最新人教版八年级数学下册期末考试卷及答案
最新人教版八年级下册数学期末考试试卷以及答案(2套题)
八年级下册数学期末考试试卷一、选择题。
1、若为实数,且,则2020x y )﹣(的值为( ) A .1B .C .2D .2、有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为( )A 、3B 、C 、3或D 、3或3、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .,,C .3,4,5D .4,,4、如下图,在中,分别是边的中点,已知,则DE的长为()A.3B.4C.5D.65、已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y26、一次函数与的图像如下图,则下列结论:①k<0;②>0;③当<3时,中,正确的个数是( )A.0B.1C.2D.37、某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是()A.23,25 B.23,23 C.25,23 D.25,25二、填空题。
8、函数中,自变x的取值范,是_________9、计算:(+1)2000(﹣1)2000= .10、若的三边a、b、c满足0,则△ABC的面积为____.11、请写出定理:“等腰三角形的两个底角相等”的逆定理:.12、如图,在□ABCD中,对角线AC,BD相交于O,AC+BD=16,BC=6,则△AOD的周长为_________。
13、如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长________.14、如图所示:在正方形ABCD的边BC延长线上取一点E,使CE=AC,连接AE交CD于F,则∠AFC为度.15、是一次函数,则m=____,且随的增大而____.16、已知直线y=2x+8与x轴和y轴的交点的坐标分别是______________;与两条坐标轴围成的三角形的面积是__________.17、一组有三个不同的数:3、8、7,它们的频数分别是3、5、2,这组数据的平均数是_______.18、若一组数据的平均数是,方差是,则的平均数是,方差是.三、计算题(19、5,20、5,21、6共16分)19、(-+2+)÷.20、:.21、先化简后求值.22、(7分)如图,中,于D,若求的长。
新人教版数学八年级下册期末考试试题(含答案)
新人教版数学八年级下册期末考试试题(含答案)一、选择题(共10小题,30分)1x的取值范围是()A、x<﹣2B、x≤-2C、x>-2D、x≥﹣22的值是()A、在2和3之间B、在3和4之间C、在4和5之间D、在5和6之间3.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A、方差B、平均数C、中位数D、众数4.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A、3种B、4种C、5种D、6种5.下列式子一定成立的是()6.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数x与方差s2如下表:若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A、甲B、乙C、丙D、丁7.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A、中位数是12.7%B、众数是15.3%C.平均数是15.98%D、方差是08.菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A、52B、48C、40D、209.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()10.如图,在▱ABCD中,AB=4,BC=6.以点C为圆心,适当长为半径画弧,交BC于点E,交CD于点F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点P,射线CP交BA的延长线于点Q,则AQ的长是()A、1B、112C、2D、212二、填空题(共5小题,15分)11.已知直角三角形的两边的长分别是3和4,则第三边长为.12.如图,一次函数y=﹣x+1与y=2x+m的图象相交于点P(n,2),则关于x的不等式﹣x+1>2x+m>0的解集为.13.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是.14.已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF 相交于点G,点H为BF的中点,连接GH,则GH的长为.15.如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD,AE=,则AC=.三、解答题(8个小题,共75分)16.(8分)计算下列各式的值:(1(2)(12﹣2|.17.(8分)如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,且B′C′恰好经过点D.求线段CE的长度.18.(9分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).(1)补全条形统计图;(2)求出扇形统计图中册数为4的扇形的圆心角的度数;(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了人.19.(9分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,4),且与x 轴相交于点B ,与正比例函数y =2x 的图象相交于点C ,点C 的横坐标为1.(1)求一次函数y =kx +b 的解析式;(2)若点D 在y 轴上,且满足S △COD ═12S △BOC ,请直接写出点D 的坐标.20.(10分)如图,▱ABCD 中,点E 是CD 的中点,连接AE 并延长交BC 延长线于点F(1)求证:CF =AD ;(2)连接BD 、DF ,①当∠ABC =90°时,△BDF 的形状是 ;②若∠ABC =50°,当∠CFD = °时,四边形ABCD 是菱形.21.(10分)一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?22.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产.已知A、B两城分别有肥料210吨和290吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)设从A城运往C乡肥料x吨①用含x的代数式完成下表②设总运费为y元,写出y与x的函数关系式,并求出最少总运费;(2)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时从A城运往C乡肥料多少吨时总运费最少?23.(11分)(1)问题背景:如图1,△ABC中,AB=AC,点D是BC的中点,∠BAC=120°①若AB=AC=2,则BC=;②若AB=AC=a,则BC=.(用含a的式子表示);(2)迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;(3)拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.若AE=6,CE =3,请直接写出BF的长,BF=.最新八年级(下)数学期末考试试题【含答案】一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在函数y=11x中,自变量x的取值范围是()A、x>1B、x<1C、x≠1D、x=12.为了了解2016年扬州市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A、2016年扬州市九年级学生是总体B、每一名九年级学生是个体C、1000名九年级学生是总体的一个样本D、样本容量是10003.如图,被笑脸盖住的点的坐标可能是()A、(3,2)B、(﹣3,2)C、(﹣3,﹣2)D、(3,﹣2)4.如图,要测量的A、C两点被池塘隔开,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得E、F两点间距离等于23米,则A、C两点间的距离为()A、46B、23C、50D、255.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图象是()6.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()A、6厘米B、12厘米C、24厘米D、36厘米7.某平行四边形的对角线长为x、y,一边长为6,则x与y的值可能是()A 、4和7B 、5和7C 、5和8D 、4和178.如图,已知一次函数y =ax +b 和y =kx 的图象相交于点P ,则根据图象可得二元一次方程组0y ax bkx y =+⎧⎨-=⎩的解是( )A 、42x y =-⎧⎨=-⎩B 、24x y =-⎧⎨=-⎩C 、24x y =⎧⎨=⎩D 、24x y =⎧⎨=-⎩9.下列命题中正确的是( )A 、有一组邻边相等的四边形是菱形B 、有一个角是直角的平行四边形是矩形C 、对角线垂直的平行四边形是正方形D 、一组对边平行的四边形是平行四边形 10.已知一次函数y =kx +b ﹣x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A 、k >1,b <0B 、k >1,b >0C 、k >0,b >0D 、k >0,b <011.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,则点C 的坐标为( )A 、1)B 、(﹣1)C 、,1)D 、1)12.如图所示,小华从A 点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A 点时,一共走的路程是( ) A 、140米 B 、150米 C 、160米 D 、240米13.在平面直角坐标系中,点A (2,m )在第一象限,若点A 关于x 轴的对称点B 在直线y =﹣x +1上,则m 的值为( )A、﹣1B、1C、2D、314.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为()A、12B、10C、8D、615.如图,直线l:y=﹣23x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A、1<a<2B、﹣2<a<0C、﹣3≤a≤﹣2D、﹣10<a<﹣416.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F,若小敏行走的路程为3100m,则小聪行走的路程为()m.A、3100B、4600C、3000D、3600二、填空题(共4小题,每小题3分,满分12分)17.已知点(﹣4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1,y2的大小关系为.18.如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为.19.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是.20.如图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B2;…;依此类推,则平行四边形AO4C5B的面积为,平行四边形AO n C n+1B的面积为.三、解答题(本大题共6个题,共56分,解答应写出文字说眀、证明过程或演算步骤)21.(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A、和同学亲友聊天;B、学习;C、购物;D、游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.22.(9分)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A 城.由于墨迹遮盖,图中提供的是两车距B城的路程S甲(千米)、S乙(千米)与行驶时间t(时)的函数图象的一部分.(1)分别求出S甲、S乙与t的函数关系式(不必写出t的取值范围);(2)求A、B两城之间的距离,及t为何值时两车相遇;(3)当两车相距300千米时,求t的值.23.(9分)如图,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD、(1)填空:△ABC≌△;AC和BD的位置关系是(2)如图,当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论.(3)在(2)的条件下,若AC=8cm,BD=6cm,则点B到AD的距离是,若将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长为.24.(10分)某服装公司招工广告承诺:熟练工人每月工资至少4000元.每天工作8小时,一个月工作25天.月工资底薪1000元,另加计件工资.加工1件A型服装计酬20元,加工1件B型服装计酬15元.在工作中发现一名熟练工加工2件A型服装和3件B型服装需7小时,加工1件A型服装和2件B型服装需4小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A 型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?25.(10分)已知直线y=kx+3(1﹣k)(其中k为常数,k≠0),k取不同数值时,可得不同直线,请探究这些直线的共同特征.实践操作(1)当k=1时,直线l1的解析式为,请在图1中画出图象;当k=2时,直线l2的解析式为,请在图2中画出图象;探索发现(2)直线y=kx+3(1﹣k)必经过点(,);类比迁移(3)矩形ABCD如图2所示,若直线y=kx+k﹣2(k≠0)分矩形ABCD的面积为相等的两部分,请在图中直接画出这条直线.26.(10分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,(1)求∠EAF的度数;(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结MH,得到图②.求证:MN2=MB2+ND2;(3)在图②中,若AG=12,BM=3,直接写出MN的值.参考答案一、选择题1.C;2.D;3.C;4.A;5.A;6.A;7.C;8.A;9.B;10.A;11.A;12.B;13.B;14.B;15.D;16.B;二、填空题17.y1>y2;18.(a+3,b+2);19.(0,53);20.58;152n;三、解答题(3)800×(0.1+0.4)=800×0.5=400人,答:全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习.22.(1)设S甲与t的函数关系为s甲=k1t+b,∵图象过点(3,60)与(1,420),∴解得:,∴S甲与t的函数关系式为S甲=-180t+600,设S乙与t的函数关系式为S乙=k2t,∵图象过点(1,120),∴k2=120,∴S乙与t的函数关系式为S乙=120t;(2)当t=0,s甲=600,∴两城之间的路程为600千米,∵S甲=S乙,即-180t+600=120t,解得t=2,∴当t=2时,两车相遇;(3)当相遇前两车相距300千米时,S甲-S乙=300,即-180t+600-120t=300,解得t=1,当相遇后两车相距300千米时,S乙-S甲=300,即120t+180t-600=300,解得t=3。
新人教版八年级数学下册期末考试题及答案【完整】
新人教版八年级数学下册期末考试题及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.使x2-有意义的x的取值范围是________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b >kx+6的解集是_________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、C6、A7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、x2≥4、x>3.5、46、20三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、3.3、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.4、略.5、(1)2;(2)60︒;(3)见详解6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
新人教版八年级数学下册期末考试及答案【完整】
新人教版八年级数学下册期末考试及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.化简1x-)A x-B x C x-D x 5.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,12C.6,8,11 D.5,12,236.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.9.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B.C.D.10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.323(1)0m n-+=,则m-n的值为________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知关于x ,y 的方程组325x y a x y a-=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、C5、B6、B7、B8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、(3,7)或(3,-3)3、4415、96、6三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、3.3、(1)a≥2;(2)-5<x<14、(1)略;(2)45°;(3)略.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
人教版八年级下学期期末考试数学试卷及答案解析(共六套)
人教版八年级下学期期末考试数学试卷(一)一、选择题1、下列二次根式中,是最简二次根式的是()A、B、C、D、2、平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A、120°B、60°C、30°D、15°3、甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示A、甲B、乙C、丙D、丁4、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是()A、y1<y2B、y1=y2D、无法确定5、如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为()A、16B、24C、4D、86、下列命题中,正确的是()A、有一组邻边相等的四边形是菱形B、对角线互相平分且垂直的四边形是矩形C、两组邻角相等的四边形是平行四边形D、对角线互相垂直且相等的平行四边形是正方形7、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A、22.5°B、60°C、67.5°D、75°8、关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A、k≤1C、k=1D、k≥19、已知正比例函数y=kx的图象与反比例函数y= 的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A、x1=﹣1,x2=1B、x1=﹣1,x2=2C、x1=﹣2,x2=1D、x1=﹣2,x2=210、中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S1, S2, S3,若S 1+S2+S3=18,则正方形EFGH的面积为()A、9B、6C、5D、二、填空题11、关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为________.12、如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为________.13、某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是________.14、将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=________15、反比例函数y= 在第一象限的图象如图,请写出一个满足条件的k值,k=________16、如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE的长为________.17、如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为________ m.18、如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB 的长为________,线段BC的长为________.三、解答题19、计算:(1)﹣+(+1)(﹣1)(2)× ÷ .20、解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.