山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考数学理试题(1)
03 三角函数与解三角形
2014年高考数学(理)二轮复习精品资料-高效整合篇专题03 三角函数与解三角形(预测)解析版Word 版含解析(一) 选择题(12*5=60分)1.【河北省唐山市2013-2014学年度高三年级摸底考试理科】已知1sin 23α=,则2cos ()4πα-=( )A .13-B .23-C .13D .232.【广东省广州市海珠区2014届高三入学摸底考试数学理试题】将函数()sin(2)6f x x π=+的图像向 右平移6π个单位,那么所得的图像所对应的函数解析式是( ).A sin 2y x = .B cos 2y x = .C 2sin(2)3y x π=+.D sin(2)6y x π=-3.【浙江省绍兴市第一中学2014届高三上学期回头考】已知cos 2θ=,则44sin cos θθ-的值为 ( )B C 1811 D 29-【解析】4.【内蒙古赤峰市全市优质高中2014届高三摸底考试(理)】已知0ω>,函数()cos()4f x x πω=+在(,)2ππ上单调递增,则ω的取值范围是( )A .15[,]24B .17[,]24C .39[,]44D .37[,]245.【2014届吉林市普通高中高中毕业班复习检测】为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A.向右平移6π个单位长度 B. 向右平移3π个单位长度 C.向左平移6π个单位长度D. 向左平移3π个单位长度6.【安徽省六校教育研究会2014届高三素质测试理】函数)42sin()(π-=x x f 在]2,0[π上的单增区间是 ( ) A .]8,0[π B .]2,8[ππC .]83,0[πD .]2,83[ππ7.【安徽省池州一中2014届高三第一次月考数学(理)】已知函数()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<,其导函数()f x '的部分图像如图所示,则函数()f x 的解析式为( )A .1()2sin 24f x x π⎛⎫=+ ⎪⎝⎭B .1()4sin 24f x x π⎛⎫=+ ⎪⎝⎭C .()4sin 4f x x π⎛⎫=+ ⎪⎝⎭D .13()4sin 24f x x π⎛⎫=+⎪⎝⎭8.【安徽省示范高中2014届高三上学期第一次联考数学(理)】若sin()πα-=且3(,)2παπ∈,则sin()22πα+=( )A .B . C得9.【吉林市普通中学2013-2014学年度高中毕业班摸底测试理】已知函数()sin())(0,||)2f x x x πωφωφωφ=+-+><,其图象相邻的两条对称轴方程为0x =与2x π=,则( )A .()f x 的最小正周期为2π,且在(0,)π上为单调递增函数B .()f x 的最小正周期为2π,且在(0,)π上为单调递减函数C .()f x 的最小正周期为π, 且在(0,)2π上为单调递增函数 D .()f x 的最小正周期为π, 且在(0,)2π上为单调递减函数10.【江西师大附中高三年级2013-2014开学考试】已知函数2()sin 22cos 1f x x x =+-,将()f x 的图象上各点的横坐标缩短为原来的12倍,纵坐标不变,再将所得图象向右平移4π个单位,得到函数()y g x =的图象,则函数()y g x =的解析式为( )A .()g x x =B .()g x x =C .3())4g x x π=-D .()4g x x =11.【四川省德阳中学2014届高三“零诊”试题理科】定义在R 上的偶函数()f x 满足(2)()f x f x -=,且在[3,2]--上是减函数,,αβ是钝角三角形的两个锐角,则下列不等式中正确的是( )A.(sin )(cos )f f αβ>B.(sin )(cos )f f αβ<C.(cos )(cos )f f αβ<D.(cos )(cos )f f αβ>12.【湖北省重点中学2014届高三10月阶段性统一考试(理)】已知方程sin x k x=在()0,+∞上有两个不同的解α、()βαβ<,则下列结论正确的是( )A.2sin 22cos ααα=B.2cos 22sin ααα=C.2sin 22cos βββ=D.2cos 22sin βββ=(二)填空题(4*5=20分)13.【江苏省泰州中学2013-2014学年度第一学期高三数学考试】函数()2sin()4f x x π=-,[,0]x π∈-的单调递减区间单间为__________.14.【吉林市普通中学2013-2014学年度高中毕业班摸底测试理】在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,60B =︒.则b15.【四川省德阳中学2014届高三“零诊”试题理科】已知2242-=--)sin()cos(πααπ,则_______sin cos =+αα.16.【安徽省池州一中2014届高三第一次月考数学(理)】已知函数()cos sin f x x x =⋅,给出下列五个说法:①19211124f π⎛⎫= ⎪⎝⎭.