AD转换器选型需要考虑的因素

AD转换器选型需要考虑的因素
AD转换器选型需要考虑的因素

AD选型需要考虑的因素

的品种繁多、性能各异,在设计数据采集系统时,首先碰到的就就是如何选择合适的A/D转换器以满足系统设计要求的问题。选择A/D转换器件需要考虑器件本身的品质与应用的场合要求,基本上,可以根据以下几个方面的指标选择一个A/D器件。

(1)A/D转换器位数

A/D转换器位数的确定,应该从数据采集系统的静态精度与动态平滑性这两个方面进行考虑。从静态精度方面来说,要考虑输入信号的原始误差传递到输出所产生的误差,它就是模拟信号数字化时产生误差的主要部分。量化误差与A/D转换器位数有关。一般把8位以下的A/D 转换器归为低分辨率A/D转换器,9~12 位的称为中分辨率转换器,13位以上的称为高分辨率转换器。10位A/D芯片以下误差较大,11位以上对减小误差并无太大贡献,但对A/D转换器的要求却提得过高。因此,取10位或11位就是合适的。由于模拟信号先经过测量装置,再经A/D转换器转换后才进行处理,因此,总的误差就是由测量误差与量化误差共同构成的。A/D转换器的精度应与测量装置的精度相匹配。也就就是说,一方面要求量化误差在总误差中所占的比重要小,使它不显著地扩大测量误差;另一方面必须根据目前测量装置的精度水平,对A/D转换器的位数提出恰当的要求。目前,大多数测量装置的精度值不小于01%~0、5%,故A/D转换器的精度取0、05%~0。1%即可,相应的二进制码为10~11位,加上符号位,即为11~12位。当有特殊的应用时,A/D转换器要求更多

的位数,这时往往可采用双精度的转换方案。

(2)A/D转换器的转换速率

A/D转换器从启动转换到转换结束,输出稳定的数字量,需要一定的转换时间。转换时间的倒数就就是每秒钟能完成的转换次数,称为转换速率。确定A/D转换器的转换速率时,应考虑系统的采样速率。例如,如果用转换时间为100us的A/D转换器,则其转换速率为10KHz。根据采样定理与实际需要,一个周期的波形需采10个样点,那么这样的A/D转换器最高也只有处理频率为1KHz的模拟信号。把转换时间减小,信号频率可提高。对一般的单片机而言,要在采样时间内完成A/D转换以外的工作,如读数据、再启动、存数据、循环计数等已经比较困难了。

(3)采样/保持器

采集直流与变化非常缓慢的模拟信号时可不用采样保持器。对于其她模拟信号一般都要加采样保持器。如果信号频率不高,A/D转换器的转换时间短,即采样高速A/D时,也可不用采样/保持器。

(4)A/D转换器量程

A/D转换时需要的就是双极性的,有时就是单极性的。输入信号最小值有的从零开始,也有从非零开始的。有的转换器提供了不同量程的引脚,只有正确使用,才能保证转换精度。在使用中,影响A/D转换器量程的因素有:量程变换与双极性偏置;双基准电压;A/D转换器内部比较器

输入端的正确使用。

(5)满刻度误差

满度输出时对应的输入信号与理想输入信号值之差。

(6)线性度

实际转换器的转移函数与理想直线的最大偏移。

AD转换器的主要性能指标

量化误差与分辨率AD转换器的分辨率

习惯上以输出二进制的位数或BCD码位数表示。量化误差与分辨率就是统一的。量化误差就是由于有限数字对模拟数字进行离散取值(量化)而引起的误差。因此,量化误差理论上为一个单位分辨率,即士l/2LSB。提高分辨率可减少量化误差。

转换精度

AD转换精度反映了一个实际AD转换器在量化值上与理想AD转换器进行模/数转换的差值,可表示成绝对误差或相对误差,与一般测试仪表的定义相似。

转换时间与转换速率

转换时间被定义为AD转换器完成一次完整的测量所需要的时间,即从输入端加入信号到输出端出现相应数码的时间。通常,转换速率就是转换时间的倒数。

反映AD转换器对电源电压变化的抑制能力,用改变电源电压使数据发生士ILSB变化时所对应的电源电压变化范围来表示。

AD芯片接模拟信号:

