八年级数学培优专题(一) 直角三角形

合集下载

八年级数学全等三角形(培优、数学竞赛)

八年级数学全等三角形(培优、数学竞赛)

北京四中八年级培优班数学全等三角形复习题1.如图1,已知在等边△ABC 中,BD =CE ,AD 与BE 相交于P ,则∠APE 的度数是 。

图1B 图2BA图32.如图2,点E 在AB 上,AC =AD ,BC =BD ,图中有 对全等三角形。

3.如图3,OA =OB ,OC =OD ,∠O =60°,∠C =25°,则∠BED 等于 度。

4.如图4所示的2×2方格中,连接AB 、AC ,则∠1+∠2= 度。

图4B图5AB图6CB5.如图5,下面四个条件中,请你以其中两个为已知条件,第三个为结论,推出一个正确的命题。

( )①AE =AD ;②AB =AC ;③OB =OC ;④∠B =∠C 。

6.如图6,在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =21AB ,点E 、F 分别为边BC 、AC 的中点。

(1)求证:DF =BE ;(2)过点A 作AG ∥BC ,交DF 于点G ,求证:AG =DG 。

7.如图7,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AD ,下列结论正确的是( )A. AB -AD >CB -CDB. AB -AD =CB -CDC. AB -AD <CB -CDD. AB -AD 与CB -CD 的大小关系不确定图7BD图8CB8.In Fig. 8, Let △ABC be an equilateral triangle, D and E be points on edges AB and AC respectively, F be intersection of segments BE and CD, and ∠BFC=120°, then the magnitude relation between AD and CE is ( )A. AD>CEB. AD<CEC. AD=CED. indefinite(英汉小词典:equilateral 等边的;intersection 交点;indefinite 不确定的;magnitude 大小,量) 9.如图9,在△ABC 中,AC =BC =5,∠ACB =80°,O 为△ABC 中一点,∠OAB =10°,∠OBA =30°,则线段AO 的长是 。

初中数学《直角三角形》培优、拔高(奥数)专题讲义

初中数学《直角三角形》培优、拔高(奥数)专题讲义

初中数学《直角三角形》培优、拔高(奥数)专题讲义阅读与思考直角三角形是一类特殊三角形,有以下丰富的性质: 角的关系:两锐角互余;边的关系:斜边的平方等于两直角边的平方和;边角关系:30所对的直角边等于斜边的一半.这些性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系等方面.在现阶段,勾股定理是求线段的长度的主要方法,若图形缺少条件直角条件,则可通过作辅助垂线的方法,构造直角三角形为勾股定理的应用创造必要条件;运用勾股定理的逆定理,通过代数方法计算,也是证明两直线垂直的一种方法.熟悉以下基本图形基本结论:例题与求解【例l 】(1)直角△ABC 三边的长分别是x ,1x 和5,则△ABC 的周长=_____________.△ABC 的面积=_____________.(2)如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD =_____________.DC(太原市竞赛试题)解题思路:对于(1),应分类讨论;对于(2),能在Rt △ACD 中求出CD 吗?从角平分线性质入手.【例2】如图所示的方格纸中,点A ,B ,C ,都在方格线的交点,则∠ACB =( ) A.120° B.135° C.150° D.165°(“希望杯”邀请赛试题)解题思路:方格纸有许多隐含条件,这是解本例的基础.【例3】如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC =60°,求∠ACB的度数.B C(“祖冲之杯”邀请赛试题)解题思路:不能简单地由角的关系推出∠ACB的度数,综合运用条件PC=2PB及∠APC =60°,构造出含30°的直角三角形是解本例的关键.【例4】如图,在△ABC中,∠C=90°,∠A=30°,分别以AB,AC为边在△ABC的外侧作等边△ABE和等边△ACD,DE与AB交于F,求证:EF=FD.BA C(上海市竞赛试题)解题思路:已知FD为Rt△FAD的斜边,因此需作辅助线,构造以EF为斜边的直角三角形,通过全等三角形证明.【例5】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD,求证:222+=BD AB BCBC(北京市竞赛试题)解题思路:由待证结论易联想到勾股定理,因此,三条线段可构成直角三角形,应设法将这三条线段集中在同一三角形中.【例6】斯特瓦尔特定理:如图,设D 为△ABC 的边BC 上任意一点,a ,b ,c 为△ABC 三边长,则222b BDc DC AD BD DC a+=-⋅.请证明结论成立.B解题思路:本题充分体现了勾股定理运用中的数形结合思想.能力训练A 级1.如图,D 为△ABC 的边BC 上一点,已知AB =13,AD =12,AC =15,BD =5,则BC =_____________.第1题2.如图,在Rt △ABC 中∠C =90°,BE 平分∠ABC 交AC 于E ,DE 是斜边AB 的垂直平分线,且DE =1cm ,则AC =_____________cm.第2题3.如图,四边形ABCD 中,已知AB ∶BC ∶CD ∶DA =2∶2∶3∶1,且∠B =90°,则∠DAB =_____________.第3题ABC(上海市竞赛试题)4.如图,在△ABC 中,AB =5,AC =13,边BC 上的中线AD =6,则BC 的长为_____________.第4题D B(湖北省预赛试题)5.如果一个三角形的一条边是另一条边的2倍,并且有一个角是30 º,那么这个三角形的形状是( )A.直角三角形B. 钝角三角形C. 锐角三角形D.不能确定(山东省竞赛试题)6.如图,小正方形边长为1,连结小正方形的三个顶点可得△ABC ,则AC 边上的高为( )B.C.D. 第6题CB(福州市中考试题)7.如图,一个长为25分米的梯子,斜立在一竖直的墙上,这时梯足距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯足将滑( )A. 15分米B. 9分米C. 8分米D. 5分米第7题8.如图,在四边形ABCD 中,∠B =∠D =90°,∠A =60°,AB =4,AD =5,那么BCCD等于( ) A.1 B. 2C.D.54第8题A9. 如图,△ABC 中,AB =BC =CA ,AE =CD ,AD ,BE 相交于P ,BQ ⊥AD 于Q ,求证:BP =2PQ.DC(北京市竞赛试题)10. 如图,△ABC 中,AB =AC.(1)若P 是BC 边上中点,连结AP ,求证:22BP CP AB AP ⋅=-(2)P 是BC 边上任意一点,上面的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)若P 是BC 边延长线上一点,线段AB ,AP ,BP ,CP 之间有什么样的关系?请证明你的结论.BP11.如图,直线OB 是一次函数2y x =图象,点A 的坐标为(0,2),在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标.12.已知:如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,求△BED 的面积.D(山西省中考试题)B 级1.若△ABC 的三边a,b,c 满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为_____________.2.如图,在等腰Rt △ABC 中,∠A =90°,P 是△ABC 内的一点,PA =1,PB=3,PC ,则∠CPA =_____________.第2题A3. 在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为_____________.4.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G ,则CF 与GB 的大小关系是( )A. CF >GBB. CF =GBC. CF <GBD. 无法确定第4题AB5. 在△ABC 中,∠B 是钝角,AB =6,CB =8,则AD 的范围是( ) A. 8<AC <10 B. 8<AC <14 C. 2<AC <14 D. 10<AC <14(江苏省竞赛试题)6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )A. 1个B. 2个C. 3个D.4个(浙江省竞赛试题)7.如图,△ABC 是等腰直角三角形,AB =AC ,D 是斜边BC 的中点,E ,F 分别是AB ,AC 边上的点,且DE ⊥DF ,若BE =12,CF =5,求△DEF 的面积.DBC(四川省联赛试题)8.如图,在Rt △ABC 中,∠A =90°,D 为斜边BC 中点,DE ⊥DF ,求证:222EF BE CF =+B(江苏省竞赛试题)9.周长为6,面积为整数的直角三角形是否存在?若不存在,请给出证明;若存在,请证明有几个.(全国联赛试题)10.如图,在△ABC 中,∠B AC =45°,AD ⊥BC 于D ,BD =3,CD =2,求△ABC 面积.BC(天津市竞赛试题)11.如图,在△ABC 中,∠B AC =90°,AB =AC ,E ,F 分别是BC 上两点,若∠EAF=45°,试推断BE ,CF ,EF 之间数量关系,并说明理由.A C12.已知在Rt △ABC 中,∠ACB =90°,AC =BC ,∠MCN =45°. (1)如图1,当M ,N 在AB 上时,求证:222MN AM BN =+(2)如图2,将∠MCN 绕点C 旋转,当M 在BA 的延长线上时,上述结论是否成立?若成立,请证明;若不成立,请说明理由.图1NAB M图2N BM(天津市中考试题)。

八年级下册第一章《直角三角形》培优习题

八年级下册第一章《直角三角形》培优习题

八年级下册第一章《直角三角形》培优习题一、知识要点填空:1、直角三角形的性质:(1)直角三角形的两个锐角_________(2)直角三角形斜边上的中线等于斜边的_________;(3)直角三角形30°角所对的直角边是______的一半;(4)直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30°.2、直角三角形的判定方法:(1)有一个角是直角的三角形是直角三角形;(2)有两个角______的三角形是直角三角形;(3)如果一条边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、等腰直角三角形是特殊的直角三角形,它的两个底角都是_____,且两条直角边相等。

等腰直角三角形具有等腰三角形和直角三角形的所有性质,是很常见的特殊三角形。

二、练习题1、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则则∠1+∠2等于__________.2、设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示它们之间关系的是()A. B.C. D.3、如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE4、如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能的是()A.3.5 B.4.2 C.5.8 D.75、如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是() A.3 B.2 C.3 D.16、已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为___________________.7、四边形ABCD 由一个∠ACB=30°的Rt △ABC 与等腰Rt △ACD 拼成,E 为斜边AC 的中点,则∠BDE=__________.8、已知:在△ABC 中,∠BAC=90°,AD ⊥BC 于点D ,∠ABC 的平分线BE 交AD 于点F ,试说明AE=AF.9、在△ABC 中,∠A=90°,AB=AC ,∠ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点E .求证:CE =21BD10、一根长2a 的木棍(AB ),斜靠在与地面(OM )垂直的墙(ON )上,设木棍的中点为P .若木棍A 端沿墙下滑,且B 端沿地面向右滑行.木棍滑动的过程中,点P 到点0的距离不变化,在木棍滑动的过程中,△AOB 的面积最大为______________.11、如图在Rt △ABC 中,∠ACB=90°,CD 、CE 分别是斜边AB 边上的高与中线,CF 是∠ACB 的平分线,则∠1与∠2的大小关系是( )A .∠1>∠2 B. ∠1=∠2 C. ∠1<∠2 D.不能确定12、如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个13、如图,在直角三角形ABC 中,CM 是斜边AB 上的中线,MN ⊥AB ,∠ACB 的平分线CN 交MN 于N ,求证:CM=MN .14、如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1D 1C 1;在等腰直角三角形OA 1B 1中作内接正方形A 2B 2D 2C 2;在等腰直角三角形OA 2B 2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形A nB n D nC n的边长是_______________.15、下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有________个,图3中以格点为顶点的等腰直角三角形共有_________个,图4中以格点为顶点的等腰直角三角形共有_________个.16、如图,在△ABC中,∠B=90°,∠BAC=78°,过C作CF∥AB,连接AF于BC相交于G,若GF=2AC,则∠BAG=17、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的最小值为4;③四边形CDFE的面积保持不变;④△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①③ C.①③④D.②③④18、如图,已知OA=a,P是射线ON上一动点(即P可以在射线ON上运动),∠AON=60°,填空:(1)当OP=_________时,△AOP为等边三角形;(2)当OP=__________时,△AOP为直角三角形;(3)当OP满足___________时,△AOP为钝角三角形.GF CB A。

八年级上册数学同步培优:第1讲 三角形--提高班

八年级上册数学同步培优:第1讲 三角形--提高班

第1讲三角形知识点1 三角形的三边关系1、三角形三条边之间的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.2、解题技巧:“当三条线段中最长的线段小于另两条线段之和时,或当三条线段中最短的线段大于另两条线段之差时,即可组成三角形”【典例】1.已知a、b、c为△ABC的三边,化简:|a+b﹣c|﹣|a﹣b﹣c|+|a﹣b+2c|=________.【方法总结】本题是三角形三边关系与绝对值的性质的综合问题:1、怎样判断绝对值内三边运算值的正负:①当绝对值内有一个减号时,三边运算值是正,例如|a+b﹣c|= a+b﹣c②有绝对值内有两个或三个减号时,三边运算值是负,例如|a﹣b﹣c|=-(a﹣b﹣c)2、注意“-|a﹣b﹣c|”在去绝对值符号的时候,为避免错误,可写成-[-(a﹣b﹣c)]的形式,再去括号。

a ﹣b+2c 可看做(a ﹣b+c )+c ,再判断正负。

【随堂练习】1.(2018•杭州二模)四根长度分别为3,4,6,x (x 为正整数)的木棒,从中任取三根,首尾顺次相接都能组成一个三角形,则( )A .组成的三角形中周长最小为9B .组成的三角形中周长最小为10C .组成的三角形中周长最大为19D .组成的三角形中周长最大为162.(2018•芦淞区一模)已知关于x 的不等等式组至少有两个整数解,且存在以3,a ,7为边的三角形,则a 的整数解有( )A .4个B .5个C .6个D .7个知识点2 三角形的中线 三角形的中线:在三角形中,连结一个顶点与它的对边中点的线段,叫做三角形的中线. 三角形的中线将三角形分成两个等底同高的三角形,这两个三角形的面积相等。

【典例】1.如图,A 、B 、C 分别是线段A 1B 、B 1C 、C 1A 的中点,若的面积是14,求△ABC 的面积?111A B C【方法总结】本题已知:A 、B 、C 分别是线段A 1B 、B 1C 、C 1A 的中点,所以我们连接AB 1,BC 1,CA 1,使A 1B 、B 1C 、C 1A 成为三角形的中线,寻找三角形面积的关系,从而得到与△ABC 面积的关系。

2020-2021第一学期苏科版八年级上册数学2.5直角三角形斜边中线的性质专题培优训练卷(有答案)

2020-2021第一学期苏科版八年级上册数学2.5直角三角形斜边中线的性质专题培优训练卷(有答案)

