航空飞行控制系统英文培训1精品PPT课件
合集下载
《飞机飞行控制》课件
02
人机界面必须设计得简单、直观、易操作,使飞行员能够快速
地获取飞行状态信息并发出控制指令。
人机界面也是飞行员紧急情况下进行人工操纵的通道,必须保
03
证在任何情况下都能迅速有效地发挥作用。
飞行控制系统的基
03
本原理
飞行动力学基础
飞行动力学是研究飞 行器在气动力作用下 的运动规律的科学。
飞行动力学主要研究 飞行器的飞行性能, 包括稳定性和操纵性 。
飞行控制系统硬件
飞行控制系统硬件是实现飞行控制功能的物理设备,包括传感器、控制 器、执行器等。
传感器用于检测飞机的状态参数,如姿态、速度、高度和角速度等;控 制器用于处理传感器信号并计算出控制指令;执行器用于接收控制指令
并操纵飞行控制面。
飞行控制系统硬件必须具有高可靠性和高精度性,以确保飞行的安全和 稳定。
调查结论
调查报告认为,波音公司在MCAS的设计和认证过程中存在严重失误,
同时美国联邦航空局(FAA)也未能有效监管。
波音737 MAX的飞行控制系统简介
飞行控制系统
波音737 MAX的飞行控制系统包括自动驾驶系统、飞行指引系统、机动特性增强系统等 。
MCAS系统
MCAS系统是一种自动防失速系统,旨在防止飞机机翼上的失速。当传感器检测到机翼上 的气流分离时,MCAS会自动调整机头的角度以减少机翼的失速。
它以空气动力学为基 础,研究飞行器在空 气中运动的力学规律 及其应用。
飞行控制系统的工作原理
飞行控制系
它通过接收飞行员输入的指 令,经过处理后发送控制指 令给执行机构,使飞行器按 照预定的轨迹和姿态飞行。
飞行控制系统通常由传感器、 控制器和执行机构三部分组成
飞行控制系统的历史与发展
《飞行操纵系统》课件
THANKS
感谢观看
飞行员通过Байду номын сангаас纵杆、脚蹬等输入装置 ,将控制指令传递给飞行操纵系统, 以改变飞机的飞行姿态和轨迹。
它包括主操纵系统和辅助操纵系统, 主操纵系统包括升降舵、方向舵和副 翼,辅助操纵系统包括襟翼、缝翼和 起落架收放机构等。
飞行操纵系统的动力学基础
飞行操纵系统的动力学基础包 括空气动力学和飞行力学。
空气动力学是研究气体流动和 物体在气体中运动的科学,它 为飞行操纵系统的设计和性能 提供了理论基础。
分类
根据飞行器类型和设计需求的不同,飞行操纵系统有多种分类方式。例如,按照传力介质的不同,可以分为机械 式操纵系统、液压式操纵系统和电气式操纵系统等;按照控制方式的不同,可以分为助力操纵系统和主动控制系 统等。
发展历程与趋势
发展历程
飞行操纵系统的发展经历了多个阶段,从早期的机械操纵系统到现代的电传操纵系统和 主动控制系统。随着科技的不断进步,飞行操纵系统的性能和安全性得到了极大的提升
权限管理与安全认证
限制飞行员对系统的操作权限,防止误操作或 恶意干扰。
自适应容错控制
在系统发生故障时,自动调整控制策略,降低故障对飞行安全的影响。
05
飞行操纵系统的应用与案例分析
飞行操纵系统在无人机中的应用
1 2 3
无人机飞行操纵系统概述
无人机飞行操纵系统是无人机控制的重要组成部 分,负责无人机的起飞、巡航、降落等操作。
飞行操纵系统的传感器
01
02
03
04
角位移传感器
检测飞行员的操纵角度,转换 为电信号。
力矩传感器
检测飞行员施加在操纵杆上的 力矩,转换为电信号。
侧杆传感器
3FLIGHTCONTROLS1
•Primary •Secondary
FLIGHT CONTROL SURFACES
❖Primary flight controls
The primary flight controls has these subsystems:
•Aileron(2) •Elevator(2) •Rudder
FLIGHT CONTROL SURFACES
Rudder:
The rudder pedals move cables that give an input to the rudder feel and centering unit. This controls the rudder PCUs. The rudder PCUs move the rudder.
