三年级下册数学竞赛试题-树阵图北师大版(含答案)

合集下载

三年级下册数学试题-思维训练:数阵图与数字谜(含部分答案)全国通用

三年级下册数学试题-思维训练:数阵图与数字谜(含部分答案)全国通用

数阵图与数字谜知识要点1.有一种数阵图,它们的特点是从一个中心出发,向外作了一些射线,我们把这种数阵图叫做辐射型数阵图。

填辐射型数阵图的关键是确定中心数以及每条线段上的几个数的和,然后通过对各数的分析,进行试验填数求解。

2.有一种数阵图,它的各边之间相互连接,形成封闭图形,我们称它们为封闭型数阵图。

填这样的图形,主要是顶点数字,抓住条件提供的关系式,进行分析,用试验的方法确定顶点数以及各边上的数字之和,最后填出数阵图。

3.有的数阵图既有辐射型数阵图的特点,又有封闭型数阵图的要求,所以叫做“复合型数阵图”。

我们在思考数阵图问题时,首先要确定所求的和与关键数间的关系,再用试验的方法,找到相等的和与关键数字。

数阵图的解题关键是找”重复数”。

通常的步骤为:⑴观察图表共有几个和⑵找和,思考每个数被加过几个⑶利用整除求重复数例1把1~6这6个数填入下图的○内,使每条直线上3个数的和为9,怎样填?【拓展】如图“好、朋、友、伙、伴、帮、手”这7个汉字分别代表1~7这7个数字。

已知条直线上的3个数相加、2个圆周上的3个数相加,所得的5个和相同。

那么,“好”字代表多少?将1,4,7,10,13,16,19,22,25这9个数分别填入下图的9个○中,使三条边上○中的四个数的和都相等,每条边上四个数的和最大是_____。

弄清楚加减法各部分之间的数量关系是学习数字谜的基础。

1.审题,审题就是找出算式中数字之间的关系和特征,挖掘题目中的隐含条件,它是确定各空格内应该填什么数字的主要依据。

2.选择解题突破口:在审题的基础上,认真思考找出算式中容易填出或关键性的空格,做为解题的突破口,这一步是填空格的关键。

3.确定各空格填什么数字:从突破口开始,依据竖式的已知条件,逐个填出各空格中的数字。

突破口:⑴首位、末分析法;⑵进位、退位分析法;⑶奇偶性分析法;⑷数位分析法;⑸整除。

下式中,不同的字母表示不同的数字,那么ABC表示的三位数是() 例3例2知识要点左式中,不同的符号表示不同的数字,那么◎+△+◇=_____在下面的竖式的各个方框中填上适当的数字,使竖式成立。

【奥数小神童】三年级数学竞赛试题- 树阵图 北师大版(含答案)

【奥数小神童】三年级数学竞赛试题- 树阵图  北师大版(含答案)

数阵图【名师解析】填数时,要仔细观察图形,确定图形中关键的位置应填几,一般是图形的顶点及中间位置。

另外,要将所填的空与所提供的数字联系起来,一般要先计算所填数的总和与所提供数字的和之差,从而确定关键位置应填几。

关键位置的数确定好了,其他问题就迎刃而解了。

【例题精讲】例1:在下图中分别填入1——9,使两条直线上五个数的和相等,和是多少呢?练习:在下图中填入2——10,使横行、竖行中的五个数的和相同。

和是多少呢?例2:把数字1——8分别填入下图的小圆圈内,使每个五边形上5个数的和都等于20。

练习:数字1——6填入下图中的小圆圈内,使每个大圆上4个数的和都是15。

例3:在图中填入2——9,使每边3个数的和等于15。

练习:把1——8填入下图中,使每边3个数的和等于13。

例4:把1——8填入下图○内,使每边上三个数的和最大。

求最大的和是多少?练习:把3——10填入下图○中,使每边上三个数的和最大,求最大的和是多少?例5:在下图各圆空余部分填上3、5、7、8,使每个圆的4个数的和都是21。

练习:图中各圆的空余部分分别填上1、2、4、6,使每个圆中4个数的和是15。

例6:在下图所示的圈内填入不同的数,使得三条边上的三个数的和都是12.若A 、B 、C 的和为18,则三个顶点上的三个数的和是________。

642537练习:在下图所示的圈内填入不同的数,使得三条边上的三个数的和都是21.若A、B、C的和为30,则三个顶点上的三个数的和是________。

选讲:将1--12这十二个自然数分别填人下图的12个圆圈内,使得每条直线上的四个数之和都相等,这个相等的和为___________。

【综合精练】1.把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条直线上三个数的和相等。

2.把6、8、10、12、14、16、18七个数填在下图的○中,使每排三个数及外圆上三个数的和都是32。

3.把5、6、7、8、9、10这六个数填入下图三角形三条边的○内,使得每条边上的三个数的和是21。

北师大版最新小学三年级数学竞赛试题及答案图文百度文库

北师大版最新小学三年级数学竞赛试题及答案图文百度文库

北师大版最新小学三年级数学竞赛试题及答案图文百度文库一、拓展提优试题1.兄妹俩人去买文具,哥哥带的钱是妹妹的两倍,哥哥用去180元,妹妹用去30元,这是兄妹俩人剩下的钱正好相等.哥哥带了元钱,妹妹带了元钱.2.△=○+○+○,△+○=40,则○=,△=.3.有9颗钢珠,其中8颗一样重,另有一颗比这8颗略轻,用一架天平最少称几次,可以找到那颗较轻的钢珠?4.星期一,小强从家里出发,到学校去.他每分钟走60米,5分钟后发现语文书忘在家中的台子上了,此时他离开学校还有700米的路程.于是他赶紧以每分钟100米的速度回家,回家拿好书后又立即以每分钟100米的速度赶往学校.学校与小强的家相距1000米.小强这天至少走了分钟.5.观察下面两个算式,□、△各表示一个数字,□□、△△、□□□、△△△各表示一个两位数和三位数,这两个算式是和.□□□×□□×□=152625;△△△×△△×△=625152.6.你能根据以下的线索找出百宝箱的密码吗?(1)密码是一个八位数;(2)密码既是3 的倍数又是25 的倍数;(3)这个密码在20000000 到30000000 之间;(4)百万位与十万位上的数字相同;(5)百位数字比万位数字小2;(6)十万位、万位、千位上数字组成的三位数除以千万位、百万位上数字组成的两位数,商是25.依据上面的条件,推理出这个密码应该是()A.25526250B.26650350C.27775250D.28870350 7.喜羊羊和懒羊羊共有邮票70张,喜羊羊的邮票张数比懒羊羊的4倍还多5张.喜羊羊有张,懒羊羊有张.8.在如图的竖式中,不同的汉字代表“0﹣9”是个不同数字,该竖式成立,则展示活动代表的四位数最小的是.9.看图填数10.小明将买来的一筐桔子分别装入几个盘子中,如果每个盘子装10个,则多余2个,如果每个盘子装12个,则可以少用一个盘子,那么买来的一筐桔子共有多少只?【参考答案】一、拓展提优试题1.解:根据题意可得:他们的钱数差是:180﹣30=150(元);由差倍公式可得:妹妹带的钱数是:150÷(2﹣1)=150(元);哥哥带的钱数是:150×2=300(元).答:哥哥带了300元钱,妹妹带了150元钱.故答案为:300,150.2.解:因为,△=○+○+○,所以,△=3○,将△=3○代入△+○=40,3○+○=40,即4○=40,○=10,△=3○=3×10=30;故答案为:10;30.3.解:(1)把9个钢珠平均分成3组,把其中两组放在天平上称量,若重量一样,则较轻的在第三组;若重量不一样,则较轻的在天平上升的一组;(2)再把有较轻的钢珠的一组,拿出两个分别放在天平的左右两边,若天平平衡,则剩下的一个就是较轻的,若天平不平衡,则上升一方就是较轻的;这样用2次就一定能找出那个较轻的钢珠.答:用一架天平最少称2次,可以找到那颗较轻的钢珠.4.解:(1)60×5+700,=300+700,=1000(米);(2)(60×5×2+700)÷100+5,=1300÷100+5,=13+5,=18(分钟);答:学校与小强的家相距1000米.小强这天至少走了18分钟.故答案为:1000,18.5.解:根据分析可得,□□□×□□×□=152625=5×5×5×3×11×37=5×55×555,所以,□□□×□□×□=5×55×555;△△△×△△×△=625152=64×11×888=8×8×11×888=8×88×888;故答案为:5×55×555,8×88×888.6.解:(1)四个选项都是8位数;(2)四选项都是25的倍数,C的数字和是35不是3的倍数.排除C;(3)都满足条件;(4)都满足条件;(5)A,D相等不满足条件;(6)B满足条件.故选:B.7.解:设懒羊羊有x张票,那么喜羊羊则有(4x+5)张邮票,x+(4x+5)=705x+5=705x=65x=1313×4+5=57(张)答:喜羊羊有 57张,懒羊羊有 13张.故答案为:57;13.8.解:要使和最小,则数必须为1,展必须为2,学必须为9,示为0,活动的最小值为34,经试验1956+78=2034成立,则展示活动代表的四位数最小的是2034,故答案为2034.9.解:1个苹果的质量+2个梨的质量=1600克…①,3个苹果的质量+2个梨的质量=2800克…②,②﹣①可得:3﹣1个苹果的质量=2800﹣16002个苹果的质量=12001个苹果的质量=600答:1个苹果的质量是600克.故答案为:600.10.解:(10+2)÷(12﹣10)=6(个)12×6=72(只)答:买来的一筐桔子共有72只.。