每个A/D器件都有模拟信号输入脚,有的就是差分输入,使用这样的A/D 时把模拟信号的正端接到A/D差分输入的正端,模拟信号的负端接到A/D差分输入的负端即可;有的A/D就是单端输入,使用这样的A/D时把模拟信号的正端接到A/D模拟信号输入端,模拟信号的负端接到A/、D 器件的模拟地即可。还要注意模拟信号的幅度不要超出A/D的最大允许输入范围。

参考芯片:ADS8364,MAX197

反应器选型与设计完结版

反应器选型与设计 一、反应器类型 反应器设备种类很多,按结构型式分,大致可分为釜式反应器、管式反应器、塔式反应器、固定床反应器、流化床反应器等。 釜式反应器: 反应器中物料浓度和温度处处相等,并且等于反应器出口物料的浓度和温度。物料质点在反应器内停留时间有长有短,存在不同停留时间物料的混合,即返混程度最大。应器内物料所有参数,如浓度、温度等都不随时间变化,从而不存在时间这个自变量。 优点:适用范围广泛,投资少,投产容易,可以方便地改变反应内容。 缺点:换热面积小,反应温度不易控制,停留时间不一致。绝大多数用于有液相参与的反应,如:液液、液固、气液、气液固反应等。 管式反应器 ①由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。 ②管式反应器具有容积小、比表面大、单位容积的传热面积大,特别适用于热效应较大的反应。 ③由于反应物在管式反应器中反应速度快、流速快,所以它的生产能力高。

④管式反应器适用于大型化和连续化的化工生产。 ⑤和釜式反应器相比较,其返混较小,在流速较低的情况下,其管内流体流型接近与理想流体。 ⑥管式反应器既适用于液相反应,又适用于气相反应。用于加压反应尤为合适。固定床反应器 固定床反应器的优点是:①返混小,流体同催化剂可进行有效接触,当反应伴有串联副反应时可得较高选择性。②催化剂机械损耗小。③结构简单。 固定床反应器的缺点是:①传热差,反应放热量很大时,即使是列管式反应器也可能出现飞温(反应温度失去控制,急剧上升,超过允许范围)。②操作过程中催化剂不能更换,催化剂需要频繁再生的反应一般不宜使用,常代之以流化床反应器或移动床反应器。固定床反应器中的催化剂不限于颗粒状,网状催化剂早已应用于工业上。目前,蜂窝状、纤维状催化剂也已被广泛使用。 1. 4 流化床反应器 (1)流化床反应器的优点 ①由于可采用细粉颗粒,并在悬浮状态下与流体接触,流固相界面积大(可高 16400m2/m3),有利于非均相反应的进行,提高了催化剂的利用率。 达3280 ~ ②由于颗粒在床内混合激烈,使颗粒在全床内的温度和浓度均匀一致,床层 400/(2)],全床热容量大,热稳定性高,这与内浸换热表面间的传热系数很高[200 ~