②若12()()f x f x =-,则12x x =-.③()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增. ④将函数()f x 的图象向右平移34π个单位可得到1cos 22y x =的图象. ⑤()f x 的图象关于点,04π⎛⎫- ⎪⎝⎭成中心对称. 其中正确说法的序号是 .(二) 解答题(10+5*12=70分)17. 【江西师大附中2014届高三年级10月测试试卷理】已知函数(sin cos )()2cos ,x f x x x x R -=∈.(I)求函数()f x 图像的对称中心;(Ⅱ)求函数()f x 在区间⎥⎦⎤⎢⎣⎡43,8ππ上的最小值和最大值故函数)(x f 在区间⎥⎦⎤⎢⎣⎡43,8ππ1-,最小值为-2.18.【湖北省重点中学2014届高三10月阶段性统一考试(理)】已知函数()()sin ,0,0,2f x A x x R A πωϕωϕ⎛⎫=+∈>>< ⎪⎝⎭的部分图象如图3所示.(1)试确定函数()f x 的解析式; (2)若123f απ⎛⎫=⎪⎝⎭,求2cos 3πα⎛⎫- ⎪⎝⎭的值.试题解析:(1)由图象知,()max 2f x A ==,19.[山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理】已知函数2()sin(2)2cos 1()6f x x x x R π=-+-∈.(1)求()f x 的单调递增区间;(2)在ABC ∆中,三内角,,A B C 的对边分别为,,a b c ,已知1()2f A =,2a b c =+,18bc =.求a 的值.12cos 2sin(2)26x x x π=+=+…………………………………………3分20.【广东省广州市越秀区2014届高三上学期摸底考试(理)】已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<,x ∈R 的最大值是1,最小正周期是2π,其图像经过点(,1)M π-. (1)求()f x 的解析式;(2)设A 、B 、C 为△ABC 的三个内角,且3()5f A =,5()13f B =-,求()f C 的值.21.【江苏省苏州市2014届高三九月测试试卷】已知向量(cos ,sin )A A =-m ,(cos ,sin )B B =n ,cos 2C ⋅=m n ,其中,,A B C 为ABC ∆的内角.(Ⅰ)求角C 的大小; (Ⅱ)若6AB =,且18CA CB ⋅= ,求,AC BC 的长.由①②解得6,6AC BC ==. …………………12分22.【安徽省示范高中2014届高三上学期第一次联考数学(理)】已知函数2()cos cos ()f x x x x m m R =-+∈的图像过点(,0)12M π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图像各点纵坐标不变,横坐标伸长为原来的2倍,然后向左平移3π个单位,得函数()g x 的图像.若,,a b c 分别是ABC ∆三个内角,,A B C 的对边,4a c +=,且当x B =时,()g x 取得最大值,求b 的取值范围.由226222πππππ+≤-≤-k x k ,k Z ∈,得36ππππ+≤≤-k x k ,(四)附加题(15分)23.如图4所示,一个半圆和长方形组成的铁皮,长方形的边AD 为半圆的直径,O 为半圆的圆心,1AB =,2BC =,现要将此铁皮剪出一个等腰三角形PMN ,其底边MN BC ⊥. (1)设30MOD ∠= ,求三角形铁皮PMN 的面积; (2)求剪下的铁皮三角形PMN 的面积的最大值.【解析】。
【原创·精品解析系列】数学理卷·2014届山西省忻州一中 康杰中学 临汾一中 长治二中四校高三第四次联考
山西省忻州一中 长治二中 临汾一中 康杰中学2013-2014学年高三第四次四校联考数学试题(理科)A 卷命题: 康杰中学 临汾一中 长治二中 忻州一中【满分150分,考试时间120分】【试卷综析】本试题是一份质优量大的高三测试的好题,涉及范围广,包括集合、复数、圆、数列、命题、频率分布直方图、概率、程序框图、分段函数、三角函数变换、三视图、解三角形、双曲线、离心率、导数极值、二项式定理、平面向量、直线与圆、线性规划、球、几何证明、不等式选讲、参数方程与极坐标等高考核心考点,又涉及了概率统计、数列、立体几何、解析几何、导数应用等必考解答题型。
本题难易程度涉及合理,梯度分明;既有考查基础知识的经典题目,又有考查能力的创新题目;从12,14,15,16等题能看到命题者在创新方面的努力,从17,18,19三题看出考基础,考规范;从20题可以看出考融合,考传统;从16,21两题可以看出,考拓展,考创新。