四、解答题21、如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN是菱形.22、为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生________人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?23、已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.24、如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.25、在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标为(4,3),反比例函数y= 的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y= 的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y= (x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y= (x>0)交于点Q,与x轴交于点H,若QH= OP,求k的值.五、填空题26、如图,在数轴上点A表示的实数是________.27、我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t的反比例函数,其函数关系式可以写为:v= (s为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:________;并写出这两个变量之间的函数解析式:________.六、解答题28、已知:关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1, x2(用含m的代数式表示);①求方程的两个实数根x1, x2(用含m的代数式表示);②若mx1<8﹣4x2,直接写出m的取值范围.29、四边形ABCD是正方形,对角线AC,BD相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)答案解析部分一、选择题1、【答案】A【考点】最简二次根式【解析】【解答】解:A、为最简二次根式,符合题意;B、=2 ,不合题意;C、= ,不合题意;D、=2,不合题意,故选A【分析】利用最简二次根式的定义判断即可.2、【答案】B【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故选B.【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A 可求出∠A的度数,进而可求出∠C的度数.3、【答案】D【考点】方差【解析】【解答】解:∵0.60>0.56>0.50>0.45,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.【分析】先比较四个选手的方差的大小,根据方差的性质解答即可.4、【答案】C【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,∴1•y1=1,2•y2=1,解得:y1=1,y2= ,∵1>,∴y1>y2.故选C.【分析】根据反比例函数图象上点的坐标特征结合点A、B的横坐标,求出y1、y2的值,二者进行比较即可得出结论.5、【答案】C【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴BO=OD= AC=2,AO=OC= BD=3,AC⊥BD,∴AB= = ,∴菱形的周长为4 .故选:C.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.6、【答案】D【考点】命题与定理【解析】【解答】解:A、有一组邻边相等的平行四边形是菱形,故本选项错误;B、对角线互相平分且垂直的四边形是菱形,故本选项错误;C、两组对角相等的四边形是平行四边形,故本选项错误;D、对角线互相垂直且相等的平行四边形是正方形,故本选项正确.故选D.【分析】分别根据菱形、矩形、正方形及平行四边形的判定定理对各选项进行逐一分析即可.7、【答案】C【考点】正方形的性质【解析】【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠D BC=45°,∵BE=CD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,故选C.【分析】由正方形的性质得到BC=CD,∠DBC=45°,证出BE=BC,根据三角形的内角和定理求出∠BEC=∠BCE=67.5°即可.8、【答案】A【考点】根的判别式【解析】【解答】解:∵a=1,b=﹣2,c=k,而方程有两个实数根,∴△=b2﹣4ac=4﹣4k≥0,∴k≤1;故选A.【分析】根据所给的方程找出a,b,c的值,再根据关于x的一元二次方程x2﹣2x+k=0有两个实数根,得出△=b2﹣4ac≥0,从而求出k的取值范围.9、【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】解:∵正比例函数图象关于原点对称,反比例函数图象关于原点对称,∴两函数的交点A、B关于原点对称,∵点A的坐标为(﹣2,1),∴点B的坐标为(2,﹣1).∴关于x的方程=kx的两个实数根分别为﹣2、2.故选D.【分析】根据正、反比例函数图象的对称性可得出点A、B关于原点对称,由点A的坐标即可得出点B的坐标,结合A、B点的横坐标即可得出结论.10、【答案】B【考点】勾股定理的证明【解析】【解答】解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1, S2, S3,S 1+S2+S3=18,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=18,故3x+12y=18,x+4y=6,所以S2=x+4y=6,即正方形EFGH的面积为6.故选:B.【分析】据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1, S2, S3,得出答案即可.二、<b >填空题</b>11、【答案】8【考点】一元二次方程的解【解析】【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有一个根为2,∴22﹣6×2+m=0,解得,m=8,故答案为:8.【分析】根据关于x的一元二次方程x2﹣6x+m=0有一个根为2,可以求得m的值.12、【答案】5【考点】直角三角形斜边上的中线,三角形中位线定理【解析】【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD= AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF= ×10=5cm.故答案为:5.【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.13、【答案】23【考点】折线统计图【解析】【解答】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即=23,故答案为:23.【分析】根据中位数的定义求解即可.14、【答案】5【考点】解一元二次方程-配方法【解析】【解答】解:方程x2+4x+1=0,移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3,∴a=2,b=3,则a+b=5,故答案为:5【分析】方程配方得到结果,确定出a与b的值,即可求出a+b的值.15、【答案】3【考点】反比例函数的性质【解析】【解答】解:∵反比例函数y= 的图象在第一象限,∴k>0,∴k=3,故答案为:3.【分析】根据反比例函数y= 的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得答案.16、【答案】【考点】勾股定理,矩形的性质,翻折变换(折叠问题)【解析】【解答】解:由折叠得,∠CBD=∠EBD,由AD∥BC得,∠CBD=∠EDB,∴∠EBD=∠EDB,∴DE=BE,设DE=BE=x,则AE=4﹣x,在直角三角形ABE中,AE2+AB2=BE2,即(4﹣x)2+32=x2,解得x= ,∴DE的长为.故答案为:【分析】先根据等角对等边,得出DE=BE,再设DE=BE=x,在直角三角形ABE中,根据勾股定理列出关于x的方程,求得x的值即可.17、【答案】500【考点】勾股定理的应用【解析】【解答】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC= =500m,∴CE=AC﹣AE=200m,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故答案是:500.【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.18、【答案】2;2【考点】勾股定理【解析】【解答】解:如图1中,作BE⊥AC于E.由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE中,∵∠AEB=90°,∴BE= = = ,在Rt△BEC中,BC= = =2 .故答案分别为2,2 .【分析】如图1中,作BE⊥AC于E,由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE,Rt△BEC中利用勾股定理即可解决问题.三、<b >解答题</b>19、【答案】(1)解:原式=3 ﹣2 +3﹣1= +2(2)解:原式=2 × ×=8【考点】二次根式的混合运算【解析】【分析】(1)先化简二次根式、根据平方差公式去括号,再合并同类二次根式可得;(2)先化简,再计算乘除法可得.20、【答案】(1)解:x2﹣6x+5=0,(x﹣5)(x﹣1)=0,x﹣5=0,x﹣1=0,x 1=5,x2=1(2)解:2x2﹣3x﹣1=0,b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=17,x= ,x 1= ,x2=【考点】解一元二次方程-公式法,解一元二次方程-因式分解法【解析】【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.四、<b >解答题</b>21、【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵ND=BF,∴AD﹣ND=BC﹣BF,即AN=CF,在△AEN和△CMF中,∴△AEN≌△CMF(SAS)(2)证明:如图:由(1)△AEN≌△CMF,故EN=FM,同理可得:△EBF≌△MDN,∴EF=MN,∵EN=FM,EF=MN,∴四边形EFMN是平行四边形,∵EM⊥FN,∴四边形EFMN是菱形.【考点】全等三角形的判定与性质,平行四边形的性质,菱形的判定【解析】【分析】(1)直接利用平行四边形的性质得出AN=CF,再利用全等三角形的判定方法得出答案;(2)直接利用全等三角形的判定与性质得出EN=FM,EF=MN,再结合菱形的判定方法得出答案.22、【答案】(1)25(2)解:男生得7分的人数为:45﹣25﹣1﹣2﹣3﹣5﹣3=6,故补全的统计图如右图所示(3)解:男生得平均分是:=7.9(分),女生的众数是:8,故答案为:7.9,8(4)解:女生队表现更突出一些,理由:从众数看,女生好于男生(5)解:由题意可得,女生需增加的人数为:45×60%﹣(20×40%+6)﹣(25×36%)=4(人),即女生优秀人数再增加4人才能完成康老师提出的目标【考点】统计表,扇形统计图,条形统计图,方差【解析】【解答】解:(1)∵在这次测试中,该班女生得10分的人数为4人,∴这个班共有女生:4÷16%=25(人),故答案为:25;【分析】(1)根据扇形统计图可以得到这个班的女生人数;(2)根据本班有45人和(1)中求得得女生人数可以得到男生人数,从而可以得到得7分的男生人数,进而将统计图补充完整;(3)根据表格中的数据可以求得男生得平均成绩和女生的众数;(4)答案不唯一,只要从某一方面能说明理由即可;(5)根据题意可以求得女生优秀人数再增加多少人才能完成康老师提出的目标.23、【答案】解:∵∠B=90°,AB=BC=2,∴AC= =2 ,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.【考点】勾股定理,勾股定理的逆定理【解析】【分析】由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD.24、【答案】(1)解:如图所示:(2)证明:∵点E,F分别为OA,OB的中点,∴EF∥AB,EF= AB,同理:NM∥CD,MN= DC,∵四边形ABCD是矩形,∴AB∥DC,AB=DC,AC=BD,∴EF∥NM,EF=MN,∴四边形EFMN是平行四边形,∵点E,F,M,N分别为OA,OB,OC,OD的中点,∴EO= AO,MO= CO,在矩形ABCD中,AO=CO= AC,BO=DO= BD,∴EM=EO+MO= AC,同理可证FN= BD,∴EM=FN,∴四边形EFMN是矩形(3)解:∵DM⊥AC于点M,由(2)MO= CO,∴DO=CD,在矩形ABCD中,AO=CO= AC,BO=DO= BD,AC=BD,∴AO=BO=CO=DO,∴△COD是等边三角形,∴∠ODC=60°,∵MN∥DC,∴∠FNM=∠ODC=60°,在矩形EFMN中,∠FMN=90°.∴∠NFM=90°﹣∠FNM=30°,∵NO=3,∴FN=2NO=6,FM=3 ,MN=3,∵点F,M分别为OB,OC的中点,∴BC=2FM=6 ,∴矩形的面积为BC•CD=36【考点】矩形的判定与性质【解析】【分析】(1)根据题目要求画出图形即可;(2)根据三角形中位线定理可得EF∥AB,EF= AB,NM∥CD,MN= DC,再由矩形的性质可得AB∥DC,AB=DC,AC=BD,进而可得四边形EFMN是矩形;(3)根据条件可得DM垂直平分OC,进而可得DO=CO,然后证明△COD是等边三角形,进而得出BC,CD的长,进而得出答案.25、【答案】(1)解:∵反比例函数y= 的图象经过点B(4,3),∴=3,∴m=12,∴反比例函数解析式为y=(2)解:∵四边形OABC是矩形,点B(4,3),∴A(0,3),C(4,0),∵一次函数y=ax﹣1的图象与y轴交于点D,∴点D(0,﹣1),AD=4,设点E(xE , yE),∵△ADE的面积=6,∴•AD•|xE|=6,∴xE=±3,∵点E在反比例函数y= 图象上,∴E(3,4),或(﹣3,﹣4),当E(3,4)在一次函数y=ax﹣1上时,4=3a﹣1,∴a= ,∴一次函数解析式为y= x﹣1,当点(﹣3,﹣4)在一次函数y=ax﹣1上时,﹣4=﹣3a﹣1,∴a=1,∴一次函数解析式为y=x﹣1,综上所述一次函数解析式为y=x﹣1或y= x﹣1(3)解:由(2)可知,直线OE解析式为y= x,设点P(xP , yP),取OP中点M,则OM= OP,∴M(xP ,xP),∴Q(xP + ,xP),∴H(,0),∵点P、Q在反比例函数y= 图象上,∴xP • xP=(xP+ )xP,∴xP= ,∴P(,),∴k= .【考点】反比例函数与一次函数的交点问题,矩形的性质,坐标与图形变化-平移【解析】【分析】(1)利用待定系数法即可解决.(2)设点E(xE , yE),由△ADE的面积=6,得•AD•|xE |=6,列出方程即可解决.(3)设点P(xP,y P ),取OP中点M,则OM= OP,则M(xP,xP),Q(xP+ ,xP),列出方程求出xP即可解决问题.五、<b >填空题</b>26、【答案】【考点】实数与数轴【解析】【解答】解:OB= = ,∵OB=OA,∴点A表示的实数是,故答案为:.【分析】首先利用勾股定理计算出BO的长,然后再根据AO=BO可得答案.27、【答案】矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S 为常数,且S≠0)【考点】反比例函数的应用【解析】【解答】解:矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数,这两个变量之间的函数解析式为:a= (S为常数,且S≠0).故答案为:矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S为常数,且S≠0).【分析】根据矩形的面积公式S=ab,即可得知:当面积S固定时,矩形的长a 是矩形的宽b的反比例函数,由此即可得出结论.六、<b >解答题</b>28、【答案】(1)证明:∵mx2﹣3(m﹣1)x+2m﹣3=0(m>3)是关于x的一元二次方程,∴△=[(﹣3(m﹣1)]2﹣4m(2m﹣3)=m2﹣6m+9=(m﹣3)2,∵m>3,∴(m﹣3)2>0,即△>0,∴方程总有两个不相等的实数根(2)①由求根公式得x= ,∴x=1,或x= ,∵m>3,∴>3,当x1<x2,∴x1=1,x2=2﹣;当x1>x2,这种情况不存在;∴x1=1,x2=2﹣;②∵mx1<8﹣4x2,∴m<8﹣4(2﹣),解得:3<m<2 .【考点】根的判别式,根与系数的关系【解析】【分析】(1)由于m>3,此方程为关于x的一元二次方程,再计算出判别式△=(m﹣3)2,然后根据判别式的意义即可得到结论;(2)②由求根公式得到x=1,或x= ,即可得到结论;②根据mx1<8﹣4x2,即可得到结果.29、【答案】(1)解:①补全图形如图1所示,②结论:AP=BN,AP⊥BN.理由:延长NB交AP于H,交OP于K.∵四边形ABCD是正方形,∴OA=OB,AO⊥BO,∴∠1+∠2=90°,∵四边形OPMN是正方形,∴OP=ON,∠PON=90°,∴∠2+∠3=90°,∴∠1=∠3,在△APO和△BNO中,,∴△APO≌△BNO,∴AP=BN,∴∠4=∠5,在△OKN中,∠5+∠6=90°,∵∠7=∠6,∴∠4+∠7=90°,∴∠PHK=90°,∴AP⊥BN.(2)解:解题思路如下:a.首先证明△APO≌△BNO,AP=BN,∠OPA=ONB.b.作OT⊥AB于T,MS⊥BC于S,由题意可知AT=TB=1,c.由∠APO=30°,可得PT= ,BN=AP= +1,可得∠POT=∠MNS=60°.d.由∠POT=∠MNS=60°,OP=MN,可证,△OTP≌△NSM,∴PT=MS= ,∴CN=BN﹣BC= ﹣1,∴SC=SN﹣CN=2﹣,在RT△MSC中,CM2=MS2+SC2,∴MC的长可求.【考点】正方形的性质【解析】【分析】(1)①根据题意作出图形即可.②结论:AP=BN,AP⊥BN,只要证明△APO≌△BNO即可.(2)在RT△CMS中,求出SM,SC即可解决问题.人教版八年级下学期期末考试数学试卷(二)一、选择题1、计算的结果是()A、1B、﹣1C、±1D、﹣22、下列二次根式中,能与合并的是()A、B、C、D、3、下列说法正确的是()A、已知a、b、c是三角形的三边长,则a2+b2=c2B、在直角三角形中,两边的平方和等于第三边的平方C、在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2D、在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c24、已知四边形ABCD是平行四边形,下列结论中不正确的是()A、当∠ABC=90°时,它是矩形B、当AC=BD时,它是正方形C、当AB=BC时,它是菱形D、当AC⊥BD时,它是菱形5、矩形的面积是48cm2,一边与一条对角线的比是4:5,则该矩形的对角线长是()A、6cmB、8cmC、10cmD、24cm6、一个长方形的面积是10cm2,其长是acm,宽是bcm,下列判断错误的是()A、10是常量B、10是变量C、b是变量D、a是变量7、一次函数y=﹣x+1的图象不经过的象限是()A、第一象限B、第二象限C、第三象限D、第四象限8、某同学使用计算器求15个数的平均数时,错将其中一个数据15输入为45,那么由此求得的平均数与实际平均数的差是()A、2B、3C、﹣2D、﹣3二、填空题9、计算:• =________.10、若一个三角形三边的长度之比为3:4:5,且周长为60cm,则它的面积是________ cm2.11、如图,菱形ABCD中,∠A=60°,BD=3,则菱形ABCD的周长是________.12、若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1________y2(选择“>”、“<”、=”填空).13、中学生田径运动会上,参加男子跳高的15名运动员的成绩如表:14、一组数据的方差s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组数据的平均数是________.三、解答题15、计算:(+ )(﹣1)16、如图,台风过后,一所学校的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部12米处,已知旗杆原长24米,求旗杆在离底部多少米的位置断裂?17、已知:在平面直角坐标系xOy中,一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB.(1)直接写出点A、点B的坐标;(2)在所给平面直角坐标系内画一次函数的图象.18、如果三角形的三边长a,b,c满足+|12﹣b|+(a﹣13)2=0,你能确定这个三角形的形状吗?请说明理由.19、小丽上午9:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小丽离家的距离y(米)和所经过的时间x(分)之间的函数关系图象如图所示.请根据图象回答下列问题:(1)小丽去超市途中的速度是________米/分;在超市逗留了________分;(2)求小丽从超市返回家中所需要的时间?20、已知:如图,在▱ABCD中,E、F是对角线BD上的两点,且BE=DF,求证:四边形AECF是平行四边形.四、解答题21、某校八年级(1)班组织了一次朗读比赛,A队10人的比赛成绩(10分制)分别是:10、8、7、9、8、10、10、9、10、9.(1)计算A队的平均成绩和方差;(2)已知B队成绩的方差是1.4,问哪一队成绩较为整齐?22、已知:y= + + ,求﹣的值.23、已知:如图1,图2,在平面直角坐标系xOy中,A(0,4),B(0,2),点C在x轴的正半轴上,点D为OC的中点.(1)求证:BD∥AC;(2)如果OE⊥AC于点E,OE=2时,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.