北师大版最新小学三年级数学竞赛试题及答案图文百度文库

北师大版最新小学三年级数学竞赛试题及答案图文百度文库

北师大版最新小学三年级数学竞赛试题及答案图文百度文库一、拓展提优试题1.五个连续的自然数的和是2010,其中最大的一个是.2.星期一,小强从家里出发,到学校去.他每分钟走60米,5分钟后发现语文书忘在家中的台子上了,此时他离开学校还有700米的路程.于是他赶紧以每分钟100米的速度回家,回家拿好书后又立即以每分钟100米的速度赶往学校.学校与小强的家相距1000米.小强这天至少走了分钟.3.张、李、王三位老师分别来自北京、上海、深圳,分别教数学、语文、英语.根据下面提供的信息,可以推出张老师来自,教;王老师来自,教.①张老师不是北京人,李老师不是上海人;②北京的老师不教英语;③上海的老师教数学;④李老师不教语文.4.A、B、C、D、E五个盒子中依次有9个、5个、3个、2个、1个小球,第一个同学找到放球最少的盒子,然后从其它盒子中各拿出1个小球放到这个盒子里,第二个同学找到放球最少的盒子,然后从其它盒子中各拿出1个小球放到这个盒子里…;当第199个同学放完后,A、B、C、D、E五个盒子中各有个、个、个、个、个.5.同学们乘车去秋游,第一辆车上坐了38个人,如果把第二辆车的4个同学调到第一辆车上,那么第二辆车上的同学还要比第一辆多2人,第二辆车原来坐了人.6.一天中午,孙悟空吃了10个桃子,猪八戒吃了25个包子,孙悟空说猪八戒太能吃了,但猪八戒说自己的包子比桃子小得多,还是孙悟空吃得多.聪明的沙僧用天平得到了如图所示的两种情况(圆圈是桃子,三角是包子长方形表示重量为所标数值的砝码),那么1个桃子和1个包子共重克.7.奶奶生日那天对小明说:“我出生以后只过了18个生日.”奶奶今年应该是岁.8.奶奶折一个纸鹤用3分钟,每折好一个需要休息1分钟,奶奶从2时30分开始折,她折好第5个纸鹤时已经到了()A.2时45分B.2时49分C.2时50分D.2时53分9.祖玛游戏中,龙嘴里不断吐出很多颜色的龙珠,先4颗红珠,接着3颗黄珠,再2颗绿珠,最后1颗白珠,按此方式不断重复,从龙嘴里吐出的第2000颗龙珠是()A.红珠B.黄珠C.绿珠D.白珠10.动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分6个,剩57个桃子;如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个.那么,有()个桃子.A.216B.324C.273D.30111.有20间房间,有的开着灯,有的关着灯,在这些房间里的人都希望与大多数房间保持一致.现在,从第一间房间的人开始,如果其余19间房间的灯开着的多,就把灯打开,否则就把灯关上,如果最开始开灯与关灯的房间各10间,并且第一间的灯开着.那么,这20间房间里的人轮完一遍后,关着灯的房间有()间.A.0B.10C.11D.2012.如图,一个长方体由四块拼成,每块都由4个小立方体粘合而成,4块中有3块都可以完全看见,但包含黑色形状的那块只能看见一部分.那么,下列四个选项中的()是黑色块所在的形状.A.B.C.D.13.湖边种着一排柳树,每两棵数之间相距6米.小明从第一棵树跑到第200棵,一共跑了()米.A.1200米B.1206米C.1194米14.在如图的竖式中,不同的汉字代表“0﹣9”是个不同数字,该竖式成立,则展示活动代表的四位数最小的是.15.传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.【参考答案】一、拓展提优试题1.解:2010÷5=402,最大的数是402+1+1=404;故答案为:404.2.解:(1)60×5+700,=300+700,=1000(米);(2)(60×5×2+700)÷100+5,=1300÷100+5,=13+5,=18(分钟);答:学校与小强的家相距1000米.小强这天至少走了18分钟.故答案为:1000,18.3.解:因为李老师不是上海人,上海的老师教数学,那李老师只可能教语文或英语,又因为李老师不教语文,所以李老师教英语,李老师不是上海人,北京的老师不教英语,所以李老师是深圳人;张老师不是北京人,只能是上海人,教数学;王老师是北京人,教语文.故答案为:上海,数学,北京,语文.4.解:由分析可知:第8个小朋友与第3个重复,即5组一循环;则以此类推:(199﹣2)÷5=39…2(次);第199个同学取后ABCDE五个盒子中应分别是:5、6、4、3、2个小球;答:当199个同学放完后,A,B,C,D,E五个盒子中各放5、6、4、3、2个小球.5.解:设第二辆车上原有x人,可得方程:x﹣4﹣2=38+4,x﹣6=42,x=48.答:第二辆车上原来坐了48人.6.解:由图可知:○=2△+40克①○+80克=△+200克②由②可知:○=△+120克③把③带入①得:△+120克=2△+40克△+120克﹣40克=2△+40克﹣40克△+80克=2△△+80克﹣△=2△﹣△△=80克把△=80克带入③得:○=200克200+80=280(克)答:1个桃子和1个包子共重280克.故答案为:280.7.解:18×4=72(岁),答:奶奶今年应该是72岁.故答案为:72.8.解:1×(5﹣1)=4(分钟)3×5=15(分钟)2时30分+4分钟+15分钟=2时49分答:她折好第5个纸鹤时已经到了2时49分;故选:B.9.解:2000÷(4+3+2+1)=2000÷10=200(组)商是200,没有余数,说明第2000颗龙珠是200组的最后一个,是白珠.答:从龙嘴里吐出的第2000颗龙珠是白珠.故选:D.10.解:依题意可知:如果每只猴子分6个,剩57个桃子.如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个证明少了5×9+6=51;猴子共有(57+51)÷(9﹣6)=36(只);桃子共有36×6+57=273.故选:C.11.解:因为最开始开灯和关灯的各是10间,由于第一间的灯是开着的,所以,第一间人看到的,开灯的9间,关灯的10间,之后,他就关灯,以后无论开灯的出来看,还是关灯的出来看,始终关灯的多,即:一轮结束,灯全部会关闭,故选:D.12.解:因为最上面一层都看得到,所以黑色块只在最下面一层,所以A、D 可以排除,又因为后面那行最右面一个也能看到,所以应为T字型,故图形应该是C.故选:C.13.解:(200﹣1)×6=199×6=1194(米)答:小明一共跑了1194米.故选:C.14.解:要使和最小,则数必须为1,展必须为2,学必须为9,示为0,活动的最小值为34,经试验1956+78=2034成立,则展示活动代表的四位数最小的是2034,故答案为2034.15.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.。

三年级下册数学竞赛试题- 春季测试 北师大版(PDF版 含答案)

三年级下册数学竞赛试题- 春季测试   北师大版(PDF版  含答案)

三年级春季测试时间:60分钟总分:100分学生姓名:__________成绩:__________一、填空。

(共5题,每空5分,共35分。

)1.小马虎在做一道减法题时,把减数百位上的5错看成2,十位上的7错看成1,计算的差是706。

正确的差应是()。

2.平价水果店的水果,若买1千克苹果和2千克梨子需18元,若买2千克苹果和2千克梨子则需要24元。

梨子每千克()元,苹果每千克()元。

3.甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三人的本数同样多。

乙原来比丙多()本。

4.一组学生去搬书,如果每人搬2本,还剩下12本;如果每人搬3本,还剩下6本。

这组学生有()人,这批书有()本。

5.妈妈让小明给客人烧水沏茶。

洗水壶需要1分钟,烧开水需要15分钟,洗茶壶需要1分钟,洗茶杯需要1分钟。

要让客人喝上茶,最少需要()分钟。

二、选择。

(共4题,每题5分)1.幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具。

幼儿园有多少个班?这批玩具有多少个?(A)A.7、58B.5、45C.7、542.一段布,第一次剪去一半,第二次又剪去余下的一半,还剩8米。

这段布原来长(C)米。

A.30B.24C.323.将一张长10厘米、宽8厘米的长方形纸片剪成一个面积最大的正方形,那么剪下的另一个小长方形的面积是(B)。

A.64平方厘米B.16平方厘米C.20平方厘米4.今年父亲年龄是女儿的4倍,三年前父女年龄之和是49岁。

问父亲今年(B)岁。

A.11B.44C.41三、数阵图。

(共2题,每题5分)(1)在图中填入2——9,使每边3个数的和等于15。

(2)在下图中分别填入1——9,使两条直线上五个数的和相等,和是多少呢?四、图形题。

(15分)1.把6个边长为4厘米的小正方形如下图拼成一个长方形,这个长方形的面积为多少平方厘米?962.求下面图形的面积。

(单位:厘米)16五、解决问题。

三年级下册数学竞赛试题- 树阵图 北师大版(含答案)