一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1.集合{}{}220,2,0xA x x xB y y x =->==>,R 是实数集,则()RB AC ⋃等于( )A .RB .(-∞,0)∪1,+∞)C .(]0,1D .(](),12,-∞⋃+∞ 【知识点】不等式的解集,函数值域,补集,交集 【答案解析】D()()()(],02,,1,,,1R A B B C =-∞⋃+∞=+∞=-∞,则()(]()()(](),1,02,,12,RB AC ⋃=-∞⋃-∞⋃+∞=-∞⋃+∞【思路点拨】把每一个集合解对就好说了2. 已知z 是复数z 的共轭复数, 0g z z z z ++=,则复数z 在复平面内对应的点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 【知识点】复数与共轭复数,复数轨迹 【答案解析】A设(,)z x yi x y R =+∈则222,g z z x z z x y +==+所以0g z z z z ++=变为()22222011x y x x y ++=⇒++=故选A【思路点拨】设复数是关键,再化简。
新课标I(第03期)-2014届高三名校数学(理)试题分省分项汇编 专题03 导数解析版Word版含解析
一.基础题组1. 【河南省郑州市2014届高中毕业年级第一次质量预测试题】已知曲线23ln 4x y x =-的一条切线的斜率为12-,则切点的横坐标为( ) A .3 B .2 C .1 D .122. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】定积分=-⎰-dx x x 2222( ) A.5B.6C.7D.83. 【山西省太原市太远五中2014届高三12月月考】已知函数xe xx f cos )(=,则函数)(x f 在点))0(,0(f 处切线方程为 . 【答案】10x y +-= 【解析】试题分析:∵'2sin cos ()()x xx xe xe f x e --=,∴1k =-,(0)1f =,∴1y x -=-,即10x y +-=. 考点:利用导数求曲线的切线.4. 【唐山市2013-2014学年度高三年级第一学期期末考试】已知0a >,函数32f(x)x ax bx c =+++在区间[2,2]-单调递减,则4a b +的最大值为 .5. 【河北省衡水中学2014届高三上学期四调考试】设()ln af x x x x=+, 32()3g x x x =--.(Ⅰ)当2a =时,求曲线()y f x =在1x =处的切线的方程;(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.6. 【河北省唐山市一中2014届高三12月月考】(本小题满分12分)某地区注重生态环境建设,每年用于改造生态环境总费用为x 亿元,其中用于风景区改造为y 亿元。
该市决定制定生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少a 亿元,至多b 亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若1=a ,4=b ,请你分析能否采用函数模型y =31(416)100x x ++作为生态环境改造投资方案.二.能力题组1. 【河北省唐山市一中2014届高三12月月考】已知函数()f x 对于一切实数x,y 均有()()()21f x y f y x x y +-=++成立,且()()110,0,21g 2a f x f x o x ⎛⎫=∈+ ⎪⎝⎭则当,不等式< 恒成立时,实数a 的取值范围是 .2. 【山西省太原市太远五中2014届高三12月月考】由曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面图形(图中的阴影部分)的面积是 .【答案】2 【解析】3. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】(本小题满分12分) 已知函数ln(1)()2x x f x x -=-.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设2()23g x x x =++,证明:对任意1(1,2)(2,)x ∈+∞ ,总存在2x R ∈,使得12()()f x g x >.试题解析:(1)''2212ln(1)1[ln(1)]ln(1)1()(2)(2)x x x x x x x f x x x --+------==-- .................1分设1()2ln(1)11h x x x x =--+---, 22'22(1)2(1)1(2)()0(1)(1)x x x h x x x ---+-==≥--∴()h x 在(1,)+∞是增函数,又(2)0h = ………………3分 ∴当(1,2)x ∈时, ()0h x < ,则'()0f x <,()f x 是单调递减函数; 当(2,)x ∈+∞时, ()0h x > ,则'()0f x >,()f x 是单调递增函数. 综上知:()f x 在(1,2)单调递减函数,()f x 在(2,)+∞单调递增函数 ……………………6分三.拔高题组1. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】0.50.521log log 1(1)(7)x mx x x +>---对任意x ∈[2,4]恒成立,则m 的取值范围为 .