答案解析部分一、选择题1、【答案】A【考点】二次根式的性质与化简【解析】【解答】解:原式= =|﹣1|=1.故选A.【分析】直接把二次根式进行化简即可.2、【答案】D【考点】同类二次根式【解析】【解答】解:=3 ,A、=2 ,不能合并;B、=4 ,不能合并;C、与不能合并;D、=4 ,能合并,故选D【分析】原式各项化为最简二次根式,利用同类二次根式定义判断即可.3、【答案】C【考点】勾股定理【解析】【解答】解:A、若该三角形不是直接三角形,则等式a2+b2=c2不成立,故本选项错误;B、在直角三角形中,两直角边的平方和等于斜边的平方,故本选项错误;C、在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2,故本选项正确;D、在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则c2+a2=b2,故本选项错误;故选:C.【分析】根据勾股定理进行判断即可.4、【答案】B【考点】平行四边形的性质,菱形的判定,矩形的判定,正方形的判定【解析】【解答】解:A、当∠ABC=90°时,它是矩形,说法正确;B、当AC=BD时,它是正方形,说法错误;C、当AB=BC时,它是菱形,说法正确;D、当AC⊥BD时,它是菱形,说法正确;故选:B.【分析】根据有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形进行分析即可.5、【答案】C【考点】矩形的性质【解析】【解答】解:如图:设AB=4x,则AC=5x,由勾股定理得:BC=3x,矩形的面积=AB×BC=4x×3x=48,解得:x=:±2(舍去负值),∴x=2.∴矩形的对角线长是5×2=10(cm).故选:C.【分析】设AB=4x,则AC=5x,由勾股定理可知BC=3x,由勾股定理求出BC=3x,根据面积得出方程,即可得出对角线的长.6、【答案】B【考点】常量与变量【解析】【解答】解:由题意得:10=ab,则10是常量,a和b是变量;故选B.【分析】根据长方形面积公式得:10=ab,10不发生变化是常量,a、b发生变化是变量.7、【答案】C【考点】一次函数的图象【解析】【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象经过的象限,进而可得出结论.8、【答案】A【考点】算术平均数【解析】【解答】解:求15个数的平均数时,错将其中一个数据15输入为45,即使总和增加了30;那么由此求出的这组数据的平均数与实际平均数的差是30÷15=2.故选:A.【分析】利用平均数的定义可得.将其中一个数据15输入为45,也就是数据的和多了30,其平均数就少了30除以15.二、<b >填空题</b>9、【答案】4x【考点】二次根式的乘除法【解析】【解答】解:原式==4x .故答案为:4x .【分析】先进行二次根式的乘法计算,再进行二次根式的化简求解即可.10、【答案】150【考点】勾股定理的逆定理【解析】【解答】解:∵一个三角形三边的长度之比为3:4:5,且周长为60cm,∴三角形三边为15cm,20cm,25cm,且三角形为直角三角形,∴三角形的面积为:×15cm×20cm=150cm2,故答案为:150.【分析】根据已知求出三角形的三边长,根据定勾股理的逆定理得出三角形是直角三角形,根据面积公式求出即可.11、【答案】12【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AD=AB=BC=CD,∵∠A=60°,∴△ABD是等边三角形,即AD=AB=BD=3,∴菱形ABCD的周长为:3×4=12.故答案为:12.【分析】由四边形ABCD是菱形,可得AD=AB=BC=CD,又由∠A=60°,则可证得△ABD是等边三角形,继而求得答案.12、【答案】>【考点】一次函数的图象【解析】【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.13、【答案】1.70m【考点】中位数、众数【解析】【解答】解:由表可知,跳高成绩为1.70m的运动员人数最多,故这些运动员跳高成绩的众数为:1.70m.故答案为:1.70m.【分析】根据众数的概念找出该组数据中出现次数最多的数据即可.14、【答案】3【考点】算术平均数,方差【解析】【解答】解:∵S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],为平均数,∴s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组数据的平均数是3;故答案为:3.【分析】由方差的公式:S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],可得平均数为,从而得出答案.三、<b >解答题</b>15、【答案】解:(+ )(﹣1)== .【考点】二次根式的混合运算【解析】【分析】根据多项式乘以多项式进行计算即可解答本题.16、【答案】解:由题意得:BC=12米,设AC=x米,则AB=(24﹣x)米,x2+122=(24﹣x)2,解得:x=9,答:旗杆在离底部9米的位置断裂.【考点】勾股定理的应用【解析】【分析】首先设AC=x米,则AB=(24﹣x)米,根据勾股定理可得方程x2+122=(24﹣x)2,再解方程即可.17、【答案】(1)解:点A的坐标为(0,2),点B的坐标为(1,0)(2)解:过点A(0,2)、B(1,0)作如图所示的直线,则该直线为y=kx+2的图象.【考点】一次函数的图象【解析】【分析】(1)根据一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB,直接写出点A、B的坐标即可;(2)过点A(0,2)、B(1,0),作图即可.18、【答案】解:这个三角形的形是直角三角形,。
人教版八年级下学期期末考试数学试卷及答案(共四套)
人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。
12B。
8C。
$\frac{2}{3}$D。
$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。
5,12,13B。
1,2,5C。
1,3,2D。
4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。
$(x+2)^2=3$B。
$(x+2)^2=5$C。
$(x-2)^2=3$D。
$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。
矩形B。
菱形C。
正方形D。
无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。
$y=-x$B。
$y=x+1$C。
$y=-2x+1$D。
$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。
|。
8分。
|。
9分。
|。
10分。
|甲(频数)|。
4.|。
2.|。
3.|乙(频数)|。
3.|。
2.|。
5.|A。
$s_1^2>s_2^2$B。
$s_1^2=s_2^2$C。
$s_1^2<s_2^2$D。
无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。
1,0B。
-1,1C。
1,-1D。
无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。
人教版八年级下册数学期末考试试题含答案
人教版八年级下册数学期末考试试卷一、单选题1.下列各式中,是最简二次根式的是()AB C D2的值等于()A .4B .2C .±2D .±43.若直角三角形中,斜边的长为13,一条直角边长为5.则另一条直角边为()A .8B .12C .20D .654.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A .60°B .90°C .120°D .45°5.下列各点在直线23y x =+的图象上是()A .(3,3)--B .(3,2)--C .(3,3)D .(3,2)6.下列计算结果正确的是()AB .-=C=D=7.下列说法中,错误的是()A .平行四边形的对角线互相平分B .菱形的对角线互相垂直C .矩形的对角线相等D .正方形的对角线不一定互相平分8.某青年排球队12名队员的年龄情况如下表所示,则这12名队员的平均年龄是()年龄1819202122人数14322A .18岁B .19岁C .20岁D .21岁9.菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为()A .3:1B .4:1C .5:1D .6:110.一天早上小明步行上学,他离开家后不远便发现有东西忘在了家里,马上以相同的速度回家去,到家后因事收误一会,忙完后才离开,为了不迟到,小明跑步到了学校,则小明离学校的距离y 与离家的时间t 之间的函数关系的大致图象是()AB C D二、填空题111x -x 的取值范围是____.12.甲、乙、丙、丁四人进行100m 短跑训练,统计近期10次测试的平均成绩都是13.2s ,10次测试成绩的方差如下表:则这四人中发挥最稳定的是_________.选手甲乙丙丁方差(S 2)0.0200.0190.0210.02213.将直线2y x =向下平移3个单位得到的直线为______.14.小明向东走80m 后,沿另一个方向又走了60m ,再沿第三个方向走100m 回到原点.小明向东走80m 后的方向是____.15.如图,已知在长方形ABCD 中,将△ABE 沿着AE 折叠至△AEF 的位置,点F 在对角线AC 上,若BE=3,EC=5,则线段CD 的长是__________.16.已知一次函数y=x+2与一次函数y=mx+n 的图象交于点P (a ,-2),则关于x 的方程x+2=mx+n 的解是__________.三、解答题17.计算:(1)(52)(52)(2)2(86)4818.已知一次函数y kx b =+,当2x =时y 的值为4,当2x =-时y 的值为2-,求一次函数解析式,并画出函数的图象.19.如图,四边形ABCD 中,AD ∥BC ,AC 、BD 相交于点O ,O 是AC 的中点.求证:四边形ABCD 是平行四边形.20.某人买来1000只小鸡,经过一段时间精心饲养,可以出售了.下表是这些鸡出售时质量的统计数据质量/kg 1.0 1.21.51.82.0频数111226320241102(1)求出售时这些鸡的平均质量;(2)质量在多少kg 的鸡最多?中间的鸡质量是多少kg ?(3)分析上表中的数据,写出一条你能得出的结论.21.某小组要求每两名同学之间都要写评语,小组所有同学一共写了42份评语,这个小组共有学生多少人?22.现有下面两种移动电话计费方式:方式一方式二月租费/(元/月)300本地通话费/(元/min )0.300.40(1)以x (单位:分钟)表示通话时间,y 单位:元)表示通话费用,分别就两种移动电话计费方式写出y 关于x 的函数解析式;(2)何时两种计费方式费用相等;(3)直接写出如何选择这两种计费方式更省钱.23.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,4CE =,F 为DE 的中点,若CEF △的周长为16.(1)求CF 的长;(2)求OF 的长.24.如图,在Rt ABC 中,90C = ∠,20AC BC ==,D 为BC 上一点,5BD =.点P 以每秒2个单位从点A 出发滑AC 向终点C 运动,同时点Q 以秒1个单位从点D 出发,沿BC 运动,当点P 到达终点时,P 、Q 同时停止运动.当点P 不与点A 重合时,过点P 作PE AB ⊥于点E ,连结PQ ,以PE 、PO 为邻边作PEFQ .设PEFQ 与ABC 重叠部分图形的而积为S ,点P 的运动时间为t /秒.(1)填空:AB 的长为.(2)当//PQ AB 时,求t 的值;(3)求S 与t 之间的函数关系式.25.如图,90B C CDF ∠=∠=∠= ,AE EF =,AE EF ⊥.G 为AB 上一点,DG 交EF 于点O ,45DOF ∠= .(1)求FEC BAE ∠=∠;(2)在图中找到与BE 相等的线段,并加以证明;(3)若4BE =,E F =,1AG =,求DF的长.26.已知函数()()22nx n x n y n nx x n +≥⎧⎪=⎨--<⎪⎩(n 为常数).(1)当2n =-时,①点(5)P a ,在此函数图象上,求a 的值;②求此函数的最大值;(2)已知线段AB 的两个端点坐标分别为(22)A ,、(42)B ,,当此函数的图象与线段AB 只有一个交点时,求n的取值范围.参考答案1.B【详解】解:=B.,是最简二次根式,选项正确;C.=D.=,选项错误.故选:B.2.B【详解】=2.故选B.【点睛】本题考查了算术平方根的求法,熟练掌握算术平方根的定义是解答本题的关键,正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.3.B【解析】【分析】根据勾股定理解答即可.【详解】∵直角三角形中,斜边的长为13,一条直角边长为5,12,故选:B.【点睛】此题主要考查了勾股定理,正确把握勾股定理是解题关键.4.A【解析】【分析】首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.【详解】设平行四边形中两个内角的度数分别是x°,2x°,则x+2x=180,解得:x=60,∴其中较小的内角是:60°.故选A.【点睛】此题考查平行四边形的性质,解题关键在于利用平行四边形的邻角互补.5.A【解析】【分析】分别代入x=-3和x=3,求出与之对应的y值,再对照四个选项即可得出结论.【详解】当x=-3时,y=2x+3=-3,∴点(-3,-3)在函数y=2x+3的图象上,点(-3,-2)不在函数y=2x+3的图象上;当x=3时,y=2x+3=9,∴点(3,3)和点(3,2)不在函数y=2x+3的图象上;故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.6.B【解析】【分析】根据二次根式的乘、除法公式、合并同类二次根式法则和最简二次根式的定义逐一判断即可.【详解】÷=,本选项的结果不是最简,故本选项错误;解:A.B.-C.=D.=,故本选项错误.故选B.【点睛】此题考查的是二次根式的运算,掌握二次根式的乘、除法公式、合并同类二次根式法则和最简二次根式的定义是解决此题的关键.7.D【解析】【分析】用平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线相等且互相平分,正方形对角线互相垂直平分且相等进行判断即可.【详解】解:A.平行四边形的对角线互相平分,本选项正确;B.菱形的对角线互相垂直,本选项正确;C.矩形的对角线相等,本选项正确;D.正方形的对角线一定互相平分,故该选项错误.故选D.【点睛】本题考查特殊平行四边形的性质,掌握平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线相等且互相平分,正方形对角线互相垂直平分且相等的性质进行判断是解题关键.8.C【解析】【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.依此解答即可求解.【详解】(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这12名队员的平均年龄是20岁.故选:C.【点睛】考查了加权平均数,正确理解加权平均数的概念是解题的关键.9.C【解析】【详解】如图所示,∵菱形的周长为8cm,∴菱形的边长为2cm,∵菱形的高为1cm,∴sinB=12 AE AB∴∠B=30°,∴∠C=150°,则该菱形两邻角度数比为5:1,故选C.10.B【解析】【分析】根据题意和各个选项中函数图象即可判断哪个选项是正确的.【详解】解:由题意可得,小明步行上学时小明离学校的距离在逐渐减小,而后离开家后不远便发现有东西忘在了家里,于是以相同的速度回家去拿时小明离学校的距离增大,到家后因事耽误一会,忙完后才离开,可知此时距离不变,小明跑步到学校时小明离学校的距离减小并且变化趋势较快.故选:B .【点睛】此题考查了函数的图象,根据题意分析图象是解题的关键.11.1≥x 【解析】【分析】根据二次根式的被开方数的非负性即可得.【详解】由二次根式的被开方数的非负性得:10x -≥,解得1≥x ,故答案为:1≥x .【点睛】本题考查了二次根式的定义,掌握理解二次根式的被开方数的非负性是解题关键.12.乙【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵2222S S S S >>>丁丙甲乙,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故答案为:乙.【点睛】本题考查了方差,正确理解方差的意义是解题的关键.13.y =2x-3.【解析】【分析】根据平移后解析式的规律“左加右减自变量,上加下减常数项”进行求解即可.【详解】解:直线y=2x向下平移3个单位长度后得到的直线解析式为y=2x-3.故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,明确图象的平移变化规律是解题关键.14.向北或向南【解析】【分析】根据勾股定理的逆定理可得小明向东走80m后的方向与东西方向垂直【详解】解:∵802+602=1002∴小明走的路线构成直角三角形∴小明向东走80m后的方向与东西方向垂直∴小明向东走80m后的方向是向北或向南故答案为:向北或向南.【点睛】此题考查的是勾股定理的逆定理的应用,掌握勾股定理的逆定理是解决此题的关键.15.6【解析】【分析】由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF=4.设AB=x,则AF=x,AC=x+4,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+4)2,解方程即可得出AB的长,由矩形的性质即可得出结论.【详解】由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF==4.设AB=x,则AF=x,AC=x+4.∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+4)2,解得:x=6,∴AB=6.∵ABCD是矩形,∴CD=AB=6.故答案为6.【点睛】本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.x=-4【解析】【分析】先根据一次函数y=x+2的解析式求出点P的坐标,然后利用两个一次函数图象的交点与方程x+2=mx+n的解的关系即可得出答案.【详解】∵一次函数y=x+2与一次函数y=mx+n的图象交于点P(a,-2),a+=-,∴22a=-,解得4P--.∴(4,2)∵两个一次函数的图象的交点的横坐标为x+2=mx+n的解,x=-,∴关于x的方程x+2=mx+n的解是4x=-.故答案为:4【点睛】本题主要考查两个一次函数的交点与一元一次方程的解的关系,掌握两个一次函数的交点与一元一次方程的解的关系是解题的关键.17.(1)3;(2)16-【解析】【分析】(1)利用平方差公式计算二次根式的乘法即可得;(2)先计算二次根式的乘法、化简二次根式,再计算二次根式的加减法即可得.【详解】=-,(1)原式223=;(2)原式=16=-16=-【点睛】本题考查了二次根式的乘法与加减法,熟记二次根式的运算法则是解题关键.18.312y x =+,画出函数图像见解析.【解析】【分析】根据待定系数法求解析式,再描点画出函数图象即可.【详解】解:由题意得:4222k bk b =+⎧⎨-=-+⎩,解得:321k b ⎧=⎪⎨⎪=⎩,∴一次函数的解析式为:312y x =+,由题可知,一次函数图象经过点(2,4),(-2,-2),由此画出图象如下.本题考查一次函数解析式的求法及图象画法,熟练掌握利用待定系数法求表达式的方法及一次函数图象的画法是解题的关键.19.见解析【解析】【分析】证明△AOD ≌△COB (AAS ),得OD=OB ,即可得出结论.【详解】解:证明:∵O 是AC 的中点,∴OA=OC ,∵AD ∥BC ,∴∠ADO=∠CBO ,在△AOD 和△COB 中,ADO CBO AOD COB OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COB (AAS ),∴OD=OB ,∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定方法,证明△AOD ≌△COB 是解题的关键.20.(1)这些鸡的平均质量为1.5kg ;(2)质量在1.5kg 的鸡最多,中间的质量是1.5kg ;(3)答案见解析.【解析】【分析】(1)平均质量=总质量÷总只数;(2)根据众数的定义,出现次数最多的是1.5kg ;依据中位数的定义,把数据按照从小到大的顺序排列后,求出第500位和第501位数的平均数;(3)由极差的定义,鸡的最大质量与最小值之差为1kg .【详解】解:(1) 鸡的平均质量1111 1.2226 1.5320 1.8241 2.010210001.5⨯+⨯+⨯+⨯+⨯==,∴这些鸡的平均质量为1.5kg ,(2)质量在1.5kg 的鸡最多,把数据按照从小到大的顺序排列后,第500个数和第501个数都是1.5,因此中间的质量是1.5kg ,(3)鸡的最大质量与最小值之差为1kg (答案合理即可).【点睛】本题要理解并区分平均数、众数、中位数、极差、方差等的定义以及计算公式.21.7.【解析】【分析】设这个小组有学x 生人,每人要写评语(-1)x 份,则评语共有(-1)x x 份,再与总共42份评语建立等量关系,列出一元二次方程.【详解】解:设这个小组有学x 生人,由题意得:(1)42x x -=,整理的得:2420x x --=,解得17x =,26x =-(舍).答:这个小组共有学生7人.【点睛】本题是一元二次方程的应用,注意找准等量关系,另外注意与“握手原理”对比理解.22.(1)方式一:300.3y x =+;方式二:0.4y x =;(2)通话时间为分钟300时,两种计费方式一样;(3)当0300x ≤<时,选择方式二;当300x >时,选择方式一;当300x =时,两种方式都可以.【解析】【分析】(1)根据表格可知:通话费用=月租费+每分钟通话费×通话时间,即可求出结论;(2)令(1)中两种方式的通话费用相等,求出x 的值即可;(3)根据两种通话费用的大小关系分类讨论,列出不等式即可求出结论.