三年级下册数学竞赛试题- 树阵图  北师大版(含答案)

数阵图【名师解析】填数时,要仔细观察图形,确定图形中关键的位置应填几,一般是图形的顶点及中间位置。

另外,要将所填的空与所提供的数字联系起来,一般要先计算所填数的总和与所提供数字的和之差,从而确定关键位置应填几。

关键位置的数确定好了,其他问题就迎刃而解了。

【例题精讲】例1:在下图中分别填入1——9,使两条直线上五个数的和相等,和是多少呢?练习:在下图中填入2——10,使横行、竖行中的五个数的和相同。

和是多少呢?例2:把数字1——8分别填入下图的小圆圈内,使每个五边形上5个数的和都等于20。

练习:数字1——6填入下图中的小圆圈内,使每个大圆上4个数的和都是15。

例3:在图中填入2——9,使每边3个数的和等于15。

练习:把1——8填入下图中,使每边3个数的和等于13。

例4:把1——8填入下图○内,使每边上三个数的和最大。

求最大的和是多少?练习:把3——10填入下图○中,使每边上三个数的和最大,求最大的和是多少?例5:在下图各圆空余部分填上3、5、7、8,使每个圆的4个数的和都是21。

练习:图中各圆的空余部分分别填上1、2、4、6,使每个圆中4个数的和是15。

例6:在下图所示的圈内填入不同的数,使得三条边上的三个数的和都是12.若A 、B 、C 的和为18,则三个顶点上的三个数的和是________。

642537练习:在下图所示的圈内填入不同的数,使得三条边上的三个数的和都是21.若A、B、C的和为30,则三个顶点上的三个数的和是________。

选讲:将1--12这十二个自然数分别填人下图的12个圆圈内,使得每条直线上的四个数之和都相等,这个相等的和为___________。

【综合精练】1.把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条直线上三个数的和相等。

2.把6、8、10、12、14、16、18七个数填在下图的○中,使每排三个数及外圆上三个数的和都是32。

3.把5、6、7、8、9、10这六个数填入下图三角形三条边的○内,使得每条边上的三个数的和是21。

北师大版最新小学三年级下学期数学竞赛试题(含答案)图文百度文库

北师大版最新小学三年级下学期数学竞赛试题(含答案)图文百度文库

北师大版最新小学三年级下学期数学竞赛试题(含答案)图文百度文库一、拓展提优试题1.五个连续的自然数的和是2010,其中最大的一个是.2.下面有20个点,每相邻的两个点之间距离都相等,将四个点用直线连接起来可以得到一个正方形.用这样的方法,你可以得到个正方形.3.小华、小俊都有一些玻璃球.如果小华给小俊4个,小华的玻璃球的个数就是小俊的2倍;假如把小俊的玻璃球给小华2个,那么小华的玻璃球的个数就是小俊的11倍.小华原来有个玻璃球,小俊原来有个玻璃球.4.一天中午,孙悟空吃了10个桃子,猪八戒吃了25个包子,孙悟空说猪八戒太能吃了,但猪八戒说自己的包子比桃子小得多,还是孙悟空吃得多.聪明的沙僧用天平得到了如图所示的两种情况(圆圈是桃子,三角是包子长方形表示重量为所标数值的砝码),那么1个桃子和1个包子共重克.5.一些糖果,如果每天吃3个,十多天吃完,最后一天只吃了2个,如果每天吃4个,不到10天就吃完了,最后一天吃了3个.那么,这些糖果原来有()个.A.32B.24C.35D.366.同学们排成一个方阵进行广播操表演.小海的位置从前、从后、从左、从右数都是第5个,参加广播操表演的共有人.7.长方形的周长是48厘米,已知长是宽的2倍,长方形的长是()A.8厘米B.16厘米C.24厘米8.有一颗神奇的树上长了46个果子,第一天会有1个果子从树上掉落,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天本应掉落的数量时,那么这一天它又重新从掉落1个果子开始,按原规律进行新的一轮.如此继续,那么第天树上的果子会都掉光.9.有一种特殊的计算器,当输入一个数后.计算器会把这个数乘以2,然后将其结果的数字顺序颠倒,接着再加2后显示最后的结果.如果输入一个两位数,最后显示的结果是45,那么,最开始输入的是.10.交通小学的男生人数是女生人数的7倍,而且男生比女生多了900人,那么交通小学的男生和女生一共有人.【参考答案】一、拓展提优试题1.解:2010÷5=402,最大的数是402+1+1=404;故答案为:404.2.解:边长是1个单位长度的正方形个数是12;边长是2个单位长度的正方形个数是6;边长是3个单位长度的正方形个数是2;边长最大是3个单位长度,正方形的边长再大就构不成正方形了;一共有正方形:12+6+2=20(个).答:可以得到20个正方形.故答案为:20.3.解:设小俊原来有x个玻璃球,(x﹣2)×11=(x+4)×2+4+2,11x﹣22=2x+8+4+2,11x﹣2x﹣22=2x+14﹣2x,9x﹣22+22=14+22,9x÷9=36÷9,x=4,(4+4)×2,=10×2,=20(个),答:小华原来有20个,小俊原来有4个,故答案依次为:20,4.4.解:由图可知:○=2△+40克①○+80克=△+200克②由②可知:○=△+120克③把③带入①得:△+120克=2△+40克△+120克﹣40克=2△+40克﹣40克△+80克=2△△+80克﹣△=2△﹣△△=80克把△=80克带入③得:○=200克200+80=280(克)答:1个桃子和1个包子共重280克.故答案为:280.5.解:糖每天吃3个,最少吃11天,最后一天2个,糖至少有10×3+2=32(个)糖最多吃9天,最后一天吃3个,最多8×4+3=35个.∴在32,33,34,35这几个数中满足除以3余数是2,除以4余数是3的只有35.故选:C.6.解:根据题干分析可得:5+5﹣1=9(人)9×9=81(人)答:参加广播操表演的共有81人.故答案为:81.7.解:48÷2÷(1+2)×2=24÷3×2=16(厘米)答:长方形的长是16厘米.故选:B.8.解:∵1+2+3+4+5+6+7+8+9=45(个)到第十天不够了从新开始掉1个.正好结束45+1=46(个)故答案为:109.解:逆运算,乘积的数字顺序颠倒后为:45﹣2=43,则,颠倒前为34,输入的两位数为:34÷2=17;答:最开始输入的是17.故答案为:17.10.解:900÷(7﹣1)=900÷6=150(人)150×(7+1)=150×8=1200(人)答:交通小学的男生和女生一共有 1200人.故答案为:1200.。

小学数学 《数阵图》练习题(含答案)

小学数学 《数阵图》练习题(含答案)