反应釜搅拌器选型方法规范

反应釜搅拌器选型方法规范 反应釜搅拌器一个好的选型方法最好具备两个条件,一是选择结果合理,一是选择方法简便,而这两点却往往难以同时具备。 由于液体的粘度对搅拌状态有很大的影响,所以根据反应釜内搅拌介质粘度大小来选型是一种基本的方法。几种典型的搅拌器都随粘度的高低而有不同的使用范围。随粘度增高的各种搅拌器使用顺序为推进式、涡轮式、浆式、锚式和螺带式等,这里对推进式的分得较细,提出了大容量液体时用低转速,小容量液体时用高转速。这个选型图不是绝对地规定了使用浆型的限制,实际上各种浆型的使用范围是有重叠的,例如浆式由于其结构简单,用挡板可以改善流型,所以在低粘度时也是应用得较普遍的。而涡轮式由于其对流循环能力、湍流扩散和剪切力都较强,几乎是应用最广的一种浆型。 根据搅拌过程的目的与搅拌器造成的流动状态判断该过程所适用的浆型,这是一种比较合用的方法。由于苏联的浆型选择有其本国的习惯,所以与我国常用浆型并不尽相同。 推荐浆型是把浆型分成快速型与慢速型两类,前者在湍流状态操作,后者在层流状态操作。选用时根据搅拌目的及流动状态来决定浆型及挡板条件,流动状态的决定要受搅拌介质的粘度高低的影响。 其使用条件比较具体,不仅有浆型与搅拌目的,还有推荐的介质粘度范围、搅拌转速范围和槽的容量范围。 提出的选型表也是根据反应釜搅拌的目的及搅拌时的流动状态来选型,它的优点还在于根据不同搅拌过程的特点划分了浆型的使用范围,使得选型更加具体。比较上述表可以看到,选型的根据和结果还是比较一致的。下面对其中几个主要的过程再作些说明。 低粘度均相液体混合,是难度最小的一种搅拌过程,只有当容积很大且要求混合时间很短时才比较困难。由于推进式的循环能力强且消耗动力少,所以是最合用的。而涡轮式因其动力消耗大,虽有高的剪切能力,但对于这种混合的过程并无太大必要,所以若用在大容量液体混合时,其循环能力就不足了。

反应器选型

表6-1 反应器选型一览表表6-2 压缩机选型一览表 名称类型数 量 个 型号 重 量 t 功率 Kw 价格/万 元 异构化循环压缩机凝汽透平驱动 的离心式压缩 机 2 BCL406/A 14. 3 5000 名称 数量/ 台类型尺寸/mm 温度 /℃ 压力 /MPa 封头形式材料 重量/ Kg 价格/万 元 异构化反 应器1 Packin ox焊板 式 Φ4000*13000420 1.2 标准椭圆 型封头 06Cr25 Ni20S3 1008 36238.2 异构化分 离器1 FA-701 -1/2 Φ4000*13000 175 0.8 标准椭圆 形风头 06Cr25 Ni20S3 1008 36238.2

编号型号类型 内径 /mm 列管 管数/ 根 管程 数 换热 面积 /㎡ 材料 重量/ Kg 价格/ 万元管长 /mm 列管规格 /mm 排列方式管程壳程 E101 BEM600-0.345-28.8-1.27/19-1Ⅰ管板式635 1270 Φ19X2正三角形310 1 28.8 碳钢碳钢1549 18.3 E102 BEM200-0.345/3.3-6.5-2.4/19-2Ⅰ管板式203.2 2438.4 Φ19X2正三角形46 2 6.5 碳钢碳钢354 6.0 E103 BEM200-0.345-2.3-1.2/19-4Ⅰ管板式203.2 1219.2 Φ19X2正三角形33 4 2.3 碳钢碳钢214 4.9 E104 BEM200-0.345-9.8-4.6/19-2Ⅰ管板式203.2 4267.2 Φ19X2正三角形39 2 9.8 碳钢碳钢465.7 6.0 E105 BEM200-0.345/1.03-3.1-1.2/19-2Ⅰ管板式203.2 1219.2 Φ19X2正三角形46 2 3.1 碳钢碳钢228.6 5.1 E106 BEM200-0.345/4.4-3.1-1.2/19-1Ⅰ管板式177.8 1219.2 Φ19X2正三角形46 1 3.1 碳钢碳钢233.9 5.2 E107 BEM200-0.345-3.2-1.2/19-1Ⅰ管板式203.2 1219.2 Φ19X2正三角形47 1 3.2 碳钢碳钢244.6 5.1

反应器选型与设计完结版

反应器选型与设计完结版 This manuscript was revised by the office on December 10, 2020.