【详解】解:(1)方式一:300.3y x=+方式二:0.4y x=(2)由题意得:300.30.4x x+=300x ∴=答:通话时间为300分钟时,两种计费方式一样.(3)当300.30.40x x x +>⎧⎨≥⎩,即0300x ≤<时,选择方式二更省钱;当300.30.4x x +<,即300x >时,选择方式一更省钱;当300x =时,两种方式都可以【点睛】此题考查的是一次函数的应用,掌握实际问题中的等量关系是解决此题的关键.23.(1)6;(2)2OF =.【解析】【分析】(1)由“直角三角形斜边上的中线等于斜边的一半”可知CF=EF ,再由CEF △的周长及第三边CE 的长度可以得到CF 的长;(2)由勾股定理可以求得正方形的边长BC ,进一步可以求得BE 长,再根据三角形中位线定理得到OF 的长.【详解】解:(1) 四边形ABCD 为正方形90BCD ∴∠= ,BC CD =,OB OD=F 为DE 的中点CF EF FD∴==4CE = ,CEF ∆的周长为1616462CF EF -∴===(2)90BCD ∠=CD ∴==4BE ∴=-F 为DE 的中点,OB OD=122OF BE ∴==.【点睛】本题考查正方形的应用,综合应用三角形和正方形知识是解题关键.24.(1)(2)t=5;(3)22353(05)945175(520)424t t x S t t x ⎧-≤<⎪=⎨-++≤≤⎪⎩.【解析】【分析】(1)在Rt ABC 中,利用勾股定理即可求得AB 的长;(2)Rt ABC ∆中,由等边对等角得到45B ∠= A=∠,由平行线的性质,得到45CPQ CQP ∠=∠= ,由等角对等边得到C P C Q =,从而AP QB =,找到等量关系即可求解;(3)分PEFQ 在Rt ABC 内部和PEFQ 与Rt ABC 部分相交两种情况讨论即可.【详解】(1)在Rt ABC 中,90C = ∠,20AC BC ==,AB =,故答案为:(2)经过t 秒,AP=2t ,BQ=t+5,Rt ABC ∆ 中,90C = ∠,20AC BC ==,45A B ∴∠=∠= ,//PQ AB ,45CPQ CQP ∴∠=∠= ,CP CQ ∴=,AP QB ∴=,25t t ∴=+,5t ∴=;(3)当05x <≤时,如图1,延长QF 交AB 于点H ,由(2)得222AE PE AP t ===,22(5)22QH HB t ===+,2220225)(353)EH AB AE BH t t ∴=--=-+=-,2222)3532S PE EH t t t t ∴=⨯=⨯-=-,当520x ≤≤时,如图2:25)QH t =+ ,2PE t =,23)EH t =-21()212522(2)(353)2222325223)42945175424S PE QH EH t t t t t t ∴=+⨯=++-+=⨯-=-++【点睛】此题考查了函数关系式的求法、三角形和梯形的面积的求法,也考查了分类讨论思想的应用,数形结合思想的应用,要熟练掌握.25.(1)证明见解析;(2)CD BE =,证明见解析;(3)3【解析】【分析】(1)根据题中的直角,利用两锐角的互余关系即可得到答案;(2)过点F 作FH BC ⊥交BC 于点H ,FH 与GD 交于点M ,可证EHF ABE ∆≅∆,从而得到答案;(3)分别延长BA 、DF 交于点N ,通过条件可知四边形BHFN 为矩形,四边形AGMF 为平行四边形,可求出AF GM ==Rt NGD ∆中,利用勾股定理即可得到答案.【详解】解:(1)AE EF⊥Q 90AEF ∠=90CEF AEB ∴∠+∠=90AEB EAB ∠+∠=CEF EAB∴∠+∠(2)CD BE=过点F 作FH BC ⊥交BC 于点H ,FH 与GD 交于点M90CHF ∴∠=又90C CDF ∠=∠=∴四边形HCDF 为矩形FH CD ∴=,90HFN ∠=在Rt EHF ∆和Rt ABE ∆中CEF EAB ∠=∠ ,AE EF=Rt EHF Rt ABE∴∆≅∆BE FH ∴=,EH AB=CD BE∴=(3)分别延长BA 、DF 交于点N90B BHF HFN ∠=∠=∠=∴四边形BHFN 为矩形4NB FH ∴==,6NF BH ==90EHF ∠= ,4FH =,E F =2EH AB∴===2NA BN AB ∴=-=1AG =3NG∴=AE EF=,AE EF⊥45AFE∴∠= ,210AF=45DOF∠=//AF GM∴∴四边形AGMF为平行四边形210AF GM∴==设DF x=21DM x∴=+6ND x∴=+,22101GD x=++在Rt NGD∆中222NG ND DG+=22223(6)(2101)x x∴++=++3x∴=即3DF=【点睛】本题考查了全等三角形的性质与判定,矩形的性质与判定,勾股定理,正确做出辅助线,熟练掌握判定定理是解题的关键.26.(1)①a=-12;②2;(2)22 53n≤≤.【解析】【分析】(1)①把n=-2带入求解即可得到a的值;②根据x的取值分类计算,求出此函数的最大值21即可;(2)将A ,B 代入函数求出n ,即可求出n 的取值范围;【详解】解:(1)①当2n =-时,22(2)1(2)--≥-⎧=⎨-+<-⎩x x y x x ,52>- ,∴点(5)P a ,在22y x =--上,25212a ∴=-⨯-=-;②当2x ≥-时,可得2x =-有最大值为()-2-2-2=2⨯,当2x -<时,1<2x -+,∴此函数的最大值为2,(2)将(22)A ,代入y nx n =+,得23n =,将(42)B ,代入y nx n =+,得25n =,2253n ∴≤≤,当0n <时,()()22nx n x n y nnx x n +≥⎧⎪=⎨--<⎪⎩(n 为常数),不过点A 、B ,综上,2253n ≤≤.【点睛】本题主要考查了一次函数的综合,准确求解是解题的关键.。
2023年人教版八年级数学下册期末考试题及答案【完美版】
2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。
()2. 任何两个无理数相加都是无理数。
()3. 两条平行线的斜率相等。
()4. 一次函数的图像是一条直线。
()5. 任意两个等腰三角形的面积相等。
()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。
2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。
3. 若x^2 5x + 6 = 0,则x的值为_______或_______。
4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。
5. 平行四边形的对边_______且_______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是正比例函数?请举例说明。
人教版八年级下学期期末考试数学试卷及答案(共四套)
人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是 A .12 B .8 C .23D . 2.0 2.以下列各组数为边长,不能构成直角三角形的是A .5,12,13B .1,2,5C .1,3,2D .4,5,6 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -= 4.如图,两把完全一样的直尺叠放在一起,重合的部分 构成一个四边形,这个四边形一定是A .矩形B .菱形C .正方形D .无法判断5.下列函数的图象不经过...第一象限,且y 随x 的增大而减小的是 A .y x =- B .1y x =+ C .21y x =-+ D .1y x =-6.下表是两名运动员10次比赛的成绩,21s ,22s 分别表示甲、乙两名运动员测试成绩的方差,则有8分9分 10分 甲(频数) 4 2 4 乙(频数) 343A .2212s s >B .2212s s =C .2212s s <D .无法确定7.若a ,b ,c 满足0,0,a b c a b c ++=⎧⎨-+=⎩则关于x 的方程20(0)ax bx c a ++=≠的解是A .1,0B .-1,0C .1,-1D .无实数根8.如图,在ABC △中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,第10题图NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM =x ,BMD ∆和CNE ∆的面积之和为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题9.函数1y x =-x 的取值范围是 . 10.如图,在平面直角坐标系xOy 中,点A (0,2),B (4,0), 点N 为线段AB 的中点,则点N 的坐标为 . 11.如图,在数轴上点A 表示的实数是 .12.如图,在平面直角坐标系xOy 中,直线1l ,2l 分别是函数11y k x b =+和22y k x b =+的图象,则可以估计关于x 的不等式1122k x b k x b +>+的解集为 .第11题图 第12题图 第13题图13.如图,点A ,B ,E 在同一条直线上,正方形ABCD ,BEFG 的边长分别为3,4,H 为线段DF 的中点,则BH = .14.命题“全等三角形的对应角相等”的逆命题是 .这个逆命题是 (填“真”或“假”)命题.ED CA15.若函数2 2 (2),2 (2)x x y x x ⎧+≤=⎨>⎩的函数值y =8,则自变量x 的值为 .16.阅读下面材料:小明想探究函数21y x =-的性质,他借助计算器求出了y 与x 的几组对应值,并在平面直角坐标系中画出了函数图象:x … -3 -2 -1 1 2 3 … y…2.831.731.732.83…小聪看了一眼就说:“你画的图象肯定是错误的.”请回答:小聪判断的理由是 . 请写出函数21y x =-的一条性质: .三、解答题17.已知51a =+,求代数式227a a -+的值.18.解一元二次方程:23220x x +-=.19.如图,在□ABCD 中,AC ,BD 相交于点O ,点E 在AB 上,点F 在CD 上,EF 经过点O .求证:四边形BEDF 是平行四边形.20.如图,在平面直角坐标系xOy 中,直线l 的表达式为26y x =-,点A ,B 的坐标分别为(1,0),(0,2),直线AB 与直线l 相交于点P . (1)求直线AB 的表达式; (2)求点P 的坐标;(3)若直线l 上存在一点C ,使得△APC 的面积是△APO 的面积的2倍,直接写出点C 的坐标.21.关于x 的一元二次方程0)1(222=-+-m mx x 有两个不相等的实数根. (1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.22.如图,在□ABCD 中,∠ABC ,∠BCD 的平分线分别交AD 于点E ,F ,BE ,CF 相交于点G . (1)求证:BE ⊥CF ;(2)若AB =a ,CF =b ,写出求BE 的长的思路.23.甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在同一次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.甲校 93 82 76 77 76 89 89 89 83 87 88 89 84 92 8789 79 54 88 92 90 87 68 76 94 84 76 69 83 92乙校 84 63 90 89 71 92 87 92 85 61 79 91 84 92 9273 76 92 84 57 87 89 88 94 83 85 80 94 72 90(1)请根据乙校的数据补全条形统计图;(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格;(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,请为他们各写出一条可以使用的理由;甲校:.乙校:.(4)综合来看,可以推断出校学生的数学学业水平更好一些,理由为.24.如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.(1)依题意补全图1;(2)猜想AG和DH的数量关系并证明;(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.25.在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(-2,0),B(0,2),C(-2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k 的取值范围.参考答案及评分标准一、选择题(本题共24分,每小题3分)二、填空题(本题共24分,每小题3分)三、解答题(本题共52分,17-22题每小题5分,23-24题每小题7分,25题8分)17.解:227a a -+2(1)6a =-+. ……………………………………………3分当1a =时,原式11=. ……………………………………………5分18.解:3a =,2b =,2c =-.224243(2)28b ac -=-⨯⨯-=.………………………………………3分∴212233b x a --±-===⨯. ……………………4分∴原方程的解为113x -+=,213x --=. ………5分19.证明:∵在□ABCD 中,AC ,BD 相交于点O , ∴DC ∥AB ,OD =OB .………………………………………2分∴∠FDO =∠EBO ,∠DFO =∠BEO . ∴△ODF ≌△OBE . ………………………………3分∴OF =OE .………………………………………………4分∴四边形BEDF 是平行四边形. ……………………5分20.解:(1)设直线AB 的表达式为y =kx +b .由点A ,B 的坐标分别为(1,0),(0,2),可知0,2.k b b +=⎧⎨=⎩解得2,2.k b =-⎧⎨=⎩所以直线AB 的表达式为y =-2x +2. …………………2分(2)由题意,得22,2 6.y x y x =-+⎧⎨=-⎩解得2,2.x y =⎧⎨=-⎩所以点P 的坐标为(2,-2). …………………3分(3)(3,0),(1,-4). ……………………………5分21.解:(1)由题意,得22(2)4(1)0m m ∆=--->. 解得12m >. ……………………………3分(2)答案不唯一.如: 取m =1,此时方程为220x x -=.解得 120,2x x ==. ……………………………5分22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD .…………………………………1分∴∠ABC +∠BCD =180°.∵BE ,CF 分别是∠ABC ,∠BCD 的平分线, ∴∠EBC =12∠ABC ,∠FCB =12∠BCD . ………………2分∴∠EBC +∠FCB =90°. ∴∠BGC =90°. 即BE ⊥CF .…………………………………3分(2)求解思路如下:a .如图,作EH ∥AB 交BC 于点H ,连接AH 交BE 于点P .b .由BE 平分∠ABC ,可证AB =AE ,进而可证四边形ABHE 是菱形,可知AH ,BE 互相垂直平分;c .由BE ⊥CF ,可证AH ∥CF ,进而可证四边形AHCF 是平行四边形,可求AP =2b; d .在Rt △ABP 中,由勾股定理可求BP ,进而可求BE 的长. …5分23.解:(1)补全条形统计图,如下图.……………2分(2)86;92. ………………4分 (3)答案不唯一,理由需包含数据提供的信息. ……6分 (4)答案不唯一,理由需支撑推断结论……………………7分 24.(1)补全的图形,如图所示.………………………………1分 (2)AG =DH .………………………2分证明:∵四边形ABCD 是菱形,∴AD CD CB ==,AB ∥DC ,ADC ABC ∠=∠.…………………3分 ∵点F 为点B 关于CE 的对称点, ∴CE 垂直平分BF .∴CB CF =,CBF CFB ∠=∠.…………………………………4分 ∴CD CF =. 又∵FH CG =, ∴DG CH =.∵180ABC CBF ∠+∠=︒,180DCF CFB ∠+∠=︒, ∴ADC DCF ∠=∠.∴△ADG ≌△DCH . ………………………5分 ∴AG DH =. (3)不存在.……………6分理由如下:由(2)可知,∠DAG =∠CDH ,∠G =∠GAB , ∴∠DPA =∠PDG +∠G =∠DAG +∠GAB =70°>60°.…………7分∴△ADP 不可能是等边三角形. 25.(1)①A ,B ;……………………………2分②当PM +PN =4时,可知点P 在直线l 1:2y x =+,直线l 2:2y x =-上. 所以直线l 的近距点为在这两条平行线上和在这两条平行线间的所有点. 如图1,EF 在OA 上方,当点E 在直线l 1上时,n 的值最大,为22-+. ……3分如图2,EF 在OA 下方,当点F 在直线l 2上时,n 的值最小,为2-. …4分当0n =时,EF 与AO 重合,矩形不存在.综上所述,n 的取值范围是222n -≤≤-+,且0n ≠.…………6分 (2)1212k --≤≤-.……………8分人教版八年级下学期期末考试数学试卷(二)说明:1.考试用时100分钟,满分为120分;图1图22.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B C .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cm B .220cm C .240cm D .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是. 12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分).17.计算:20---++.(2)(51)3(36)18.已知,如图在ΔABC中,AB=BC=AC=2cm,AD是边BC上的高.求AD的长.19.如图,□ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.四、解答题(二)(本大题3小题,每小题7分,共21分).20.一次函数y=2x-4的图像与x轴的交点为A,与y轴的交点为B.(1)A,B两点的坐标分别为A(,),B(,);(2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序; (2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?五、解答题(三)(本大题3小题,每小题9分,共27分).23.观察下列各式:312311=+;413412=+;514513=+;…… 请你猜想: (1=,=; (2)计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来.12kmCAB5km24.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:BF=DF;(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.①求证:四边形BFDG是菱形;②若AB=3,AD=4,求FG的长.25.已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A 点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.人教版八年级下学期期末考试数学试卷(三)总分:120分考试时间:100分钟一、选择题(每题3分,共10题,30分)1. x的取值范围是A.3x2≥ B.3x2> C.2x3≥ D.2x3>2.下列二次根式中,最简二次根式是3.公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元4.在本学期数学期中考中,某小组8名同学的成绩如下: 90、103、105、105、105、115、140、140,则这组数据的众数为( ). A .105 B .90 C .140 D .50 5.下列几组数中,不能作为直角三角形三边长度的是A .1.5,2,2.5B . 3,4,5,C .5,12,13D .20,30,406.已知一组数据123n x x x x ,,,…,的方差是7,那么数据12x x -5,-5,3x 5-,…, n x 5-的方差为A.2 B.5 C.7 D.97. 如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<B.x<3C.x>D.x>38.名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:175设两队队员身高的平均数依次为x甲,x乙,身高的方差依次为2S甲,2S乙,则下列关系中完全正确的是A.x x=甲乙,22S S>乙甲B.x x=甲乙,22S S<乙甲C.x x>甲乙,22S S>乙甲D.x x<甲乙,22S S<乙甲9. 如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE 垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是A.2 B.2.2C.2.4 D.2.510、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30 从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与时间t(时)的函数图象如图所示.根据图象得到下列结论,其中错误..的是A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二.填空(每题3分,共15分)11.如图,Rt △ABC 中,∠BAC=90°,D ,E ,F 分别为AB ,BC ,AC 的中点,已知DF=3,则AE= .12.若点1(1,)A y 和点2(2,)B y 都在一次函数2+-=x y 的图象上,则y 1 y 2(选择“>”、“<”、“=”填空)13.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为________ 14. 如图,菱形ABCD 周长为16,∠ADC =120°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是15.如图,在矩形ABCD,AB=3,BC=4,E 是BC 边上一点,连接AE ,把∠B 沿AE 折 叠,使B 点落在B ’处,当△CEB ’为直角三角形时,BE 的长为____________。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。