小学数学《数阵图》练习题(含答案)数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.(一)封闭型数阵问题【例1】(★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?【例2】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?24273028262218 1720x【例3】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?【例4】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等?【例5】(★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有10个奇数,去掉9和15还剩八个奇数,将这八个奇数填入右图的八个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.3(二)辐射型数阵【例6】(★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.【例7】 (★★★)把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.【例8】 (★★★)左图中有三个正三角形,将1~9填入它们顶点处的九个○中,要求每个正三角形顶点的三数之和都相等,并且通过四个○的每条直线上的四数之和也相等.【例9】 (★★★)在下图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x 是多少?(三)其它类型的数阵图【例10】 (★★★)在下图中的10个○内填入0~9这10个数字,使得按顺时针循环式成立:【例11】 (★★★★)将1~8这八个自然数填入左下图的空格内,使四边形组成的四个等式都成立:【例12】 (★★★★)下图包括6个加法算式,要在圆圈里填上不同的自然数,使6个算式都成立.那么最右边的圆圈中的数最少是多少?+=====----===×÷+=-+=+=1.请分别将1,2,4,6这4个数填在下图的各空白区域内,使得每个圆圈里4个数的和都等于15.2.把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等.3.把1至6分别填入下图的各方格中,使得横行3个数的和与竖列4个数的和相等.4.将1~7七个数字填入左下图的七个○内,使每个圆周和每条直线上的三个数之和都相等.5.将1~8八个数分别填入右上图的八个○内,使得图中的六个等式都成立.△代表几?37 5=== =+++++(一)封闭型数阵问题【例13】 (★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?75623841或84362571分析:因为每边上的和为13,那么四条边上的数字之和为13×4=52,而1+2+…+7+8=36,所以四个角上的四个数之和等于52-36=16.在1~8中选四个数,四数之和等于16,且其中相邻两个的和与任意三个的和不等于13的只有:16=1+2+6+7=1+2+5+8=1+4+5+6.经试验,只有右上图的两种填法.亮点设计:(1)求数阵问题的关键是找到关键数,也就是重复数,教会学生学会找关键数的方法是最重要的.(2)设计问题:正方形每条边之和是13,13×4=52,但是所有数的和是:1+2+…+7+8=36,为什么会出现结果不同的问题呢?仔细观察这个数阵,四条边上所有数相加的过程中四个角上的数都被重复加了一次,也就是四个角上的数是重复数,52-36=16即为这四个重复数的和. (3)强调分组法与试验法:知道了四个数的和之后,下一步就要先确定这四个数,采用分组法和试验法.分组法是将这个和根据要求拆成四个数,例如本题中要求其中相邻两个的和与任意三个的和不等于13,根据要求将16分成4个数的和:16=1+2+6+7=1+2+5+8=1+4+5+6,但是未必每一组都是合适的,这就需要采用试验法,将它们一一进行试验.(4)小结:对于封闭型的数阵,重复数基本上都是两条线相交的点,这在后面的例题中有大量体现.[前铺]将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11.614532分析:因为每边上的和为11,那么三条边上的数字之和为11×3=33,而1+2+…+5+6=21,所以三个角的三个数之和等于33-21=12,在1~6中选3个和为12的数,且其中任意两个的和不等于11,这样的组合有:12=2+4+6=3+4+5,经试验,填法见右上图.[拓展]将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k ,请指出k 的取值范围.654321654321654321654321k=9 k=10 k=11 k=12分析:设三角形三个顶点的数字之和为s.因为每个顶点属于两条边公有,所以把三条边的数字和加起来,等于将1至6加一遍,同时将三个顶点数字多加一遍.于是有(1+2+3+4+5+6)+s=3k,化简后为s+21=3k.由于s是三个数之和,故最小为1+2+3=6,最大为4+5+6=15,由此求出9≤k≤12.s和k有四组取值:通过试验,每组取值都对应一种填数方法(见右上图).【例14】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?242730282622181720x分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.所以x+18=17×2,x=16.经检验,16和24相加除以2,也恰好等于20.[拓展]找规律求xx24123082616186452分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的差的2倍.比如:(26-18)×2=16.(30-26)×2=8.(30-24)×2=12.因为52÷2=26>24,所以x=26+24=50.经检验,(50--18)×2=64.【例15】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?分析:1+2+3+4+5+6+7+8+9=45,用s表示靠近大三角形三条边的五个数的和.因为有三个小三角形所填的数在求和时只用了一次(用a,b,c来表示这三个数),其余均用了两次.于是,45×2-(a+b+c)=3 s.要使s尽可能大,只要a+b+c尽可能小.所以a+b+c=1+2+3=6,于是90-6=3 s,s=28.剩下的六个数分成三组,并且每组中两数的和是三个连续自然数,那么:4+8=12;6+7=13;5 +9=14.经过调配可得到几十种填法,右上图是填法之一.[拓展一]如图是奥林匹克的五环标志,其中a,b,c,d,e,f,g,h,i处分别填入整数1至9,如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?ihgfedcba分析:计算五个圈内各数之和的和,其中b,d,f,h被计算了两遍,所以这个和是1+2+3+4+5+6+7+8+9+b+d+f+h,而这个和一定能被5整除,所以b,d,f,h中填入大数时能使这个和取得最大值,最大是6、7、8、9,各圆圈内的和也取得15,由于15=6+9=7+8,所以满足条件的所有数无法配成15,当和为14时可以找出满足条件的填法,所以和最大为14,当b,d,f,h取1、2、3、4时这个和取得最小值,各圆圈内的和也取得最小值11.[拓展二]有10个连续的自然数,9是其中第三大的数.现在把这10个数填到下图的10个方格中,每格内填一个数,要求图中3个2×2的正方形中的4个数之和相等.那么,这个和数的最小值是多少?分析:9是其中第三大的数,所以这10个连续自然数是2、3、4、5……9、10、11,计算三个正方形中的和的和,这个和能被3整除,其中a和b被重复计算了两次,所以2+3+……11+a+b=65+a+b=3s,当a+b=1,4,7……时,65+a+b可以被3整除,因为要取最小值,所以a+b的值越小越好,但是不可能取1与4,所以,a+b=7时,这个和取得最小值,每个正方形中的和也取得最小值(65+7)÷3=24.【例16】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形5619372481528763049分析:0+…+9=45,45-中心数=3个阴影三角形的3个顶点上的数字之和,所以中心数必须是3的倍数,只能是0,3,6,9.枚举法实验,中心数只能是3,6,答案如右上图.[拓展一]将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值.分析:先确定中间5个重复数,它们的和为(20+16+12+13+10)-(1+2+…+10)=16,所以中间5个重复数只能是1,2,3,4,6的组合.又因为有1个和为20,相应三角形上的三个数只能是4,6,10,逐一试验,答案如右上图.[拓展二]图中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个顶点上.(1)能否使8个三角形顶点上数字之和都相等?如果能,请给出填数方法;如果不能,请说明理由. (2)能否使8个三角形顶点上数字之和各不相同?如果能,给出填数方法;如果不能,请说明理由.344341222311分析:(1)不能,如果能,则8个三角形顶点和的总和应该是8的倍数,但是这个总和有三组1、2、3、4组成,其中一组数被重复计算三次,一组数被重复计算两次,一组数仅被计算一次,因此该总和的值为6×(1+2+3+4)=60,不是8的倍数,产生矛盾,因此没有任何填法使8个三角形顶点上数字之和都相等. (2)能,见右上图.【例17】 (★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.分析:3组数都包括左右两端的数,所以每组数的中间两数之和必然相等.现在还有1、5、7、11、13、17、19七个数供选择,两两之和相等的有1+19=7+13,只有两组,淘汰这一组;还有1+17=5+13+7+11,于是得到右上图的填法.(二)辐射型数阵【例18】 (★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.635412762534175243716(1) (2) (3)分析:设中心○内填a ,由于三条线上的数字和相加应是3的倍数,其中a 一共加了3次,所以1+2+3+4+5+6+7+2a=28+2a 一定是3的倍数.而28÷3—9余1,那么2a ÷3的余数应该是2,因此,a=1,4或7.(1)当a=1时,28+2=30,30÷3=10,10-1=9,除中心外,其他两数的和应是9,只要把2,3,4,5,6,7六个数按“和”是9分成三组填入相应的○内就可以了.填法如图(1) (2)当a=4时,28+8=36,36÷3=12.填法如图(2)(3)当a=7时,28+14=42,42÷3=14.填法如图(3).亮点设计:(1)建议教师首先让学生进行试做,并让学生尝试多种填法。

三年级--数阵图 题目+答案

三年级--数阵图  题目+答案

数阵图例题1.在图中三个圈内填入三个不同的自然数,使得三角形每条边上的三个数和都等于11.【答案】练习1.在图中三个圈内填入三个合适的自然数,使得三角形每条边上的三个数和都等于20.【答案】463415 1练习2.在图中三个圈内填入三个不同的自然数,使得三角形每条边上的三个数和都等于20.【答案】选做题:在图中四个圈内填入四个不同的自然数,使得每条边上的三个数和都等于14.【答案】例题2.在下图的八个圆圈中分别填入八个不同的自然数,使得正方形每条边上的三个数之和相等,现在已经填好了五个数,请你将剩下的空补充完整。

5 6491011 1697 6【答案】练习1.在下图的九个圆圈中分别填入九个不同的自然数,使得图中六条直线上的三个数之和相等,现在已经好了五个数,请你将剩下的空补充完整。

【答案】练习2.在下图的八个圆圈中分别填入八个不同的自然数,使得图中四条直线上的三个数之和相等,现在已经好了五个数,请你将剩下的空补充完整。

3 512 5694【答案】选做题.将1-9分别填入下图的圆圈内,使得图中所有三角形的三个顶点上的数之和都等于15,现已经填好了其中三个,请你在图中填出剩下的数。

【答案】8 613 10 22例题3.把1-7这七个数分别填入图中的圆圈内,使每条直线上三个圆圈内所填数之和都相等。

【答案】答案不唯一练习1.把2-8这七个数分别填入图中的圆圈内,使每条直线上三个圆圈内所填数之和都相等。

4【答案】答案不唯一练习2.把3-9这七个数分别填入图中的圆圈内,使每条直线上三个圆圈内所填数之和都相等。

【答案】答案不唯一选做题.把8-14这七个数分别填入图中的圆圈内,使每条直线上三个圆圈内所填数之和都有等于33。

【答案】例题4.把1~6填入图中的六个圆圈中,使得除了第一行外,每一个圆圈中的数都等于与它相邻的上方两个圆圈内的两数之差,其中5已经填好。

5【答案】答案不唯一练习1.把1~10填入图中的10个圆圈中(其中的两个数已经填好),使得除了第一行外,每一个圆圈中的数都等于与它相邻的上方两个圆圈内的两数之差。