During automatic deployment, the auto speedbrake actuator gives input to the same cables as above and backdrives the speedbrake lever.
FLIGHT CONTROL SURFACES
❖Secondary flight controls
The secondary flight control system has these components:
•leading edge flaps(4) •leading edge slats(8) •trailing edge flaps(4) •spoilers(12) •horizontal stabilizer
FLIGHT CONTROL SURFACES
❖Power source
Hydraulic actuators or electric motor move the surfaces. You must be very careful when you work near flight control surfaces. When hydraulic power is on, make sure that all the flight control surfaces are clear of personnel and equipment.
FLIGHT CONTROL SURFACES
❖Primary flight controls
The primary flight controls has these subsystems:
•Aileron(2) •Elevator(2) •Rudder
FLIGHT CONTROL SURFACES
Rudder:
The rudder pedals move cables that give an input to the rudder feel and centering unit. This controls the rudder PCUs. The rudder PCUs move the rudder.
During automatic deployment, the auto speedbrake actuator gives input to the same cables as above and backdrives the speedbrake lever.
FLIGHT CONTROL SURFACES
❖Secondary flight controls
The secondary flight control system has these components:
•leading edge flaps(4) •leading edge slats(8) •trailing edge flaps(4) •spoilers(12) •horizontal stabilizer
FLIGHT CONTROL SURFACES
❖Power source
Hydraulic actuators or electric motor move the surfaces. You must be very careful when you work near flight control surfaces. When hydraulic power is on, make sure that all the flight control surfaces are clear of personnel and equipment.
飞行控制系统典型飞行控制系统工作原理课件PPT
L
e
*
me
mV I 不太大时,修正高度过程中,俯仰运动也不会剧烈,所以速度相对变化
飞机上采用助力器,飞机超音速飞行时,舵机控制不受铰链力矩的影响。
也不会太大y,为此可用短周期运动方程。
❖ 为便于操纵飞机,有必要增加阻尼器。
飞机操纵机构
升降舵偏角e:平尾后缘下偏为正 e〉0 产生纵向低头力矩M<0 副翼偏转角a:右翼后缘下偏(右下左上)为正 a〉0 产生滚转力矩L<0 方向舵偏转角r:方向舵后缘向左偏为正 r〉0 产生偏航力矩N<0 油门杆位置T: 向前推杆为正 T〉0 加大油门、加大推力
飞机结构特点及受空气动力影响情况
为满足大包线,及良好的飞行性能要求,飞机设 ❖ 再由力、力矩平衡:
起削弱 作用, 向上转变慢,当
时,纵轴不再转q=0,动态过程结束。
计时采用薄的翼型,小的展弦比和具有上反效应 平飞迎角
这个等级是按能见度条件分类的,(包括垂直方向上指允许的最小云雾底部的高度;
阻尼器由角速率陀螺,放大器和舵回路
L K
)
其中:L K K K Ke 为角速率到舵偏角传动比
❖ 简化闭环传函:
q(s) pe (s)
K j KeKd (T S 1)
Td2eS 2 2deTdeS 1
式中:
Kd
K 1 L K
Tde
Td 1 L K
de
d
( K T L ) 2Td
1 L K
❖ 适当选择 L 可增大 de ,即增大了阻尼,
❖ 保持升降速度 H 0 ―必使飞机沿法线方
向力平衡,即 L cos G mg
❖ 保证飞机在水平面内盘旋―向心力等于惯
性力 L sin mu
南航英语培训课件
航空业中的英语重要性
作为国际化行业,航空业中的英语能力对于有效的沟通和安全运营至关重要。我们将深入探讨在航空业中掌握 英语的必要性。
航空安全与英语
1 关键术语
了解和正确使用航空安全领域的关键 术语对于保证飞行安全至关重要。
2 沟通流畅
在紧急情况下,流畅地使用英语进行 沟通是确保安全操作的关键。
3 安全标准
机队规模
南航拥有庞大的机队,包括 大型客机、货机和直升机, 以满足不同航空需求。
航空业英语培训概述