2020-2021学年度苏科版八年级上学期数学2.5直角三角形斜边中线的性质专题培优训练卷一、选择题1、如图,在△ABC中,∠ACB=90°,D是AB的中点,且DC=AC,则∠B的度数是()A.25°B.30°C.45°D.60°2、如图,在△ABC中,CF⊥AB于点F,BE⊥AC于点E,M为BC的中点,EF = 5,BC = 8,则△EFM的周长及图中的等腰三角形个数分别是()A.21、2B.18、3C.13、4D.13、53、(2020春•蚌埠期末)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠DAC=45°,∠BAC=30°,E是AC的中点,连接BE,BD.则∠DBE的度数为()A.10°B.12°C.15°D.18°4、如果三角形一边上的中线等于这条边的一半,则这个三角形一定是( )A.等边三角形B.直角三角形C.等腰三角形D.以上答案都不对二、填空题5、如图,△ABC和△ABD均为直角三角形,∠ACB=∠ADB=90°,E为AB的中点,CE=10.则DE的长为________6、如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,E是AC的中点.若DE=5,则AB的长为_______.7、如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,CD=6 cm,则AB=_______cm.8、若直角三角形斜边上的高和中线分别为10 cm 、12 cm ,则它的面积为_________cm 2.9、如图,三位同学分别站在一个直角三角形的三个直角顶点处做投圈游戏,目标物放在斜边AC 的中点O 处,已知AC =6m ,则点B 到目标物的距离是 m .10、(2019秋•沭阳县期中)已知:如图,四边形ABCD 中,∠ABC =∠ADC =90°,AC 与BD 相交于点O ,E 、F 分别是AC 、BD 的中点.则∠EFO = .11、(2020春•包河区期末)如图,已知△ABC 中,∠ACB =90°,O 为AB 的中点,点E 在BC 上,且CE=AC ,∠BAE =15°,则∠COE = 度.12、如图,在ABC ∆中,AD 平分BAC ∠,AD BD ⊥于点D ,//DE AC 交AB 于点E ,若8AB =,则DE = .13、如图,已知ABC ∆中,90ACB ∠=︒,O 为AB 的中点,点E 在BC 上,且CE AC =,15BAE ∠=︒,则COE ∠= 度.三、解答题14、已知:如图∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点.求证:MN ⊥BD .15、(2019秋•余姚市期末)如图,AD 是△ABC 的高线,且BD =21AC ,E 是AC 的中点,连结BE ,取BE 的中点F ,连结DF ,求证:DF ⊥BE .16、如图,点B 在线段AC 上,点E 在线段BD 上,∠ABD =∠DBC ,AB =DB ,EB =CB ,M 、N 分别是AE 、CD 的中点.(1)求证:△ABE ≌△DBC ;(2)判定△BMN 的形状,并证明你的结论.17、(2020春•重庆期末)如图(1),已知锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,M 、N 分别是线段BC 、DE 的中点.(1)求证:MN ⊥DE .(2)连结DM ,ME ,猜想∠A 与∠DME 之间的关系,并证明猜想.(3)当∠A 变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.2020-2021学年度苏科版八年级上学期数学2.5直角三角形斜边中线的性质专题培优训练卷(答案)一、选择题1、如图,在△ABC中,∠ACB=90°,D是AB的中点,且DC=AC,则∠B的度数是()A.25°B.30°C.45°D.60°解:∵在△ABC中,∠ACB=90°,D是AB的中点,∴AD=CD,∵DC=AC,∴AD=CD=AC,∴△ACD是等边三角形,∴∠A=60°,∴∠B=180°﹣90°﹣60°=30°,故选:B.2、如图,在△ABC中,CF⊥AB于点F,BE⊥AC于点E,M为BC的中点,EF = 5,BC = 8,则△EFM的周长及图中的等腰三角形个数分别是( D )A.21、2B.18、3C.13、4D.13、53、(2020春•蚌埠期末)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠DAC=45°,∠BAC=30°,E是AC的中点,连接BE,BD.则∠DBE的度数为()A.10°B.12°C.15°D.18°【解答】解:连接DE,∵∠ADC=90°,E是AC的中点,∴DE AC=AE,∴∠EDA=∠DAC=45°,∴∠DEC=∠EDA+∠DAC=90°,同理,∠BEC=60°,∴∠DEB=90°+60°=150°,∵DE AC,BE AC,∴DE=BE,∴∠DBE(180°﹣150°)=15°,故选:C.4、如果三角形一边上的中线等于这条边的一半,则这个三角形一定是( B)A.等边三角形B.直角三角形C.等腰三角形D.以上答案都不对二、填空题5、如图,△ABC和△ABD均为直角三角形,∠ACB=∠ADB=90°,E为AB的中点,CE=10.则DE的长为___10_____6、如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,E是AC的中点.若DE=5,则AB的长为___10____.7、如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,CD=6 cm,则AB=__12______cm.8、若直角三角形斜边上的高和中线分别为10 cm、12 cm,则它的面积为___120_______cm2.9、如图,三位同学分别站在一个直角三角形的三个直角顶点处做投圈游戏,目标物放在斜边AC的中点O处,已知AC=6m,则点B到目标物的距离是m.解:∵∠ABC=90°,点O是斜边AC的中点,∴BO=AC=3m,故答案为:3.10、(2019秋•沭阳县期中)已知:如图,四边形ABCD中,∠ABC=∠ADC=90°,AC与BD相交于点O,E、F分别是AC、BD的中点.则∠EFO=.【分析】连接EB 、ED ,根据直角三角形的性质得到EB =ED ,根据等腰三角形的性质得到答案.【答案】解:连接EB 、ED ,∵∠ABC =90°,E 是AC 的中点,∴BE AC ,同理,DE AC ,∴EB =ED ,又F 是BD 的中点,∴EF ⊥BD ,∴∠EFO =90°,故答案为:90°.11、(2020春•包河区期末)如图,已知△ABC 中,∠ACB =90°,O 为AB 的中点,点E 在BC 上,且CE =AC ,∠BAE =15°,则∠COE = 度.【解答】解:∵∠ACB =90°,CE =AC ,∴∠CAE =∠AEC =45°,∵∠BAE =15°,∴∠CAB =60°,∴∠B =30°,∵∠ACB =90°,O 为AB 的中点,∴CO =BO =AO AB ,∴△AOC 是等边三角形,∠OCB =∠B =30°,∴AC =OC =CE ,∴∠COE =∠CEO (180°﹣30°)=75°, 故答案为:75.12、如图,在ABC ∆中,AD 平分BAC ∠,AD BD ⊥于点D ,//DE AC 交AB 于点E ,若8AB =,则DE = .【解答】AD 是BAC ∠的平分线,CAD BAD ∴∠=∠,//DE AC ,CAD ADE ∴∠=∠,ADE BAD ∴∠=∠,AE DE ∴=,BD AD ⊥,90ADE BDE BAD ABD ∴∠+∠=∠+∠=︒,ABD BDE ∴∠=∠,DE BE ∴=,12DE AB ∴=, 8AB =,1842DE ∴=⨯=.故答案为:4.13、如图,已知ABC ∆中,90ACB ∠=︒,O 为AB 的中点,点E 在BC 上,且CE AC =,15BAE ∠=︒,则COE ∠= 75 度.【解答】90ACB ∠=︒,CE AC =,45CAE AEC ∴∠=∠=︒,15BAE ∠=︒,60CAB ∴∠=︒,30B ∴∠=︒,90ACB ∠=︒,O 为AB 的中点,12CO BO AO AB ∴===, AOC ∴∆是等边三角形,30OCB B ∠=∠=︒,AC OC CE ∴==,1(18030)752COE CEO ∴∠=∠=︒-︒=︒,故答案为:75. 三、解答题14、已知:如图∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点.求证:MN ⊥BD .证明:如图,连接BM 、DM ,∵∠ABC =∠ADC =90°,M 是AC 的中点,∴BM =DM =12AC , ∵点N 是BD 的中点,∴MN ⊥BD . (10分)15、(2019秋•余姚市期末)如图,AD是△ABC的高线,且BD AC,E是AC的中点,连结BE,取BE的中点F,连结DF,求证:DF⊥BE.【解答】证明:连结DE,∵AD是△ABC的高线,E是AC的中点,∴,又∵,∴DE=BD.又∵F是BE的中点,∴DF⊥BE.16、如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点.(1)求证:△ABE≌△DBC;(2)判定△BMN的形状,并证明你的结论.【答案】解:(1)在△ABE和△DBC中,∵AB DBABD DBCEB CB=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△DBC(SAS)(2)△MBN是等腰直角三角形证明如下:∵△ABE≌△DBC∴AE=CD,∠BAM=∠BDN∵M,N分别是AE,CD的中点,∴AM=12AE,CN=12CD,∴AM=CN在△ABM和△DBN中,∵AM CNBAM BDNAB BD=⎧⎪∠=∠⎨⎪=⎩∴ABM≌△DBN(SAS)∴BM=BN,∠ABM=∠DBN∵∠ABD=∠DBC,∠ABD+∠DBC=180°,∴∠ABD=∠ABM+∠DBM=90°∴∠DBN+∠DBM=∠MBN=90°,∴△MBN是等腰直角三角形17、(2020春•重庆期末)如图(1),已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE.(2)连结DM,ME,猜想∠A与∠DME 之间的关系,并证明猜想.(3)当∠A变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.【解答】(1)证明:如图(1),连接DM,ME,∵CD、BE分别是AB、AC边上的高,M是BC的中点,∴DM BC,ME BC,∴DM=ME,又∵N为DE中点,∴MN⊥DE;(2)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵DM=ME=BM=MC,∴∠BMD+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB)=360°﹣2(∠ABC+∠ACB),=360°﹣2(180°﹣∠A)=2∠A,∴∠DME=180°﹣2∠A;(3)结论(1)成立,结论(2)不成立,理由如下:连结DM,ME,在△ABC中,∠ABC+∠ACB=180°﹣∠BAC,∵DM=ME=BM=MC,∴∠BME+∠CMD=2∠ACB+2∠ABC=2(180°﹣∠BAC)=360°﹣2∠BAC,∴∠DME=180°﹣(360°﹣2∠BAC)=2∠BAC﹣180°.。

初中数学 八年级竞赛培优训练 直角三角形 含解析

初中数学 八年级竞赛培优训练  直角三角形  含解析

直角三角形【思维入门】1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是() A.120°B.90°C.60°D.30°2.如图1-5-1,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连结DE,则△CDE的周长为()A.20 B.12 C.14 D.13图1-5-13.如图1-5-2,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,AB=10 cm,则CD的长为______cm.图1-5-24.将一副三角板拼成如图1-5-3所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图1-5-35.如图1-5-4,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,DC . (1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.【思维拓展】6.如图1-5-5,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD =BC ,AE =AC ,则∠DCE 的大小为____°.图1-5-57.如图1-5-6,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC =______.图1-5-68.如图1-5-7,∠ABC =90°,D ,E 分别在BC ,AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 的中点,FD 与AB 延长线相交于点M . (1)求证:∠FMC =∠FCM ; (2)AD 与MC 垂直吗?并说明理由.图1-5-79.如图1-5-8,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点图1-5-8D.CG平分∠ACB交BD于点G,F为AB边上一点,连结CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【思维升华】10.如图1-5-9,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,若∠A=40°,则∠ABX+∠ACX=()图1-5-9A.25°B.30°C.45°D.50°11.如图1-5-10,直线l平行于射线AM,要在直线l与射线AM上各找一点B和C,使得以A,B,C为顶点的三角形是等腰直角三角形,这样的三角形最多能画____个.图1-5-1012.如图1-5-11,点P在△ABC的BC边上,且PC=2PB,若∠ABC=45°,∠APC =60°,则∠ACB的度数是____.图1-5-1113.如图1-5-12,在△ABC中,AC=BC,且∠ACB=90°,点D是AC上一点,AE⊥BD,交BD的延长线于点E,且AE=12BD,则∠ABD=____.图1-5-1214.如图1-5-13,在△ABC中,∠ACB=90°,M是∠CAB的平分线AL的中点,延长CM交AB于K,BK=BC,则∠CAB=____,∠ACK∠KCB=____.图1-5-1315.如图1-5-14,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1-5-14①),求证:M为AN的中点;(2)将图1-5-14①中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图1-5-14②),求证:△CAN为等腰直角三角形;(3)将图1-5-14①中△BCE绕点B旋转到图③的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.图1-5-14第5讲直角三角形【思维入门】1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是(D) A.120°B.90°C.60°D.30°2.如图1-5-1,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连结DE,则△CDE的周长为(C) A.20 B.12 C.14 D.13图1-5-1【解析】∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.3.如图1-5-2,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,AB=10 cm,则CD的长为__5____cm.图1-5-24.将一副三角板拼成如图1-5-3所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图1-5-3解:(1)证明:∵∠DCE=90°,CF平分∠DCE,∴∠DCF =45°,∵△ABC 是等腰直角三角形,∴∠BAC =45°,∴∠BAC =∠DCF ,∴CF ∥AB ; (2)∵∠D =30°,∴∠DFC =180°-30°-45°=105°.5.如图1-5-4,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,DC . (1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数. 解:(1)证明:∵∠ABC =90°,∴∠DBE =180°-∠ABC =180°-90°=90°, ∴∠ABE =∠CBD .在△ABE 和△CBD 中,∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,EB =DB ,∴△ABE ≌△CBD ;(2)∵AB =CB ,∠ABC =90°, ∴△ABC 是等腰直角三角形, ∴∠ECA =45°.∵∠CAE =30°,∠BEA =∠ECA +∠EAC , ∴∠BEA =45°+30°=75°. 由①知∠BDC =∠BEA . ∴∠BDC =75°.【思维拓展】6.如图1-5-5,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD =BC ,AE =AC ,则∠DCE 的大小为__45__°.图1-5-5【解析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.7.如图1-5-6,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC =__45°____.图1-5-68.如图1-5-7,∠ABC=90°,D,E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.图1-5-7解:(1)证明:∵△ADE是等腰直角三角形,F是AE的中点,∴DF⊥AE,DF=AF=EF.又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF.又∵∠DFC=∠AFM=90°,∴△DFC≌△AFM.∴CF=MF.∴∠FMC=∠FCM;(2)AD⊥MC.由(1)知∠MFC=90°,FD=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.9.如图1-5-8,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点图1-5-8D.CG平分∠ACB交BD于点G,F为AB边上一点,连结CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.证明:(1)∵∠ACB=90°,CG平分∠ACB,AC=BC.∴∠BCG=∠CAB=45°,又∵∠ACF=∠CBG,AC=BC,∴△ACF≌△CBG(ASA),∴AF=CG;(2)如答图,延长CG交AB于点H.∵AC=BC,CG平分∠ACB,∴CH⊥AB,H为AB的中点,又∵AD⊥AB,∴CH∥AD,∴G为BD的中点,∠D=∠EGC,∵E为AC的中点,∴AE=EC,又∵∠AED=∠CEG,∴△AED≌△CEG,∴DE=EG,∴DG=2DE,∴BG=DG=2DE,由(1)得CF=BG,∴CF=2DE.第9题答图【思维升华】10.如图1-5-9,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,若∠A=40°,则∠ABX+∠ACX=(D)图1-5-9A.25°B.30°C.45°D.50°11.如图1-5-10,直线l平行于射线AM,要在直线l与射线AM上各找一点B和C,使得以A,B,C为顶点的三角形是等腰直角三角形,这样的三角形最多能画__3__个.图1-5-10【解析】如答图.①AC为直角边时,符合的等腰直角三角形有2个,一个是以∠BAC为直角,一个是以∠ACB为直角;②AC为斜边时,符合的等腰直角三角形有1个.∴这样的三角形最多能画3个,12.如图1-5-11,点P在△ABC的BC边上,且PC=2PB,若∠ABC=45°,∠APC=60°,则∠ACB的度数是__75°__.图1-5-11【解析】过C作AP的垂线CD,垂足为点D,连结BD.∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°.13.如图1-5-12,在△ABC中,AC=BC,且∠ACB=90°,点D是AC上一点,AE⊥BD,交BD的延长线于点E,且AE=12BD,则∠ABD=__22.5°__.第11题答图图1-5-12 第13题答图【解析】 延长AE ,BC 交于点F .∵AE ⊥BE , ∴∠BEF =90°,又∵∠ACF =∠ACB =90°, ∴∠DBC +∠AFC =∠F AC +∠AFC =90°, ∴∠DBC =∠F AC , 在△ACF 和△BCD 中,⎩⎨⎧∠ACF =∠BCD =90°,AC =BC ,∠F AC =∠DBC ,∴△ACF ≌△BCD (ASA ), ∴AF =BD . 又∵AE =12BD ,∴AE =EF ,即点E 是AF 的中点. ∴AB =BF ,∴BD 是∠ABC 的角平分线. ∴∠ABD =22.5°.14.如图1-5-13,在△ABC 中,∠ACB =90°,M 是∠CAB 的平分线AL 的中点,延长CM 交AB 于K ,BK =BC ,则∠CAB =__45°__,∠ACK ∠KCB=__13__.图1-5-13【解析】 设∠CAB =2α.∵AM =ML ,且∠ACB =90°,∴CM =MA , ∴∠ACM =∠MAC =α.∴∠CKB =∠CAK +∠ACM =3α, ∠KCB =90°-∠ACM =90°-α. ∵BK =BC , ∴∠CKB =∠KCB .∴3α=90°-α,即α=22.5°. ∴∠CAB =45°,∠ACK ∠KCB =22.5°67.5°=13.15.如图1-5-14,已知△BAD 和△BCE 均为等腰直角三角形,∠BAD =∠BCE =90°,点M 为DE 的中点.过点E 与AD 平行的直线交射线AM 于点N .(1)当A ,B ,C 三点在同一直线上时(如图1-5-14①),求证:M 为AN 的中点; (2)将图1-5-14①中△BCE 绕点B 旋转,当A ,B ,E 三点在同一直线上时(如图1-5-14②),求证:△CAN 为等腰直角三角形;(3)将图1-5-14①中△BCE 绕点B 旋转到图③的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.图1-5-14证明:(1)∵点M 为DE 的中点,∴DM =ME . ∵AD ∥EN ,∴∠ADM =∠NEM ,又∵∠DMA=∠EMN,∴△DMA≌△EMN,∴AM=MN,即M为AN的中点;(2)由(1)中△DMA≌△EMN可知DA=EN,又∵DA=AB,∴AB=NE,∵∠ABC=∠NEC=135°,BC=CE,∴△ABC≌△NEC,∴AC=CN,∠ACB=∠NCE,∵∠BCE=∠BCN+∠NCE=90°,∴∠BCN+∠ACB=90°,∴∠ACN=90°,∴△CAN为等腰直角三角形.(3)由(2)可知AB=NE,BC=CE.又∵∠ABC=360°-45°-45°-∠DBE=270°-∠DBE=270°-(180°-∠BDE-∠BED)=90°+∠BDE+∠BED=90°+∠ADM-45°+∠BED=45°+∠MEN+∠BED =∠CEN,∴△ABC≌△NEC,再同(2)可证△CAN为等腰直角三角形,∴(2)中的结论仍然成立.。