小学奥数:数阵图(二).专项练习及答案解析

小学奥数:数阵图(二).专项练习及答案解析

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格); 第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.复合型数阵图【例 1】 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________.313233212223131211【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】迎春杯,中年级,决赛,3题 【分析】 这9个数的和:111213212223313233++++++++10203031233198=++⨯+++⨯=()()由小刚和小明选的数中只有一个是相同的,可知他们正好把这9个数全部都取到了,且有一个数取了两遍.所以他们取的数的总和比这9个数的和多出来的部分就例题精讲知识点拨教学目标5-1-3-2.数阵图是所求的数.那么,这个数是12011119833+-=.【答案】33【例 2】 如图1,圆圈内分别填有1,2,……,7这7个数。

如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】希望杯,五年级,复赛,第5题,5分 【解析】 2 【答案】2【例 3】 如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.(1)17894【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为叙述方便,先在每个圆圈内标上字母,如图(2),(2)a cb49817则有a+4+9=a+b+c (1)b+8+9=a+b+c (2)c+17+9=a+b+c (3) (1)+(2)+(3):(a+b+c )+56=3(a+b+c ),a+b+c=28,则 a=28-(4+9)=15,b=28-(8+9)=11,c=28-(17+9)=2解:见图.1789411215【答案】1789411215【例 4】请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?【考点】复合型数阵图【难度】3星【题型】填空【解析】为了叙述方便,将各圆圈内先填上字母,如图(2)所示.设A+B+C=A+F+G=A+D+E=B+D+F=C+E+G=k(A+B+C)+(A+F+G)+(A+D+E)+(B+D+F)+(C+E+G)=5k,3A+2B+2C+2D+2E+2F+2G=5k,2(A+B+C+D+E+F+G)+A=5k,2(1+2+3+4+5+6+7)+A=5k,56+A=5k.,因为56+A为5的倍数,得A=4,进而推出k=12,因为在1、2、3、5、6、7中,1+5+6=7+3+2=12,不妨设B=1,F=5,D=6,则C=12-(4+1)=7,G=12-(4+5)=3,E=12-(4+6)=2.,解:得到一个基本解为:(见图)7654321【答案】7654321【例 5】在左下图的每个圆圈中填上一个数,各数互不相等,每个圆圈有3个相邻(即有线段相连的圆圈)的圆圈。

【参考文档】三年级奥数题及参考答案:数阵图问题-word范文 (1页)

【参考文档】三年级奥数题及参考答案:数阵图问题-word范文 (1页)

【参考文档】三年级奥数题及参考答案:数阵图问题-word范文
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
三年级奥数题及参考答案:数阵图问题
编者导语:数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高
教学水平、发现和培养数学人才都有着积极的作用。

这项活动也激励着广大青
少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创
造性思维能力。

数学网为大家准备了小学三年级奥数题,希望小编整理的三年
级奥数题及参考答案:数阵图问题,可以帮助到你们,助您快速通往高分之路!!
1.这个表中100在哪两行行?前两行的和是多少?前三行呢?
解答:看最右侧一列,第一行是1 ,第二行是2 ,所以100在第99 行和第
100行.前两行和为1+2+3=6 ,前三行和为 1+2+3+3+4+5=18
2.自然数按从小到大的顺序排成螺旋形.在2处拐第-个弯,在3处拐第二个弯,在5处拐第三个弯…问拐第二十个弯的地方是哪-个数?
解答:这是一个十分经典的题目,法1是参考书上的解答,其解答固然巧妙,
帮助孩子拓宽眼界,但却没什么头绪去找到这样一个办法,法2将给大家介绍
一个"通用"的思路,它能帮助你解决更多的问题.
(法1):过1画-条横线,拐弯,画竖线;再拐弯,画横线;….到第二十个拐弯
处,共有11条竖线, 10条横线.其中的数共11×10+1=111 ,即拐第二十个弯
的地方是 111.
(法2):先把拐角处数字找出来,观察规律,我们发现(利用画图法分析差值,
发现此规律):。

三年级下册数学竞赛试题- 应用题讲解---第一讲:排队问题 北师大版( 含答案)

三年级下册数学竞赛试题- 应用题讲解---第一讲:排队问题  北师大版( 含答案)

第一讲:排队问题内容精要:1. 直线型排队问题学生排队,以其中某一名学生为参照来数人数,知道这名学生的左边、右边的人数或从左、右数他排第几,这类问题就是排队问题。

在排队问题中,作为参照的这名学生既不能遗漏,也不能重复。

2. 在封闭型排队问题中,按照顺时针或逆时针方向报数,在计算总人数的时候要注意不要漏掉某一个部分。

同时,以每次报数开始和结束的同学作为参照,既不能重复,也不能遗漏。

3. 在方阵排队问题中,注意根据题意整理出有多少列,有多少行,行数×列数就得到总人数。

4. 解决涉及逻辑推理的排队问题时,尽可能画出他们的座位图,给能够确定的先安排座位,然后再根据条件来分析其他人的座位。

第一种类型直线型排队问题例1:若干名学生排成一排,旭旭的左边有12名学生,右边有7名学生,那么这一排一共有多少名学生?【解析】旭旭左边12人里面不包含旭旭,右边7人也不包含旭旭,所以12+7+1=20(名)。

答:共有20名学生。

例2:三(1)班全体学生站成一队,正数第5名学生和倒数第6名学生之间有16名学生,那么三(1)班一共有多少名学生?【解析】把整个队伍分为三部分,分别是前5个人,后6个人,以及他们之间的16个人,将三部分的和算出来即是学生的总人数,5+6+16=27(名)。