反应器选型与设计 一、反应器类型 反应器设备种类很多,按结构型式分,大致可分为釜式反应器、管式反应器、塔式反应器、固定床反应器、流化床反应器等。 釜式反应器: 反应器中物料浓度和温度处处相等,并且等于反应器出口物料的浓度和温度。物料质点在反应器内停留时间有长有短,存在不同停留时间物料的混合,即返混程度最大。应器内物料所有参数,如浓度、温度等都不随时间变化,从而不存在时间这个自变量。优点:适用范围广泛,投资少,投产容易,可以方便地改变反应内容。 缺点:换热面积小,反应温度不易控制,停留时间不一致。绝大多数用于有液相参与的反应,如:液液、液固、气液、气液固反应等。 管式反应器 ①由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。 ②管式反应器具有容积小、比表面大、单位容积的传热面积大,特别适用于热效应较大的反应。 ③由于反应物在管式反应器中反应速度快、流速快,所以它的生产能力高。 ④管式反应器适用于大型化和连续化的化工生产。 ⑤和釜式反应器相比较,其返混较小,在流速较低的情况下,其管内流体流型接近与理想流体。 ⑥管式反应器既适用于液相反应,又适用于气相反应。用于加压反应尤为合适。 固定床反应器 固定床反应器的优点是:①返混小,流体同催化剂可进行有效接触,当反应伴有串联副反应时可得较高选择性。②催化剂机械损耗小。③结构简单。 固定床反应器的缺点是:①传热差,反应放热量很大时,即使是列管式反应器也可能出现飞温(反应温度失去控制,急剧上升,超过允许范围)。②操作过程中催化剂不能更换,催化剂需要频繁再生的反应一般不宜使用,常代之以流化床反应器或移动床反应器。固定床反应器中的催化剂不限于颗粒状,网状催化剂早已应用于工业上。目前,蜂窝状、纤维状催化剂也已被广泛使用。 1. 4 流化床反应器 (1)流化床反应器的优点 ①由于可采用细粉颗粒,并在悬浮状态下与流体接触,流固相界面积大(可高达 16400m2/m3),有利于非均相反应的进行,提高了催化剂的利用率。 3280 ~ ②由于颗粒在床内混合激烈,使颗粒在全床内的温度和浓度均匀一致,床层 400/(2)],全床热容量大,热稳定性高,这些都与内浸换热表面间的传热系数很高[200 ~ 有利于强放热反应的等温操作。这是许多工艺过程的反应装置选择流化床的重要原因之一。 流化床内的颗粒群有类似流体的性质,可以大量地从装置中移出、引入,并可以在两个流化床之间大量循环。这使得一些反应—再生、吸热—放热、正反应—逆反应等反应耦合过程和反应—分离耦合过程得以实现。使得易失活催化剂能在工程中使用。 (2)流化床反应器的缺点

反应器选型与设计完结版

反应器选型与设计完结 版 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

反应器选型与设计一、反应器类型 反应器设备种类很多,按结构型式分,大致可分为釜式反应器、管式反应器、塔式反应器、固定床反应器、流化床反应器等。 釜式反应器: 反应器中物料浓度和温度处处相等,并且等于反应器出口物料的浓度和温度。物料质点在反应器内停留时间有长有短,存在不同停留时间物料的混合,即返混程度最大。应器内物料所有参数,如浓度、温度等都不随时间变化,从而不存在时间这个自变量。 优点:适用范围广泛,投资少,投产容易,可以方便地改变反应内容。 缺点:换热面积小,反应温度不易控制,停留时间不一致。绝大多数用于有液相参与的反应,如:液液、液固、气液、气液固反应等。 管式反应器 ①由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。 ②管式反应器具有容积小、比表面大、单位容积的传热面积大,特别适用于热效应较大的反应。 ③由于反应物在管式反应器中反应速度快、流速快,所以它的生产能力高。 ④管式反应器适用于大型化和连续化的化工生产。 ⑤和釜式反应器相比较,其返混较小,在流速较低的情况下,其管内流体流型接近与理想流体。 ⑥管式反应器既适用于液相反应,又适用于气相反应。用于加压反应尤为合适。