初二-第02讲-直角三角形(培优)-教案

初二-第02讲-直角三角形(培优)-教案

学科教师辅导讲义学员编号:年级:八年级(下)课时数:3学员姓名:辅导科目:数学学科教师:授课主题第02讲-直角三角形授课类型T同步课堂P实战演练S归纳总结教学目标①掌握直角三角形的性质与判定方法;②进一步掌握推理证明的方法,培养演绎推理能力;授课日期及时段T(Textbook-Based)——同步课堂一、知识梳理1、直角三角形的性质和判定方法定理:直角三角形的两个锐角互余。

定理:有两个角互余的三角形是直角三角形。

2、勾股定理勾股定理:直角三角形两条直角边的平方和等于斜边的平方。

3、勾股定理的逆定理如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

4、逆命题、逆定理互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个体系搭建命题称为互逆命题,其中一个命题称为另一个命题的逆命题。

互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆命题。

5、斜边、直角边定理定理:斜边和一条直角边分别相等的两个直角三角形全等。

简述为“斜边、直角边定理”或“HL”定理。

考点一:直角三角形全等的判定例1、在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.点D是BE的中点【解析】选D.例2、如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解析】∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.例3、如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【解析】(1)全等,理由是:∵∠1=∠2,∴DE=CE,∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC;P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、下列条件中,能判定两个直角三角形全等的是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等【解析】选:D.2、如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.AC=AD或BC=BDC.AC=AD且BC=BD D.以上都不正确【解析】从图中可知AB为Rt△ABC和Rt△ABD的斜边,也是公共边.跟据“HL”定理,证明Rt△ABC≌Rt△ABD,还需补充一对直角边相等,即AC=AD或BC=BD,故选B.3、如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35°B.55°C.60°D.70°【解析】∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.故选D.4、如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5 B.6C.7 D.8【解析】∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选D.5、如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA.(只需写出符合条件一种情况)【解析】∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.6、如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A=60°或90°时,△AOP为直角三角形.【解析】若∠APO是直角,则∠A=90°﹣∠AON=90°﹣30°=60°,若∠APO是锐角,∵∠AON=30°是锐角,∴∠A=90°,综上所述,∠A=60°或90°.故答案为:60°或90°.7、如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于30°.【解析】∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°﹣∠A=30°.故答案为:30°.8、底角为30°,腰长为a的等腰三角形的面积是a2.【解析】如图,过点A作AD⊥BC于D,∵△ABC是等腰三角形,∴BC=2BD,∵底角∠B=30°,∴AD=AB=a,由勾股定理得,BD==a,∴BC=2BD=a,∴三角形的面积=×a×a=a2.故答案为a2.9、如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【解析】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.10、已知:如图,在△ABC中,AB=AC=2,∠B=15°.过点C作CD⊥BA,交BA的延长线于点D,求△ACD的周长.【解析】如图,在△ABC中,AB=AC=2,∠B=15°,∴∠B=∠ACB=15°,∴∠DAC=2∠B=30°.又∵CD⊥BA,∴CD=AC=1,∴根据勾股定理得到AD==,∴△ACD的周长=AD+CD+AC=+1+2=+3.答:△ACD的周长是+3.➢课后反击1、要判定两个直角三角形全等,下列说法正确的有()①有两条直角边对应相等;②有两个锐角对应相等;③有斜边和一条直角边对应相等;④有一条直角边和一个锐角相等;⑤有斜边和一个锐角对应相等;⑥有两条边相等.A.6个B.5个C.4个D.3个【解析】故选B2、如图,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是()A.HL B.AASC.SSS D.ASA【解析】∵OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,又∵OE=OF,AO为公共边,∴△AEO≌△AFO.故选A.3、直角三角形两个锐角平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°【解析】如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个角互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选B.4、如图,在Rt△ABC中,∠ACB=90°,∠A=60°,过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,则∠CDA=()A.30°B.45°C.60°D.75°【解析】如图,∵在Rt△ABC中,∠ACB=90°,∠A=60°,∴AC=AB,又∵过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,∴AD=BD∴AC=AD,∵∠A=60°,∴△ADC是等边三角形,∴∠CDA=60°.5、如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE 的长为()A.10 B.6C.8 D.5【解析】∵AB=AC=10,AD平分∠BAC,∴BD=DC,∵E为AC的中点,∴DE=AB=×10=5,故选D.6、如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.【解析】AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.7、如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′= 10°.【解析】∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.8、如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为6.【解析】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,故答案为:6.9、如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.【解析】AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中,∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).10、在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.【解析】∵∠B=30°,CD⊥AB于D,∴∠DCB=90°﹣∠B=60°.S(Summary-Embedded)——归纳总结重点回顾1、直角三角形的性质和判定方法定理:直角三角形的两个锐角互余。

初二数学培优专题 (1)——共点“手拉手”模型(又称旋转“一拖二”模型)(答案详解)

初二数学培优专题 (1)——共点“手拉手”模型(又称旋转“一拖二”模型)(答案详解)

共点手拉手模型(又称旋转“一拖二”模型)——兼谈最值、轨迹问题特点——公共点是等腰三角形顶角的顶点如图,若连接BB’、CC’,易证明△ABB’≌△ACC’(SAS)。

这就是传说中的“旋转一拖二”,又称为“手拉手模型”。

典型问题:【例1】(成都高新区2017-2018八年级上期27题)【例2】(成都金牛区2017-2018八年上期27题)如图,在△ABC中,∠B=45°,AB=22,2=BC,等腰直角∆ADE中,∠DAE=90°,2+3且点D是边BC上一点。

(1)(3 分)求AC的长;(2)(4 分)如图1,当点E恰在AC上时,求点E到BC的距离;(3)(3 分)如图2, 当点D从点B向点C运动时,求点E到BC的距离的最大值。

图1【例3】(2017届初二上期七中联盟半期)已知:ABC △是等腰直角三角形,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰直角三角形PCQ ,其中90PCQ =∠,探究并解决下列问题:(1)如图①,若点P 在线段AB上,且AC =,12PA =,则: ①线段PB =________,PC =________;②猜想:222,,PQ PA PB 三者之间的数量关系为_______________________;(2)如图②,若点P 在AB 的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程; (3)若动点P 满足4PA PB =,求PQAC的值.(提示:请利用备用图进行探求)图① 图② 备用图QCBPAQCB ACBA【例4】如图,已知30MON ∠=︒ ,B 为OM 上一点,BA ON ⊥ 于A ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90︒ 得CE ,连结BE ,若 4AB = ,则BE 的最小值为【例5】(成都武侯区2016-2017八年上期27题)如图,已知直线x y =过点A ,y AB ⊥轴于点B ,x AC ⊥轴于点C ,点P 是y 轴上的一动点,连接AP 交直线BC 于点E .点N 在直线BC 上,连接AN 且︒=∠90PAN ,在射线AN 上截取AE AD =,连接DE .(1)求证:2222AE EC BE =+;(2)若点A 的坐标是(6,m ),点P 的坐标是(0,m 32),求线段AD 的长; (3)当31=EC BE 时,求BPDE的值.27题【例6】(成都青羊区2016-2017八上期27题)在Rt ACB ∆中,90ACB ∠=︒,AC=BC ,D 为AB 上一点,连结CD ,将CD 绕C 点逆时针旋转90︒至CE ,连结DE ,过C 作CF ⊥DE 交AB 于F ,连结BE.(1)求证:AD=BE ;(2)求证:222AD BF DF +=; (3)若15ACD ∠=︒,1CD =+,求BF.【例7】(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,当△DCE 旋转至点A ,D ,E 在同一直线上,连接BE ,易证△BCE ≌△ACD .则 ①∠BEC =;②线段AD 、BE 之间的数量关系是 . (2)拓展研究:如图2,△ACB 和△DCE 均为等腰三角形,且∠ACB =∠DCE =90°,点A 、D 、E 在同一直线上,若AE =15,DE =7,求AB 的长度.(3)探究发现:如图3,P 为等边△ABC 内一点,且∠APC =150°,且∠APD =30°,AP =5,CP =4,DP =8,求BD 的长.E答案典型问题:【例1】(2017-2018上期成都高新区27题)解:(1)∵∠BAC=∠DAE=︒90 ∴∠BAD=∠CAE∵AB=AC ,AD=AE ∴△ABD ≌△ACE (SAS )(2)取AB 的中点G ,连接DG(I )∵∠BAC=∠DAE=︒120且点D是边BC上一点。

八年级(上)培优讲义:第1讲-三角形的初步知识(1)

八年级(上)培优讲义:第1讲-三角形的初步知识(1)

第1讲三角形的初步知识1(认识三角形、定义与命题、证明)一、知识建构1. 三角形按角分类:(1)锐角三角形:三角形的,这样的三角形称之为锐角三角形(2)直角三角形:三角形有,这样的三角形称之为直角三角形(3)钝角三角形:三角形有,这样的三角形称之为钝角三角形2. 三角形的角平分线:在三角形中,,这个角的顶点与交点之间的线段叫做三角形的角平分线。

3.三角形的中线:在三角形中,,叫做这个三角形的中线。

(1)三角形的中线的形状也是一条;(2)三角形的三条角中线.4.三角形高的定义:从三角形的一个顶点线,的线段叫做三角形的高。

5.三角形三边之间的关系为:6.能清楚地规定某一名称或术语的句子叫做该名称或术语的______.7.对某一件事情作出_______判断的句子叫做命题.•每个命题都是由______•和______两部分组成的.8.思考下列命题的条件和结论分别是什么?并判断那些命题正确? 那些命题不正确?(1)相等的角是对顶角。