答:共有27名学生。

过关检测1. 若干名学生排队做操,从前往后数,曼曼排在第8位。

曼曼前面一共有多少名学生?2. 小朋友们排成一排,第7名和第27名同学之间有多少人?3. 22名学生排队,旭旭的前面有9名学生。

旭旭的后面有多少名学生?4. 一个班里的40名学生排成一队去看电影,正数第10名和倒数第8名之间是女生。

这个班里的女生有多少名?过关检测答案1. 8-1=7(人)答:共有7名学生。

2. 第7名与第27名之间是第8名到第26名,26-8+1=19(人)答:共有19人。

3. 旭旭前面有9名同学,旭旭就是第10 名,22-10=12(人)答:共有12人。

(完整)小学三年级奥数--数阵图

(完整)小学三年级奥数--数阵图

数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。

重叠数求出来了,其余各数就好填了(见右上图)。

试一试:练习与思考第1题。

例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

所以,必须先求出这个“和”。

根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。

北师大版最新小学三年级数学竞赛题图文百度文库

北师大版最新小学三年级数学竞赛题图文百度文库

北师大版最新小学三年级数学竞赛题图文百度文库一、拓展提优试题1.公园里有一排彩旗,按3面黄旗、2面红旗、4面粉旗的顺序排列,小红看到这排旗子的尽头是一面粉旗.已知这排彩旗不超过200面,这排旗子最多有面.2.有甲乙两桶酒,如果甲桶倒入8千克酒,两桶酒就一样重,如果从甲桶取出3千克酒倒入乙桶,乙桶的酒就是甲桶的3倍,甲原来有酒千克,乙千克.3.54﹣□÷6×3=36,□代表的数是.4.五个连续的自然数的和是2010,其中最大的一个是.5.学校体育室买来一些足球和篮球,小强数了一数,足球的个数是篮球的3倍多4个;再数一遍,发现足球的个数还比篮球的4倍少2个.足球一共买了个.6.观察下面两个算式,□、△各表示一个数字,□□、△△、□□□、△△△各表示一个两位数和三位数,这两个算式是和.□□□×□□×□=152625;△△△×△△×△=625152.7.小华、小俊都有一些玻璃球.如果小华给小俊4个,小华的玻璃球的个数就是小俊的2倍;假如把小俊的玻璃球给小华2个,那么小华的玻璃球的个数就是小俊的11倍.小华原来有个玻璃球,小俊原来有个玻璃球.8.切一个蛋糕,切1刀最多切成2块,切2刀最多切成4块,切3刀最多切成7块,照这样切下去,切5刀最多切成块.9.一天中午,孙悟空吃了10个桃子,猪八戒吃了25个包子,孙悟空说猪八戒太能吃了,但猪八戒说自己的包子比桃子小得多,还是孙悟空吃得多.聪明的沙僧用天平得到了如图所示的两种情况(圆圈是桃子,三角是包子长方形表示重量为所标数值的砝码),那么1个桃子和1个包子共重克.10.只许移动1根火柴棒,使等式成立.11.有A、B、C、D、E、F六张字母卡片,摆成一行,要求A摆在左端,F摆在右端,有种不同摆法.12.观察下列图形,“?”位置对应的图形是()A.B.C.D.13.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为()平方厘米.A.16B.20C.24D.3214.喜羊羊和懒羊羊共有邮票70张,喜羊羊的邮票张数比懒羊羊的4倍还多5张.喜羊羊有张,懒羊羊有张.15.小明将买来的一筐桔子分别装入几个盘子中,如果每个盘子装10个,则多余2个,如果每个盘子装12个,则可以少用一个盘子,那么买来的一筐桔子共有多少只?【参考答案】一、拓展提优试题1.解:200÷(3+2+4),=200÷9,=22…2(面);所以剩下的2面彩旗是在第23个循环周期内,是2面黄旗,因为最后一面看到的是粉旗,所以第23个循环周期内没有旗了;这排彩旗最多有:22×9=198(面),答:这排彩旗最多有198面.故答案为:198.2.解:根据题意可得:如果从甲桶取出3千克酒倒入乙桶,两桶的差是:8+3+3=14(千克);这时甲桶有:14÷(3﹣1)=7(千克);乙桶有:7×3=21(千克);乙桶原来有:21﹣3=18(千克);甲桶原来有:18﹣8=10(千克).答:甲原来有酒10千克,乙18千克.故答案为:10,18.3.解:54﹣□÷6×3=36,□÷6×3=54﹣36,□÷6×3=18,□=18×6÷3,□=36.故答案为:36.4.解:2010÷5=402,最大的数是402+1+1=404;故答案为:404.5.解:根据题干分析可得:(4+2)×3+4=22(个),答:足球买了22个.故答案为:22.6.解:根据分析可得,□□□×□□×□=152625=5×5×5×3×11×37=5×55×555,所以,□□□×□□×□=5×55×555;△△△×△△×△=625152=64×11×888=8×8×11×888=8×88×888;故答案为:5×55×555,8×88×888.7.解:设小俊原来有x个玻璃球,(x﹣2)×11=(x+4)×2+4+2,11x﹣22=2x+8+4+2,11x﹣2x﹣22=2x+14﹣2x,9x﹣22+22=14+22,9x÷9=36÷9,x=4,(4+4)×2,=10×2,=20(个),答:小华原来有20个,小俊原来有4个,故答案依次为:20,4.8.解:当切1刀时,块数为1+1=2块;当切2刀时,块数为1+1+2=4块;当切3刀时,块数为1+1+2+3=7块;…当切n刀时,块数=1+(1+2+3…+n)=1+.则切5刀时,块数为1+=16块;故答案为:16.9.解:由图可知:○=2△+40克①○+80克=△+200克②由②可知:○=△+120克③把③带入①得:△+120克=2△+40克△+120克﹣40克=2△+40克﹣40克△+80克=2△△+80克﹣△=2△﹣△△=80克把△=80克带入③得:○=200克200+80=280(克)答:1个桃子和1个包子共重280克.故答案为:280.10.解:移动后为:故答案为:11.解:4×3×2=24(种).答:有24种不同摆法.故答案为:24.12.解:再逆时针旋转90°是.故选:C.13.解:如右图进行分割,把图形分成了8个边长是2厘米的小正方形2×2×8=32(平方厘米)答:这个图形的面积是32平方厘米.故选:D.14.解:设懒羊羊有x张票,那么喜羊羊则有(4x+5)张邮票,x+(4x+5)=705x+5=705x=65x=1313×4+5=57(张)答:喜羊羊有 57张,懒羊羊有 13张.故答案为:57;13.15.解:(10+2)÷(12﹣10)=6(个)12×6=72(只)答:买来的一筐桔子共有72只.。

(完整版)小学三年级奥数--数阵图

(完整版)小学三年级奥数--数阵图

数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9 九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3 。

重叠数求出来了,其余各数就好填了(见右上图)。

试一试:练习与思考第1 题。

例2 把1~5 这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:与例1 不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