Hale Waihona Puke 培训计划我们提供全面的英语培训计划, 涵盖航空业中的各个方面,从 基础语言技能到专业术语。
学习方法
我们采用多种教学方法,包括 实践练习、模拟对话和技术辅 助学习,使学习过程丰富多样。
个性化学习
针对每个学员的需求,我们提 供个性化学习路径,以确保学 习效果最大化。
南航英语培训课件
随着航空业快速发展,掌握英语已成为南航人必备的技能。本课程将为您提 供全面的英语培训,从语言技能到专业术语,助您在航空行业获得成功。
南航简介
南航概述
南航(南方航空股份有限公 司)成立于1991年,是中国 最大的航空公司之一。我们 提供全球范围内的航班服务。
航空网络
南航的航线网络覆盖全球, 包括国内、国际和地区航线, 为乘客提供便捷的航空旅行 服务。
航空英语口语与听力练习
1
对话模拟
通过模拟真实场景的对话练习,提高口语表达能力和听力理解能力。
2
广播讲解
聆听广播讲解,并进行相关练习,以熟悉航空通讯中的常用表达。
3
语音纠正
通过语音纠正训练,提高发音准确性和口语自信心。
航空业中的安全标准要求准确理解和遵守各种安全程序和相关指令。
《飞机飞行控制》课件
导航控制
飞行控制系统集成了先进的导航 技术,如惯性导航、卫星导航等 ,能够实时确定飞机位置和航向 ,确保飞机沿着预定航线飞行。
防碰撞警告系统
飞行控制系统通过与空中交通管 制系统的交互,实时监测周围空 域的飞机,当存在碰撞风险时, 及时发出警告,避免空中交通事
故的发生。
飞行控制系统在军事航空领域的应用
飞行控制系统的发展趋势与未来展望
智能化控制
随着人工智能技术的发展,未来的飞行控制系统将更加智能化,能 够自适应地处理各种复杂情况,提高飞行的安全性与效率。
集成化与模块化设计
为了降低成本和提高可靠性,未来的飞行控制系统将采用集成化与 模块化设计,便于维护和升级。
自主可控技术
随着航空工业的发展,未来的飞行控制系统将更加注重自主可控技术 的研发和应用,以提高我国航空工业的竞争力。
融合技术
传感器融合技术是指将多个传感器的信息进行综合处理,以 获得更加准确和可靠的数据。在飞行控制系统中,传感器融 合技术能够提高飞机的导航精度和稳定性。
舵机与舵面
舵机
舵机是飞行控制系统中的执行机构, 能够根据控制系统的指令,精确地调 整舵面的角度,从而控制飞机的姿态 和轨迹。
舵面
舵面是飞机机翼和尾翼上的可动翼面 ,包括副翼、升降舵和方向舵等。通 过调整舵面的角度,可以改变飞机的 气动性能,实现飞机的姿态和轨迹控 制。
飞机飞行控制系统
03
的控制算法
线性控制算法
PID控制算法
通过比例、积分和微分三个环节 ,对飞机飞行过程中的误差进行 调节,以减小误差。
线性回归算法
通过对飞机飞行数据的线性回归 分析,预测飞行状态,为控制算 法提供参考。
非线性控制算法
飞机培训课件英文版:EX#25A Night Circuit generic
• Similar to Soft Field Technique.
Enabling Objectives
• Requirements (Night Rating and Aircraft). • Pre-flight inspection / engine start and run-up,
Night Rating Requirement
Total of 20 hrs in aeroplanes: • A min. of 5 hours Dual, two of which must
be a x-country flight. • A min. of 5 hours Solo with 10 takeoffs
PGI – EXERCISE #25A NIGHT CIRCUIT
200612810807
Enabling Objectives
• Requirements (Night Rating and Aircraft). • Pre-flight inspection / engine start and run-up,
Aerodrome Lighting
• Wind Sock has a light inside of it.
• ARCAL lighting: Type J / K, see CFS for description.
Enabling Objectives
• Requirements (Night Rating and Aircraft). • Pre-flight inspection / engine start and run-up,
a clear night • 20 to 30 flashes per minute
Enabling Objectives
• Requirements (Night Rating and Aircraft). • Pre-flight inspection / engine start and run-up,
Night Rating Requirement
Total of 20 hrs in aeroplanes: • A min. of 5 hours Dual, two of which must
be a x-country flight. • A min. of 5 hours Solo with 10 takeoffs
PGI – EXERCISE #25A NIGHT CIRCUIT
200612810807
Enabling Objectives
• Requirements (Night Rating and Aircraft). • Pre-flight inspection / engine start and run-up,
Aerodrome Lighting
• Wind Sock has a light inside of it.
• ARCAL lighting: Type J / K, see CFS for description.