(2)直角三角形两锐角互余。

(3)同位角相等。

(4)一个角的补角一定大于这个角的余角。

9. 阅读教材内容后请回答:(1)怎样判断一个命题是真命题还是假命题?(1)真命题、公理、定理三者的区别与联系各是什么?10.判断下列命题是真命题还是假命题?如果是假命题,请说明理由;如果是真命题,请用推理的方法来说明.(1)如果ab=0,那么a=b=0;(2)如图,若AC∥DE,∠1=∠2,则AB∥CD.二、经典例题例1.对于同一平面内的三条直线a,b,c,给出下列5个判断:①a∥b②b∥c;•③a⊥b;④a∥c;⑤a⊥c.请以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题(至少写两个命题).例2.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°例3. 如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2…按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则(1)θ1= , (2)θn= .例4.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.图1图2DC EA B例5. 一个三角形的三条边长分别为1、2、x ,则x 的取值范围是( )A .1≤x ≤3B .1<x ≤3C .1≤x <3D .1<x <3例6. 已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是 .例7. 两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE .例8.如图,已知AB ∥CD ,直线EF 分别截AB 、CD 于 点M 、N ,MG 、NH 分别是∠EMB 与∠END 的平分线.求证:MG ∥NH . 请根据分析思路,写出证明过程.三、基础演练1.在△ABC 中,若∠A +∠B =88°,则∠C =_______,这个三角形是______ 三角形.∠EMG=12∠∠ENH=12∠END可证∠EMG=∠MNH要证MG ∥NH 只需证:∠EMB=∠END已知AB ∥CDABCDE FHMN2.直角三角形的一个锐角为42°,则另一个锐角为_________.3.在△ABC 中,若∠A =35°,∠B =68°,则与∠C 相邻的外角等于_______ °.4.若5条线段长分别为1cm ,2cm ,3cm , 4cm ,5cm ,则以其中3条线段为边长可以构成三角形的个数是___________ .5.一木工师傅有两根70,100长的木条,他要选择第三根木条,将它们钉成三角形木架,则第三根木条取值范围_____________ ,木架周长的取值范围_____________ . 6. 如图所示,下面的推理中正确的是 ( ) A .∵∠1=∠2,∴AB ∥CDB .∵∠ABC +∠BCD =180°,∴AD ∥BC C .∵AD ∥BC ,∴∠3=∠4D .∵∠ABC +∠DAB =180°,∴AD ∥BC 7.命题“若a b >,则1ab>”是真命题还是假命题?请说明理由.8.若等腰三角形腰长为6,则底边x 的取值范围是 ( ) A . 6<x <12 B . 0<x <6 C . 0<x <12 D . 无法确定9. 如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形 10.如图所示,在△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,过点D 作DE ∥BC •交AB 于点E ,过点D 作DF ⊥AB 于点F .求证:BC =DE +EF .四、直击中考1. (2013广西)一个三角形的周长是36cm ,则以这个三角形各边中点为顶点的三角形的周长是( )A .6cmB .12cmC .18cmD .36cm2.(2013衡阳)如图,∠1=100°,∠C =70°,则∠A 的大小是( )A .10°B .20°C .30°D .80°3241D CBA B CE DF A3.(2013鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )A .165°B .120°C .150°D .135°4.(2013黔东南州)在△ABC 中,三个内角∠A 、∠B 、∠C 满足∠B ﹣∠A =∠C ﹣∠B ,则∠B = 度.5.(2013温州)如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,则∠3= 度.6.(2013雅安)若(a ﹣1)2+|b ﹣2|=0,则以a 、b 为边长的等腰三角形的周长为 .7.(2013东城).如图,∠ACD 是△ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A . 设A θ∠=,则1A ∠= ;n A ∠= 8.(2014杭州)下列命题中,正确的是( )A .梯形的对角线相等B . 菱形的对角线不相等C . 矩形的对角线不能互相垂直D . 平行四边想的对角线可以互相垂直五、能力拓展1.如图,OB 、OC 是∠AOD 的任意两条射线,OM 平分∠AOB ,ON 平分∠DOC ,若∠MON =α,∠BOC =β,则∠AOD 可表示为( )A . 2α-βB . α-βC . α+βD . 2α2.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()A.150°B.130°C.120°D.1003.已知等腰三角形的周长为14cm,底边与腰的比为3:2,求各边长.4. 已知a,b,c是一个三角形的三条边长,则化简|a+b-c|-|b-a-c|的结果是多少?5.如图所示,已知等腰直角三角形ABC中,∠ACB=90°,直线L经过点C,•AD•⊥L,BE⊥L,垂足分别为D,E.(1)证明:△ACD≌△CBE;(2)求证:DE=AD+BE;(3)当直线L经过△ABC内部时,其他条件不变,(2)中的结论还成立吗?如果成立,请给出证明;如果不成立,猜想这时DE,AD,BE有什么关系?证明你的猜想.六、挑战竞赛1. 在△ABC中,∠A= 50°, 高BE,CF所在的直线相交于点O,求∠BOC.FEC AB2.△ABC 中,已知∠ABC = 74°, ∠A = 56°, BE 是AC 边上的高,CF 是△ ABC 的角平分线,求∠ACF 和∠BFC .4.如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,求S △ABE .5.如图,45AOB ∠=,过OA 上到点O 的距离分别为1,4,7,10,13,16,…的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为,,,321s s s …,观察图中的规律,第4个黑色梯形的面积=4S ,第n (n 为正整数)个黑色梯形的面积=n S .6.在△ABC 中,AC AB =,D 是底边BC 上一点,E 是线段AD 上一点,且∠BAC CED BED ∠=∠=2.(1) 如图1,若∠︒=90BAC ,猜想DB 与DC 的数量关系为 ; (2) 如图2,若∠︒=60BAC ,猜想DB 与DC 的数量关系,并证明你的结论; (3)若∠︒=αBAC ,请直接写出DB 与DC 的数量关系.OA BCDEA EBCD图1 图2。

直角三角形竞赛资料

直角三角形竞赛资料

八年级数学竞赛培优专题讲义----- 直角三角形知识精讲勾股定理揭示了直角三角形三边之间的关系,在公元前110多年前,商高已经证明了普遍意义下的勾股定理,国外把勾股定理称为“毕达哥拉斯定理”。

勾股定理是平面几何中一个重要定理,其广泛的应用体现在:勾股定理是现阶段线段计算、证明线段平方关系的主要方法;运用勾股定理的逆定理,通过计算也是证明两直线垂直位置关系的一种有效手段。

直角三角形是一类特殊三角形,有着丰富的性质:两锐角互余(角的关系)、勾股定理(边的关系)、300角所对的直角边等于斜边的一半(边角关系),这些性质在求线段的长度、证明线段倍分关系、证明线段平方关系等方面有广泛的应用。

例题精析例1、如图,四边形ABCD 中,DC//AB ,BC=1,AB=AC=AD=2,则BD 的长为( ) A.14 B.15 C.23 D.32例2、如图,在△ABC 中,AC=BC ,∠ACB=90°,D 、E 是边AB 上的两点,AD=3,BE=4, ∠DCE=45°,求△ABC 的面积。

ABCD E图-184例3、如图,在凸四边形ABCD 中,∠ABC=30°,∠ADC=60°,AD=DC. 证明:BD 2=AB 2+BC 2例4、一个直角三角形的边长都是整数,它的面积和周长的数值相等,这样的直角三角形是否存在?若存在,确定它三边的长;若不存在,说明理由。

例5、 如图,设正△ABC 的边长为2,M 是AB 边上的中点,P 是BC 边上的任意一点,PA+PM 的最大值和最小值分别记作S 和T ,求22S T 的值。

186M PBAC例6、设A 是给定的正有理数(1)若A 是一个三边长都是有理数的直角三角形的面积,求证:一定存在3个正有理数x 、y 、z ,使得2222x y y z A -=-=;(2)若存在3个正有理数x 、y 、z ,满足2222x y y z A -=-=,求证:存在一个三边长都是有理数的直角三角形,它的面积等于A 。

八年级数学三角形中位线培优专题训练

八年级数学三角形中位线培优专题训练

八年级数学三角形中位线培优专题训练一、内容提要1. 三角形中位线平行于第三边,并且等于第三边的一半。

梯形中位线平行于两底,并且等于两底和的一半。

2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关系。

3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。

4. 中位线性质定理,常与它的逆定理结合起来用。

它的逆定理就是平行线截比例线段定理及推论,①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等 ②经过三角形一边中点而平行于另一边的直线,必平分第三边 ③经过梯形一腰中点而平行于两底的直线,必平分另一腰 5. 有关线段中点的其他定理还有: ①直角三角形斜边中线等于斜边的一半②等腰三角形底边中线和底上的高,顶角平分线互相重合 ③对角线互相平分的四边形是平行四边形 ④线段中垂线上的点到线段两端的距离相等 因此如何发挥中点作用必须全面考虑。

二、例题例1. 已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中点。

求证:PM =PN证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F ∵△ABM 、△CAN 是等腰直角三角形∴AE =EB=ME ,AF =FC =NF ,根据三角形中位线性质 PE =21AC =NF ,PF =21AB =MEPE ∥AC ,PF ∥AB∴∠PEB =∠BAC =∠PFC 即∠PEM =∠PFN∴△PEM ≌△PFN ∴PM =PN例2.已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC 的中点。

求MN 的长。

分析:N 是BC 的中点,若M 是另一边中点, 则可运用中位线的性质求MN 的长, 根据轴称性质作出△AMC 的全等三角形即可。

辅助线是:延长CM 交AB 于E (证明略 例3.如图已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点 求证:MN ∥AD 证明一:连结EC ,取EC 的中点P ,连结PM 、PNP NMP ∥AB ,MP =21AB ,NP ∥AC ,NP =21AC ∵BE =CF ,∴MP =NP∴∠3=∠4=2MPN-180∠∠MPN +∠BAC =180(两边分平行的两个角相等或互补)∴∠1=∠2=2MPN-180∠ , ∠2=∠3∴NP ∥AC ∴MN ∥AD证明二:连结并延长EM 到G ,使MG =ME 连结CG ,FG则MN ∥FG ,△MCG ≌△MBE ∴CG =BE =CF ∠B =∠BCG∴AB ∥CG ,∠BAC +∠FCG =180∠CAD =21(180-∠FCG ) ∠CFG =21(180-∠FCG )=∠CAD ∴ MN ∥AD 例4. 已知:△ABC 中,AB =AC ,AD 是高,CE 是角平分线,EF ⊥BC 于F ,GE ⊥CE交CB 的延长线于G 求证:FD =41CG 证明要点是:延长GE 交AC 于H , 可证E 是GH 的中点过点E 作EM ∥GC 交HC 于M ,则M 是HC 的中点,EM ∥GC ,EM =21GC由矩形EFDO 可得FD =EO =21EM =41GC三、练习1. 如图11,M 、P 分别为△ABC 的AB 、AC 上 的点,且AM=BM ,AP=2CP ,BP 与CM 相交于N ,已知PN=1,则PB 的长为 ( ) A. 2 B. 3 C .4 D. 52. 如图12,△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB=10,则MD 的长为 ( )A. 10B. 8 C .6 D. 53. 如图13,△ABC 是等边三角形,D 、E 、F 分别是AB 、BC 、AC 的中点,P 为不同于B 、E 、C 的BC 上的任意一点,△DPH 为等边三角形.连接FH ,则EP 与FH 的大小关系是 ( ) A. E P>FH B. EP=FH C. EP<FH D.不确定4. 如图14,在△ABC 中,AD 平分∠BAC ,BD ⊥AD ,DE ∥AC ,交AB 于E ,若AB=5,则DE 的长为 .C5. 如图15,△ABC中,AB=4,AC=7,M为BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN7. 如图16,在△ABC中,D、E是AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点,直线MN分别交AB、AC于P、Q.求证:AP=AQ8. 如图17,BE、CF是△ABC的角平分线,AN⊥BE于N,AM⊥CF于M.求证:MN∥BC.9. 如图18,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD于M.求证:AB+AC=2AM10.如图19,四边形ABCD中,G、H分别是AD、BC的中点,AB=CD.BA、CD的延长线交HG的延长线于E、F.求证:∠BEH=∠CFH.1. 如图20,在△ABC中,∠ABC=2∠C,AD平分∠BAC,过BC的中点M作ME⊥AD,交BA的延长线于E,交AD的延长线于F.求证:12BE BD.2. 如图21,在△ABC中,AB<AC,P为AC上的点,CP=AB,K为AP的中点,M为BC的中点,MK的延长线交BA的长线于N.求证:AN=AK.3. 如图22,分别以△ABC的边AC、BC为腰,A、B为直角顶点,作等腰直角△ACE和等腰直角△BCD,M为ED的中点.求证:AM⊥BM.4. 如图23,点O是四边形ABCD内一点,∠AOB=∠COD=1200,AO=BO,CO=DO,E、F、G分别为AB、CD、BC的中点.求证:△EFG为等边三角形.5. 如图24,△ABC中,M是AB的中点,P是AC的中点,D是MB的中点,N是CD的中点,Q是MN的中点,直线PQ交MB于K.求证:K是DB的中点.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN图21 图22 图23 图24 图257. 如图26,AP是△ABC的角平分线,D、E分别是AB、AC上的点,且BD=CE.又G、H分别为BC、DE的中点.求证:HG∥AP.8. 如图27,已知△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=900,如图(a),连接DE,设M为DE的中点.(1)求证:MB=MC;(2)设∠BAD=∠CAE,固定△ABD,让Rt△ACE绕顶点A在平面内旋转到图(b)的位置,试问MB=MC是否成立?并证明其结论.9. 已知△ABC面积为S,作直线l∥BC,交AB于D,交AC于E,若△BED的积为K.求证:S≥4K.10.如图28,在△ABC中,AB=AC,D是BC边上的一点,E是线段AD上的一点.且∠BED=2∠CED=∠BAC.求证:BD=2CD.图26 图27。