固定床反应器 固定床反应器的优点是:①返混小,流体同催化剂可进行有效接触,当反应伴有串联副反应时可得较高选择性。②催化剂机械损耗小。③结构简单。 固定床反应器的缺点是:①传热差,反应放热量很大时,即使是列管式反应器也可能出现飞温(反应温度失去控制,急剧上升,超过允许范围)。②操作过程中催化剂不能更换,催化剂需要频繁再生的反应一般不宜使用,常代之以流化床反应器或移动床反应器。固定床反应器中的催化剂不限于颗粒状,网状催化剂早已应用于工业上。目前,蜂窝状、纤维状催化剂也已被广泛使用。 1. 4 流化床反应器 (1)流化床反应器的优点 ①由于可采用细粉颗粒,并在悬浮状态下与流体接触,流固相界面积大(可 16400m2/m3),有利于非均相反应的进行,提高了催化剂的利用率。 高达3280 ~ ②由于颗粒在床内混合激烈,使颗粒在全床内的温度和浓度均匀一致,床层与内浸换热表面间的传热系数很高[200 400/(2)],全床热容量大,热稳定性高, ~ 这些都有利于强放热反应的等温操作。这是许多工艺过程的反应装置选择流化床的重要原因之一。 流化床内的颗粒群有类似流体的性质,可以大量地从装置中移出、引入,并可以在两个流化床之间大量循环。这使得一些反应—再生、吸热—放热、正反应—逆反应等反应耦合过程和反应—分离耦合过程得以实现。使得易失活催化剂能在工程中使用。 (2)流化床反应器的缺点

化学反应器分类及其特点

化学反应器分类及其特点 This model paper was revised by the Standardization Office on December 10, 2020

化学反应器的分类及特点 秦财德 (中南大学、化学化工学院、化工1002班) 摘要: 反应器的应用始于古代,制造陶器的窑炉就是一种原始的反应器。近代工业中的反应器形式多样。化学反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。器内常设有搅拌(机械搅拌、气流搅拌等)装置。本文主要介绍化学反应器的分类和特点 关键词:化学反应器特点典型反应 现在的化工反应器在向高精端方向发展,在化工反应中处于主要地位,化学反应器是化学反应的载体,是化工研究、生产的基础,是决定化学反应好坏的重要因素之一,因此反应器的设计、选型是十分重要的。反应器的种类很多,设计和选型很重要,座椅应该按照实际情况来设计制造。 一.釜式反应器 (一)反应器的简介 一种低高径比的圆筒形反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。器内常设有搅拌(机械搅拌、气流搅拌等)装置。在高径比较大时,可用多层搅拌桨叶。在反应过程中物料需加热或冷却时,可在反应器壁处设置夹套,或在器内设置换热面,也可通过外循环进行换热。 (二)反应器的特点

反应器中物料浓度和温度处处相等,并且等于反应器出口物料的浓度和温度。物料质点在反应器内停留时间有长有短,存在不同停留时间物料的混合,即返混程度最大。反应器内物料所有参数,如浓度、温度等都不随时间变化,从而不存在时间这个自变量。 优点:适用范围广泛,投资少,投产容易,可以方便地改变反应内容。 缺点:换热面积小,反应温度不易控制,停留时间不一致。绝大多数用于有液相参与的反应,如:液液、液固、气液、气液固反应等。 (三)典型反应: 在等温间歇反应器中进行乙酸乙酯皂化反应: CH 3COOC 2 H 5 +NaOH CH 3 COONa+ C 2 H 5 OH 二.管式反应器 (一)反应器的简介 管式反应器一种呈管状、长径比很大的连续操作反应器。这种反应器可以很长,如丙烯二聚的反应器管长以公里计。反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流.(二)反应器的特点 (1)由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。