所以,必须先求出这个“和”。

根据例1 的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5] ÷2=10。

北师大版最新小学三年级竞赛数学试题及答案_图文图文百度文库

北师大版最新小学三年级竞赛数学试题及答案_图文图文百度文库

一、拓展提优试题1.把一根15米长的钢管锯成5段,每锯一次用6分钟,一共要用分钟.2.晨晨小朋友发现,自己一共有1角和5角的硬币共20枚,总钱数是8元钱,那么1角的硬币共有多少枚?3.将一个大三角形分割成36 个小三角形,并且将其中一部分小三角形涂成红色,另一部分涂成蓝色,并且使得两个有公共边的三角形的颜色不同,如果红色的三角形比蓝色的多,那么多()个.A.1B.4C.6D.74.这个图形最少是由()个正方体整齐堆放而成的.A.12B.13C.14D.155.(12分)2个樱桃的价钱与3个苹果价钱一样,但是一个苹果的大小却是一个樱桃的12倍,如果妈妈用买1箱樱桃的钱买同样大小箱子的苹果,能买()箱.A.4B.6C.18D.276.动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分6个,剩57个桃子;如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个.那么,有()个桃子.A.216B.324C.273D.3017.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.648.一些糖果,如果每天吃3个,十多天吃完,最后一天只吃了2个,如果每天吃4个,不到10天就吃完了,最后一天吃了3个.那么,这些糖果原来有()个.A.32B.24C.35D.369.一根长30厘米的铁丝,可以围成种不同的长方形(边长是整厘米数).10.6□4÷3,要使商的中间有一位是0,□里可以填.(几种情况填写完整)11.甲乙两数的差是144,甲数比乙数的3倍少14,那么甲数是.12.一个不透明的布袋中有黑、白、黄三种颜色的筷子各10根,最少拿出根筷子就能保证有一双是同样颜色的筷子.13.在一道没有余数的除法中,被除数、除数与商三个数的和是103,商是3.被除数是()A.25B.50C.7514.3个苹果的重量等于1个柚子的重量,4根香蕉的重量等于2个苹果的重量.一个柚子重576克,那一根香蕉()克.A.96B.64C.14415.四个海盗杰克、吉米、汤姆和桑吉共分280个金币.杰克说:“我分到的金币比吉米少11个,比汤姆多15个,比桑吉少20个.”那么,桑吉分到了个金币.16.图中一共能数出正方形.17.如图,薷薷家的菜园是一个由4块正方形的菜地和1个小长方形的水池组成的大长方形.如果每块菜地的面积都是20平方米且菜园的长为9米,那么菜园中水池(图中阴影部分)的周长是米.18.小明有一本100道题的练习册,他决定单数的日子做2道题,双数的日子做3道题,如果周六或周日则额外多做2道题.小明从12月25日星期四开始做题,他1月26日能将练习册上的题都做完.19.交通小学的男生人数是女生人数的7倍,而且男生比女生多了900人,那么交通小学的男生和女生一共有人.20.有20间房间,有的开着灯,有的关着灯,在这些房间里的人都希望与大多数房间保持一致.现在,从第一间房间的人开始,如果其余19间房间的灯开着的多,就把灯打开,否则就把灯关上,如果最开始开灯与关灯的房间各10间,并且第一间的灯开着.那么,这20间房间里的人轮完一遍后,关着灯的房间有()间.A.0B.10C.11D.2021.54﹣□÷6×3=36,□代表的数是.22.★+★+★+■=36,■=●+●,●=★+★+★,■=,●=,★=.23.张老师将一根木料锯成9小段,每段长4公米.假如将这根木料锯成3公米的小段,一共要锯次.24.50个学生解答A、B两题,其中没答对A题的有12人,答对A题的且没答对B题的有30人.那么A、B两题都答对的有人.25.△=○+○+○,△+○=40,则○=,△=.26.1到100的所有单数的和是.27.小胖买了2张桌子和3把椅子,共付110元,每张桌子的价钱是每把椅子价钱的4倍,每张椅子元.28.99999×77778+33333×66666=.29.有3盒同样重的苹果,如果从每盒中都取出4千克,那么盒子里剩下的苹果的重量正好等于原来1 盒苹果的重量,原来每盒苹果重()千克.A.4B.6C.8D.1230.有9颗钢珠,其中8颗一样重,另有一颗比这8颗略轻,用一架天平最少称几次,可以找到那颗较轻的钢珠?31.计算:100﹣99+98﹣97+96﹣95+94﹣93+93﹣92+91=.32.五个连续的自然数的和是2010,其中最大的一个是.33.小李、小华比赛爬楼梯,小李跑到第5层时,小华正好跑到第3层.照这样计算,小李跑到第25层时,小华跑到第层.34.(8分)如图中共有20个三角形.35.有A,B,C三人,他们分别是工人、教师、工程师.A的年龄比工人大,C和教师的年龄不同岁,教师的年龄比B小,那么工程师是.36.切一个蛋糕,切1刀最多切成2块,切2刀最多切成4块,切3刀最多切成7块,照这样切下去,切5刀最多切成块.37.小亮家买了72个鸡蛋,他们家还养了一只每天都下一个蛋的母鸡.如果小亮家每天吃4个鸡蛋,那么这些鸡蛋够他们家连续吃天.38.5个只由数字8组成的自然数之和为1000,其中最大的数与第二大的数之差是.39.只许移动1根火柴棒,使等式成立.40.电力公司在公路两旁埋同样多的电线杆共402根,每相邻两根之间的距离是20米.后来全部改装,只埋了202根.改装后每相邻两根之间的距离是米.【参考答案】一、拓展提优试题1.解:(5﹣1)×6=4×6=24(分钟)答:一共需要24分钟.故答案为:24.2.解:8元=80角,假设全是5角硬币,则1角的有:(5×20﹣80)÷(5﹣1)=20÷4=5(枚);答:1角的有5枚.3.解:根据分析,按题目要求来涂色的话,只有1 种涂法,如图:红色比蓝色多:(1+2+3+4+5+6)﹣(1+2+3+4+5)=6个.故选:C.4.解:观察如果俯视图是下面图形时(小正方形上的数字是上面立方体的个数),所放的立方体最少.所以所放的最少的立方体的个数为1+2+2+4+1+2+1=13个,故选:B.5.解:根据题意:2个樱桃的价钱×6=3个苹果价钱×6,即12 个樱桃的钱可以买18 个苹果;又一个苹果的大小却是一个樱桃的12倍,所以1 个苹果大小的樱桃可以买到18 个苹果,1箱樱桃就可以买到同样大小箱子的苹果18箱.故选:C.6.解:依题意可知:如果每只猴子分6个,剩57个桃子.如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个证明少了5×9+6=51;猴子共有(57+51)÷(9﹣6)=36(只);桃子共有36×6+57=273.故选:C.7.解:根据分析,一条阴影部分的面积为10÷2=5平方厘米.因为都是整数,所以只能为1×5.故,大正方形面积=(1+5)×(1+5)=6×6=36平方厘米.故选:B.8.解:糖每天吃3个,最少吃11天,最后一天2个,糖至少有10×3+2=32(个)糖最多吃9天,最后一天吃3个,最多8×4+3=35个.∴在32,33,34,35这几个数中满足除以3余数是2,除以4余数是3的只有35.故选:C.9.解:长方形的周长=(长+宽)×2,长与宽的和是:30÷2=15(厘米),因为15=1+14=2+13=3+12=4+11=5+10=6+9=7+8,所以可以围成7种不同的长方形.答:可以围成7种不同的长方形.故答案为:7.10.解:6□4÷3中,要使商的中间有一位是0,则□<3,所以□里可以填:0、1、2.故答案为:0、1、2.11.解:(144+14)÷(3﹣1)+144,=158÷2+144,=79+144,=223,答:甲数是223.故应填:223.12.解:把三种颜色的筷子构造为三个抽屉,分别放黑、白、黄不同颜色的筷子.从最不利情况考虑,拿了3根,颜色各不同放到三个抽屉里,此时再任意拿1根,即可出现一个抽屉里能放了2根筷子.即出现一个抽屉里2根,另外两个抽屉里各1根筷子的情况,共计2+1+1=4根.故答案为:4.13.解:因为被除数、除数与商三个数的和是103,商是3,所以被除数+除数=103﹣3=100;因为除数=,所以被除数是:100÷(1+)=100÷=75故选:C.14.解:576÷3×2÷4=384÷4=96(克)答:一根香蕉96克.故选:A.15.解:设杰克得金币x个,所以x+(x+11)+(x﹣15)+(x+20)=280,解得x=66,所以桑吉分到了66+20=86个金币,另解:此题考查的是和差问题,通过与杰克的关系进行转化得知:杰克的金币数为:(280﹣11+15﹣20)÷4=66(个)桑吉的金币数为:66+20=86(个)故答案为86.16.解:根据分析可得,8+1+4=13(个)答:图中一共能数出 13正方形.故答案为:13.17.解:根据分析,根据图中4块正方形和小长方形的关系,易知水池的长和宽之和为9,菜园中水池(图中阴影部分)的周长=2×9=18(米),故答案是:18.18.解:依题意可知:12月做题数量为:2+3+4+5+2+3+2=21(题);1月1日至1月7日也同样做了21题.1月8日至1月14日由于多了一个双数日子,所以做了22题.1月15日至1月21日做21题.这时候共做21+21+22+21=85题.接下来22日开始做题数量为3+2+5+4=14题.目前共做题85+14=99题,还需要1天.故答案为:2619.解:900÷(7﹣1)=900÷6=150(人)150×(7+1)=150×8=1200(人)答:交通小学的男生和女生一共有 1200人.故答案为:1200.20.解:因为最开始开灯和关灯的各是10间,由于第一间的灯是开着的,所以,第一间人看到的,开灯的9间,关灯的10间,之后,他就关灯,以后无论开灯的出来看,还是关灯的出来看,始终关灯的多,即:一轮结束,灯全部会关闭,故选:D.21.解:54﹣□÷6×3=36,□÷6×3=54﹣36,□÷6×3=18,□=18×6÷3,□=36.故答案为:36.22.解:由■=●+●,●=★+★+★,可得■=6个★,代入★+★+★+■=36,3个★加6★等于9个★就等于36,即可得出★的值是4,★=4,代入●=★+★+★,求出●=12,●=12,代入■=●+●,求出■=24;故答案为:24,12,4.23.解:4×9÷3=12(段),12﹣1=11(次),答:需要锯11次.故答案为:11.24.解:50﹣12﹣30=38﹣30=8(人);答:A、B两题都答对的有8人.故答案为:8.25.解:因为,△=○+○+○,所以,△=3○,将△=3○代入△+○=40,3○+○=40,即4○=40,○=10,△=3○=3×10=30;故答案为:10;30.26.解:(1+99)×50÷2,=100×25,=2500;故答案为:2500.27.解:因为每张桌子的价钱是每把椅子价钱的4倍,所以2张桌子的价钱=8把椅子的价钱,又因为2张桌子和3把椅子,共付110元,所以8把椅子的价钱+3把椅子的价钱=110元,1把椅子的价钱=110÷11=10元.答:每张椅子10元.故答案为:10.28.解:99999×77778+33333×66666,=99999×77778+33333×(3×22222),=99999×77778+(33333×3)×22222,=99999×77778+99999×22222,=99999×(77778+22222),=99999×100000,=9999900000;故答案为:9999900000.29.解:3×4÷2=12÷2=6(千克)答:每盒苹果重6千克.故选:B.30.解:(1)把9个钢珠平均分成3组,把其中两组放在天平上称量,若重量一样,则较轻的在第三组;若重量不一样,则较轻的在天平上升的一组;(2)再把有较轻的钢珠的一组,拿出两个分别放在天平的左右两边,若天平平衡,则剩下的一个就是较轻的,若天平不平衡,则上升一方就是较轻的;这样用2次就一定能找出那个较轻的钢珠.答:用一架天平最少称2次,可以找到那颗较轻的钢珠.31.解:100﹣99+98﹣97+96﹣95+94﹣93+93﹣92+91,=(100﹣99)+(98﹣97)+(96﹣95)+(94﹣93)+(93﹣92)+91,=1×5+91,=5+91,=96.故答案为:96.32.解:2010÷5=402,最大的数是402+1+1=404;故答案为:404.33.解:(25﹣1)×[(3﹣1)÷(5﹣1)]+1,=24×+1,=12+1,=13(层),答:小李跑到第25层时,小华跑到第13层.故答案为:13.34.解:根据分析可得,图中有三角形:12+6+2=20(个)答:图中共有 20个三角形..故答案为:20.35.解:由C和教师的年龄不同岁,教师的年龄比B小,可知B、C都不是教师,只有A是教师;由A的年龄比工人大,和教师的年龄比B小,说明B不是工人是工程师,所以C是工人;故答案为:B.36.解:当切1刀时,块数为1+1=2块;当切2刀时,块数为1+1+2=4块;当切3刀时,块数为1+1+2+3=7块;…当切n刀时,块数=1+(1+2+3…+n)=1+.则切5刀时,块数为1+=16块;故答案为:16.37.解:依题意可知:小亮每天吃4个,吃掉每天鸡下的蛋还需要3个.72÷3=24(天)故答案为:2438.解:1000=888+88+8+8+8888﹣88=800故填80039.解:移动后为:故答案为:40.解:(402÷2﹣1)×20=4000(米),202÷2=101(根),4000÷(101﹣1)=40(米);答:改装后每相邻两根之间的距离是40米.故答案为:40.。

北师大版小学数学三年级竞赛试题带答案

北师大版小学数学三年级竞赛试题带答案

北师大版小学数学三年级竞赛试题带答案一、填空:(每空2分,共30分)1、找规律填数:2 4 7 11 ( 16 )5 10 13 7 ( 14 ) 17 9 18 21 ( 11 )2、一个两位数,其数字和是7。