第一章:解直角三角形培优训练试题

第一章:解直角三角形培优训练试题

第一章:解直角三角形培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.如图,某地修建的一座建筑物的截面图的高BC =5m ,坡面AB 的坡度为1:3,则AB 的长度为( ) A .10mB .103mC .5mD .53m2.如图,某数学兴趣小组测量一棵树的高度,在点A 处测得树顶C 的仰角为045,在点B 处测得树顶C 的仰角为060,且A ,B ,D 三点在同一直线上,若m AB 16=,则这棵树CD 的高度是( ) A .()m 338-B .()m 338+C .()m 336-D .()m 336+3.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则cos ∠ADC 的值为( )A .13132 B .13133 C .32 D .35 4.如图,已知△ABC 内接于半径为1的⊙O ,∠BAC=θ(θ是锐角),则△ABC 的面积的最大值为( ) A .cos θ(1+cos θ) B .cos θ(1+sin θ) C .sin θ(1+sin θ) D .sin θ(1+cos θ)5.在中,、均为锐角,且,则是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 6.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为( )(精确到1m .参考数据:,,,)A .28mB .34mC .37mD .46m7.如图,AB 是半圆的直径,ABC ∠的平分线分别交弦AC 和半圆于E 和D ,若2BE DE =,4AB =,则AE 长为( ) A .2B .21+C .6D .4338.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为( )米A .5250600-B .2503600-C .3350350+D .35009.如图,等腰△ABC 的面积为2,AB=AC ,BC=2.作AE ∥BC 且AE=BC.点P 是线段AB 上一动点,连接PE ,过点E 作PE 的垂线交BC 的延长线于点F ,M 是线段EF 的中点.那么,当点P 从A 点运动到B 点时,点M 的运动路径长为( ) A .3B .3C .32D .410.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论:①∠BAE =∠EAF ;②射线FE 是∠AFC 的角平分线;③CF =14CD ;④AF =AB +CF .其中正确结论的个数为( )A .1个B .2个C .3个D .4个二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.如图,在矩形ABCD 中,22==BC AB ,将线段AB 绕点A 按逆时针方向旋转,使得点B 落在边CD 上的点B '处,线段AB 扫过的面积为12.某校数学兴趣小组开展无人机测旗杆的活动:已知无人机的飞行高度为30m ,当无人机飞行至A 处时,观测旗杆顶部的俯角为30°,继续飞行20m 到达B 处,测得旗杆顶部的俯角为60°,则旗杆的高度约为 m .(参考数据:732.13≈,结果按四舍五八保留一位小数)13.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行m 30到达斜坡的底部点C 处,然后沿斜坡前行m 20到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为030,已知斜坡的斜面坡度3:1=i ,且点A ,B ,C ,D ,在同一平面内,小明同学测得古塔的高度是 .14.如图,在△ABC 中,AC =6,BC =8,点D 、E 分别在AC 、BC 上,点F 在△ABC 内.若四边形CDFE 是边长为2的正方形,则cos ∠ABF =15.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在Rt △ABC 中,∠C=90°,若Rt △ABC 是“好玩三角形”,则tanA=16.如图.点E 在正方形ABCD 的边BC 上,2BE=3CE ,过点D 作AE 的垂线交AB 于F ,点G 为垂足,若FG=3,则EG 的长为三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)计算下列各式:(1)000030cos 45cos 60tan 30cos ⋅- (2)0002030sin 30tan 2345sin 260cos -+-18.(本题8分)如图,在△ABC 中,∠C=90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连结EF .(1)求证:∠1=∠F .(2)若55sin =B ,52=EF ,求CD 的长.19(本题8分)如图,在Rt △ABC 中,∠ACB=90°,AC=BC=3,点D 在边AC 上,且AD=2CD ,DE ⊥AB ,垂足为点E ,联结CE ,求:(1)线段BE 的长;(2)求ECB ∠tan20.(本题10分)如图,某大楼的顶部竖有一块广告牌CD ,小明与同学们在山坡的坡脚A 处测得广告牌底部D 的仰角为53°,沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i =1:3,AB =10米,AE =21米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:2≈1.41,3≈1.73,sin53°≈54,cos53°≈53,tan53°≈34) (1)求点B 距水平地面AE 的高度;(2)求广告牌CD 的高度.(结果精确到0.1米)21.(本题10分)如图,“中国海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B 、C 两地相距120海里.(1)求出此时点A 到岛礁C 的距离; (2)若“中海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A ′时,测得点B 在A ′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)22.(本题12分)如图,抛物线y=﹣x 2+6x 与x 轴交于点O ,A ,顶点为B ,动点E 在抛物线对称轴上,点F 在对称轴右侧抛物线上,点C 在x 轴正半轴上,且OC EF //,连接OE ,CF 得四边形OCFE . (1)求B 点坐标;(2)当tan ∠EOC=34时,显然满足条件的四边形有两个,求出相应的点F 的坐标;(3)当0<tan ∠EOC <3时,对于每一个确定的tan ∠EOC 值,满足条件的四边形OCFE 有两个,当这两个四边形的面积之比为1:2时,求tan ∠EOC .23(本题12分).在△ABC 中,∠ABC=90°.(1)如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN ;(2)如图2,P 是边BC 上一点,∠BAP=∠C ,tan ∠PAC =552 ,求C tan 的值; (3)如图3,D 是边CA 延长线上一点,AE=AB ,∠DEB=90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值.。

北师大版八年级数学下册《第1章 三角形的证明》单元培优测试卷【附答案】

北师大版八年级数学下册《第1章 三角形的证明》单元培优测试卷【附答案】

北师大版八年级数学下册《第1章三角形的证明》单元培优测试卷一、选择题1.下列命题中,是假命题的是( )A.等腰三角形三个内角的和等于180°B.等腰三角形两边的平方和等于第三边的平方C.角平分线上的点到这个角两边的距离相等D.线段垂直平分线上的点到这条线段两个端点的距离相等2.下列几组数中,能作为直角三角形三边长的是( )A.2,4,5B.3,4,5C.4,4,5D.5,4,53.在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是( )A.25°B.25°或40°C.25°或35°D.40°4.如图,在△ABC中,AI平分∠BAC,BI平分∠ABC,点O是AC、BC的垂直平分线的交点,连接AO、BO,若∠AIB=α,则∠AOB的大小为( )A.αB.4α﹣360°C.α+90°D.180°﹣α5.如图,在△ABC中,AC=6,BC=8,∠C=90°,∠ABC与∠BAC的平分线交于点D,过点D作DE∥AC交AB于点E,则DE=( )A.B.2C.D.36.如图,在△ABC中,∠B=74°,边AC的垂直平分线交BC于点D,交AC于点E,若AB+BD=BC,则∠BAC的度数为( )A.74°B.69°C.65°D.60°7.下列命题正确的是( )A.三角形的一个外角大于任何一个内角B.三角形的三条高都在三角形内部C.三角形的一条中线将三角形分成两个三角形面积相等D.两边和其中一边的对角相等的三角形全等8.等腰三角形一边的长为4cm,周长是18cm,则底边的长是( )A.4cm B.10cm C.7或10cm D.4或10cm二、填空题9.如图,BD、CE是等边三角形ABC的中线,则∠EFD=.10.如图,在△ABC中,AB=BC,BE平分∠ABC,AD为BC边上的高,且AD=BD.则∠3=°.11.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形,且△AOP的面积为16,则满足条件的P点个数是.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是°.13.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为60,AB=16,BC=14,则DE的长等于.14.如图,在△ABC中,线段AB的垂直平分线交AC于点D,连接BD,若∠C=80°,∠CBD=40°,则∠A的度数为°.15.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是.16.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点,且AB=8,BC=6,则△BEC的周长是.17.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于E点,∠B=50°,∠FAE=20°,则∠C=度.18.已知C,D两点在线段AB的垂直平分线上,且∠ACB=50°,∠ADB=86°,则∠CAD的度数是.三、解答题19.如图,△ABC中,∠ABC=25°,∠ACB=55°,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若BC的长为30,求△DAF的周长.20.如图,在△ABC中,AB=AC,DE垂直平分AC,CE⊥AB,AF⊥BC.(1)求证:CF=EF;(2)求∠EFB的度数.21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连接CD、DE,已知∠EDB=∠ACD,BC=6,(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,EC=8时,求△EDC的面积.22.如图,在Rt△ABC中,∠ACB=90°,△CAP和△CBQ都是等边三角形,BQ和CP 交于点H,求证:BQ⊥CP.23.△ABC中,AB=AC,∠B=30°,点P在BC边上运动(P不与B、C重合),连接AP,作∠APQ=∠B,PQ交AB于点Q.(1)如图1,当PQ∥CA时,判断△APB的形状并说明理由;(2)在点P的运动过程中,△APQ的形状可以是等腰三角形吗?若可以,请直接写出∠BQP的度数;若不可以,请说明理由.24.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.25.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE 的中点,BE=AC.(1)求证:AD⊥BC.(2)若∠BAC=75°,求∠B的度数.26.已知△ABC中,D为边BC上一点,AB=AD=CD.(1)试说明∠ABC=2∠C;(2)过点B作AD的平行线交CA的延长线于点E,若AD平分∠BAC,求证:AE=AB.参考答案1.解:A、等腰三角形三个内角的和等于180°,正确,是真命题,不符合题意;B、直角三角形两边的平方和等于第三边的平方,故原命题错误,是假命题,符合题意;C、角平分线上的点到这个角两边的距离相等,正确,是真命题,不符合题意;D、线段垂直平分线上的点到这条线段两个端点的距离相等,正确,是真命题,不符合题意,故选:B.2.解:A、22+42≠52,根据勾股定理的逆定理可知三角形不是直角三角形,故不合题意;B、32+42=52,根据勾股定理的逆定理可知三角形是直角三角形,故符合题意;C、42+42≠52,根据勾股定理的逆定理可知三角形不是直角三角形,故不合题意;D、42+52≠52,根据勾股定理的逆定理可知三角形不是直角三角形,故不合题意;故选:B.3.解:当50°为底角时,∵∠B=∠ACB=50°,∴∠BCD=90°﹣50°=40°;当50°为顶角时,∵∠A=50°,∴∠B=∠ACB=65°,∴∠BCD=90°﹣65°=25°.故选:B.4.解:连接CO并延长至D,∵∠AIB=α,∴∠IAB+∠IBA=180°﹣α,∵AI平分∠BAC,BI平分∠ABC,∴∠IAB=∠CAB,∠IBA=∠CBA,∴∠CAB+∠CBA=2(∠IAB+∠IBA)=360°﹣2α,∴∠ACB=180°﹣(∠CAB+∠CBA)=2α﹣180°,∵点O是AC、BC的垂直平分线的交点,∴OA=OC,OB=OC,∴∠OCA=∠OAC,∠OCB=∠OBC,∵∠AOD是△AOC的一个外角,∴∠AOD=∠OCA+∠OAC=2∠OCA,同理,∠BOD=∠OCB,∴∠AOB=∠AOD+∠BOD=2∠OCA+2∠OCB=4α﹣360°,故选:B.5.解:延长ED交BC于点G,作DF⊥AB于点F,作DH⊥AC于点H,∵DE∥AC,∠C=90°,∴∠BGE=∠C=90°,∴EG⊥BC,∴∠DGC=∠DHC=∠C=90°,∴四边形DGCH为矩形,∵AD平分∠BAC,BD平分∠ABC,DF⊥AB,DH⊥AC,DG⊥BC,∴DF=DM,DG=DF,∴DH=DG,∴四边形DGCH为正方形,在Rt△BDG和Rt△BDF中,,∴Rt△BDG≌Rt△BDF(HL),∴BF=BG,同理可得:Rt△AHD≌Rt△AFD,由勾股定理可得:AB2=AC2+BC2=100,∴AB=10,设CH=CG=x,则AH=6﹣x,BG=8﹣x,∴AF=6﹣x,BF=8﹣x,∴AB=10=AF+BF=6﹣x+8﹣x=14﹣2x,即14﹣2x=10,解得:x=2,∴CH=CG=2,BG=6,∵DE∥AC,∴△BEG∽△BAC,∴,即,∴EG=4.5,∴DE=EG﹣DG=4.5﹣2=2.5,故选:A.6.解:如图,连接AD,∵边AC的垂直平分线交BC于点D,∴AD=CD,∴∠DAC=∠C,∵AB+BD=BC,BD+CD=BC,∴CD=AB,∴AD=AB,∴∠ABD=∠ADB=74°,∴∠C=37°,∴∠BAC=180°﹣74°﹣37°=69°,故选:B.7.解:A、三角形的一个外角大于与它不相邻的任何一个内角,原命题是假命题;B、钝角三角形的三条高不在三角形内部,原命题是假命题;C、三角形的一条中线将三角形分成两个三角形面积相等,是真命题;D、两边和其夹角相等的三角形全等,原命题是假命题;故选:C.8.解:分情况考虑:①当4cm是腰时,则底边长是18﹣8=10(cm),此时4,4,10不能组成三角形,应舍去;②当4cm是底边时,腰长是(18﹣4)×=7(cm),4,7,7能够组成三角形.此时底边的长是4cm.故选:A.9.解:∵BD、CE是等边三角形ABC的中线,∴BD⊥AC,CE⊥AB,∠A=60°,∴∠AEF=∠ADF=90°,∵∠EFD=360°﹣90°﹣90°﹣∠A=180°﹣60°=120°.故答案为120°.10.解:∵AD为BC边上的高,∴∠ADB=90°,∵AD=BD,∴∠ABD=∠BAD=(180°﹣∠ADB)=45°,∵BE平分∠ABC,∴∠1=∠2=∠ABD=22.5°,BE⊥AC,∴∠BEA=90°=∠ADB,∵∠3+∠BEA+∠AHE=180°,∠2+∠ADB+∠BHD=180°,∠AHE=∠BHD,∴∠3=∠2=22.5°.故答案为:22.5°.11.解:∵A(8,0),∴OA=8,设△AOP的边OA上的高是h,则×8×h=16,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①以A为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,②以O为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,③作AO的垂直平分线分别交直线a、b于一点,即共2个点符合,4+4+1+1=10.故答案为:10.12.解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故答案为:80°或20.13.解:作DF⊥BC于F,∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,∴DF=DE,∴S△ABC=S△ABD+S△DBC=×AB×DE+×BC×DF==60,∴DF=DE=4.故答案为:4.14.解:∵∠C=80°,∠CBD=40°,∴∠CDB=180°﹣∠C﹣∠CBD=60°,∵线段AB的垂直平分线交AC于点D,∴DA=DB,∴∠A=∠DBA=∠CDB=30°,故答案为:30.15.解:∵AB=AC,D为BC的中点,∴∠CAD=∠BAD=20°,AD⊥BC,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==80°,∴∠CDE=∠ADC﹣∠ADE=90°﹣80°=10°.故答案为:10°.16.解:在Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是边AB的垂直平分线,∴EA=EB,∴△BEC的周长=BC+EC+BE=BC+EC+EA=BC+AC=16,故答案为:16.17.解:∵DE是线段AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∵AF平分∠BAC,∴∠BAF=∠CAF=∠FAE+∠CAE=20°+∠C,由三角形内角和定理得,∠B+∠BAC+∠C=180°,即50°+20°+∠C+20°+∠C+∠C=180°,解得,∠C=30°,故答案为:30.18.解:∵C、D两点在线段AB的中垂线上,∴CA=CB,DA=DB,∵CD⊥AB,∴∠ACD=∠ACB=×50°=25°,∠ADC=∠ADB=×86°=43°,当点C与点D在线段AB两侧时,∠CAD=180°﹣∠ACD﹣∠ADC=180°﹣25°﹣43°=112°,当点C与点D′在线段AB同侧时,∠CAD′=∠AD′C﹣∠ACD′=43°﹣25°=18°,故答案为:18°或112°.19.解:(1)∵∠ABC=25°,∠ACB=55°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°;(2)∵DE,FG分别为AB,AC的垂直平分线,∴DA=DB,FA=FC,∴∠DAB=∠ABC=25°,∠FAC=∠ACB=55°,∴∠DAF=∠BAC﹣∠DAB﹣∠FAC=20°;(3)△DAF的周长=DA+DF+FA=DB+DF+FC=BC=30.20.证明:(1)∵AB=AC,AF⊥BC,∴BF=CF,又∵CE⊥AB,∴CF=EF;(2)∵DE垂直平分AC,∴AE=EC,又∵∠AEC=90°,∴∠ACE=∠EAC=45°,∴∠B=∠ACB=67.5°,∵EF=CF=BF,∴∠BEF=∠FBE=67.5°,∴∠EFB=45°.21.(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴DE=DC,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,如图,过D作DH⊥CE于H,∵△DEC是等腰直角三角形,∴∠EDH=∠E=45°,∴EH=HC=DH=EC=8=4,∴△EDC的面积=EC•DH=8×4=16.22.证明:∵△CAP和△CBQ都是等边三角形,∴∠CAP=∠CBQ=60°,∵∠ACB=90°,∴∠BCP=∠ACB﹣∠ACP=30°,在△BCH中,∠BHC=180°﹣∠BCH﹣∠CBH=180°﹣30°﹣60°=90°,∴BQ⊥CP.23.解:(1)△APB是直角三角形,理由如下:∵AB=AC,∠B=30°,∴∠C=30°=∠B=∠APQ,∵PQ∥AC,∴∠BPQ=∠C,∴∠APB=60°,∴∠BAP=90°,∴△APB是直角三角形;(2)当AQ=QP时,∴∠QAP=∠APQ=30°,∴∠BQP=∠QAP+∠APQ=60°,当AP=PQ时,则∠AQP=∠PAQ=75°,∴∠BQP=105°,当AQ=AP时,则∠AQP=∠APQ=30°,∵P不与B、C重合,∴不存在,综上所述:∠BQP=105°或60°.24.证明:∵∠BAC=90°,∴∠ABC+∠C=90°,∵AM⊥BC,∴∠AMB=90°,∴∠ABC+∠BAM=90°,∴∠C=∠BAM,∵AD平分∠MAC,∴∠MAD=∠CAD,∴∠BAM+∠MAD=∠C+∠CAD,∵∠ADB=∠C+∠CAD,∴∠BAD=∠ADB,∴AB=BD,∵BE平分∠ABC,∴BF⊥AD,AF=FD,即线段BF垂直平分线段AD.25.解:(1)连接AE,∵EF垂直平分AB∴AE=BE∵BE=AC∴AE=AC∵D是EC的中点∴AD⊥BC(2)设∠B=x°∵AE=BE∴∠BAE=∠B=x°∴由三角形的外角的性质,∠AEC=2x°∵AE=AC∴∠C=∠AEC=2x°在三角形ABC中,3x°+75°=180°x°=35°∴∠B=35°26.证明:(1)∵AB=AD,∴∠ABC=∠ADB,∵AD=CD,∴∠DAC=∠C,∵∠ADB=∠DAC+∠C=2∠C,∴∠ABC=2∠C;(2)∵AD平分∠BAC,∴∠DAB=∠CAD,∵BE∥AD,∴∠DAB=∠ABE,∠E=∠CAD,∴∠ABE=∠E,∴AE=AB.。