反应器选型与设计完结版

反应器选型与设计完结版Newly compiled on November 23, 2020

反应器选型与设计一、反应器类型 反应器设备种类很多,按结构型式分,大致可分为釜式反应器、管式反应器、塔式反应器、固定床反应器、流化床反应器等。 釜式反应器: 反应器中物料浓度和温度处处相等,并且等于反应器出口物料的浓度和温度。物料质点在反应器内停留时间有长有短,存在不同停留时间物料的混合,即返混程度最大。应器内物料所有参数,如浓度、温度等都不随时间变化,从而不存在时间这个自变量。优点:适用范围广泛,投资少,投产容易,可以方便地改变反应内容。 缺点:换热面积小,反应温度不易控制,停留时间不一致。绝大多数用于有液相参与的反应,如:液液、液固、气液、气液固反应等。 管式反应器 ①由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。 ②管式反应器具有容积小、比表面大、单位容积的传热面积大,特别适用于热效应较大的反应。 ③由于反应物在管式反应器中反应速度快、流速快,所以它的生产能力高。 ④管式反应器适用于大型化和连续化的化工生产。 ⑤和釜式反应器相比较,其返混较小,在流速较低的情况下,其管内流体流型接近与理想流体。 ⑥管式反应器既适用于液相反应,又适用于气相反应。用于加压反应尤为合适。 固定床反应器

固定床反应器的优点是:①返混小,流体同催化剂可进行有效接触,当反应伴有串联副反应时可得较高选择性。②催化剂机械损耗小。③结构简单。 固定床反应器的缺点是:①传热差,反应放热量很大时,即使是列管式反应器也可能出现飞温(反应温度失去控制,急剧上升,超过允许范围)。②操作过程中催化剂不能更换,催化剂需要频繁再生的反应一般不宜使用,常代之以流化床反应器或移动床反应器。固定床反应器中的催化剂不限于颗粒状,网状催化剂早已应用于工业上。目前,蜂窝状、纤维状催化剂也已被广泛使用。 1. 4 流化床反应器 (1)流化床反应器的优点 ①由于可采用细粉颗粒,并在悬浮状态下与流体接触,流固相界面积大(可高达 16400m2/m3),有利于非均相反应的进行,提高了催化剂的利用率。 3280 ~ ②由于颗粒在床内混合激烈,使颗粒在全床内的温度和浓度均匀一致,床层 与内浸换热表面间的传热系数很高[200~400/(2)],全床热容量大,热稳定性高,这些都有利于强放热反应的等温操作。这是许多工艺过程的反应装置选择流化床的重要原因之一。 流化床内的颗粒群有类似流体的性质,可以大量地从装置中移出、引入,并可以在两个流化床之间大量循环。这使得一些反应—再生、吸热—放热、正反应—逆反应等反应耦合过程和反应—分离耦合过程得以实现。使得易失活催化剂能在工程中使用。 (2)流化床反应器的缺点 ①气体流动状态与活塞流偏离较大,气流与床层颗粒发生返混,以致在床层轴向没有温度差及浓度差。加之气体可能成大气泡状态通过床层,使气固接触不良,使反应的转化率降低。因此流化床一般达不到固定床的转化率。

反应器设计

第九章反应器设计 9.1 概述 (1) 9.2反应器的分类和结构特点 (3) 9.3 发酵罐设计与分析 (6) 9.5 其他反应器 (14) 9.1 概述 生物反应器是指一个能为生物反应提供适宜的反应条件,以实现将原料转化为特定产品的设备,是生物技术产业化的核心。 生物反应器设计的主要内容包括:(1)反应器选型,即根据生产工艺要求、反应及物料的特性等因素,确定反应器的操作方式、结构类型、传递和流动方式等;(2)设计反应器结构,确定各种结构参数,即确定反应器的内部结构及几何尺寸、搅拌器形式、大小及转速、换热方式及换热面积等;(3)确定工艺参数及其控制方式,如温度、压力、pH、通气量、底物浓度、进料的浓度、流量和温度等。生物反应器设计的基本要求: (1)避免将必须蒸汽灭菌的部件与其它部件直接相连; (2)法兰应尽量少; (3)尽可能采用焊接连接,焊接部位要充分抛光; (4)避免产生凹陷和裂缝; (5)设备各部件能分别进行灭菌; (6)反应器的接口处用蒸汽封口; (7)阀门要易清洗,易使用,易灭菌; (8)反应器内易保持一定正压; (9)为便于清洗,反应器主体部分应尽量简单。 反应器的设计以及工程放大,主要采用数学模型法,即利用数学模型来分析、研