∴当4x =时,max 45y =,∴45m >.考点:1.对数函数的单调性;2.恒成立问题;3.利用导数求函数最值.2. 【唐山市2013-2014学年度高三年级第一学期期末考试】(本题满分12分)已知函数(x)1x x e f xe =+.(1)证明:0(x)1f <≤; (2)当0x >时,21(x)1f ax >+,求a 的取值范围.试题解析:(Ⅰ)设(x)xe 1x g =+,则'(x)(x 1)e xg =+.当(,1)x ∈-∞-时,'(x)0g <,(x)g 单调递减; 当(1,)x ∈-+∞时,'(x)0g >,(x)g 单调递增. 所以1(x)g(1)1e0g -≥-=->.又0xe >,故(x)0f >.…2分'2(1e )(x)(xe 1)x x x e f -=+ 当(,0)x ∈-∞时,'(x)0f >,(x)f 单调递增; 当(0,)x ∈+∞时,'(x)0f <,(x)f 单调递减. 所以(x)f(0)1f ≤=. 综上,有0(x)1f <≤.…5分3. 【河北省唐山市一中2014届高三12月月考】(本小题满分12分)已知)0()(>-=a e x x f ax.(1)曲线y=f (x )在x=0处的切线恰与直线012=+-y x 垂直,求a 的值;(2)若x ∈[a ,2a]求f (x )的最大值; (3)若f (x 1)=f (x 2)=0(x 1<x 2),求证:.【答案】(1)13a =;(2)当ln a a a >,即a e <时,max ()()f x f a a e ==-,当ln 2a a a a ≤≤,即2e a e ≤≤时,max ()(ln )ln f x f a a a a a ==-,当2ln a a a <,即2a e >时,2max ()(2)2f x f a a e ==-;(3)证明过程详见解析. 【解析】试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、最值、切线方程以及不等式的证明等基础知识,考查分类讨论思想,综合分析和解决问题的能力.第一问,对()f x 求导,将0x =代入得到切线的斜率,由已知切线与直线210x y -+=垂直得出方程,解出a 的值;第二问,先对()f x 求导,利用导数的正负判断出函数的单调区间,再讨论已知[,2]x a a ∈和单调区间的关系来决定最值的位置;第三问,利用第二问的结论,得出max ()ln f x a a a =-,因为12()()0f x f x ==,所以数形结合,得max ()0f x >,解得a e >,数形结合得出两组点的横坐标的关系21ln x x a a a ->-,又利用12()()0f x f x ==,得出11x a x e =,22x ax e =,进行转换得到所求证的不等式.(3)由(2)知,max ()(ln )ln f x f a a a a a ==-,∵12()()0f x f x ==,∴max ()(ln )ln 0f x f a a a a a ==->, ∴ln 1a >,得a e >,∴()0f a a e =->,且(ln )0f a a >. 得21ln x x a a a ->-,又11x a x e =,22x ax e =,∴1211()(ln )12x x a a a a a x e e e x a--=<=. 考点:1.利用导数求切线的斜率;2.两条直线垂直的充要条件;3.利用导数判断函数的单调性;4.利用导数求函数的最值.4. 【河南省郑州市2014届高中毕业年级第一次质量预测试题】(本小题满分12分)已知函数()ln f x x x =,()(1)g x k x =-.(1)若()()f x g x ≥恒成立,求实数k 的值;(2)若方程()()f x g x =有一根为11(1)x x >,方程''()()f x g x =的根为0x ,是否存在实数k ,使1x k x =?若存在,求出所有满足条件的k 值;若不存在,说明理由. 试题解析:⑴解:注意到函数()f x 的定义域为(0,)+∞, 所以()()f x g x ≥恒成立()()f xg x x x⇔≥恒成立, 设(1)()ln (0)k x h x x x x-=->, 则221()k x kh x x x x -'=-=, ------------2分当0k ≤时,()0h x '>对0x >恒成立,所以()h x 是(0,)+∞上的增函数, 注意到(1)0h =,所以01x <<时,()0h x <不合题意.-------4分5. 【山西省曲沃中学2014届高三上学期期中考试】已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (1)当0a =时,求函数()S t 的单调区间;(2)当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.