2. 计算:3x²2y²=5,其中x=3,y=2。
3. 计算:2a²+3b²=6,其中a=4,b=2。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。
2. 证明:如果x²=y²,那么x=y。
六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。
2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。
七、简答题(每题10分,共20分)1. 简述方程的基本概念。
2. 简述不等式的基本概念。
八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。
人教版八年级下册数学期末考试试卷及答案
人教版八年级下册数学期末考试试题一、单选题1.下列式子中,属于最简二次根式的是()AB C D 2.在以下列数值为边长的三角形中,不是直角三角形的是()A .5,12,13B .6,8,10C .4,7,9D .9,40,413.下列计算正确的是()AB =C 1=D 24.下列各式中,y 随x 的变化关系式是正比例函数的是()A .y =2x B .y =2x C .y =x ﹣1D .y =x 2﹣15.一次函数2021y x =-+的图象不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限6.新冠疫情期间,某地有五家医院的医生踊跃报名驰援武汉,人数分别为17,17,18,19,21,以上数据的中位数为()A .17B .18C .18.5D .197.如图,直线y kx b =+()0b>经过点(2,0),则关于x 的不等式0kx b +≥的解集是()A .x>2B .x<2C .x≥2D .x≤28.如图,在平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是()A .6B .8C .9D .109.如图,在菱形ABCD 中,AC AB =,则ABC ∠=()A .30B .45C .60D .7510.样本方差的计算公式()()()22221230120202030S x x x ⎡⎤=-+-++-⎣⎦ 中,数字30和20分别表示样本的()A .众数、中位数B .方差、标准差C .数据的个数、中位数D .数据的个数、平均数二、填空题11有意义的x的取值范围是______.12.若三角形的边长分别为6、8、10,则它的最长边上的高为_____.13.跳高训练时,甲、乙两名同学在相同条件下各跳了10次,统计他们的平均成绩都是1.36米,且方差为2=0.4s 甲,2=0.3s乙,则成绩较为稳定的是________(填“甲”或“乙”).14.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____.15.返校复学前,小张进行了14天体温测量,结果统计如下:体温36.336.436.536.636.736.8天数123431则小张这14天体温的众数是__________.16.函数y =kx 与y =6–x 的图像如图所示,则k =________.17.菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.18.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠BED=____度.19.如图,有一块菱形纸片ABCD ,沿高DE 剪下后拼成一个矩形,矩形的长和宽分别是5cm ,3cm .EB 的长是______.三、解答题20.计算:3172912138-21.已知a 32,23b =+,求22a b ab +的值.22.已知,如图,E 、F 分别为□ABCD 的边BC 、AD 上的点,且∠1=∠2,求证:AE=CF .23.某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:环数6789人数1522(1)填空:10名学生的射击成绩的众数是_________,中位数是_________.(2)求这10名学生的平均成绩.24.已知函数y =x+2.(1)填表,并画出这个函数的图象;x …0…y =x+2…0…(2)判断点A(﹣3,1)是否在该函数的图象上,并说明理由.25.如图,ABCD 的对角线AC ,BD 相交于点O ,且5AB =,4AO =,3BO =.求证:ABCD 是菱形.26.如图,在平面直角坐标系中,点(A ,点B 在x 轴的正半轴上,且5OB =.(1)写出点B的坐标;(2)求AB的长.27.如图,E、F分别是菱形ABCD的边AD、BC的中点,若四边形AECF是矩形,且1AE ,求菱形ABCD的面积.28.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?29.为落实“精准扶贫”精神,市农科院专家指导贫困户李大爷种植优质百香果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图所示.(1)观察图示,直接写出日销售量的最大值为________;(2)根据图示,求李大爷家百香果的日销售量y与上市时间x的函数解析式,并求出第15天的日销售量.参考答案1.A【详解】解:AB=2,不是最简二次根式,不正确;C,不是最简二次根式,不正确;D不是最简二次根式,不正确.故选:A.2.C【解析】【详解】解:A、∵52+122=132,∴此三个数值可以构成直角三角形,不符合题意;B、∵62+82=102,∴此三个数值可以构成直角三角形,不符合题意;C、∵42+72≠92,∴此三个数值不能构成直角三角形,符合题意;D、∵92+402=412,∴此三个数值可以构成直角三角形,不符合题意,故选:C.【点睛】本题考查勾股定理的逆定理,熟练掌握利用勾股定理的逆定理判断直角三角形的方法步骤是解答的关键.3.B【解析】【分析】根据合并同类项,二次根式的乘法和除法运算法则逐项分析即可.【详解】A.B.=C.D.故选B.【点睛】本题考查了合并同类项,二次根式的乘法和除法运算法则,掌握合并同类项,二次根式的乘法和除法运算法则是解题的关键.4.A【解析】【详解】解:形如y=kx,k为常数且k≠0,这样的函数称为正比例函数,符合条件的只有选项A,故答案选A.5.C【解析】【分析】根据一次函数的性质分析一次函数的解析式的系数与常数项的符号,即可确定函数图像在第几象限.【详解】2021y x =-+,10,20210k b =-<=>,∴2021y x =-+的图象经过一、二、四象限,不经过第三象限.故选C .【点睛】本题考查了一次函数图像的性质,掌握一次函数图像的性质是解题的关键.6.B【解析】【分析】把一组数据按照从小到大(或从大到小)排列,若数据为奇数个,则排在最中间的数据就是这组数据的中位数,若数据的个数为偶数个,则最中间两个数据的平均数就是这组数据的中位数,再根据中位数的定义可得答案.【详解】解:根据中位数的定义知,这组数据的中位数为18,故选:B .【点睛】本题考查的是中位数的概念,掌握中位数的概念是解题的关键.7.D【解析】【分析】写出函数图象在x 轴上方及x 轴上所对应的自变量的范围即可.【详解】解:当x≤2时,y≥0.所以关于x 的不等式kx +3≥0的解集是x≤2.故选:D .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.8.B【解析】【分析】由AC的垂直平分线交AD于E,易证得AE=CE,又由四边形ABCD是平行四边形,即可求得AD与DC的长,继而求得答案.【详解】解:∵AC的垂直平分线交AD于E,∴AE=CE,∵四边形ABCD是平行四边形,∴CD=AB=3,AD=BC=5,∴△CDE的周长是:DC+DE+CE=DC+DE+AE=DC+AD=3+5=8,故选:B.【点睛】此题考查线段垂直平分线的性质,平行四边形的性质,解题关键在于得到AE=CE.9.C【解析】【分析】根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,再根据等边三角形的性质解答.【详解】解:在菱形ABCD中,AB=BC,∵AC=AB,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°.故选:C.【点睛】本题考查了菱形的性质,主要利用了菱形的四条边都相等的性质,熟记性质并判断出△ABC 是等边三角形是解题的关键.10.D【解析】【分析】方差公式中2222121[()(()]n s x x x x x x n=-+-++- ,n 、x 分别表示数据的个数、平均数.【详解】解:样本方差的计算公式()()()222212301S 20202030x x x ⎡⎤=-+-++-⎣⎦ 中,数字30和20分别表示样本的数据的个数、平均数.故选D【点睛】本题考核知识点:方差.解题关键点:理解方差公式的意义.11.21x ≥-【解析】【分析】根据二次根式有意义的条件,被开方数为非负数,即可求得的x 的取值范围.【详解】有意义,210x ∴+≥,解得21x ≥-,故答案为:21x ≥-.【点睛】本题考查了二次根式有意义的条件,理解二次根式有意义的条件是解题的关键.12.4.8【解析】【详解】∵三角形三边的长分别为6、8和10,62+82=100=102,∴此三角形是直角三角形,边长为10的边是最大边,设它的最大边上的高是h ,∴6×8=10h ,解得,h=4.8,故答案为4.8.【点睛】本题主要考查勾股定理的逆定理以及三角形的面积公式,熟记并会应用是解题的关键.13.乙【解析】【分析】根据方差越大,波动越大,成绩越不稳定,方差越小,波动越小,成绩越稳定即可求解.【详解】解:因为2=0.4s 甲,2=0.3s乙,所以22s s 甲乙,所以乙成绩较为稳定.故答案为:乙.【点睛】本题主要考查方差的意义,解题的关键是要熟练掌握方差的意义.14.4【解析】【分析】首先求出直线y =12x ﹣1向上平移m 个单位长度得到y =12x ﹣1+m ,结合y =12x+3,即可求得m 的值.【详解】解:直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,∴﹣1+m =3,解得m =4,故答案为4.【点睛】此题主要考查了一次函数图象与几何变换,关键是掌握直线y=kx+b 向上平移a 个单位,则解析式为y=kx+b+a ,向下平移a 个单位,则解析式为y=kx+b-a .15.36.6【解析】【分析】根据众数的定义判断即可;【详解】根据表格数据可知,36.6度出现了4天,出现的天数最多,故众数是36.6.故答案是36.6.【点睛】本题主要考查了众数的定义,准确分析表格是解题的关键.16.2【解析】【分析】首先把一次函数y=6-x 与y=kx 图像交点坐标的横坐标为2代入一次函数y=6﹣x 中,求得交点坐标为(2,4),然后代入y=kx 求得k 值即可.【详解】∵一次函数y=6﹣x 与y=kx 图像的交点横坐标为2,∴y=6﹣2=4,∴交点坐标为(2,4),把(2,4)代入y=kx ,得2k=4,解得:k=2.故答案为:2.【点睛】本题考查了两条直线相交问题,解题的关键是交点坐标适合y=6﹣x 与y=kx 两个解析式.17.20【解析】【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=12×8=4,BO=12×6=3,∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD .∴△AOB 是直角三角形.∴5AB =.∴此菱形的周长为:5×4=20故答案为:20.18.45【解析】【分析】根据正三角形和正方形的性质可得∠EAB=150°,AE=AB ,从而得出∠AEB 的大小,进而得出∠BED 的大小.【详解】∵四边形ABCD 是正方形,△AED 是正三角形∴∠EAD=60°,∠AED=60°,∠DAB=90°,AE=AD=AB∴△AEB 是等腰三角形,∠EAB=150°∴∠AEB=∠ABE=15°∴∠BED=45°故答案为:45°【点睛】本题考查正方形和正三角形的性质,解题关键利用正三角形和正方形的性质,得出∠AEB=∠ABE .19.1cm【解析】【分析】根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt △AED 中,求出AE 即可解决问题.【详解】解:∵四边形ABCD 是菱形,∴AB=BC=CD=AD=5(cm),∵DE ⊥AB,DE=3(cm),在Rt △ADE 中222253AD DE -=-,∴BE=AB−AE=5−4=1(cm),故答案为1cm.【点睛】本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.20.12-【解析】【分析】先根据二次根式的性质化简二次根式,同时计算立方根,最后进行实数的加减运算即可.【详解】3=-1()2=-12=-【点睛】本题考查了二次根式的性质,求一个数的立方根,掌握二次根式的性质是解题的关键.21.()ab a b +;-【解析】【分析】先将代数式因式分解,进行二次根式的混合运算计算,ab a b +的值,再代入求解即可.【详解】22a b ab +()ab a b =+a 2=,2b =2)1ab ∴==-22a b +=+=∴原式1=-⨯=-【点睛】本题考查了提公因式法因式分解,二次根式的混合运算,先用提公因式法因式分解是解题的关键.22.详见解析【解析】【分析】通过证明三角形全等求得两线段相等即可.【详解】∵四边形ABCD为平行四边形∴∠B=∠D,AB=CD∵∠1=∠2,∠B=∠D,AB=CD∴△ABE≌△CDF∴AE=CF.【点睛】本题主要考查平行四边形性质与全等三角形,解题关键在于找到全等三角形. 23.(1)7环,7环;(2)这10名学生的平均成绩为7.5环.【解析】【分析】(1)根据众数和中位数的定义,可找到问题答案;(2)根据平均数的定义计算,即可计算得到答案.【详解】(1)∵10名学生成绩中,7环总共出现5次,次数最多∴众数是7环∵中位数是所有成绩从小到大排列中间两个数据的平均数又∵中间两个数据均为7环∴中位数为7环(2)67582927.510+⨯+⨯+⨯=环∴这10名学生的平均成绩为7.5环.【点睛】本题考察了数据分析中众数、中位数、平均数的知识;求解关键是准确掌握中位数、众数、平均数定义,从而计算得到答案.24.(1)2,﹣2,作图见解析;(2)点A(﹣3,1)不在该函数的图象上,见解析.【解析】【分析】(1)分别代入x =0,y =0求出与之对应的y ,x 的值,再描点、连线,即可画出函数图象;(2)代入x =﹣3求出与之对应的y 值,再将其与1y =比较后即可得出结论.【详解】解:(1)当x =0时,y =0+2=2;当y =0时,x+2=0,解得:x =﹣2.描点:()()0,2,2,0,-连线,画出函数图象,如图所示.故答案为:2;﹣2.(2)点A (﹣3,1)不在该函数的图象上,理由如下:当x =﹣3时,y =﹣3+2=﹣1,﹣1≠1,∴点A (﹣3,1)不在该函数的图象上.【点睛】本题考查的是一次函数的作图,一次函数的性质,掌握一次函数的作图与性质是解题的关键.25.见解析【解析】【分析】根据已知数据,先求证ABO 是Rt ,即AC BD ⊥,进而根据菱形的判定定理即可得证.【详解】5AB =,4AO =,3BO =,22525AB ==,22224325AO BO +=+=,222AB AO BO ∴=+,ABO ∴V 是Rt ,90AOB ∠=︒∴,即AC BD ⊥,四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.【点睛】本题考查了勾股定理的逆定理,菱形的判定定理,勾股定理证得ABO 为Rt 是解题的关键.26.(1)(5,0)B ;(2)2【解析】【分析】(1)根据点B 在x 轴的正半轴上,且5OB =即可写出B 点的坐标;(2)过A 点作AC OB ⊥于C ,求得,AC BC ,进而根据勾股定理即可求得AB 的长.【详解】(1) 点B 在x 轴的正半轴上,且5OB =,(5,0)B ∴,(2)过A 点作AC OB ⊥于C ,如图,(A ,(4,0)C ∴,1AC BC ∴==,2AB ∴==.【点睛】本题考查了勾股定理在平面直角坐标系中的应用,掌握勾股定理是解题的关键.27.【解析】【分析】由菱形的性质求得CD,再由勾股定理得CE,再根据菱形的面积公式求得结果.【详解】解:∵AECF是矩形,∴∠AEC=90°,∵E是AD的中点,∴DE=AE=1,∵ABCD是菱形,∴CD=AD=2∴CE=,∴菱形ABCD的面积S AD CE=⨯=【点睛】本题主要考查了菱形的性质,矩形的性质,菱形的面积公式,勾股定理,关键是求CE的长度.28.(1)甲、乙样本的平均数分别为:40kg,40kg;产量总和为7840千克(2)乙.【解析】【分析】(1)根据折线图先求出甲山和乙山的杨梅的总数就可以求出样本的平均数;利用样本平均数代替总体平均数即可估算出甲、乙两山杨梅的产量总和;(2)根据甲乙两山的样本数据求出方差,比较大小就可以求出结论.【详解】解:(1)甲山上4棵树的产量分别为:50千克、36千克、40千克、34千克,所以甲山产量的样本平均数为:50364034==404x+++千克;乙山上4棵树的产量分别为:36千克、40千克、48千克、36千克,所以乙山产量的样本平均数为36404836=4x+++千克.答:甲、乙两片山上杨梅产量数样本的平均数分别为:40kg,40kg;甲、乙两山的产量总和为:100×98%×2×40=7840千克.(2)由题意,得S 甲2=2222(4050)(4036)(4040)(4034)=384-+-+-+-(千克2);S 乙2=2222(4036)(4040)(4048)(4036)=244-+-+-+-(千克2)∵38>24∴S 2甲>S 2乙∴乙山上的杨梅产量较稳定.【点睛】本题考查了折线统计图、方差、平均数和极差,从图中找到所需的统计量是解题的关键.29.(1)960千克;(2)80,0121202400,1220x x y x x ≤⎧=⎨-+≤⎩<<,第15天的日销售量为600千克.【解析】【分析】(1)根据图象找出图象最高点的纵坐标即可得答案;(2)分别设出两个函数的解析式,利用待定系数法即可得y 与x 的解析式,把x=15代入12<x≤20时的解析式,求出y 值即可得第15天的日销售量.【详解】(1)由图像可知,函数的最大值为960,∴日销售量的最大值为960千克,故答案为:960千克.(2)当012x <≤时,设1y k x =,把(12,960)代入上式得112960k =,解得:180k =,∴函数解析式为80y x =,当1220x ≤≤时,设2y k x b =+,把(12,960),(20,0)代入得:2212960200k b k b +=⎧⎨+=⎩,解得:21202400k b =-⎧⎨=⎩,∴函数解析式为1202400y x =-+,∴y 与x 的函数解析式为80,(012)1202400,(1220)x x y x x ≤⎧=⎨-+≤⎩<<,当15x =时,120152400600y =-⨯+=∴第15天的日销售量为600千克.【点睛】本题考查函,用待定系数法求函数的解析式以及分析最值的方法,会看图找出关键点是本题的关键,此类题是函数与实际问题相结合,是考试常考题型.。
新人教版八年级数学下册期末考试及答案【完整版】
新人教版八年级数学下册期末考试及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D .510.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.4的平方根是 .4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程组:4311 213x yx y-=⎧⎨+=⎩2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、B5、A6、C7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、±2.4、(-4,2)或(-4,3)5、46、40°三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、1 23、(1)12,32-;(2)略.4、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、CD的长为3cm.6、(1)2元;(2)至少购进玫瑰200枝.。
最新人教版八年级下册数学《期末考试卷》(含答案解析)