究生化反应过程中的现象和规律,即用数学语言表达过程中各种变量之间的关系。 数学模型的建立:以生物反应器为研究对象,将其中的生化反应过程分解为生化反应、传递过程及流体流动与混合等子过程,并分别进行研究,通过物料衡算和热量衡算将各子过程的相关参数进行关联和偶合,即对动力学方程、物料衡算及热量衡算式联立求解,从而得到所研究的生化反应过程规律的解析表达形式。另一方面,由于生化反应过程极为复杂,往往对过程的机理研究得不透彻或有些问题尚不清楚,在这种情况下,就必须结合一定的经验模型,即在一定条件下由实验数据进行数学关联并拟合而得到的模型。

乙酸丁酯反应器选型

学习任务卡

化学反应过程与设备 小组成员: 任务:A0101乙酸丁酯反应器型式及反应器材质的选择 任务点0101-1 合成乙酸丁酯的反应原理及其工业生产方法 C4H9OH+CH3COOH→CH3COOC4H9+H2O 由乙酸与正丁醇在硫酸存在下酯化而得。将丁醇、乙酸和硫酸按比例投入酯化釜,在120℃进行酯化,经回流脱水,控制酯化时的酸值在0.5以下,所得粗酯经中和后进入蒸馏釜,经蒸馏、冷凝、分离进行回流脱水,回收醇酯,最后在126℃以下蒸馏而得产品。生产工艺有连续法及间歇法,视生产规模不同而定。原料消耗定额:乙酸(98%)540kg/t、正丁醇650kg/t。 任务点0101-2 乙酸丁酯、原料、催化剂的物理、化学性质

正丁醇物化性质 英文名称: butyl alcohol;1-butanol 别名: 丁醇分子式: C4H10O;CH3(CH2)3OH 分子量: 74.12 熔点: -88.9℃沸点:117.25 相对密度: d(20,4)=0.8908;蒸汽压: 35℃(蒸汽压: 0.82kPa/25℃) 溶解性: 微溶于水,溶于乙醇、醚多数有机溶剂 稳定性: 稳定外观与性状: 无色透明液体,具有特殊气味危险标记: 7(易燃液体)临界压力(MPa): 4.90 饱和蒸气压: 0.82(25℃) 折射率(n20D )1.3993,闪点:35℃(闭口),40℃(开口) 自燃点365℃,粘度:2.95mPa.s(20℃) 张力:24.6mN/m(20℃) 20℃时在水中的溶解度7.7%(重量),水在正丁醇中的的溶解度20.1%(重量)。 用途:用于制取酯类、塑料增塑剂、医药、喷漆,以及用作溶剂。也是多种涂料的溶剂和制增塑剂邻苯二甲酸二丁酯(见邻苯二甲酸酯)的原料,也用于制造丙烯酸丁酯、醋酸丁酯、乙二醇丁醚以及作为有机合成中间体和生物化学药的萃取剂,还用于制造表面活性剂 催化剂:浓硫酸 纯硫酸是一种无色油状液体。常用的浓硫酸中H2SO4的质量分数为 98.3%,其密度为1.84g/cm-3,其物质的量浓度为18.4mol/L。硫酸是一种高沸点难挥发的强酸,易溶于水,能以任意比与水混溶。浓硫酸溶解时放出大量的热,因此浓硫酸稀释时应该“酸入水,沿器壁,慢慢倒,

相关主题
相关文档
最新文档