(II )因为1()||e 2t S t t a =-,其中t a ≠ 当2a >,[0,2]t ∈时,1()()e 2tS t a t =-因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2t S t t a =---,令'()0S t =,得1t a =- …………………8分6. 【山西省太原市太远五中2014届高三12月月考】已知函数ln 1af x x a x =+∈+R ()(). (1)当92a =时,如果函数g x f x k =-()()仅有一个零点,求实数k 的取值范围; (2)当2a =时,试比较f x ()与1的大小; (3)求证:1111ln 135721n n +>+++++ ()n ∈*N ()一个交点,所以关键是()y f x =的图像,对()f x 求导,令'()0f x >和'()0f x <判断函数的单调性,确定函数的极值和最值所在位置,求出具体的数值,便可以描绘出函数图像,来决定k 的位置;第二问,先将2=a 代入,得到()f x 解析式,作差法比较大小,得到新函数()h x ,判断()h x 的正负即可,通过对()h x 求导,可以看出()h x 在(0,)+∞上是增函数且(1)0h =,所以分情况会出现3种大小关系;第三问,法一:利用第二问的结论,得到表达式1211ln+>+k k k ,再利用不等式的性质得到所证表达式的右边,左边是利用对数的运算性质化简,得证;法二,用数学归纳法证明,先证明当1n =时不等式成立,再假设当n k =时不等式成立,然后利用假设的结论证明当1n k =+时不等式成立即可.①当1>x 时,0)1()(=>h x h ,即1)(>x f ; ②当10<<x 时,0)1()(=<h x h ,即1)(<x f ;③当1=x 时,0)1()(==h x h ,即1)(=x f . ……………………………8分(3)(法一)根据(2)的结论,当1>x 时,112ln >++x x ,即11ln +->x x x . 令k k x 1+=,则有1211ln +>+k k k , ∑∑==+>+∴n k nk k k k 111211ln . ∑=+=+nk k k n 11ln )1ln( , 1215131)1ln(++++>+∴n n . …………………………………12分。
山西省临汾一中、康杰中学、忻州一中、长治二中高三第
山西省临汾一中、康杰中学、忻州一中、长治二中2015届高三第二次四校联考数学(文)试题【满分150分,考试时间为120分钟】一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1. 已知集合,集合,则等于 A . B .C .D . 2. 已知复数 (为虚数单位),则复数在复平面内对应的点在A . 第一象限B .第二象限C .第三象限D .第四象限3. 已知数列满足,,则数列的前项和为A .B .C .D .4. 已知函数,若)2(2)()(f a f a f ≤+-,则实数的取值范围是A .B .C .D . 5.已知命题:,,命题:,则下列命题为真命题的是 A. B .C .D .6.执行如图所示的程序框图,输出的值为A. B . C . D .7.已知向量满足,,,则与的夹角为A .B .C .D .8. 已知圆0218622=++++y x y x ,抛物线的准线为,设抛物线上任意一点到直线的距离为,则的最小值为A .B .C .D . 9.已知函数,,的零点分别为,,,则,,的大小关系是 A .B .C .D .10. 已知是第二象限角, ,函数)2cos(cos cos sin )(x x x f -+=παα的图像关于直线对称,则 A . B. C. D.11.A .B. C. D.12. 已知函数⎩⎨⎧>≤-=-0,lg 0,22)(x x x x f x ,则方程)02(x f 的根的个数不可(第11题)正视图 侧视图俯视图能为A .B .C .D .二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13. 已知双曲线的渐近线方程为,则此双曲线的离心率为_______. 14. 点满足不等式,,则的最大值为________. 15. 已知三棱锥中,,,,,,则三棱锥的外接球的表面积为________.16. 已知定义在上的函数满足:①对于任意的,都有;②函数是偶函数;③当时,,则,,从小到大....的排列是______.三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上) 17. (本小题满分12分)在公差不为的等差数列中,已知,且,,成等比数列.(1)求数列的通项公式;(2)令,求数列的前项和. 18. (本小题满分12分)如图,四棱锥中,底面为矩形, 平面,为的中点. (1)证明:平面;(2)设, ,求点到平面的距离. 19. (本小题满分12分)已知向量,,设函数.(1)求函数的单调递增区间;(2)在中,边分别是角的对边,角为锐角,若()162sin =⎪⎭⎫⎝⎛-+πA A f ,,的面积为,求边的长. 20. (本小题满分12分)已知动圆过定点,且与圆:相切,点的轨迹为曲线,设为曲线上(不在轴上)的动点,过点作(为坐标原点)的平行线交曲线与两点. (1)求曲线的方程;(2)是否存在常数,使总成立?