的求解,要求写明计算过程;5、计算本设计的像差容限,使用Tcos软件完成设计的模拟和计算,手工修改结构参数进行像差的校正;6、绘制相应的像差曲线图和计算数据报表;7、写出本次课程设计的心得体会。
第5章望远系统设计范例题目:双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)要求:双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为:1、望远镜的放大率6倍;2、物镜的相对孔径D/f丄1: 4 (D为入瞳直径,D = 30mm);3、望远镜的视场角2宀=8°4、仪器总长度在110mm左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离14mm,棱镜采用K9玻璃,两棱镜间隔为2〜5mm。
望远镜系统结构设计

光学课程设计望远镜结构系统设计**:***班级:光通信082学号:**************:**摘要该报告运用应用光学知识,了解望远镜的历史,在工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。
了解光学设计中的PW 法基本原理。
并应用光学设计软件对系统误差、成像质量进行理论分析。
初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。
望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。
目镜设计的特点、常用目镜的型式和像差分析等都有了一个明确的简要的介绍。
关键字:望远镜物镜目镜放大率分辨率内调焦望远镜 PW法光栅目录一概述…………………………………………………………页二望远镜尺寸设计与分析…………………………………页2.1 望远镜的简述…………………………………………………………页2.2 望远镜的主要特性分析………………………………………………页三分物镜组与目镜组的选……………………………………………… 页3.1望远镜物镜需要消除的像差类型及主要结构形式…………………页3.2双胶物镜和双分离物镜………………………………………………页3.3内调焦望远镜…………………………………………………………页四.目镜组的主要种类及其结构:………………………….. 页4.1惠更斯目镜……………………………………………………………页4.2冉斯登目镜……………………………………………………………页4.3 Porro、Roof棱镜结构及其特点…………………………………页五.望远镜像差设计PW法………………………………….. 页5.2物体在有限距离时的P,W的规化……………………………………页5.5用C,表示的初级像差系数………………………………………页P,W六.光学系统中的光栅分析……………………………………页一概述1.1 课程设计的目的运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。
应用光学课程设计---双筒棱镜望远镜设计

应用光学课程设计一、设计题目双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)二、本课程设计的目的和要求1、综合运用课程的基本理论知识,进一步培养理论联系实际的能力和独立工作的能力。
2、初步掌握简单的、典型的、与新型系统设计的基本技能,熟练掌握光线光路计算技能,了解并熟悉光学设计中所有例行工作,如数据结果处理、像差曲线绘制、光学零件技术要求等。
3、巩固和消化课程中所学的知识,初步了解新型光学系统的特点,为学习专业课与进行毕业设计打下好的基础。
三、设计技术要求双筒棱镜望远镜设计,采用普罗I 型棱镜转像,系统要求为:1、望远镜的放大率r= 6倍;2、物镜的相对孔径D/f丄1: 4(D为入瞳直径,D = 30mm);3、望远镜的视场角2宀=8°4、仪器总长度在110mm 左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离14mm,棱镜采用K9玻璃,两棱镜间隔为2〜5mm。
& lz '〜810mm四、设计报告撰写内容本课程设计要求以设计报告形式完成以下工作:1 、认真学习相关像差理论和光学设计知识,做好笔记,完成例题作业并上交;2、根据所讲内容进行本设计具体参数以及结构形式的选择,说明选择理论依据;3、进行本设计的外形尺寸计算,要求写明计算过程;4、使用PW 法进行初始结构参数r、d、n 的求解,要求写明计算过程;5、计算本设计的像差容限,使用Tcos软件完成设计的模拟和计算,手工修改结构参数进行像差的校正;6、绘制相应的像差曲线图和计算数据报表;7、写出本次课程设计的心得体会。