特殊三角形培优专项训练(解析版)

特殊三角形培优专项训练(解析版)

【期末复习】浙教版八年级上册提分专题:特殊三角形培优专项训练一.选择题1.(等腰直角三角形“手拉手”模型)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断.【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC,∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.2.(共斜边的直角三角形+勾股定理)如图,△ABC中,BC=18,若BD⊥AC于D点,CE⊥AB于E点,F,G分别为BC、DE的中点,若ED=10,则FG的长为()A.2B.C.8D.9【分析】连接EF、DF,根据直角三角形的性质得到EF=BC=9,得到FE=FD,根据等腰三角形的性质得到FG⊥DE,GE=GD=DE=5,根据勾股定理计算即可.【解答】解:连接EF、DF,∵BD⊥AC,F为BC的中点,∴DF=BC=9,同理,EF=BC=9,∴FE=FD,又G为DE的中点,∴FG⊥DE,GE=GD=DE=5,由勾股定理得,FG==2,故选:A.3.(直角三角形勾股定理与面积)如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【分析】如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,根据△ACG,△BCH,△ABF是等边三角形,求得S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,根据勾股定理得到c2=a2+b2,于是得到结论.【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.4.(轴对称与勾股定理综合)如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上,AD=AC,AE ⊥CD,垂足为F,与BC交于点E,则BE的长是()A.3B.5C.D.6【分析】连接DE,由勾股定理求出AB=5,由等腰三角形的性质得出CF=DF,由线段垂直平分线的性质得出CE=DE,由SSS证明△ADE≌△ACE,得出∠ADE=∠ACE=∠BDE=90°,设CE=DE=x,则BE=8﹣x,在Rt△BDE中,由勾股定理得出方程,解方程即可.【解答】解:连接DE,如图所示,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,∵AD=AC=6,AF⊥CD,∴DF=CF,∴CE=DE,BD=AB﹣AD=4,在△ADE和△ACE中,,∴△ADE≌△ACE(SSS),∴∠ADE=∠ACE=90°,∴∠BDE=90°,设CE=DE=x,则BE=8﹣x,在Rt△BDE中,由勾股定理得:DE2+BD2=BE2,即x2+42=(8﹣x)2,解得:x=3;∴CE=3;∴BE=8﹣3=5.故选:B.5.(勾股定理+中点)如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=5,AD=,则AB的长为()A.10B.4C.D.8【分析】设EC=x,DC=y,则直角△BCE中,x2+4y2=BE2=25,在直角△ADC中,4x2+y2=AD2=55,解方程组可求得x、y,在直角△ABC中,根据勾股定理求得AB.【解答】解:设EC=x,DC=y,∠ACB=90°,∴在直角△BCE中,CE2+BC2=x2+4y2=BE2=25.在直角△ADC中,AC2+CD2=4x2+y2=AD2=55,解得x=,y=.在直角△ABC中,AB===8.故选:D.6.(勾股定理与面积规律)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1﹣S2+S3+S4等于()A.4B.6C.8D.12【分析】过F作AM的垂线交AM于D,通过证明S2=S Rt△ABC;S3=S△FPT;S4=S Rt△ABC,进而即可求解.【解答】解:过F作AM的垂线交AM于D,可证明Rt△ADF≌Rt△ABC,Rt△DFK≌Rt△CAT,所以S2=S Rt△ABC.由Rt△DFK≌Rt△CAT可进一步证得:Rt△FPT≌Rt△EMK,∴S3=S△FPT,又可证得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S Rt△ABC.易证Rt△ABC≌Rt△EBN,∴S4=S Rt△ABC,∴S1﹣S2+S3+S4=(S1+S3)﹣S2+S4=S Rt△ABC﹣S Rt△ABC+S Rt△ABC=6﹣6+6=6,故选:B.7.(勾股定理与整体思想)如图,在等腰直角△ABC中,∠BAC=90°,AD是△ABC的高线,E是边AC上一点,分别作EF⊥AD于点F,EG⊥BC于点G,几何原本中曾用该图证明了BG2+CG2=2(BD2+DG2),若△ABD与△AEF的面积和为8.5,BG=5,则CG的长为()A.2B.2.5C.3D.3.5【分析】由S△AEF+S△ABD=8.5,得BD2+DG2=17,从而有BG2+CG2=34,即可得出答案.【解答】解:由题意知:△ABD,△AEF都是等腰直角三角形,∴S△AEF=,S,∵S△AEF+S△ABD=8.5,∴BD2+DG2=17,∵BG2+CG2=2(BD2+DG2),∴BG2+CG2=34,∵BG=5,∴CG==3,故选:C.8.(等边三角形“手拉手”模型)已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列六个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤BD∥MN.⑥CP平分∠BPD其中,正确的有()A.3个B.4个C.5个D.6个【分析】①根据等边三角形的性质得CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,则∠ACE=60°,利用“SAS”可判断△ACD≌△BCE,则AD=BE;②由△ACD≌△BCE得到∠CAD=∠CBE,然后根据“ASA”判断△ACN≌△BCM,即可解决问题;③根据三角形内角和定理可得∠CAD+∠CDA=60°,而∠CAD=∠CBE,则∠CBE+∠CDA=60°,然后再利用三角形内角和定理即可得到∠BPD=120°,即可得到结论;④由△ACD≌△BCE得到∠CAD=∠CBE,然后根据“ASA”判断△ACN≌△BCM,所以AN=BM;⑤由△ACN≌△BCM得到CN=BM,加上∠MCN=60°,则根据等边三角形的判定即可得到△CMN为等边三角形,得到∠CMN=60°,所以∠CMN=∠BCM,于是根据平行线的判定即可得到MN∥BC;⑥作CH⊥BE于H,CQ⊥AD于Q,如图,由△ACD≌△BCE得到CQ=CH,于是根据角平分线的判定定理即可得到CP平分∠BPD.【解答】证明:①∵△ABC和△CDE都是等边三角形,∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,∴∠ACE=60°,∴∠ACD=∠BCE=120°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;②∵△ACD≌△BCE,∴∠CAD=∠CBE,在△ACN和△BCM中,,∴△ACN≌△BCM(ASA),∴AN=BM,∠BMC=∠ANC;故②④正确;③∵∠CAD+∠CDA=60°,而∠CAD=∠CBE,∴∠CBE+∠CDA=60°,∴∠BPD=120°,∴∠APM=60°;故③正确;⑤∵△ACN≌△BCM,∴CN=BM,而∠MCN=60°,∴△CMN为等边三角形;∴∠CMN=60°,∴∠CMN=∠BCM,∴MN∥BC;故⑤正确;⑥作CH⊥BE于H,CQ⊥AD于Q,如图,∵△ACD≌△BCE,∴CQ=CH,∴CP平分∠BPD,故⑥正确.正确的有:①②③④⑤⑥,共6个.故选:D.9.(三角形与特殊三角形性质的综合)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.下列结论正确的有()个.①BF=AC;②CE=BF;③△DGF是等腰三角形;④BD+DF=BC;⑤;A.5B.4C.3D.2【分析】由“AAS”可证△BDF≌△CDA,可得BF=AC,故①正确.由等腰三角形的性质可得AE=EC=AC =BF,故②正确,由角的数量关系可求∠DGF=∠DFG=67.5°,可得DG=DF,即△DGF是等腰直角三角形,故③正确.由全等三角形的性质可得DF=DA,则可得BC=AB=BD+DF,故④正确;由角平分线的性质可得点F到AB的距离等于点F到BC的距离,由三角形的面积公式可求=,故⑤正确,即可求解.【解答】解:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中,∴△BDF≌△CDA(AAS),∴BF=AC,故①正确.∵∠ABE=∠EBC=22.5°,BE⊥AC,∴∠A=∠BCA=67.5°,∴BA=BC,∵BE⊥AC,∴AE=EC=AC=BF,故②正确,∵BE平分∠ABC,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDC=90°,BH=HC,∴∠BHG=90°,∴∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF,∴△DGF是等腰直角三角形,故③正确.∵△BDF≌△CDA,∴DF=AD,∴BC=AB=BD+AD=BD+DF,故④正确;∵BE平分∠ABC,∴点F到AB的距离等于点F到BC的距离,∴=,故⑤正确,故选:A.10.(折叠与勾股定理求长度)如图,已知长方形纸片ABCD,点E在边AB上,且BE=2,BC=3,将△CBE沿直线CE翻折,使点B落在点G,延长EG交CD于点F处,则线段FG的长为()A.B.C.D.1【分析】由将△CBE沿直线CE翻折,使点B落在点G,可得∠BEC=∠GEC,GE=BE=2,CG=BC=3,CF =EF,设FG=x,则CF=EF=x+2,根据勾股定理可得x2+32=(x+2)2,即可解得答案.【解答】解:∵将△CBE沿直线CE翻折,使点B落在点G,∴∠BEC=∠GEC,GE=BE=2,CG=BC=3,∵四边形ABCD是矩形,∴CD∥AB,∴∠BEC=∠FCE,∴∠GEC=∠FCE,∴CF=EF,设FG=x,则CF=EF=x+2,在Rt△CFG中,FG2+CG2=CF2,∴x2+32=(x+2)2,解得x=,∴FG=,故选:A.11.(三角形与特殊三角形性质的综合)如图,在Rt△ABC中,CA=CB,D为斜边AB的中点,Rt∠EDF在△ABC 内绕点D转动,分别交边AC,BC点E,F(点E不与点A,C重合),下列说法正确的是()①∠DEF=45°;②BF2+AE2=EF2;③CD<EF≤CD.A.①②B.①③C.②③D.①②③【分析】由“ASA”可证△ADE≌△CDF,可得DE=DF,AE=CF,可得∠DEF=∠DFE=45°,EC=BF,可判断①,在直角三角形CEF中,由勾股定理可得BF2+AE2=EF2,可判断②,由特殊位置可求CD的范围,可判断③,即可求解.【解答】解:∵∠ACB=90°,CA=CB,D为斜边AB的中点,∴CD=AD=DB,∠A=∠B=∠ACD=∠BCD=45°,AB⊥CD,∵ED⊥FD,∴∠EDF=∠ADC=90°,∴∠ADE=△CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴DE=DF,AE=CF,∴∠DEF=∠DFE=45°,AC﹣AE=BC﹣CF,故①正确;∴EC=BF,∵CF2+CE2=EF2;∴BF2+AE2=EF2;故②正确;当点E与点A重合时,EF=AC=CD,当DE⊥AC时,则DF⊥BC,∴四边形DECF是矩形,∴EF=CD,∴CD≤EF<CD,故③错误,故选:A.二.填空题12.(中垂线性质定理与特殊角的应用)在△ABC中,∠A=15°,∠C=30°,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,DE=2,则AC的长为.【分析】利用线段垂直平分线的性质,说明△BCE和△ADB是等腰三角形,再利用等腰三角形的性质求出∠BEA和∠BDC的度数,利用特殊的直角三角形的性质求出BE、DB的长,最后利用线段的和差关系得结论.【解答】解:∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴CE=BE,BD=AD.∴∠C=∠CBE=30°,∠A=∠ABD=15°.∴∠BDC=∠A+∠ABD=30°,∠BEA=∠C+∠CBE=60°.∴∠EBD=90°.在Rt△BED中,∵ED=2,∠BDC=30°,∴BE=1,BD=.∴CE=BE,AD=BD.∴AC=CE+AD+ED=1+2+=3+.故答案为:3+.13.(特殊三角形的判定)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.【分析】首先根据旋转的性质得出,△EBE′是直角三角形,进而得出∠BEE′=∠BE′E=45°,即可得出答案.【解答】解:连接EE′∵△ABE绕点B顺时针旋转90°到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=∠BE′C∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为:135.14.(赵爽弦图)如图由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNPQ的面积分别为S1,S2,S3,若S1+S2+S3=60,则S2的值是.【分析】先设一个直角三角形的面积为x,然后结合正方形ABCD,正方形EFGH,正方形MNPQ的面积关系和S1+S2+S3=60得到S2的值.【解答】解:设一个直角三角形的面积为x,∵图中的三角形全等,∴S1=S2﹣4x,S3=S2+4x,∵S1+S2+S3=60,∴S2﹣4x+S2+S2+4x=60,∴S2=20.故答案为:20.15.(直角三角形的分类讨论)如图,已知Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P是BC边上的一个动点,点B与B′是关于直线AP的对称点,当△CPB'是直角三角形时,BP的长=.【分析】分两种情形:∠PCB′=90°,∠CPB′=90°,利用勾股定理构建方程求解即可.【解答】解:如图1中,当∠PCB′=90°时,设PB=PB′=x.∵AC=3,CB=4,∠ACB=90°,∴AB===5,由翻折的性质可知,AB=AB′=5,在Rt△PCB′中,PC2+CB′2=PB′2,∴(4﹣x)2+22=x2,∴x=,∴PB=.如图2中,当∠CPB′=90°,设PB=y.过点A作AT⊥B′P交B′P的延长线于点T,则四边形ACPT是矩形,∴PT=AC=3,AT=CP=4﹣y,在Rt△ATB′中,AB′2=AT2+B′T2,∴52=(4﹣y)2+(y+3)2,解得y=1或0(0舍弃),∴PB=1,综上所述,PB的值为:1或.16.