若存在,求;若不存在,说明理由. 21. (本小题满分12分)设函数x xppx x f ln 2)(--=(). (1)若函数在其定义域内为单调递增函数,求实数的取值范围; (2)设,且,若在上至少存在一点,使得成立,求实数的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲 如图,边AB 上的高, (1)证明:、、、四点共圆; (2)若,,求的长.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数. (1)写出曲线的参数方程;(2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.24.(本小题满分10分) 选修4—5:不等式选讲已知函数122)(--+=x x x f (1)解不等式;(2)对任意,都有成立,求实数的取值范围.参考答案一选择题 1-6 CBDACB 7-12DADCCA 二填空题 13.或 14. 15. 6π 16. 三解答题17.解:(1)设数列的公差为,由题知,, ……………1分)131)(1()41(2d d d ++=+∴, ……………2分即,又, ……………4分 , ……………5分 (2), ……………6分n n n T 2)12(252321321⨯-++⨯+⨯+⨯=∴ ① 14322)12(2)32(2523212+⨯-+⨯-++⨯+⨯+⨯=n n n n n T ②①-②得 11432)12(2222++⨯--++++=-n n n n T ……………9分122)12(21282++⨯----+=n n n 122)12(282++⨯--+-=n n n )122(261+-+-=+n n ……………11分)32(261-+=∴+n T n n ……………12分18.(1)连结BD 交AC 与点O ,连结EO ∵底面ABCD 为矩形 ∴O 为BD 的中点又∵E 为PD 的中点 ∴OE 为△PBD 的中位线, 则OE ∥PB ………4分又,∴PB ∥平面AEC ……………6分 (2)∵PB ∥平面AEC∴P 到平面AEC 与B 到平面AEC 的距离相等∴V P-AEC =V B-AEC =V E-ABC ……………8分又S △ABC =,且E 到平面ABC 的距离为AC=2,EC=,AE=1, ∴S △AEC = ……………10分设P 到平面AEC 的距离为,则2123314731⨯⨯=⨯⨯h ,可得= ∴P 到平面AEC 的距离为 ……………12分 19.(1)()x x x x f cos sin 3sin 2-=⋅=x x 2sin 2322cos 1--=……………3分 由()Z k k x k ∈+≤+≤+πππππ2236222,得)(326Z k k x k ∈+≤≤+ππππ ∴的单调递增区间为)(32,6Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ ……………6分P A B C DE(2)()12cos 2162sin 62sin 2162sin =-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛-+A A A A A f πππ ∴211cos 22cos 2-=-=A A 又A 为锐角,∴, …………9分 S △ABC =, ∴,则bc bc c b A bc c b a --+=-+=2)(cos 22222∴ ……………12分 20.(1)∵在圆B 的内部 ∴两圆相内切,所以,即∴C 点的轨迹是以A ,B 为焦点的椭圆,且长轴长,,, ∴曲线T 的方程为: ……………4分 (2)当直线MN 斜率不存在时,,∴λπ7cos ||||=⋅⋅=⋅,则 ……………5分 当直线MN 斜率存在时,设,,MN:,则OQ:, 由得011214496)167(2222=-+++k x k x k ,则 , ……………7分∴()()[]()[]222121221221167499333kk x x x x k x x k y y +-=+++=++= ()()222121167)1(4933k k y y x x AN AM ++-=+++=⋅ ……………9分 由得,则,∴()()222222216711121k k x k y x ++=+=+=,由可解得。
(新课标I版01期)2014届高三数学_名校试题分省分项汇编专题04_三角函数与三角形(含解析)理