如果此数减去27,则两个数字的位置正好互换。

原来的两位数是(52 )。

3、上海到南京的快车,除起点、终点外,还要停靠6个站,共有(56 )种车票。

4、学校舞蹈队共有学生64人,其中女生人数比男生的3倍少8人。

女生有(46 )人5、在一个长是8分米,宽是6分米的长方形中剪一个最大的正方形,这个正方形的周长是( 24 )分米。

6、两个周长是44分米的正方形拼成一个长方形,这个长方形的周长是( 66 )分米。

7、每4个空瓶可以换一瓶汽水,有人买了16瓶汽水,喝完后又用空瓶换汽水,那么,他最多喝(21 )瓶汽水。

8、把一杯水倒入空瓶,连瓶共重140克,倒入三杯水,连瓶共重260克。

空瓶重量是(80 )克。

9、△+○=9 △+△+○+○+○=25△=(2)○=(7)10、电视塔上有一串彩灯,按“红、黄、绿、白”的顺序排列起来,请你算一算,第14盏彩灯是(黄)色,第27盏是(绿)色、第36盏彩灯又是(白)色。

1 / 4二、选择(每题3分,共15分)11、由三个"3"和两个"0"组成的且只读出一个"0"的最大的五位数是( C )A 33300B 33033C 3303012、一个长方形的周长是120厘米,如果长增加12厘米,那么现在长方形的长就是宽的3倍,如果要把原长方形剪成一个最大的正方形,这个正方形的周长( B )A 60厘米B 72厘米C 74厘米13.同学们做操,排成一个正方形的队伍,从前,后,左,右数,小红都是第5 个,问一共有( A )人.A 81B 80 C7914、池中的睡莲所遮盖的面积每天扩大一倍,40 天正好遮住整个水面,问遮住水面的一半需要( C )天.A 19B 20C 3915、一个数先减去2再加上3,再乘以2,最后再除以3是6,这个数是(C)A 18B 10C 82 / 4三、简算下列各题(写出简算重要过程)(5分,共20分)16、81-18 17、9999×666666÷1111÷111111=(9-2)×9 = (9999÷1111)×(666666÷111111)=7×9 = 9×6=63 = 5418、 65×99 19、 506-397= 65×(100-1)=506-400+3=65×100-65×1 =106+3= 6500-65 = 109= 6435四、解决问题:(35分,每题7分)20、小华和奶奶今年的岁数和是64岁,奶奶的岁数是小华的7倍,奶奶和小华今年各多少岁?小华今年8岁64÷(7+1)=8岁奶奶56岁8×7=56岁21、在一条长2500米的公路一侧架设电线杆,每隔100米架设一根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数阵图
【名师解析】
填数时,要仔细观察图形,确定图形中关键的位置应填几,一般是图形的顶点及中间位置。

另外,要将所填的空与所提供的数字联系起,一般要先计算所填数的总和与所提供数字的和之差,从而确定关键位置应填几。

关键位置的数确定好了,其他问题就迎刃而解了。

【例题精讲】
例1:在下图中分别填入1——9,使两条直线上五个数的和相等,和是多少呢?
练习:在下图中填入2——10,使横行、竖行中的五个数的和相同。

和是多少呢?
例2:把数字1——8分别填入下图的小圆圈内,使每个五边形上5个数的和都等于20。

练习:数字1——6填入下图中的小圆圈内,使每个大圆上4个数的和都是15。

例3:在图中填入2——9,使每边3个数的和等于15。

练习:把1——8填入下图中,使每边3个数的和等于13。

例4:把1——8填入下图○内,使每边上三个数的和最大。

求最大的和是多少?
练习:把3——10填入下图○中,使每边上三个数的和最大,求最大的和是多少?
例5:在下图各圆空余部分填上3、5、7、8,使每个圆的4个数的和都是21。

练习:图中各圆的空余部分分别填上1、2、4、6,使每个圆中4个数的和是15。

例6:在下图所示的圈内填入不同的数,使得三条边上的三个数的和都是12.若A 、B 、C 的和为18,则三个顶点上的三个数的和是________。

练习:在下图所示的圈内填入不同的数,使得三条边上的三个数的和都是21.若A 、B 、C 的和为30,则三个顶点上的三个数的和是________。

选讲:将1--12这十二个自然数分别填人下图的12个圆圈内,使得每条直线上的四个数之和 都相等,这个相等的和为___________。

【综合精练】
6
42
5
3
7
1.把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条直线上三个数的和相等。

2.把6、8、10、12、14、16、18七个数填在下图的○中,使每排三个数及外圆上三个数的和都是32。

3.把5、6、7、8、9、10这六个数填入下图三角形三条边的○内,使得每条边上的三个数的和是21。

4.把1——8这八个数,分别填入下图的各个□内,使得每一横行、每一竖行的三个数的和是13。

5.将1——9这九个数填入下图中,使三角形每条边上四个数的和等于19,且有一个顶点的数字为1。

6.把1——10这十个数填入下图中,使每个正方形顶点圆圈内四个数之和都相等,而且最大。

这个和是多少?
7.把1——8填入下图○中,使每边上三个数的和最小。

最小的和是多少?
8.在图中各圆空余部分分别填上4、5、7、9,使每个圆中4个数的和是27。

9.在图中各圆空余部分分别填上6、8、10、11,使每个圆中4个数的和是33。

10. 将1~8这8个自然数分别填人下图数阵中的8个圆圈,使得数阵中各条直线上的三个 数之和都相等,那么A 和B 两个圆圈中所填的数之差(大数减小数)是________。

挑战竞赛:将从8开始的1 1
个连续自然数填入下图中的圆圈内,要使每边上的三个数之和都相等,
8
610
7
5
9
中间数共有__________种填法。

数阵图
【名师解析】
填数时,要仔细观察图形,确定图形中关键的位置应填几,一般是图形的顶点及中间位置。

另外,要将所填的空与所提供的数字联系起,一般要先计算所填数的总和与所提供数字的和之差,从而确定关键位置应填几。

关键位置的数确定好了,其他问题就迎刃而解了。

【例题精讲】
例1:在下图中分别填入1——9,使两条直线上五个数的和相等,和是多少呢?
15
练习:在下图中填入2——10,使横行、竖行中的五个数的和相同。

和是多少呢?
30
例2:把数字1——8分别填入下图的小圆圈内,使每个五边形上5个数的和都等于20。

练习:数字1——6填入下图中的小圆圈内,使每个大圆上4个数的和都是15。

例3:在图中填入2——9,使每边3个数的和等于15。

练习:把1——8填入下图中,使每边3个数的和等于13。

例4: 把1——8填入下图○内,使每边上三个数的和最大。

求最大的和是多少?(15)
练习:把3——10填入下图○中,使每边上三个数的和最大,求最大的和是多少?(21)
例5:在下图各圆空余部分填上3、5、7、8,使每个圆的4个数的和都是21。

练习:图中各圆的空余部分分别填上1、2、4、6,使每个圆中4个数的和是15。

6
42
5
37
例6:在下图所示的圈内填入不同的数,使得三条边上的三个数的和都是12.若A、B、C的和为18,则三个顶点上的三个数的和是 9 。

练习:在下图所示的圈内填入不同的数,使得三条边上的三个数的和都是21.若A、B、C的和为30,则三个顶点上的三个数的和是 15 。

选讲:将1--12这十二个自然数分别填人下图的12个圆圈内,使得每条直线上的四个数之和都相等,这个相等的和为 26 。

【综合精练】
1.把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条直线上三个数的和相等。

2.把6、8、10、12、14、16、18七个数填在下图的○中,使每排三个数及外圆上三个数的和都是32。

3.把5、6、7、8、9、10这六个数填入下图三角形三条边的○内,使得每条边上的三个数的和是21。

4.把1——8这八个数,分别填入下图的各个□内,使得每一横行、每一竖行的三个数的和是13。

5.将1——9这九个数填入下图中,使三角形每条边上四个数的和等于19,且有一个顶点的数字为1。

6.把1——10这十个数填入下图中,使每个正方形顶点圆圈内四个数之和都相等,而且最大。

这个和是多少?(22)
7.把1——8填入下图○中,使每边上三个数的和最小。

最小的和是多少?(12)
8.在图中各圆空余部分分别填上4、5、7、9,使每个圆中4个数的和是27。

11
9.在图中各圆空余部分分别填上6、8、10、11,使每个圆中4个数的和是33。

11. 将1~8这8个自然数分别填人下图数阵中的8个圆圈,使得数阵中各条直线上的三个 数之和都相等,那么A 和B 两个圆圈中所填的数之差(大数减小数)是 4 。

挑战竞赛:将从8开始的1 1个连续自然数填入下图中的圆圈内,要使每边上的三个数之和都相等,中间数共有 3 种填法。

8;18;13
8
6107
5
9。

相关文档
最新文档