Enabling Objectives
• Requirements (Night Rating and Aircraft). • Pre-flight inspection / engine start and run-up,
a clear night • 20 to 30 flashes per minute
飞机培训课件英文版:EX#10A FLIGHT FOR ENDURANCE
• With the same profile, find the endurance for 60% at PA of 6000’ with -10 deviation from standard temperature
Experimental Method
Procedure From Cruise : • Reduce RPM by 100 increments • Maintain altitude by increasing pitch / trim • A/S will decrease but altitude will remain • Be Precise! • How to know when to stop 100 rpm
Safety Factors Consideration
• Visibility reduced over the nose. • LOOKOUT • Possible Carb Ice • Leaning the mixture.
Human Factors
Decision Making • When you should set up for max
endurance or consider other options? • Backup plan Situation Awareness • Fuel remaining => VFR Min? • Environment => Temperature
Enabling Objectives
• What flight for Max Endurance is and where it is on the power curve.
• PURPOSE
– Runway availability – Holding for weather – Hold for other traffic – Holding due to emergency
Experimental Method
Procedure From Cruise : • Reduce RPM by 100 increments • Maintain altitude by increasing pitch / trim • A/S will decrease but altitude will remain • Be Precise! • How to know when to stop 100 rpm
Safety Factors Consideration
• Visibility reduced over the nose. • LOOKOUT • Possible Carb Ice • Leaning the mixture.
Human Factors
Decision Making • When you should set up for max
endurance or consider other options? • Backup plan Situation Awareness • Fuel remaining => VFR Min? • Environment => Temperature
Enabling Objectives
• What flight for Max Endurance is and where it is on the power curve.
• PURPOSE
– Runway availability – Holding for weather – Hold for other traffic – Holding due to emergency
航空基础英语ppt课件
A low wing airplane is an airplane whose wing is below the cabin. (2) mid wing airplane 中单翼飞机
A mid wing airplane is an airplane whose wing is anywhere between the fuselage. (3) high wing airplane 上单翼飞机
AVIATION BASIC ENGLISH
201408281447353715248
航空基础英语
1
Module I Terminology Project I Aviation Terms Unit 1 Aircraft’s Type Unit 2 Aircraft’s Structure Unit 3 Aircraft’s System
13
Module I Terminology Project I Aviation Terms Unit 1 Aircraft’s Type Unit 2 Aircraft’s Structure Unit 3 Aircraft’s System
14
1. Airframe (1) fuselage 机身 The fuselage (or body) of the airplane holds all of the parts together and carries the passengers or cargo. (2) wing / airfoil 机翼 Th1e5 wings generate most of the lift necessary for flight.
2
1. A vehicle which can fly is classified as follows: aircraft 飞行器 (1) lighter-than-air aircraft
A mid wing airplane is an airplane whose wing is anywhere between the fuselage. (3) high wing airplane 上单翼飞机
AVIATION BASIC ENGLISH
201408281447353715248
航空基础英语
1
Module I Terminology Project I Aviation Terms Unit 1 Aircraft’s Type Unit 2 Aircraft’s Structure Unit 3 Aircraft’s System
13
Module I Terminology Project I Aviation Terms Unit 1 Aircraft’s Type Unit 2 Aircraft’s Structure Unit 3 Aircraft’s System
14
1. Airframe (1) fuselage 机身 The fuselage (or body) of the airplane holds all of the parts together and carries the passengers or cargo. (2) wing / airfoil 机翼 Th1e5 wings generate most of the lift necessary for flight.
2
1. A vehicle which can fly is classified as follows: aircraft 飞行器 (1) lighter-than-air aircraft
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
The two photos below show a bottom and top view of a fixed slot in a light aircraft wing
BOTTOM VIEW
5
TOP VIEW
Slats
• On large transport aircraft, and some light aircraft, the slot closes during cruise. A device called a slat can be extended for takeoff and landing to achieve the same effect as the fixed slot shown above. The photo to the right shows the slats onLIGHT CONTROLS Types of Control Devices
THE ELEVATOR
10
At the rear of the fuselage of most aircraft one finds a horizontal stabilizer and an elevator. The stabilizer is a fixed wing section whose job is to provide stability for the aircraft, to keep it flying straight. The horizontal stabilizer prevents up-and-down, or pitching, motion of the aircraft nose. The elevator is the small moving section at the rear of the stabilizer that is attached to the fixed sections by hinges. Because the elevator moves, it varies the amount of force generated by the tail surface and is used to generate and control the pitching motion of the aircraft. There is an elevator attached to each side of the fuselage. The elevators work in pairs; when the right elevator goes up, the left elevator also goes up. This slide shows what happens when the pilot deflects the elevator.