最新人教版八年级下册数学《期末考试卷》(含答案解析)人教版八年级下册期末考试数学试卷一、选择题1.若a 是最简二次根式,则a 的值可能是() A. -2B. 2C.32D. 82. 下列四组线段中,可以构成直角三角形的是() A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,2, 33.下列计算正确的是() A.235+= B. 2332-= C. (2)2=2D.39=34.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为() A. 4,5B. 5,4C. 4,4D. 5,55.能判定四边形ABCD 是平行四边形的是() A. AD //BC ,AB =CD B. ∠A =∠B ,∠C =∠D C. ∠A =∠C ,∠B =∠DD. AB =AD ,CB =CD6.已知()()122,,4,A y B y -是一次函数3y x =-+的图象上的两个点,则12,y y 的大小关系是() A. 12y y >C. 12y y =D. 不能确定7.如图,在正方形ABCD 的边BC 的延长线上取一点E ,使CE=AC 连接AE 交CD 于点F ,则∠AFC 等于()A .112.5°B. 120°C. 135°D. 145°8.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A. 5.5B. 5C. 6D. 6.59.如图在平面直角坐标系xOy 中若菱形ABCD 的顶点,A B 的坐标分别为(6,0),(4,0)-,点D 在y 轴上,则点C 的坐标是()A .(6,8)B. (10,8)C. (10,6)D. (4,6)10.如图①,正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作,PQ BD PQ ∥与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动3秒时,APQ V 的面积为()A. 24cmC. 262cmD. 242cm二、填空题11.26x -x 的取值范围是_______12.下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数x (秒) 51 50 51 50 方差2S (秒2) 3.53.514.515.5根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________. 13.将直线y =2x 向下平移2个单位,所得直线的函数表达式是_____.14.如图,ABC ?的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为点Q ,ACB ∠的平分线垂直于AD ,垂足为点P ,若10BC =,则PQ 的长为______.15.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .三、解答题16.计算:(1)()()1883131-++-(2)3231233÷17.如图,平行四边形ABCD 中,点E F 、分别在AB CD 、上,且,BE DF EF =与AC 相交于点P ,求证:PA PC =.18.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,85(2)使平行四边形有一锐角为45°,且面积为4.19.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.20.A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中12l l ,表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题:(1)表示乙离开A 地的距离与时间关系的图像是________(填12l l 或);甲的速度是__________km/h ;乙的速度是________km/h .(2)甲出发后多少时间两人恰好相距5km ?21.将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1)试判断四边形DHBG 为何种特殊的四边形,并说明理由;(2)若AB =8,AD =4,求四边形DHBG 的面积.22.为迎接:“国家卫生城市”复检,某市环卫局准备购买A ,B 两种型号的垃圾箱,通过市场调研得知:购买3个A 型垃圾箱和2个B 型垃圾箱共需540元,购买2个A 型垃圾箱比购买3个B 型垃圾箱少用160元.(1)求每个A 型垃圾箱和B 型垃圾箱各多少元?(2)该市现需要购买A ,B 两种型号的垃圾箱共30个,其中买A 型垃圾箱不超过16个.①求购买垃圾箱的总花费w (元)与A 型垃圾箱x (个)之间的函数关系式;②当买A 型垃圾箱多少个时总费用最少,最少费用是多少? 23.如图,在平面直角坐标系中,直线l1:162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线l2:1 2y x=交于点A .(1)求出点A 的坐标(2)若D 是线段OA 上的点,且△COD 的面积为12,求直线CD 的解析式(3)在(2)的条件下,设P 是射线CD 上的点,在平面内是否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点P 的坐标;若不存在,请说明理由.答案与解析一、选择题1.a的值可能是()A. -2B. 2C. 32D. 8【答案】B【解析】【分析】直接利用最简二次根式的定义分析得出答案.∴a≥0,且a故选项中-2,32,8都不合题意,∴a的值可能是2.故选B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2. 下列四组线段中,可以构成直角三角形的是()A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,3 【答案】B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、222133+=≠,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.3.下列计算正确的是()A. =2-= C. )2=2 D. 3 【答案】C利用二次根式的加减运算及立方根的定义,逐一分析四个选项的正误即可得出结论.【详解】解:A3∴选项A不正确;B、=∴选项B不正确;C、)2=2,∴选项C正确;D3,∴选项D不正确.故选C.【点睛】本题考查了立方根、算式平方根以及二次根式的加减,利用排除法逐一分析四个选项的正误是解题的关键.4.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A. 4,5B. 5,4C. 4,4D. 5,5【答案】A【解析】【分析】根据众数及中位数定义,结合所给数据即可作出判断.【详解】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选:A.【点睛】本题考查(1)、众数;(2)、中位数.5.能判定四边形ABCD是平行四边形的是()A. AD//BC,AB=CDB. ∠A=∠B,∠C=∠DC. ∠A=∠C,∠B=∠DD. AB=AD,CB=CD【答案】C根据平行四边形的判定定理依次确定即可.【详解】A. AD//BC ,AB=CD ,不能判定四边形ABCD 是平行四边形,故不符合题意;B. ∠A=∠B ,∠C=∠D ,不能判定四边形ABCD 是平行四边形,故不符合题意;C. ∠A=∠C ,∠B=∠D ,能判定四边形ABCD 是平行四边形,故符合题意; D. AB=AD ,CB=CD ,不能判定四边形ABCD 是平行四边形,故不符合题意;故选:C.【点睛】此题考查平行四边形的判定定理,熟记定理内容即可正确解答.6.已知()()122,,4,A y B y -是一次函数3y x =-+的图象上的两个点,则12,y y 的大小关系是() A. 12y y > B. 12y y <C. 12y y =D. 不能确定【答案】A 【解析】【分析】由函数解析式3y x =-+可知0k <,则y 随x 的增大而减小,比较x 的大小即可确定y 的大小.【详解】3y x =-+中0k <,∴y 随x 的增大而减少,∵24-<,∴12y y >;故选:A .【点睛】本题考查了一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.7.如图,在正方形ABCD 的边BC 的延长线上取一点E ,使CE=AC 连接AE 交CD 于点F ,则∠AFC 等于()A. 112.5°B. 120°C. 135°D. 145°【答案】A 【解析】根据正方形的性质及已知条件可求得∠E 的度数,从而根据外角的性质可求得∠AFC 的度数.【详解】∵四边形ABCD 是正方形,CE=CA ,∴∠ACE=45°+90°=135°,∠E=22.5°,∴∠AFC=90°+22.5°=112.5°. 故答案为A.【点睛】本题考查正方形的性质,解题的关键是掌握正方形的性质.8.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A. 5.5B. 5C. 6D. 6.5【答案】A 【解析】【分析】连接BD 交AC 于E ,由矩形的性质得出∠B=90°,AE=12AC ,由勾股定理求出AC ,得出OE ,即可得出结果.【详解】连接BD 交AC 于E ,如图所示:∵四边形ABCD 是矩形,∴∠B=90°,AE=12AC ,∴222251213AB BC +=+=,∴AE=6.5,∵点A 表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E 表示的数是5.5,即对角线AC 、BD 的交点表示的数是5.5;故选A .【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.9.如图在平面直角坐标系xOy 中若菱形ABCD 的顶点,A B 的坐标分别为(6,0),(4,0)-,点D 在y 轴上,则点C 的坐标是()A. (6,8)B. (10,8)C. (10,6)D. (4,6)【答案】B 【解析】【分析】首先根据菱形的性质求出AB 的长度,再利用勾股定理求出DO 的长度,进而得到点C 的坐标.【详解】∵菱形ABCD 的顶点A 、B 的坐标分别为(-6,0)、(4,0),点D 在y 轴上,∴AB=AO+OB=6+4=10,∴AD=AB=CD=10,∴22221068DO AD AO -=-=,∴点C 的坐标是:(10,8).故选:B .【点睛】本题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO 的长度. 10.如图①,正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作,PQ BD PQ ∥与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动3秒时,APQ V 的面积为()A. 24cmB. 26cmC. 262cmD. 242cm【答案】B 【解析】【分析】由图②知,运动2秒时,42y PQ ==,距离最长,再根据运动速度乘以时间求得路程,可得点P 的位置,根据线段的和差,可得CP 的长,最后由APQ ABP ADQ CPQ ABCD S S S S S =---V V V V 正方形即可求得答案.【详解】由图②知,运动2秒时,42y =,y 的值最大,此时,点P 与点B 重合,则42PQ BD ==,∵四边形ABCD 为正方形,则222AB AD BD +=,∴4AB AD ==,由题可得:点P 运动3秒时,则P 点运动了32?=6cm ,此时,点P 在BC 上,如图:∴862CP =-=cm ,∴点P 为BC 的中点,∵PQ ∥BD ,∴点Q 为DC 的中点,∴APQ ABP ADQ CPQ ABCD S S S S S =---V V V V 正方形21114424222222=-??-??-??6=.故选:B.【点睛】本题考查了动点问题的函数图象以及平行线的性质、正方形的性质、三角形中位线定理,由图②知,运动2秒时,y=二、填空题11.x的取值范围是_______【答案】3x…【解析】【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【详解】解:Q有意义,260x∴-…,解得:3x….故答案为3x….【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.12.下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________.【答案】队员2【解析】【分析】根据方差的意义结合平均数可作出判断.【详解】因为队员1和2的方差最小,队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.故答案为:队员2.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.将直线y =2x 向下平移2个单位,所得直线的函数表达式是_____.【答案】y =2x ﹣2.【解析】【详解】解:根据一次函数的平移,上加下减,可知一次函数的表达式为y =2x-2.14.如图,ABC ?的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为点Q ,ACB ∠的平分线垂直于AD ,垂足为点P ,若10BC =,则PQ 的长为______.【答案】3 【解析】【分析】首先判断△BAE 、△CAD 是等腰三角形,从而得出BA=BE ,CA=CD ,由△ABC 的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ .【详解】由题知BQ 为AE 的垂直平分线,AB BE ∴=,由题意知CP 为AD 的垂直平分线,AC CD ∴=. 26ABC C ?=Q ,且10BC =,16AB AC ∴+=.16AB AC BE CD ∴+=+=.16BD DE DE CE ∴+++=.6DE ∴=.又点P ,Q 分别为AD ,AE 的中点,116322PQ DE ∴==?=.【点睛】本题考查等腰三角形判定与性质,解题关键在于利用中位线定理求出PQ.15.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .【答案】3或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,则EB=EB′,AB=AB ′=3,可计算出CB′=2,设BE=x ,则EB′=x ,CE=4-x ,然后在Rt △CEB′中运用勾股定理可计算出x .②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,在Rt △ABC 中,AB=3,BC=4,∴2243 ,∵∠B 沿AE 折叠,使点B 落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x ,则EB′=x ,CE=4-x ,在Rt △CEB′中,∵EB′2+CB′2=CE 2,∴x 2+22=(4-x )2,解得3x 2=,∴BE=32;②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE 的长为32或3.故答案为:32或3.三、解答题16.计算:(1)11+(2÷【答案】(12+;(2)【解析】【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】解:)1131-=2÷3==82【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.17.如图,平行四边形ABCD 中,点E F 、分别在AB CD 、上,且,BE DF EF =与AC 相交于点P ,求证:PA PC =.【答案】见解析【解析】【分析】连接AF ,CE ,由四边形ABCD 是平行四边形,可得AB ∥CD ,AB=CD ,又由BE=DF ,证得AE=CF ,即可证得四边形AECF 是平行四边形,从而证得结论.【详解】连接AF ,CE ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∵BE=DF ,∴AB-BE=CD-DF ,∴AE=CF ,∴四边形AECF 是平行四边形,∴PA=PC .【点睛】本题考查了平行四边形的性质与判定.注意准确作出辅助线,证得四边形AECF 是平行四边形是解此题的关键.18.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,8,5;(2)使平行四边形有一锐角为45°,且面积为4.【答案】(1)详见解析;(2)详见解析【解析】【分析】(1)本题中8实际上是长为2宽为2的正方形的对角线长,5实际上是长为2宽为1的矩形的对角线的长,据此可找出所求的三角形;(2)可先找出一个直角边为2的等腰直角三角形,然后据此画出平行四边形.【详解】(1)△ABC所求;(2)四边形ABCD为所求.【点睛】关键是确定三角形的边长,然后根据边长画出所求的三角形.19.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.【答案】(1)40;(2)30,50;(3)50500元【解析】【分析】(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;(3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.【详解】解:(1)样本容量是:6+12+10+8+4=40,(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50; (3)2063012501080810046121084+?+?+?+?++++×1000=50500(元),答:该校本学期计划购买课外书的总花费是50500元. 故答案为(1)40;(2)30,50;(3)50500元.【点睛】本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中12l l ,表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题:(1)表示乙离开A 地的距离与时间关系的图像是________(填12l l 或);甲的速度是__________km/h ;乙的速度是________km/h .(2)甲出发后多少时间两人恰好相距5km ?【答案】(1)2l ; 30; 20;(2)甲出发后1.3h 或者1.5h 时,甲乙相距5km .【解析】【详解】解:(1)乙离开A 地的距离越来越远,图像是2l ;甲的速度60÷2=30;乙的速度60÷(3.5-0.5)=20;(2)由图可求出13060y x =-+,22010y x =- 由125y y -=得1.3x h =;由215y y -=得 1.5x h = 答:甲出发后1.3h 或者1.5h 时,甲乙相距5km .考点:一次函数的应用21.将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1)试判断四边形DHBG 为何种特殊的四边形,并说明理由;(2)若AB =8,AD =4,求四边形DHBG 的面积.【答案】(1)四边形DHBG 是菱形,理由见解析;(2)20.【解析】【分析】(1)由四边形ABCD 、FBED 是完全相同的矩形,可得出△DAB ≌△DEB (SAS ),进而可得出∠ABD=∠EBD ,根据矩形的性质可得AB ∥CD 、DF ∥BE ,即四边形DHBG 是平行四边形,再根据平行线的性质结合∠ABD=∠EBD ,即可得出∠HDB=∠HBD ,由等角对等边可得出DH=BH ,由此即可证出?DHBG 是菱形;(2)设DH=BH=x ,则AH=8-x ,在Rt △ADH 中,利用勾股定理即可得出关于x 的一元一次方程,解之即可得出x 的值,再根据菱形的面积公式即可求出菱形DHBG 的面积.【详解】解:()1四边形DHBG 是菱形.理由如下:。
人教版八年级下学期期末考试数学试卷及答案解析(共七套)
人教版八年级下学期期末考试数学试卷(一)一、选择题(本题有10个小题,每小题3分,共30分)1.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤12.下列等式不一定成立的是()A.(﹣)2=2 B.﹣=C.×= D. =(b≠0 )3.满足下列条件的△ABC,不是直角三角形的是()A.b2=a2﹣c2 B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:54.如图,数轴上的点A所表示的数为x,则x的值为()A. B. +1 C.﹣1 D.1﹣5.四边形ABCD中,对角线AC与BD交于点O,下列条件中不一定能判定这个四边形是平行四边形的是()A.AB∥DC,AD=BC B.AD∥BC,AB∥DCC.AB=DC,AD=BC D.OA=OC,OB=OD6.2019年5月份,某市测得一周大气的PM2.5的日均值(单位:微克/立方米)如下:31,35,31,33,30,33,31.对于这组数据下列说法正确的是()A.众数是30 B.中位数是31 C.平均数是33 D.方差是32 7.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19 8.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(1,3)B.它的图象经过第一、二、四象限C.当x>0时,y<0D.y的值随x值的增大而增大9.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC 的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.1310.如图,某出租车公司提供了甲、乙两种出租车费用y(元)与出租车行驶路程x(千米)之间的关系,①若行驶路程少于120千米,则所收费用两出租车甲比乙便宜20元;②若行驶路程超过200千米,则所收费用乙比甲便宜12元;③若所收费用出租车费用为60元,则乙比甲行驶路程多;④若两出租车所收费用相差10元,则行驶路程是145千米或185千米.其中正确的说法有()A.1个B.2个C.3个D.4个二、填空题:每小题3分,共18分.11.若﹣2a>﹣2b,则a<b,它的逆命题是.12.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.8环,方差分别是:S甲2=1,S乙2=0.8,则射击成绩较稳定的是.(填“甲”或“乙”)13.若是正整数,则最小的整数n是.14.已知菱形ABCD的边长为5cm,对角线AC=6cm,则其面积为cm2.15.如图,Rt△ABC中,∠BCA=90°,AB=3,AC=2,D为斜边AB上一动点(不与点A、B重合),DE⊥BC,DF⊥AC,垂足分别为E、F,连接EF,则EF的最小值是.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的方式放置.点A1,A2,A 3,…,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B 2的坐标分别为B1(1,1),B2(3,2),则B8的坐标是.三、解答题:共72分.解答写出必要的演算步骤、文字说明或证明过程.17.(1)计算:×﹣×(2)当x﹣>0,化简.18.已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.19.