(将军饮马)如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,M、N、P分别是边AB、AC、BC上的动点,连接PM、PN和MN,则PM+PN+MN的最小值是.【分析】如图,作点P关于AB,AC的对称点E,F,连接PE,PF,P A,EM,FN,AE,AF.首先证明E,A,F共线,则PM+MN+PN=EM+MN+NF≥EF,推出EF的值最小时,PM+MN+PN的值最小,求出P A的最小值,可得结论.【解答】解:如图,作点P关于AB,AC的对称点E,F,连接PE,PF,P A,EM,FN,AE,AF.∵∠BAC=90°,AB=4,AC=3,∴BC===5,由对称的性质可知,AE=AP=AF,∠BAP=∠BAE,∠CAP=∠CAF,∵∠P AB+∠P AC=∠BAC=90°,∴∠EAF=180°,∴E,A,F共线,∵ME=MP,NF=NP,∴PM+MN+PN=EM+MN+NF,∵EM+MN+NF≥EF,∴EF的值最小时,PM+MN+PN的值最小,∵EF=2P A,∴当P A⊥BC时,P A的值最小,此时P A==,∴PM+MN+PN≥,∴PM+MN+PN的最小值为.故答案为:.17.(角平分线与将军饮马)如图,BD是Rt△ABC的角平分线,点F是BD上的动点,已知AC=2,AE=2﹣2,∠ABC=30°,则:(1)BE=.(2)AF+EF的最小值是.【分析】(1)根据直角三角形的性质得到BC=2AC=4,由勾股定理得到AB===2,于是得到结论;(2)作点A关于BD的对称点A′,根据等腰三角形的性质得到点A′落在BC上,求得A′B=AB=2,连接A′E交BD于F,则此时AF+EF的值最小且等于A′E,过E作EH⊥BC于H,根据勾股定理即可得到结论.【解答】解:(1)∵∠BAC=90°,AC=2,∠ABC=30°,∴BC=2AC=4,∴AB===2,∵AE=2﹣2,∴BE=2;故答案为:2;(2)作点A关于BD的对称点A′,∵BD是Rt△ABC的角平分线,∴点A′落在BC上,∴A′B=AB=2,连接A′E交BD于F,则此时AF+EF的值最小且等于A′E,过E作EH⊥BC于H,∴EH=BE=1,BH==,∴A′H=,∴BH=A′H,∴A′E=BE=2,∴AF+EF的最小值是2,故答案为:2.18.(折叠与直角三角形分类讨论)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=2,点D在AB上,连结CD,将△ADC沿CD折叠,点A的对称点为E,CE交AB于点F,△DEF为直角三角形,则CF=.【分析】分两种情况讨论,当∠EFD=90°时和当∠EDF=90°时,然后利用折叠的性质和含30°角的直角三角形三边关系求解.【解答】解:∵∠A=30°,∠ACB=90°,BC=2,∴AB=2BC=4,AC=2,∠B=60°,由折叠得,∠E=∠A=30°,①如图1,当∠EFD=90°时,∠BFC=90°,∵∠B=60°,∴∠BCF=30°,∴BF=BC=×2=1,CF=BF=;②如图2,当∠EDF=90°时,∵∠E=30°,∴∠EFD=60°,∴∠BFC=60°,∵∠B=60°,∴△BFC是等边三角形,∴CF=BC=2,综上所述,当△BFC为直角三角形时,CF=2或.故答案为:2或.三.解答题19.(“两定一动”型等腰三角形分类讨论)如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D从点C出发,沿边CA往A运动,当运动到点A时停止,若设点D运动的时间为t秒,点D运动的速度为每秒1个单位长度.(1)当t=2时,CD=,AD=;(请直接写出答案)(2)当△CBD是直角三角形时,t=;(请直接写出答案)(3)求当t为何值时,△CBD是等腰三角形?并说明理由.【分析】(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC﹣CD代入数据进行计算即可得解;(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;(3)分①CD=BD时,过点D作DE⊥BC于E,根据等腰三角形三线合一的性质可得CE=BE,从而得到CD =AD;②CD=BC时,CD=6;③BD=BC时,过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【解答】解:(1)t=2时,CD=2×1=2,∵∠ABC=90°,AB=8,BC=6,∴AC===10,AD=AC﹣CD=10﹣2=8;(2)①∠CDB=90°时,S△ABC=AC•BD=AB•BC,即×10•BD=×8×6,解得BD=4.8,∴CD===3.6,t=3.6÷1=3.6秒;②∠CBD=90°时,点D和点A重合,t=10÷1=10秒,综上所述,t=3.6或10秒;故答案为:(1)2,8;(2)3.6或10秒;(3)①CD=BD时,如图1,过点D作DE⊥BC于E,则CE=BE,∴CD=AD=AC=×10=5,t=5÷1=5;②CD=BC时,CD=6,t=6÷1=6;③BD=BC时,如图2,过点B作BF⊥AC于F,则CF=3.6,CD=2CF=3.6×2=7.2,∴t=7.2÷1=7.2,综上所述,t=5秒或6秒或7.2秒时,△CBD是等腰三角形.20.(直角三角形判定与角度转化)如图,△ABC是等腰直角三角形,∠HAC=30°,∠ACD=α,点D是线段AH 上的一个动点,连接CD,将线段CD绕C点顺时针旋转90°至点E,连接DE交BC于点F.(1)连接BE,求证:△ACD≌△BCE;(2)当α=15°时,判断△BEF是什么三角形?并说明理由.(3)在点D运动过程中,当△BEF是锐角三角形时,求α的取值范围.【分析】(1)根据同角的余角相等得到∠ACD=∠BCE,利用SAS定理证明△ACD≌△BCE;(2)根据三角形内角和定理求出∠ADC,根据全等三角形的性质求出∠CEB,根据等腰直角三角形的性质求出∠CED,结合图形计算,得到答案;(3)根据三角形内角和定理求出∠ADC,用α表示出∠BEF,根据锐角的概念列式计算即可.【解答】(1)证明:∵∠ACB=∠DCE=90°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)解:△BEF是直角三角形,理由如下:∵∠HAC=30°,∠ACD=15°,∴∠ADC=180°﹣30°﹣15°=135°,∵△ACD≌△BCE,∴∠CEB=∠CDA=135°,∵CE=CD,∠DCE=90°,∴∠CED=∠CDE=45°,∴∠BEF=∠BEC﹣∠CED=135°﹣45°=90°,∴△BEF是直角三角形;(3)解:∵∠HAC=30°,∠ACD=α,∴∠ADC=180°﹣30°﹣α=150°﹣α,∵△ACD≌△BCE,∴∠CEB=∠CDA=150°﹣α,∠CBE=∠CAD=30°,∴∠BEF=∠BEC﹣∠CED=150°﹣α﹣45°=105°﹣α,由题意得:105°﹣α<90°,180°﹣30°﹣(105°﹣α)<90°,解得:15°<α<45°.21.(操作类等腰三角形分类讨论)我们数学八年级上册书本第64页作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成三张小纸片,使每张小纸片都是等腰三角形.你能办到吗?请画出示意图说明理由.小明在做此题时发现有多种剪法,图1为其中一种方法示意图.定义:如果我们用n条线段将一个三角形分成n+1个等腰三角形,我们把这种分法叫做这个三角形的n+1等分线图.显然,如图1所示的剪法是这个三角形的3等分线图.(1)如图2,△ABC为等腰直角三角形,请你画出一个这个△ABC的4等分线的示意图.(2)请你探究:如图3,边长为1的正三角形是否具有4等分线图.若无,请说明理由;若有,请画出所有符合条件的这个正三角形的4等分线图(若两种方法分得的三角形分别成4对全等三角形,则视为一种.)【分析】(1)取三边的中点D,E,F,并连接,即可画出一个这个△ABC的4等分线的示意图;(2)①如图,取三边的中点D,E,F,得4个等边三角形;②作CF⊥AB于点F,取CA和CB的中点D,E,连接DF,EF,得△ADF和△BEF是等边三角形,△CDF和△CEF是底角为30°的等腰三角形;③如图,在CA上取点E,在CB上取点F,使CE=2AE,CF=2BF,再取EF的中点D,连接DA,DB,△AEF是等边三角形,△DAB是等腰三角形,△ADE和△BDF是等腰三角形.【解答】解:(1)如图2,取三边的中点D,E,F,并连接,得4个等腰三角形;(2)①如图,取三边的中点D,E,F,得4个等边三角形;②如图,作CF⊥AB于点F,取CA和CB的中点D,E,连接DF,EF,得△ADF和△BEF是等边三角形,△CDF和△CEF是底角为30°的等腰三角形;③如图,在CA上取点E,在CB上取点F,使CE=2AE,CF=2BF,再取EF的中点D,连接DA,DB,所以△AEF是等边三角形,△DAB是等腰三角形,△ADE和△BDF是等腰三角形.22.(特殊三角形与方程思想)如图,在Rt△ABC中,AB=10,BC⊥AC,P为线段AC上一点,点Q,P关于直线BC对称,QD⊥AB于点D,DQ与BC交于点E,连结DP,设AP=m.(1)若BC=8,求AC的长,并用含m的代数式表示PQ的长;(2)在(1)的条件下,若AP=PD,求CP的长;(3)连结PE,若∠A=60°,△PCE与△PDE的面积之比为1:2,求m的值.【分析】(1)利用勾股定理求出AC,再根据对称性PQ=2PC,可得结论;(2)证明P A=PQ,构建方程求出m即可.(3)证明DE=EQ,设DE=EQ=x,根据BC=5,构建方程求出x,再求出AQ,PQ,可得结论.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AB=10,BC=8,∴AC===6,∵P,Q关于BC对称,∴PC=CQ=6﹣m,∴PQ=2PC=12﹣2m;(2)当AP=PD时,∠A=∠PDA,∵QD⊥AB,∴∠ADQ=90°,∴∠PDQ+∠ADP=90°,∠Q+∠A=90°,∴∠Q=∠PDQ,∴PD=PQ,∴P A=PQ,∴m=12﹣2m,∴m=4,∴CP=AC﹣AP=6﹣4=2;(3)∴CP=CQ,∴S△PEC=S△ECQ,∵S△PDE=2S△PEC,∴S△PDE=S△PEQ,∴DE=QE,设DE=EQ=x,∵∠A=60°,∠ACB=90°,∴∠B=90°﹣60°=30°,∴BE=2x,∵∠ADQ=90°,∴∠Q=90°﹣60°=30°,∴EC=EQ=x,∵BC=AB•=5,∴2x+x=5,∴x=2,∴DQ=2x=4,CQ=PC=EQ•=3,∵AQ=5+3=8,∴m=AP=AQ﹣PQ=8﹣6=2.23.(特殊三角形动点问题)如图,Rt△AOB中,∠AOB=90°,OA=OB=4,点P在直线OA上运动,连接PB,将△OBP沿直线BP折叠,点O的对应点记为O′.(1)若AP=AB,则点P到直线AB的距离是;(2)若点O′恰好落在直线AB上,求△OBP的面积;(3)将线段PB绕点P顺时针旋转45°得到线段PC,直线PC与直线AB的交点为Q,在点P的运动过程中,是否存在某一位置,使得△PBQ为等腰三角形?若存在,请直接写出OP的长;若不存在,请说明理由.【分析】(1)接BP,设点P到直线AB的距离为h,根据三角形的面积公式即可得到结论;(2)分P在x轴的正半轴和负半轴:①当P在x轴的正半轴时,求OP=O'P=AO'=4﹣4,根据三角形面积公式可得结论;②当P在x轴的负半轴时,同理可得结论;(3)分4种情况:分别以P、B、Q三点所成的角为顶角讨论:①当BQ=QP时,如图2,P与O重合,②当BP=PQ时,如图3,③当PB=PQ时,如图4,此时Q与C重合;④当PB=BQ时,如图5,此时Q与A重合,则P与A关于y轴对称,根据图形和等腰三角形的性质可计算OP 的长.【解答】解:(1)连接BP,设点P到直线AB的距离为h,Rt△AOB中,∠AOB=90°,OA=OB=4,∴AB==4,∵AP=AB,∴AP=AB=4,∴S△ABP=AB•h=AP•OB,∴h=OB=4,即点P到直线AB的距离是4,故答案为:4;(2)存在两种情况:①如图1,当P在x轴的正半轴上时,点O′恰好落在直线AB上,则OP=O'P,∠BO'P=∠BOP=90°,∵OB=OA=4,∴△AOB是等腰直角三角形,∴AB=4,∠OAB=45°,由折叠得:∠OBP=∠O'BP,BP=BP,∴△OBP≌△O'BP(AAS),∴O'B=OB=4,∴AO'=4﹣4,Rt△PO'A中,O'P=AO'=4﹣4=OP,∴S△BOP=OB•OP==8﹣8;②如图所示:当P在x轴的负半轴时,由折叠得:∠PO'B=∠POB=90°,O'B=OB=4,∵∠BAO=45°,∴PO'=PO=AO'=4+4,∴S△BOP=OB•OP=×4×(4+4)=8+8;(3)分4种情况:①当BQ=QP时,如图2,点P与点O重合,此时OP=0;②当BP=PQ时,如图3,∵∠BPC=45°,∴∠PQB=∠PBQ=22.5°,∵∠OAB=45°=∠PBQ+∠APB,∴∠APB=22.5°,∴∠ABP=∠APB,∴AP=AB=4,∴OP=4+4;③当PB=PQ时,如图4,此时Q与C重合,∵∠BPC=45°,∴∠PBA=∠PCB=67.5°,△PCA中,∠APC=22.5°,∴∠APB=45+22.5°=67.5°,∴∠ABP=∠APB,∴AB=AP=4,∴OP=4﹣4;④当PB=BQ时,如图5,此时Q与A重合,则P与A关于y轴对称,∴此时OP=4;综上,OP的长是0或4+4或4﹣4或4.24.(特殊三角形综合题)已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.【分析】(1)①要证明△BDF≌△ADC,如图,在△ABD中,∠ABC=45°,AD⊥BC,可证BD=AD,∠BDF =∠ADC;在△ADC中,可证得∠AFE=∠ACD,又∵∠AFE=∠BFD(对顶角相等),∴∠ACD=∠BFD;运用AAS,问题可证.②由△BDF≌△ADC可证得DF=DC;∵AD=AF+FD,∴AD=AF+DC;由GF∥BD,∠ABC=45°,可证得AF=GF;于是问题可证.(2)∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴FG=AF=AD+DF;DF=DC可通过证明△BDF≌△ADC得到,故可得:FG=DC+AD.【解答】解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD;∵∠BEC=90°,∴∠CBE+∠C=90°又∵∠DAC+∠C=90°,∴∠CBE=∠DAC;∵∠FDB=∠CDA=90°,∴△FDB≌△CDA(ASA)②∵△FDB≌△CDA,∴DF=DC;∵GF∥BC,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD,∴F A=FG;∴FG+DC=F A+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF;∵∠F AE+∠DFB=∠F AE+∠DCA=90°,∴∠DFB=∠DCA;又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.。