(新课标I 版01期)2014届高三数学 名校试题分省分项汇编专题04三角函数与三角形(含解析)理一.基础题组1. 【山西省长治二中 康杰中学 临汾一中 忻州一中2013届高三第四次四校联考】在ABC ∆中,角A 、B 、C 所对的边分别为a ,b ,c 且a=1,B=45°,ABC S ∆=2,则b 等于( )A .5B .25C .41D .252. 【唐山市2013-2014学年度高三年级摸底考试】已知1sin 23α=,则2c o s ()4πα-=( ) A .13-B .23-C .13D .233. 【河北唐山开滦二中2013~2014学年度第一学期高三年级期中考试】若1sin()63πα-=,则22cos ()162πα+-=( ) A. 31 B. 31- C. 97 D. 97-【答案】A. 【解析】试题分析:212cos ()1cos()sin[()]sin()6232363παππππααα+-=+=-+=-=,选A. 考点:三角函数的倍角公式、诱导公式.4. 【2012-2013学年度南昌市高三第二次模拟测试卷】将函数))(6sin(R x x y ∈+=π图像上所有的点向左平行移动6π个单位长度,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图像的解析式为( ) A.)32sin(π+=x y B.)32sin(π+=x y C.2sin xy = D.2cosx y =5. 【河北省保定市八校联合体2014届高三上学期第一次月考】已知sin()sin 0,32ππααα++=-<<则2cos()3πα+等于( )A .45-B .35-C .35D .456. 【河北省邯郸市2014届高三9月摸底考试数学】设函数()sin cos 2f x x x =图象的一个对称轴是( )A .B .0x = C7. 【河北衡水中学2013~2014学年度高三上学期二调高三数学试卷】已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )A.向右平移π6个长度单位B.向右平移π12个长度单位C.向左平移π6个长度单位D.向左平移π12个长度单位【答案】A 【解析】试题分析:由图像知1A =,724()123T ππππω=-==,∴2ω=,又∵23πϕπ⨯+=,∴3πϕ=,∴()sin(2)3f x x π=+将图像向右平移π6个长度单位可得到()sin 2g x x =. 考点:1.由图像确定函数解析式;2.图像变换.8. 【河北唐山开滦二中2013~2014学年度第一学期高三年级期中考试】函数x x y sin 2cos 2+= (656ππ≤≤-x )的值域是_______________。
2014年高考数学二轮复习精品资料-高效整合篇专题08 圆锥曲线(理)(测试)
(一) 选择题(12*5=60分)1. 【广东省广州市越秀区2014届高三上学期摸底考试(理)】设a ∈R ,则“1a =”是“直线10ax y -+=与直线10x ay --=平行”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2. 【改编自广东省惠州市2014届高三第一次调研考试】已知直线l 与直线01=--y x 垂直,则直线l 的倾斜角=α( ) A .4π B.3πC. 23πD. 34π3. 【改编自2012年高考陕西卷理科】已知圆22:40C x y x +-=,l 过点(1,1)P 的直线,则( )(A )l 与C 相交 (B ) l 与C 相切 (C )l 与C 相离 (D ) 以上三个选项均有可能4.【江苏省扬州中学2013—2014学年度第一学期月考高三数学】当且仅当m r n ≤≤时,两圆2249x y +=与22268250(0)x y x y r r +--+-=>有公共点,则n m -的值为 .5.【广东省六校2014届高三第一次联考试题】若动圆的圆心在抛物线212x y =上,且与直线30y +=相切,则此圆恒过定点( ) A.(0,2)B.(0,3)-C.(0,3)D.(0,6)6.【河北省唐山市2013-2014学年度高三年级第三次模拟考试】经过点1(1,)2,渐近线与圆22(3)1x y -+=相切的双曲线的标准方程为( )A .2281x y -= B .22241x y -= C .2281y x -= D .22421x y -=7.【改编自2012年高考安徽卷理科】过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若A 点到准线的距离为3,则AOB ∆的面积为( )()A ()B ()C()D8.【江西省2014届新课程高三第三次适应性测试】设,P Q 是双曲线22x y -=于原点O 对称的两点,将坐标平面沿双曲线的一条渐近线l 折成直二面角,则折叠后线段PQ 长的最小值为( )A .B .C .D .49.【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理】抛物线x y 122=的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当FPM ∆ 为等边三角形时,则FPM ∆的外接圆的方程为( )A.. 5)5()3(22=±+-y x B. 48)34()3(22=±+-y x C. 9)3()3(22=±+-y x D. 28)72()3(22=±+-y x10.【山西省山大附中2014届高三9月月考数学理】已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是 ( )A .圆B .椭圆C .抛物线D .双曲线11.【2013年普通高等学校招生全国统一考试数学浙江理】如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A.2 B.3 C.23D.2612.