如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.20.学生安全是近几年社会关注的重大问题,安全隐患主要是超速,如图某中学校门前一条直线公路建成通车,在该路段MN限速5m/s,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了10s,已知∠CAN=45°,∠CBN=60°,BC=100m,此车超速了吗?请说明理由.(参考数据: =1.41, =1.73)21.(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展.某快递公司,今年三月份与五月份完成投递的快递总件数分别为4万件和4.84万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.4万件,那么该公司现有10名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?22.已知函数y=kx+b的图象与x轴、y轴分别交于点A(12,0)、点B,与函数y=x的图象交于点E,点E的横坐标为3,求:(1)直线AB的解析式;(2)在x轴有一点F(a,0).过点F作x轴的垂线,分别交函数y=kx+b和函数y=x于点C、D,若以点B、O、C、D为顶点的四边形是平行四边形,求a的值.23.某校想了解本校学生每周的课外阅读时间情况,随机抽取了八年级部分学生,对学生每周的课外阅读时间x(单位:h)进行分组整理,并绘制了如图所示的不完整的统计图;请根据图中提供的信息,回答下列问题:(1)a= %,并写出该扇形所对的圆心角的度数为,请补全条形图.(2)在这次抽样调查中,课外阅读时间的众数和中位数分别是多少?(3)如果该校共有学生2000人,请你估计该校“课外阅读时间不少于7h”的学生人数大约有多少人?24.在正方形ABCD中,过点A引射线AH,交边CD于点H(H不与点D重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,连接E、G且延长EG交CD于F.【感知】如图2,当点H为边CD上任意一点时(点H与点C不重合).连接AF,可得FG与FD的大小关系是;【探究】如图1,当点H与点C重合时,证明△CFE是等腰直角三角形.【应用】①在图2,当AB=5,BE=3时,利用探究的结论,求CF的长;②在图1中,当AB=5,是否存在△CFE的面积等于0.5,如存在,求出BE的长;若不存在,说明理由.25.今年“五一”小黄金周期间,我市旅游公司组织50名游客分散到A、B、C 三个景点游玩.三个景点的门票价格如表所示:景点 A B C门票单价(元)30 55 75所购买的50张票中,B种票张数是A种票张数的3倍还多1张,设需购A种票张数为x,C种票张数为y.(1)写出y与x之间的函数关系式;(2)设购买门票总费用为w(元),求出w与x之间的函数关系式;(3)若每种票至少购买1张,且A种票不少于10张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)1.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.下列等式不一定成立的是()A.(﹣)2=2 B.﹣=C.×=D. =(b≠0 )【分析】根据二次根式的性质、化简乘除法进行计算即可.【解答】解:A、(﹣)2=2,正确;B、﹣=2﹣=,正确;C、×=,正确;D、=(a>0,b>0 ),错误;故选D.【点评】本题考查了二次根式的混合运算,掌握二次根式的性质和化简是解题的关键.3.满足下列条件的△ABC,不是直角三角形的是()A.b2=a2﹣c2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:5【分析】根据勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形;三角形内角和定理进行分析即可.【解答】解:A、b2=a2﹣c2,是直角三角形,故此选项不合题意;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠C=∠A﹣∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∠A:∠B:∠C=3:4:5,则∠C=180°×=75°,不是直角三角形,故此选项符合题意,故选:D.【点评】此题主要考查了勾股定理逆定理,以及三角形内角和定理,关键是正确掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如图,数轴上的点A所表示的数为x,则x的值为()A.B. +1 C.﹣1 D.1﹣【分析】由题意,利用勾股定理求出点A到﹣1的距离,即可确定出点A表示的数x.【解答】解:根据题意得:x=﹣1=﹣1,故选C【点评】此题考查了实数与数轴,弄清点A表示的数x的意义是解本题的关键.5.四边形ABCD中,对角线AC与BD交于点O,下列条件中不一定能判定这个四边形是平行四边形的是()A.AB∥DC,AD=BC B.AD∥BC,AB∥DC C.AB=DC,AD=BC D.OA=OC,OB=OD 【分析】直接根据平行四边形的判定定理求解即可求得答案.注意掌握排除法在选择题中的应用.【解答】解:A、当AB∥DC,AD=BC,可得四边形ABCD是平行四边形或等腰梯形;故本选项错误;B、当AD∥BC,AB∥DC时,可得四边形ABCD是平行四边形;故本选项正确;C、当AB=DC,AD=BC时,可得四边形ABCD是平行四边形;故本选项正确;D、当OA=OC,OB=OD时,可得四边形ABCD是平行四边形;故本选项正确.故选A.【点评】此题考查了平行四边形的判定.注意掌握平行四边形的判定定理的应用是解此题的关键.6.2019年5月份,某市测得一周大气的PM2.5的日均值(单位:微克/立方米)如下:31,35,31,33,30,33,31.对于这组数据下列说法正确的是()A.众数是30 B.中位数是31 C.平均数是33 D.方差是32【分析】根据众数、平均数、中位数和方差的计算公式分别进行计算即可得出答案.【解答】解:A、31出现了3次,出现的次数最多,则众数是31,故本选项错误;B、把这组数据从小到大排列,最中间的数是31,则中位数是31,故本选项正确;C、这组数据的平均数是:(31+35+31+33+30+33+31)÷7=32,故本选项错误;D、这组数据的方差是: [(30﹣32)2+3(31﹣32)2+2(33﹣32)2+(35﹣32)2]=,故本选项错误;故选B.【点评】本题考查了众数、平均数、方差和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].7.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(1,3)B.它的图象经过第一、二、四象限C.当x>0时,y<0D.y的值随x值的增大而增大【分析】根据一次函数图象上点的坐标特征对A进行判断;根据一次函数的性质对B、D进行判断;利用x>0时,函数图象在y轴的左侧,y<1,则可对C进行判断.【解答】解:A、当x=1时,y=﹣3x+1=﹣2,则点(1,3)不在函数y=﹣3x+1的图象上,所以A选项错误;B、k=﹣3<0,b=1>0,函数图象经过第一、二、四象限,所以B选项正确;C、当x>0时,y<1,所以C选项错误;D、y随x的增大而减小,所以D选项错误.故选B.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.9.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC 的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.10.如图,某出租车公司提供了甲、乙两种出租车费用y(元)与出租车行驶路程x(千米)之间的关系,①若行驶路程少于120千米,则所收费用两出租车甲比乙便宜20元;②若行驶路程超过200千米,则所收费用乙比甲便宜12元;③若所收费用出租车费用为60元,则乙比甲行驶路程多;④若两出租车所收费用相差10元,则行驶路程是145千米或185千米.其中正确的说法有()A.1个B.2个C.3个D.4个【分析】①根据函数图象确定出两出租车的收费,然后判断即可;②分别求出两出租车起步价后的收费函数表达式,再求出乙比甲便宜12元的路程,即可得解;③根据函数表达式分别求出两出租车收费60元的路程,即可得解;④分乙比甲多10元和甲比乙多10元两种情况求解.【解答】解:①由图可知,行驶路程少于120千米,甲收费30元,乙收费50元,所收费用两出租车甲比乙便宜20元正确,故本小题正确;②设甲行驶120千米后的函数关系式为y=kx+b,则,解得,所以,y=x﹣18,乙行驶200千米后的函数表达式为y=mx+n,则,解得,所以,y=x﹣30,若所收费用乙比甲便宜12元,则x﹣18﹣(x﹣30)=12,∵方程有无数解,∴x≥200时都满足,即,行驶路程超过200千米,则所收费用乙比甲便宜12元,故本小题正确;③甲: x﹣18=60,解得x=195,乙: x﹣30=60,解得x=225,∵225>195,∴乙比甲行驶路程多,故本小题正确;④若乙比甲多10元,则50﹣(x﹣18)=10,解得x=145,若甲比乙多10元,则x﹣18﹣50=10,解得x=195,所以,两出租车所收费用相差10元,则行驶路程是145千米或195千米,故本小题错误;综上所述,正确的说法是①②③共3个.故选C.【点评】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的表达式,结合实际情况分别求解.二、填空题:每小题3分,共18分.11.若﹣2a>﹣2b,则a<b,它的逆命题是若a<b,则﹣2a>﹣2b .【分析】交换原命题的题设与结论即可得到它的逆命题.【解答】解:若﹣2a>﹣2b,则a<b,它的逆命题是若a<b,则﹣2a>﹣2b.故答案为若a<b,则﹣2a>﹣2b.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.12.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.8环,方差分别是:S甲2=1,S乙2=0.8,则射击成绩较稳定的是乙.(填“甲”或“乙”)【分析】直接根据方差的意义求解.【解答】解:∵S甲2=1,S乙2=0.8,1<0.8,∴射击成绩比较稳定的是乙,故答案为:乙.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2= [(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好13.若是正整数,则最小的整数n是 3 .【分析】先化简二次根式,然后依据被开方数是一个完全平方数求解即可.【解答】解: =4,∵是正整数,∴3n是一个完全平方数.∴n的最小整数值为3.故答案为:3.【点评】本题主要考查的是二次根式的知识,依据3n是一个完全平方数求得n 的值是解题的关键.14.已知菱形ABCD的边长为5cm,对角线AC=6cm,则其面积为24 cm2.【分析】根据菱形的性质结合勾股定理得出BD的长,进而利用菱形面积公式求出答案.【解答】解:如图所示:∵菱形ABCD的边长为5cm,对角线AC=6cm,∴AO=CO=3cm,则BO==4(cm),则BD=8cm,则其面积为:×6×8=24(cm2).故答案为:24.【点评】此题主要考查了菱形的性质以及勾股定理,正确掌握菱形的性质是解题关键.15.如图,Rt△ABC中,∠BCA=90°,AB=3,AC=2,D为斜边AB上一动点(不与点A、B重合),DE⊥BC,DF⊥AC,垂足分别为E、F,连接EF,则EF的最小值是.【分析】连接CD,易证四边形CEDF是矩形,根据矩形的性质可知CD=EF,所以CD最小时则EF最小,根据垂线段最短可知CD⊥AB时,CD最短问题得解.【解答】解:连接CD,∵∠BCA=90°,AB=3,AC=2,∴BC==,∵∠BCA=90°,DE⊥BC,DF⊥AC∴四边形EDFC为矩形,∴EF=CD,∴当CD⊥AB时,CD最短,∵CD==,∴EF的最小值是.【点评】本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的方式放置.点A1,A2,A 3,…,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B 2的坐标分别为B1(1,1),B2(3,2),则B8的坐标是(28﹣1,28﹣1)或(255,128).【分析】首先利用待定系数法求得直线的解析式,然后分别求得B1,B2,B3…的坐标,可以得到规律:Bn(2n﹣1,2n﹣1),据此即可求解.【解答】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得:,解得:,则直线的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴A3C2=A3B3=B3C3=4,∴点B3的坐标为(7,4),∴B1的纵坐标是:1=20,B1的横坐标是:1=21﹣1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22﹣1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23﹣1,∴Bn的纵坐标是:2n﹣1,横坐标是:2n﹣1,则Bn(2n﹣1,2n﹣1).∴B8的坐标是:(28﹣1,28﹣1),即(255,128).故答案为:(28﹣1,28﹣1)或(255,128).【点评】此题主要考查了待定系数法求函数解析式和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.三、解答题:共72分.解答写出必要的演算步骤、文字说明或证明过程.17.(1)计算:×﹣×(2)当x﹣>0,化简.【分析】(1)根据二次根式的乘法和减法可以解答本题;(2)根据x﹣>0,可以化简.【解答】解:(1)×﹣×===﹣11;(2)∵x﹣>0,∴2x﹣1>0,∴==2x﹣1.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.18.已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.【分析】把x=﹣1代入已知方程列出关于m的新方程,通过解该方程来求m的值;然后结合根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为x2,则﹣1+x2=﹣1,解得x2=0.把x=﹣1代入x2+x+m2﹣2m=0,得(﹣1)2+(﹣1)+m2﹣2m=0,即m(m﹣2)=0,解得m1=0,m2=2.综上所述,m的值是0或2,方程的另一实根是0.【点评】本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.19.如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;(2)由△AOE≌△COF,得出对应边相等AE=CF,证出四边形AFCE是平行四边形,再由对角线EF⊥AC,即可得出四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵O是OA的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:EF⊥AC时,四边形AFCE是菱形;理由如下:∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.学生安全是近几年社会关注的重大问题,安全隐患主要是超速,如图某中学校门前一条直线公路建成通车,在该路段MN限速5m/s,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了10s,已知∠CAN=45°,∠CBN=60°,BC=100m,此车超速了吗?请说明理由.(参考数据: =1.41, =1.73)【分析】过C作CH⊥MN,在Rt△BHC 中利用勾股定理计算出CH的长,再在Rt △AHC 中根据直角三角形的性质可得AH=CH=50m,然后表示出车的速度,再与5m/s进行比较即可.【解答】解:此车没有超速.理由:过C作CH⊥MN,∵∠CBN=60°,BC=100 m,在Rt△BHC 中,由勾股定理得:BH2+CH2=BC2,又∵BC=2BH=100 m,BH=50m,解得CH=50m,在Rt△AHC 中,∵∠CAH=45°,∴AH=CH=50m,∴AB=50﹣50≈36.5(m),车的速度为v==3.65m/s,∴3.65<5,∴此车没有超速.【点评】此题主要考查了解直角三角形的应用,解决此问题的关键在于正确理解题意,根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.21.(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展.某快递公司,今年三月份与五月份完成投递的快递总件数分别为4万件和4.84万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.4万件,那么该公司现有10名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【分析】(1)直接利用三月份与五月份完成投递的快递总件数分别为4万件和4.84万件,表示出5月份的总件数进而得出等式;(2)首先求出6月份的任务,进而得出10名快递投递业务员能完成的快递投递任务,再利用每人每月最多可投递快递0.4万件,即可得出需要的人数.【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得4(1+x)2=4.84解得:x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)∵今年6月份的快递投递任务是4.84×(1+10%)=5.324(万件),∴10名快递投递业务员能完成的快递投递任务是:0.4×10=4<5.324,∴该公司现有的10名快递投递业务员不能完成今年6月份的快递投递任务:∵平均每人每月最多可投递0.4万件,∴需要增加业务员(5.324﹣4)÷0.4=3.31≈4(人),即该公司现有的10名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加4名业务员.【点评】此题主要考查了一元二次方程的应用,根据题意正确表示出5月份的任务量是解题关键.22.已知函数y=kx+b的图象与x轴、y轴分别交于点A(12,0)、点B,与函数y=x的图象交于点E,点E的横坐标为3,求:(1)直线AB的解析式;(2)在x轴有一点F(a,0).过点F作x轴的垂线,分别交函数y=kx+b和函数y=x于点C、D,若以点B、O、C、D为顶点的四边形是平行四边形,求a的值.【分析】(1)将x=3代入y=x中求出y值,即得出点E的坐标,结合点A、E 的坐标利用待定系数法即可求出直线AB的解析式;(2)由点F的坐标可表示出点C、D的坐标,由此即可得出线段CD的长度,根据平行四边形的判定定理即可得出CD=OB,即得出关于a的方程,解方程即可得出结论.【解答】解:(1)把x=3代入y=x,得y=3,∴E(3,3),把A(12,0)、E(3,3)代入y=kx+b中,得:,解得:,∴直线AB的解析式为y=﹣x+4.(2)由题意可知C、D的横坐标为a,∴C(a,﹣ a+4),D(a,a),∴CD=|a﹣(﹣a+4)|=|a﹣4|.若以点B、O、C、D为顶点的四边形是平行四边形,则CD=OB=4,即|a﹣4|=4,解得:a=6或a=0(舍去).故:当以点B、O、C、D为顶点的四边形是平行四边形时,a的值为6.【点评】本题考查了一次函数图象上点的坐标特征、待定系数法求函数解析式以及平行四边形的判定,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据CD=OB得出关于a的方程.本体属于中档题,难度不大,解决该题型题目时,根据平行四边形的判定找出相等的线段是关键.23.某校想了解本校学生每周的课外阅读时间情况,随机抽取了八年级部分学生,对学生每周的课外阅读时间x(单位:h)进行分组整理,并绘制了如图所示的不完整的统计图;请根据图中提供的信息,回答下列问题:(1)a= 10 %,并写出该扇形所对的圆心角的度数为36°,请补全条形图.(2)在这次抽样调查中,课外阅读时间的众数和中位数分别是多少?(3)如果该校共有学生2000人,请你估计该校“课外阅读时间不少于7h”的学生人数大约有多少人?【分析】(1)根据各组的百分比之和为1计算求出a,根据各部分扇形圆心角的度数=部分占总体的百分比×360°求出圆心角,求出课外阅读时间8h的人数,补全条形图;(2)根据众数和中位数的概念解答;(3)计算出抽取的活动时间不少于7h的百分比,估计总体即可.【解答】解:(1)解:a=1﹣40%﹣20%﹣25%﹣5%=10%,360°×10%=36°,故答案为:10;36°;抽查的人数为:120÷20%=600人,课外阅读时间8h的人数是:600×10%=60人,补全条形图如下:(2)∵课外阅读时间5h的最多,∴众数是5h.∵600人中,按照课外阅读时间从少到多排列,第300人和301人都是6 h,∴中位数是6 h.(3)∵2000×(25%+10%+5%)=2000×40%=800.∴估计“活动时间不少于7h”的学生人数大约有800人.【点评】本题考查的是条形统计图、扇形统计图、众数和中位数的概念,读懂统计图,从统计图中得到必要的信息是解决问题的关键.注意条形统计图能清楚地表示出每个项目的数据.24.在正方形ABCD中,过点A引射线AH,交边CD于点H(H不与点D重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,连接E、G且延长EG交CD于F.【感知】如图2,当点H为边CD上任意一点时(点H与点C不重合).连接AF,可得FG与FD的大小关系是FG=FD ;【探究】如图1,当点H与点C重合时,证明△CFE是等腰直角三角形.【应用】①在图2,当AB=5,BE=3时,利用探究的结论,求CF的长;②在图1中,当AB=5,是否存在△CFE的面积等于0.5,如存在,求出BE的长;若不存在,说明理由.【分析】【感知】由折叠和正方形的性质得到结论判断出RT△AFG≌RT△AFD即可;【探究】同(1)的方法判断出Rt△EGC≌Rt△FGC即可.【应用】①在Rt△ECF中,利用勾股定理得到,FE2=FC2+EC2,求出FG,即可;②由△ECF的面积为S=0.5建立EC×FC=(5﹣y)2求解即可.【解答】解:[感知]:如图②,连接AF,∵四边形ABCD是正方形,∴AB=AD,∠ABE=90°,由折叠得,∠AGE=∠ABC=90°,AG=AB=AD,在RT△AFG和RT△AFD,,∴RT△AFG≌RT△AFD,∴FG=FD,故答案为=;【探究】连接AF,②∵BC⊥CD,∠EGC=∠FGC=90°,AC是正方形ABCD的对角线,∴∠ECG=∠FCG=45°,在△EGC=△FGC中∴Rt△EGC≌Rt△FGC.∴∠CEG=∠CFG,∵∠ECF=90°,∴△CFE是等腰直角三角形,【应用】①设FG=x,则FC=5﹣x,FE=3+x,在Rt△ECF中,FE2=FC2+EC2,即(3+x)2=(5﹣x)2+22解得x=,即FG的长为.∴FD=FG=CF=CD﹣FD=5﹣=②由折叠性质可得∠EGA=∠B=90°EC=FC设BE=y,则EC=EC=5﹣y,△ECF的面积为S=EC×FC=(5﹣y)2=0.5 整理得 y2﹣10y+24=0,解得y1=4,y2=6(舍去)故当AB=5,存在△CFE的面积等于0.5,且BE=4.。