第5章望远系统设计范例题目:双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)要求:双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为:1、望远镜的放大率6倍;2、物镜的相对孔径D/f丄1: 4 (D为入瞳直径,D = 30mm);3、望远镜的视场角2宀=8°4、仪器总长度在110mm左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离14mm,棱镜采用K9玻璃,两棱镜间隔为2〜5mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学课程设计——望远镜系统结构设计姓名:学号:班级:指导老师:一、设计题目:光学课程设计二、设计目的:运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。
了解光学设计中的PW法基本原理。
三、设计原理:光学望远镜是最常用的助视光学仪器,常被组合在其它光学仪器中。
为了观察远处的物体,所用的光学仪器就是望远镜,望远镜的光学系统简称望远系统. 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。
所以,望远镜是天文和地面观测中不可缺少的工具。
它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统.其系统由物镜和目镜组成,当观察远处物体时,物镜的像方焦距和目镜的物方焦距重合,光学间距为零.在观察有限远的物体时,其光学间距是一个不为零的小数量,一般情况下,可以认为望远镜是由光学间距为零的物镜和目镜组成的无焦系统.常见望远镜按结构可简单分为伽利略望远镜,开普勒望远镜,和牛顿式望远镜。
常见的望远镜大多是开普勒结构,既目镜和物镜都是凸透镜(组),这种望远镜结构导致成像是倒立的,所以在中间还有正像系统。
物镜组(入瞳)目镜组视场光阑出瞳1'1ω2'2'ω3 'f物—f目'l z'3上图为开普勒式望远镜,折射式望远镜的一种。
物镜组也为凸透镜形式,但目镜组是凸透镜形式。
为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜在光路中增加了转像稜镜系统。
此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。
伽利略望远镜是以会聚透镜作为物镜、发散透镜作为目镜的望远镜(会聚透镜的焦距要大于发散透镜的焦距),当远处的物体通远物镜(u>2f )在物镜后面成一个倒立缩小的实像,而这个象一个要让它成现在发散透镜(目镜)的后面即靠近眼睛这一边,当光线通过发散透镜时,人就能看到一个正立缩小的虚象。
伽利略望远镜的优点是结构紧凑,筒长较短,较为轻便,光能损失少,并且使物体呈正立的像,这是作为普通观察仪器所必需的。
其原理图如下:物镜组 目镜组出瞳 '1F F2f2d'1f伽利略望远镜示意图为了更好的了解望远镜,下面介绍放大镜的各种放大率:望远镜垂轴放大率:代表共轭面像高和物高之比。
计算公式如下1'2'f f -=β望远镜角放大率:望远镜共轭面的轴上点发出的光线通过系统后,与光轴夹角的正切之比。
计算公式如下:2'1'f f -=γ望远镜轴向放大率:当物平面沿着光轴移动微小距离dx 时,像平面相应地移动距离dx',比例dx'/dx 就是轴向放大率。
计算公式如下:21''2⎪⎪⎭⎫⎝⎛=f f α 对于目视光学一起来说,更有意义的特性是它的视放大率,视放大率就是同一目标用望远镜观察时的视角和人眼直接观察时二者正切之比。
望远镜是扩大人眼对远距离目标观察的视觉能力,它必须起到扩大视角的作用。
望远镜视放大率Γ为2'1''tan tan f f -==Γωω由望远镜视放大率公式可见,放大率仅仅取决于望远镜结构参数,其值等于物镜和目镜的焦距之比。
确定望远镜视放大率,需要考虑许多因素,如仪器精度要求,目镜结构形式,望远镜的视场角,仪器结构尺寸等等。
表示观测仪器精度的指标是极限分辨角。
若以60''作为人眼的分辨极限,为使望远镜所能分辨的细节也能被人眼分辨,则望远镜的视放大率和它的极限分辨角Φ应满足ΦΓ=60''所以,若要求分辨角减小,视放大率应该增大。
或者说望远镜视放大率越大,它的分辨角即精度越高,人眼极限分辨角为α=1.22λ/D我们可以通过一些简单的数据来确定望远镜的结构参数,例如已知物镜与目镜之间的距离L=315mm ,望远镜放大倍数Γ=20⨯,物方视场角2ω='0203求解得到一系列望远镜结构参数:1.目镜视场角:由ωωtg tg Γ=' 得 '''40602,2030oo==ωω 2.望远镜分辨率:''320''60''60==Γ=α 3.入瞳直径D:根据视放大率得mm D 463.2=Γ= 4.出瞳直径'D :mm DD 3.2'=Γ=5.物镜焦距与目镜焦距:由20''315''2121=-=+f f f f 得mmf mm f 15'300'21==6.视场光阑直径视D :mm tg f D 15.172'==ω视7.出瞳距离'z l :mm Lf f f f l z 75.15''''2122=Γ-=+-=8.目镜口径目D :mm tg l D D z 63.20''2'=+=ω目 9.目镜视度调节量x :设调节5屈光度,则:mm Nf x 125.11000'22=±= 望远镜的视放大率和仪器的结构尺寸有关系,当目镜的焦距确定时,物镜的焦距随视放大率增大而增加。