北师大版八年级上册数学《一定是直角三角形吗》勾股定理培优说课教学复习课件

北师大版八年级上册数学《一定是直角三角形吗》勾股定理培优说课教学复习课件

活动二:
“我们选择3,4,5这组数来验证一下.”
(1)请同学们以3cm,4cm,5cm为三边
长画三角形,看看它是什么三角形?
(2)用三角尺或量角器量一量,都是
直角三角形吗?
一个实验结果,是必然还是巧合呢?
活动三:
接下来分为三个小组进行验证
(1)5cm, 12cm, 13cm
(2)8cm, 15cm, 17cm
B
变式: 四边形ABCD中已知AB=3,AD=4,BC=12,
CD=13,且∠A=900,求这个四边形的面积.
随堂演练
1、如果三条线段a、b、c满a2=b2-c2
那么这三条线段组成的三角形是直角三角形吗?
2、下列哪几组数据能作为直角三角形的三边长?请说明理由.
①9,12,15; ②15,36,39; ③0.3,0.4,0.5 ; ④12,18,22
A.锐角三角形B.直角三角形
C.钝角三角形D.等腰三角形
课堂检测
基 础 巩 固 题
1.下列各组数是勾股数的是 (
B
A.3,4,7
B.5,12,13
C.1.5,2,2.5
D.1,3,5
)
2.将直角三角形的三边长扩大同样的倍数,则得到的三角形
(
A
)
A.是直角三角形
B.可能是锐角三角形
C.可能是钝角三角形
探究新知
问题4 据此你有什么猜想呢?
由上面几个例子,我们猜想:
如果三角形的三边长a,b,c满足a2+b2=c2,那么这
个三角形是直角三角形.
我觉得这个猜
想不准确,因
我也觉得猜想不严
为测量结果可
谨,前面我们只取
能有误差.

浙教版八年级上册 2.6 直角三角形专题培优(附答案)

浙教版八年级上册 2.6 直角三角形专题培优(附答案)

2020-2021学年浙教版八年级上册直角三角形专题培优姓名班级学号基础巩固1.如图,△ABD是以BD为斜边的等腰直角三角形,在△BCD中,∠DBC = 90°,∠BCD = 60°,E为DC的中点,AD与BE的延长线交于点F,则∠AFB的度数为().A.30°B.15°C.45°D.25°第1题第2题第3题2.如图,在△ABC中,∠BAC= 90°,AB= AC,AE是经过点A的一条直线,且点B,C在AE的两侧,BD⊥AE于点D,CE⊥AE于点E,CE= 2,BD= 6,则DE 的长为().A.2B.3C.5D.43.如图,在△ABC中,∠C= 90°,AC= BC,点D是AB的中点,点E,F分别在AC,BC边上运动(点E不与点A,C重合),且保持AE= CF,连结DE,DF,EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化.其中正确结论的个数是().A.0B.1C.2D.34.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ = 90°,AQ:AB = 3:4.直线l上有一点C在点P右侧,PC = 4 cm,过点C作射线CD⊥l,点F为射线CD上的一个动点,连结AF.当△AFC与△ABQ全等时,AQ = _________ cm.第4题第5题5.如图,已知∠AOB= 60°,点P在OA边上,OP= 8 cm,点M,N在边OB上,PM = PN,若MN = 2 cm,则ON = _________ cm.6.如图,在△ABC中,点D在边AC上,DB= BC,点E是CD的中点,点F是AB 的中点.(1)求证:EF = 12AB.(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.7.在△ABC中,∠ACB = 90°,AC = BC,D是AB的中点,E是AB边上一点.(1)如图1,直线BF⊥CE于点F,交CD于点G.求证:AE = CG.(2)如图2,直线AH⊥CE,垂足为点H,交CD的延长线于点M.试猜想CM与BE有怎样的数量和位置关系?并证明你的猜想.拓展提优1.如图,在Rt△ABC中,∠ACB= 90°,CD⊥AB于点D,CE平分∠ACD交AB于点E,则下列结论一定成立的是().A.BC = ECB.EC = BEC.BC = BED.AE = EC2.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC 于点N,且MN平分∠AMC.若AN = 1,则BC的长为().A.4B.6C.43D.83.如图,在△ABC中,∠C = 90°,∠B = 30°,AB的垂直平分线ED交AB于点E,交BC于点D.若CD = 3,则BD的长为 _________ .4.如图,在四边形ABCD中,∠ABC = ∠ADC = 90°,E为对角线AC的中点,连结BE,ED,BD.若∠BAD = 58°,则∠EBD的度数为 _________ 度.5.如图,在△ABC中,点D在AB上,且CD= CB,E为BD的中点,F为AC的中点,连结EF交CD于点M,连结AM.(1)求证:EF = 12AC.(2)若∠BAC = 45°,求线段AM,DM,BC之间的数量关系.6.如图,在等腰直角三角形ABC中,∠ACB= 90°,AC= BC,点D,E分别在边AB,CB上,CD= DE,∠CDB= ∠DEC,过点C作CF⊥DE于点F,交AB于点G.求证:(1)AD = BE.(2)△CDG为等腰三角形.冲刺重高1.如图,AD∥BC,AB⊥BC,CD⊥DE,CD = DE,AD = 2,BC = 3,则△ADE的面积为().A.1B.2C.5D.无法确定2.如图,在Rt△ABC中,∠ACB= 90°,∠CAB= 20°,∠ACB的平分线与外角∠ABD的平分线交于点E,连结AE,则∠AEC的度数为 _________ .3.下图的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有 _________ 个,图3中以格点为顶点的等腰直角三角形共有 _________ 个,图4中以格点为顶点的等腰直角三角形共有 _________ 个.4.如图,在等腰直角三角形ABC中,∠BAC= 90°,点D,E分别为AB,AC边上的点,AD= AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△EGM为等腰三角形.(2)判断线段BG,AF与FG的数量关系并证明你的结论.5.已知△ABC和△ADE均为等腰直角三角形,∠ABC= ∠ADE= 90°,AB= BC,AD = DE,按图1放置,使点E在AB上,取CE的中点F,连结DF,BF.(1)探索DF,BF的数量关系和位置关系,并证明.(2)将图1中△ADE绕点A顺时针旋转45°,再连结CE,取CE的中点F(如图2),问(1)中的结论是否仍然成立,证明你的结论.(3)将图1中△ADE绕点A转动任意角度(旋转角在0°到90°之间),再连结CE,取CE的中点F(如图3),问(1)中的结论是否仍然成立,证明你的结论.2 3 4 5 67word版初中数学11 / 11。

初二数学知识点专题讲解与练习18---直角三角形(培优版)

初二数学知识点专题讲解与练习18---直角三角形(培优版)

x2 + 82 = (12 − x)2 ,

x
=
10 3

例 2 B 提示:过 B 作 BD⊥AC 延长线于 D 点,设 CD=x,BD=y,可求得:x=y,则∠
BCD=45°,故∠BCA=135°.
例 3 ∠ACB=75° 提示:过 C 作 CQ⊥AP 于 Q,连接 BQ,则 AQ=BQ=CQ.
例 4 提示:过 E 作 EG⊥AB 于 G,先证明 Rt△EAG≌Rt△ABC,再证明△EFG≌△
C. 锐角三角形 D.不能确定
(山东省竞赛试题)
5 / 39
6.如图,小正方形边长为 1,连结小正方形的三个顶点可得△ABC,则 AC 边上的
高为( ) A. 3 2 2
B. 3 5 10
C. 3 5 5
D. 4 5 5
A C
第B6题
(福州市中考试题)
7.如图,一个长为 25 分米的梯子,斜立在一竖直的墙上,这时梯足距墙底端 7 分 米,如果梯子的顶端沿墙下滑 4 分米,那么梯足将滑( )
DFA.
例 5 连接 AC
∵AD=DC,∠ADC=60°,
A
∴△ADC 是等边三角形,DC=CA=AD,
D
B
C
以 BC 为边向四边形外作等边三角形 BCE,即 BC=BE=CE,
E
则∠BCE=∠EBC=∠CEB=60°,
∴∠ABE=∠ABC+∠EBC=90°,
连接 AE,则 AE2 = AB2 + BE2 = AB2 + BC 2 ,
7. 169 提示:连接 AD,由△ADE≌△CDF,得 ED=DF,AE=CF=5,AF=BE=12,
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学培优专题(一) 直角三角形
知识要点:
1、直角三角形的性质:
(1)直角三角形的两个锐角_________
(2)直角三角形斜边上的中线等于斜边的_________;
(3)直角三角形30°角所对的直角边是______的一半;
(4)直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30°.
2、直角三角形的判定方法:
(1)有一个角是直角的三角形是直角三角形;
(2)有两个角______的三角形是直角三角形;
(3)如果一条边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理公式:_____ _
勾股定理逆定理:_____ _
直角三角形是一类特殊三角形,有着丰富的性质:两锐角互余(角的关系)、勾股定理(边的关系)、30°角所对的直角边等于斜边的半(边角关系)、斜边上的中线等于斜边的一半(直角三角形中线性质),这些性质在求线段的长度、证明线段倍分关系、证明线段平方关系等方面有广泛的应用。

培优练习:
1、如图,已知△ABC 为直角三角形,∠C=90°,若沿图中虚线剪去∠C ,则则∠1+∠2等于__________.
2、已知一直角三角形木板,三边长的平方和为1800,则斜边长为__________
3、图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延一倍,得到图2所示的“数学风车”,则这个风车的外围周长是__________
4、在三角形ABC 中,AB=5,AC=9,AD 是边BC 上的中线,则AD 的取值范围_______
5、如图,等腰直角三角形ABC 直角边长为1,以它的斜边上的高AD 为腰作第一个等腰直角三角形ADE ,再以所作的第一个等腰直角三角形ADE 的斜边上的高AF 为腰作第二个等腰直角三角形AFG ;……以此类推,这样所作的第n 个等腰直角三角形的腰长为_______
6、等腰△ABC 中,AD ⊥BC 于点D ,且AD=2
1BC ,则△ABC 底角的度数为____________ 7、如图,在△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP
的长不可能的是()
A.3.5 B.4.2 C.5.8 D.7
8、如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()
A.3 B.2 C.3D.1
T7 T8 T9
9、如图所示,四边形ABCD由一个∠ACB=30°的Rt△ABC与等腰Rt△ACD拼成,E 为斜边AC的中点,则∠BDE=__________.
10、如图,一根长2a的木棍(AB),斜靠在与地面(OM)
垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下
滑,且B端沿地面向右滑行.木棍滑动的过程中,点P到点0
的距离不变化,在木棍滑动的过程中,△AOB的面积最大为
______________.
11、如图,在△ABC中,∠B=90°,∠BAC=78°,过C作
CF∥AB,连接AF于BC相交于G,若GF=2AC,则
∠BAG= _________
B A
G
F C
T11 T12
12、电子跳骚游戏盘是如图所示的△ABC,AB=AC=BC=6.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为Pn (n为正整数),则点P2009与点P2010之间的距离为__________.
13、已知:在△ABC中,∠BAC=90°,AD⊥BC于点D,∠
ABC的平分线BE交AD于点F,试说明AE=AF
14、如图,在△ABC 中,∠A=90°,AB=AC ,∠ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点E .求证:CE =21BD
15、已知:△ABC 和△ADE 都是等腰直角三角形,其中∠ABC=∠ADE=90°,点M 为EC 的中点.如图,当点D ,E 分别在AC ,AB 上时,求证:△BMD 为等腰直角三角形
16、已知在Rt △ABC 中,∠C=90°,AC=BC=2.将一块等腰直角三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交线段AC 、CB 于D 、E 两点.如图1、2是旋转三角板得到的图形中的两种情况.
(1)如图1,三角板绕点P 旋转,当PD ⊥AC 时,求证:PD=PE .当PD 与AC 不垂直时,如图2,PD=PE 还成立吗?并证明你结论.
(2)如图2,三角板绕点P 旋转,当△PEB 成为等腰
三角形时,求CE 的长.。

相关文档
最新文档