Sometimes the fixed stabilizer and separate
movable elevators are replaced by a single
moving horizontal tail known as a Stabilator.
3
FLIGHT CONTROLS Leading Edge Devices
FLIGHT CONTROLS - 101
1
FLIGHT CONTROLS Primary
Theory & Design
2
Conventional Design
A conventional airplane is one which has a separate main wing and horizontal tail and with the horizontal tail behind the main wing. An example of a conventional airplane is shown to the left. The most common control arrangement on the Conventional Airplane is Ailerons on the main wing for roll control and a horizontal tail known as the Stabilizer with moveable Elevators for pitch control. There is also a Vertical Fin with a Rudder for directional or Yaw control.
Fixed Slots • On most light aircraft slots are formed
between the wing and the flaps. We will discuss flaps below. But, first we must consider how slots increase the CLmax of the wing.
• The diagram to the right shows how the slot allows high speed air from under the wing to flow through.
• The slot is designed to accelerate the airflow and merge it with the boundary layer on the top of the wing.
• As a result, the stall is delayed.
6
TYPES OF SLATS
7
The diagram to the right shows how the CL vs. AOA graph changes with a leading edge slot.
• Note that the slot (or slat) has no effect on the lift produced by the wing at small angles of attack.
• The primary effect of the slot is to increase the stalling angle of attack and thereby the CLmax.
• When you fly an aircraft with slots you will notice that the aircraft can be flown at a much greater angle of attack, without stalling, than a similar aircraft without slots.,
The two photos below show a bottom and top view of a fixed slot in a light aircraft wing
BOTTOM VIEW
5
TOP VIEW
Slats
• On large transport aircraft, and some light aircraft, the slot closes during cruise. A device called a slat can be extended for takeoff and landing to achieve the same effect as the fixed slot shown above. The photo to the right shows the slats onLIGHT CONTROLS Types of Control Devices
THE ELEVATOR
10
At the rear of the fuselage of most aircraft one finds a horizontal stabilizer and an elevator. The stabilizer is a fixed wing section whose job is to provide stability for the aircraft, to keep it flying straight. The horizontal stabilizer prevents up-and-down, or pitching, motion of the aircraft nose. The elevator is the small moving section at the rear of the stabilizer that is attached to the fixed sections by hinges. Because the elevator moves, it varies the amount of force generated by the tail surface and is used to generate and control the pitching motion of the aircraft. There is an elevator attached to each side of the fuselage. The elevators work in pairs; when the right elevator goes up, the left elevator also goes up. This slide shows what happens when the pilot deflects the elevator.
Sometimes the fixed stabilizer and separate
movable elevators are replaced by a single
moving horizontal tail known as a Stabilator.
3
FLIGHT CONTROLS Leading Edge Devices
FLIGHT CONTROLS - 101
1
FLIGHT CONTROLS Primary
Theory & Design
2
Conventional Design
A conventional airplane is one which has a separate main wing and horizontal tail and with the horizontal tail behind the main wing. An example of a conventional airplane is shown to the left. The most common control arrangement on the Conventional Airplane is Ailerons on the main wing for roll control and a horizontal tail known as the Stabilizer with moveable Elevators for pitch control. There is also a Vertical Fin with a Rudder for directional or Yaw control.
Fixed Slots • On most light aircraft slots are formed
between the wing and the flaps. We will discuss flaps below. But, first we must consider how slots increase the CLmax of the wing.
• The diagram to the right shows how the slot allows high speed air from under the wing to flow through.
• The slot is designed to accelerate the airflow and merge it with the boundary layer on the top of the wing.
• As a result, the stall is delayed.
6
TYPES OF SLATS
7
The diagram to the right shows how the CL vs. AOA graph changes with a leading edge slot.
• Note that the slot (or slat) has no effect on the lift produced by the wing at small angles of attack.
• The primary effect of the slot is to increase the stalling angle of attack and thereby the CLmax.
• When you fly an aircraft with slots you will notice that the aircraft can be flown at a much greater angle of attack, without stalling, than a similar aircraft without slots.,