新人教版八年级(下)数学期末试卷及答案
新人教版八年级(下)数学期末试卷及答案八年级下期末考试数学试题一、选择题(本小题共12小题,每小题3分,共36分)1、如果分式 $\frac{1}{x-1}$ 有意义,那么 x 的取值范围是A、$x>1$B、$x<1$C、$x\neq1$D、$x=1$2、已知反比例数 $y=\frac{k}{x}$ 的图象过点(2,4),则下面也在反比例函数图象上的点是A、(2,-4)B、(4,-2)C、(-1,8)D、(16,1)3、一直角三角形两边分别为3和5,则第三边为A、4B、$\frac{3}{4}$或$\frac{4}{3}$C、4或$\frac{4}{3}$ D、24、用两个全等的等边三角形,可以拼成下列哪种图形A、矩形B、菱形C、正方形D、等腰梯形5、菱形的面积为2,其对角线分别为 x、y,则 y 与 x 的图象大致为无法确定,需补充题意)6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考A、众数B、平均数C、加权平均数D、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成60夹角,测得 AB 长60cm,则荷花处水深 OA 为A、120cmB、60$\sqrt{3}$cmC、60cmD、20$\sqrt{3}$cm8、如图,□ABCD的对角线 AC、BD 相交于 O,EF 过点O 与 AD、BC 分别相交于 E、F,若 AB=4,BC=5,OE=1.5,则四边形 EFCD 的周长为A、16B、14C、12D、109、如图,把菱形 ABCD 沿 AH 折叠,使 B 点落在 BC 上的 E 点处,若∠B=70,则∠EDC 的大小为A、10B、15C、20D、3010、下列命题正确的是A、同一边上两个角相等的梯形是等腰梯形;B、一组对边平行,一组对边相等的四边形是平行四边形;C、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
新人教版八年级数学下册期末考试及答案【完美版】
新人教版八年级数学下册期末考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x=-+--,则2xy的值为()A.15-B.15C.152-D.1522.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.187.若a=7+2、b=2﹣7,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b +的结果是________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3.分解因式:3x -x=__________.4.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F 、H 在菱形ABCD 的对角线BD 上.(1)求证:BG DE =;(2)若E 为AD 中点,2FH =,求菱形ABCD 的周长.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、B5、A6、C7、D8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、3.3、x (x+1)(x -1)4、a+c5、:略6、40°三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2.3、(1)1;(2)m >2;(3)-2<2m -3n <184、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)略;(2)8.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
2023年人教版八年级数学下册期末考试题及答案【完整版】
2023年人教版八年级数学下册期末考试题及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2020的相反数是( )A .2020B .2020-C .12020 D .12020-2.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是() A .5-313 B .3 C .313-5 D .-35.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是()A .7B .-1C .7或-1D .-5或36.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .68.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若2)21a b+=(,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.69.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35°B.70°C.110°D.130°10.下列图形中,由AB∥CD,能得到∠1=∠2的是()A. B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)1.关于x的分式方程12122ax x-+=--的解为正数,则a的取值范围是_____.2.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是__________.3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是______.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是______元.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中23x .3.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、B5、A6、C7、D8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5a <且3a ≠2、a ≤2.3、720°.4、8.5、26、15.3三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、13x +,.3、(1)略;(2)4或4+.4、(1)略;(2)45°;(3)略.5、(1)y=x+1;(2)C (0,1);(3)16、(1) 60x y --; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末综合检测一、选择题(每小题3分,共30分) 1.(2013 •鞍山中考)要使式子,二 有意义,则x 的取值范围是( )A.x>0B.x > -2C.x > 2D.x < 22.矩形具有而菱形不具有的性质是 ( )A.两组对边分别平行B.对角线相等C.对角线互相平分3.下列计算正确的是( ) A.押X ,三=4 •三B.^F!+、W.0C. . - :: r ii=2-二D.J [上【4-154.(2013 •陕西中考)根据表中一次函数的自变量 x 与函数y 的对应值,可得p 的值为()A.1B.-1C.3D.-35. (2013 •盐城中考)某公司10名职工的6月份工资统计如下,该公司10名职工6月份工资的众数和 中位数分别是()A.2400 元、2400 元B.2400 元、2300 元6. 四边形ABC 冲,对角线AC,BD 相交于点O,下列条件不能判定这个四边形是平行四边形的D.两组对角分别相等C.2200 元、2200 元D.2200 元、2300 元A.AB // DC,AD// BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB // DC,AD=BC7.(2013 •巴中中考)如图,菱形ABCD的两条对角线相交于ABCD的周长是( ) A.24B.16C.4,丨 tD.2 .. 28. 如图,△ ABC^D ^ DCE 都是边长为4的等边三角形,点B,C,E 在同一条直线上,连接BD,则BD 的长为10.(2013 •黔西南州中考)如图,函数y=2x 和y=ax+4的图象相交于点 A (m,3),则不等式2x<ax+4的 解集为()3A.x< —B.x<323 C. x> —D.x>3、填空题(每小题3 分,共24分)v3—x12. (2013 •恩施州中考)函数y= 的自变量x 的取值范围是x+2;13. 已知 a,b,c 是厶ABC 的三边长,且满足关系式:匸 丄 ―+|a-b|=0,则厶ABC 的形状14. (2013 •十堰中考)某次能力测试中,10人的成绩统计如下表,则这10人成绩的平均数为分数5 4 3 2 1B.2、IC.3、ID.4\ 211.计算:9.正比例函数y=kx (k 丰0)的函数值y 随x 的增大而增大,则一次函数y=x+k 的图象大致是((2)(2 • 1-1)( • 1+1)-(1-2 • 2)2.e-a z S-fl20. (6分)(2013 •荆门中考)化简求值:一一—十一人数3 1 2 2 215.(2013 •资阳中考)在一次函数y=(2-k )x+1中,y 随x 的增大而增大,则k 的取值范围为 16. 如图,在平行四边形 ABCD 中,点E,F 分别在边BC,AD 上,请添加一个条件 ,使四边形AECF 是平行四边形(只填一个即可).17. (2013 •泉州中考)如图,菱形ABCD 勺周长为[,对角线AC 和BD 相交于点O,AC : BD=1 : 2,则 AO : BO=,菱形 ABCD 的面积 S=.18.(2013 •上海中考)李老师开车从甲地到相距 240km 的乙地,如果油箱剩余 油量y (L )与行驶里程x (km )之间是一次函数关系,其图象如图所示,那么到达 乙 地时油箱剩余油量是L.三、解答题(共66分)19.(10 分)计算:(1)9V+7 罰门-5=+2 _「,其中 a =;2・21. (6分)(2013 •武汉中考)直线y=2x+b经过点(3,5),求关于x的不等式2x+b> 0的解集22. (8分)(2013 •宜昌中考)如图,点E,F分别是锐角/ A两边上的点,AE=AF,分别以点以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由.⑵连接EF,若AE=8cm,Z A=60° ,求线段EF的长.23. (8 分)(2013 •昭通中考)如图,在菱形ABCD中,AB=2, / DAB=60 , 点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN1平行四边形.⑵当AM为何值时,四边形AMDN1矩形?请说明理由.24. (8分)(2013 •鄂州中考)小明、小华在一栋电梯楼前感慨楼房真高•小明说:“这楼起码20层!”小华却不以为然:“ 20层?我看没有,数数就知道了!” 小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A,B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150m,CD=10m/ A=30° , / B=45°(A,C,D,B 四点在同一直线上),问:(1)楼高多少米?⑵若每层楼按3m计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:' -独1.73,二疋1.41, •二2.24)25. (10分)(2013 •株洲中考)某生物小组观察一植物生长,得到植物高度y(单位:cm)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x 轴).(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC的解析式,并求该植物最高长多少厘米?26. (10分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:平均数中位数[来方差[来命中10环的次数甲7 0乙 1(1) 请补全上述图表(请直接在表中填空和补全折线图).(2) 如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由•⑶如果希望⑵中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?答案解析1. 【解析】选D.根据题意得2-x > 0,解得x <2.2. 【解析】选B.矩形与菱形的两组对边都分别平行,故选项A不符合题意;矩形的对角线相等,菱形的对角线不一定相等,故选项B正确;矩形与菱形的对角线都互相平分,故选项C不符合题意;矩形与菱形的两组对角都分别相等,故选项D不符合题意•3. 【解析】选C.,一X ,二=._ —=2,二,■,一与■.二不能合并,,一yr.二=一- := -三=2.二J[一〕住讣=「「=15,因此只有选项C正确.4. 【解析】选A. —次函数的解析式为y=kx+b(k丰0),■/ x=-2 时y=3;x=1 时y=0,•••一次函数的解析式为y=-x+1,•••当x=0时,y=1,即p=1.(-2k+b = 3p= 6 解得fk = -1>Lb= 1甲、乙射击成绩折线图5. 【解析】选A.这10个数据中出现次数最多的数据是2400, —共出现了4次,所以众数是2400;这10个数据按从小到大的顺序排列,位于第5个的是2400,第6个的也是2400,故中位数是2 40D-I-2 400------------------ =2400.26. 【解析】选D.由“ AB// DC,AD// BC可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形•故选项A不符合题意;由“ AB=DC,AD=BC可知,四边形ABCD的两组对边分别相等,则该四边形是平行四边形•故选项B不符合题意;由“ A0=C0,B0=DO可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形•故选项C不符合题意;由“ AB// DC,AD=BC可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形•故选项D符合题意.7. 【解析】选C. •••四边形ABCD是菱形,AC=6,BD=4,D DAC丄BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,2 2•••在Rt△ AOB中,AB= 二;. =忒沪卜;妒=12,•••菱形的周长为4X AB=4. 1二.8. 【解析】选D. •••△ ABC^D^ DCE都是边长为4的等边三角形,•/ DCE2 CDE=60° ,BC=CD=4,•••/ BDC M CBD=30,•/ BDE=90 .• BD=三:i =4二.9. 【解析】选A. v正比例函数y=kx(k丰0)的函数值y随x的增大而增大,• k>0, •••—次函数y=x+k的图象经过第一、二、三象限A(m,3), • 3=2m,m=, •点A的坐标是 -.宀:,10. 【解析】选A. v•函数y=2x和y=ax+4的图象相交于点3•不等式2x<ax+4的解集为x<—.12. 【解析】3-x > 0且X+2M 0,解得x< 3且x丰-2.13. 【解析 I T -.:- . - . - +|a-b|=0, ••• c 2-a 2-b 2=0,且 a-b=O,二 c 2=a 2+b 2,且 a=b,则厶 ABC 为等腰直角三角形• 答案:等腰直角三角形11I14. 【解析】 —X (5 X 3+4 X 1+3 X 2+2X 2+1 X 2)=— X (15+4+6+4+2)=— X 31=3.1.所以这 10 人成绩101010的平均数为3.1. 答案:3.115. 【解析】•••在一次函数 y=(2-k)x+1中,y 随x 的增大而增大,• 2-k>0, • k<2. 答案:k<216. 【解析】若添加的条件是 AF=CE 理由是:•••四边形 ABCD 是平行四边形,• AD// BC,「. AF// CE, T AF=CE,「.四边形AECF 是平行四边形. 答案:AF=CE(答案不唯一)17. 【解析】T 四边形 ABCD 是菱形,• A0=C0,B0=D0, • AC=2AO,BD=2BO ;. AO : B0=1: 2;T 菱形ABCD 的周长为8、三,;AB=2 L , T AO : B0=1: 2, ; AO=2,BO=4,1;菱形 ABCD 的面积 Sh X 2 X 4 X 4=16.2答案:1 : 2 16I 1则 y=-「乜5 .当 x =240 时 X 240+3.5=2(L).答案:218.【解析】设 y 与x 之间的函数关系式为y=kx+b,由函数图象,得{JUok+b 解得19.【解析】(1)9 ■■二+7 . I 二5 i -三+八--丿!- - ] ■, ^―.⑵(2威窣1)(*餘+1)-(1-2帯歸)2 =2、—能+2、2^ 三-1-(1-4 、2+12)=6+2、2- 二-1-1+4、2-12=(2-1+4)•、1-8=5 i 2-8.0—3—曲1 20.【解析】--------- 十•a2 -H-4a-l-4- S.+2 i+3 _[34-fl}(3-町a+i _J_________(■+ZJ2—3. 3.41- 3 2当a=\ F-21 1 1 V5时,原式- -―=_=a+2 V 5-2+2 逅 £21.【解析】•••直线y=2x+b经过点(3,5),••• 5=2x 3+b,解得b=-1,1•/ 2x+b > 0, • 2x-1 > 0,解得x >-.222. 【解析】(1)菱形.理由:•••根据题意得:AE=AF=ED=DF, •四边形AEDF是菱形.⑵如图,连接EF, •/ AE=AF,Z A=60° ,• △ EAF是等边三角形,• EF=AE=8cm.23. 【解析】(1) T四边形ABCD是菱形,• ND// AM,•••/ NDE M MAE/ DNE=/ AME,•••点E是AD中点,• DE=AE,±NDE=£MAE J在^ MAE中,二匚—二二I DE =AE#•••△NDE^A MAE(AAS),.・. ND=MA,•••四边形AMDN!平行四边形.(2)AM=1.理由如下:•••四边形ABCD是菱形,• AD=AB=2,•••平行四边形AMDN1矩形,• DMLAB,即/ DMA=90 ,1•••/ DAB=60,•/ ADM=30 , • AM=AD=1.224. 【解析】⑴设楼高为xm,则CF=DE=xm,•••/ A=30° , / B=45° , / ACF=/ BDE=90 ,• AF=2CF=2xm,在Rt△ ACF中,根据勾股定理得AC= L F=』1f时卡=‘ 3xm,•••/ BDE=90 , / B=45 ° , • BD=xm,•、1x+x=150-10,解得140 UQ(VI-1} fAx= ------- = =70 -70(m),ya+i 2•楼高70、--70(m).(2)x=70 . 2-70 ~ 70(1.73-1)=70 X 0.73=51.1(m)<3 X 20(m), •我支持小华的观点,这楼不到20 层.25. 【解析】(1) T CD// x轴,•从第50天开始植物的高度不变.答:该植物从观察时起,50天以后停止长高⑵设直线AC的解析式为y=kx+b(k丰0),•••直线经过点A(0,6),B(30,12),b = 6,30k+bwi 所以,直线AC的解析式为y=—x+6(0 w x< 50),当 x=50 时,y= — x 50+6=16.答:直线AC 的解析式为 yx+6(0 < x w 50),该植物最高长16cm.26. 【解析】 ⑴ 根据折线统计图得乙的射击成绩为:2,4,6,7,7,8,8,9,9,10,--------- : ------------------------------ =7(环),中位数为7.5环,方差为一[(2-7)10 10 2 2 2 2 2 2 2 2 2 +(6-7) +(8-7) +(7-7) +(7-7) +(8-7) +(9-7) +(9-7) +(10-7) ]=5.4(环);甲的射击成绩为9,6,7,6,2,7,7,8,9, 平均数为7,则甲第八次射击的成绩为70-(9+6+7+6+2+7+7+8+9)=9(环),成绩为 2,6,6,7,7,7,8,9,9,9,中位数为 7(环),方差为—[(2-7) +(6-7) +(6-7) +(7-7) +(7-7) +(7-7) +(8-7) +(9-7) +(9-7) 10 +(9-7) ]=4(环),补全如下:甲、乙射击成绩统计表 平均数中位数 方差 命中10环的次数 甲7 7 4 0 乙7 7.5 5.4 1 命中环数(2)由甲的方差小于乙的方差,得到甲胜出.⑶希望乙胜出,规则为9环与10环的总环数大的胜出,因为乙9环与10环的总数为28,甲9环与10 环的总数为27.则平均数为 2 +(4-7)1 2 3 5 6 7 8 9皿射击次数O 9 X-76543T- To。