若望远镜筒长以'2'1f f L +=表示,则随'1f 的增大镜筒变长。
当目镜所要求的出瞳直径确定时,物镜的直径随视放大率的增大而加大。
四、设计内容(一)望远镜外形尺寸设计首先介绍一下目视光学系统中一些机构及放大率的表达式:1.视场光阑:限制物空间多大范围能被成像;一般设在实象平面或中间实象平面上。
2.渐晕光阑:限制轴外成像光束的宽度。
3.入射光瞳:孔径光阑经它前面的光学系统在物空间所成的像。
4.出射光瞳:孔径光阑经它后面的光学系统在像空间所成的像。
5.入射窗:视场光阑经它前面的光学系统在所成的像。
6.出射窗: 视场光阑被其后面的光学系统在所成的像。
7.垂轴放大率:ln nl y y '''==β (1) 8.轴向放大率:2'βαnn = (2) 9.角放大率:βγ'n n=(3) 10.望远镜系统视放大率:''''D Df f tg tg ==-==Γγωω目物 (4) 然后设计一个开普勒式望远镜,其主要要求如下:1.物镜与目镜之间的距离 L=315mm ,2.望远镜的视放大倍数⨯=Γ20,3.物方视场角'2032=ω。
首先确定设计需要的参数,主要有:目镜视场角,望远镜分辨率,入瞳直径,出瞳直径,物镜与目镜的焦距,视场光阑直径,目镜口径,出瞳距离和目镜视度调节量。
开普勒(Kepler Telescope )望远镜光路示意图 计算中可以用到的公式如下:1.如果要求仪器的视角分辨率和衍射分辨率相等,则:3.2''140''60DD =Γ⇒=Γ (5) 2.视放大率:目物''''1f f tg tg D D -===Γωω (6) 3.望远镜分辨率:Γ=''60α (7) 则可以计算出开普勒望远镜的一些主要参数,如下:1.目镜视场角:由ωωtg tg Γ=' 得40.602,20.30'==ωω2.望远镜分辨率:''320''60''60==Γ=α 3.入瞳直径D:根据视放大率得mm 463.2=Γ=D4.出瞳直径'D :mm 3.2'=Γ=DD 5.物镜焦距与目镜焦距:由20''315''2121=-=+f f f f 得mm15'mm 300'21==f f6.视场光阑直径视D :mm 45.17'21==ωtg f D 视7.出瞳距离'z l :mm 75.15''''2122=Γ-=+-=Lf f f f l z 8.目镜口径目D :mm 63.20''2'=+=ωtg l D D z 目9.目镜视度调节量x :设调节5屈光度,则:mm 125.11000'22=±=Nf x 由以上的参数我们就可以设计一个简单的望远镜,由光路图我们还可以看出开普勒望远镜由两个凸透镜构成。
由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良。
但这种结构成像是倒立的,所以要在中间增加转像系统。
(二)物镜组的选取一.望远镜物镜只需对轴上点校正色差,球差和对近轴点校正彗差,轴外像差可以不予考虑。
其结构相对比较简单,一般有以下几种型式: 1折射式望远镜物镜这类物镜又包括双胶物镜、双分离物镜、双单和单双物镜、三分离物镜、摄远物镜、内调焦望远镜物镜2反射式望远镜物镜。
3折射式望远镜物镜二.对折射式望远镜物镜中双胶物镜和双分离物镜进行各自特点比较:(1)双胶物镜 在玻璃选择得当时,能同时校正色差、球差和彗差,是可能满足像质要求的最简单形式,但胶合而上的高级球差使相对孔径受到限制,且当用普通玻璃时二级光谱为常量,色球差也无法控制,因而不能获得高的像质。
该型式的优点是结构简单工艺方便,光能损失也小,宜于在焦距不长,相对孔径不大的场合使用。
(2)双分离物镜 当口径大于50-60mm 是宜采用双分离物镜这种物镜在玻璃选的恰当时初能校正好色差、球差和彗差外还能利用灵敏的空气间隙的少量变化来校正球差,因此可达到相当大的孔径。
但色球差和二级光谱也不能校正。
(3)内调焦望远镜物镜单组型式的物镜对非无穷远物体进行调焦时会增加镜筒长度,相应的望远镜称为外调焦望远镜。
内调焦望远镜是指在物镜之后一定距离处家一负透镜组而成的符合系统,如下图所示。
这种物镜在对不同远处物体成像时,总可以利用改变负镜组的位置而使像位于同一位置上。
此负镜组称为内调焦镜。
计算内调焦望远镜参数时,可以根据给定的物镜焦距'f 物镜长度L 和准距条件即02''=+⋅+-f f d L δδ联立求解出二镜组的焦距及其间隔。
当物镜对有限远物体物体调焦时,易于按照现成规律导出内调焦镜的移动距离。
视阑A B (调焦镜)'H'Fdδ'f图3 内调焦望远镜物镜现代大地测量仪器中几乎全部用内调焦望远镜。
这是由于它具有可以达到简化视距测量、缩短镜筒长度、改善密封性能风一系列优点。
这对经常需要在野外作业的测量仪器来说是非常重要的。
下面我将对两种比较简单的物镜组进行一定的介绍,它们是双胶合物镜和双分离物镜: 1.双胶合物镜是一种常用的望远物镜,它结构简单、光能损失小,合理的选择玻璃和弯曲能校正球差、慧差和色差,但不能消除像散、场曲和畸变,故视场不大,一般不超过o10,二级光谱与色球差也不能校正。