【江西师大附中高三年级2013-2014开学考试】抛物线22y px =(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为( )A .2BC .1D(二) 填空题(4*5=20分)13. 【江西抚州一中2013-2014学年高三年级第四次同步考试】已知实数y x ,满足01422=+-+x y x ,则xy的最大值为 .14.【2013年普通高等学校招生全国统一考试(江西卷)理】抛物线22(0)x py p =>的焦点为F ,其准线与双曲线22133x y -=相交于A ,B 两点,若△ABF 为等边三角形,则p=___________.15.【江苏省南京市2014届高三9月学情调研】如图,已知过椭圆()222210x y a b a b+=>>的左顶点(),0A a -作直线l 交y 轴于点P ,交椭圆于点Q ,若AOP ∆是等腰三角形,且2PQ QA =,则椭圆的离心率为 .16.【山西省山大附中2014届高三9月月考数学理】已知121(0,0),m n m n+=>>当mn 取得最小值时,直线2y =+与曲线x x m+1y y n=的交点个数为(三) 解答题(10+5*12=70分)17. 【2013年普通高等学校统一考试江苏数学试题】如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1, 圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程; (2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.18.【广东省惠州市2014届高三第一次调研考试】在平面直角坐标系x o y 中,点(,)(0)P a b a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.已知△12F P F 为等腰三角形.(1)求椭圆的离心率e ;(2)设直线2P F 与椭圆相交于,A B 两点,M 是直线2P F上的点,满足2A MB M =-,求点M 的轨迹方程.将2y =3c x y =-得210516x c x +=,19.【2014届吉林市普通高中高中毕业班复习检测】设F 为抛物线px y 22= (0>p )的焦点,,,R S T 为该抛物线上三点,若=++,且6=++ (Ⅰ)求抛物线22y px =的方程;(Ⅱ)M 点的坐标为(m ,0)其中0>m ,过点F 作斜率为1k 的直线与抛物线交于A 、B 两点,A 、B 两点的横坐标均不为m ,连结AM 、BM 并延长交抛物线于C 、D 两点,设直线CD 的斜率为2k .若421=k k ,求m 的值.20.【广东省广州市执信、广雅、六中2014届高三10月三校联考(理)】已知椭圆()2222:10x y C a b a b+=>>的两个焦点12,F F 和上下两个顶点12,B B 是一个边长为2且∠F 1B 1F 2为60的菱形的四个顶点.(1)求椭圆C 的方程;(2)过右焦点F 2 ,斜率为k (0k ≠)的直线l 与椭圆C 相交于,E F 两点,A 为椭圆的右顶点,直线AE 、AF 分别交直线3x =于点M 、N ,线段MN 的中点为P ,记直线2PF 的斜率为k '.求证:k k '⋅为定值.21.【2013年普通高等学校统一考试试题新课标数学(理)卷】平面直角坐标系xOy 中,过椭圆M :22221(0)x y a b a b+=>>右焦点的直线x y +-M 于A,B 两点,P 为AB 的中点,且OP 的斜率为12. (Ι)求M 的方程;(Ⅱ)C,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形面积的最大值所以可得22.【河北省邯郸市2014届高三9月摸底考试数学理科】已知定点(3,0)G -,S 是圆22:(3)72C x y -+=(C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E .设点E 的轨迹为M.(1)求M 的方程;(2)是否存在斜率为1的直线l ,使得直线l 与曲线M 相交于A ,B 两点,且以AB 为直径的圆恰好经过原点?若存在,求出直线l 的方程;若不存在,请说明理由.化简得227m <,解得m -<<(四)附加题(15分)23. 【湖北省荆州中学2014届高三年级第一次质量检测数学】已知椭圆:22221x y a b+=(0a b >>)上任意一点到两焦点距离之和为离心率为3,左、右焦点分别为1F ,2F ,点P 是右准线上任意一点,过2F 作直 线2PF 的垂线2F Q 交椭圆于Q 点.(1)求椭圆E 的标准方程;(2)证明:直线PQ 与直线OQ 的斜率之积是定值;(3)点P 的纵坐标为3,过P 作动直线l 与椭圆交于两个不同点,M N ,在线段MN 上取点H ,满足MP MH PN HN=,试证明点H 恒在一定直线上.所以点H 恒在直线2320x y +-=上.。
专题12 立体几何(基础篇)-2014年高考数学备考艺体生文化课百题突围系列(解析版)
三视图【背一背基础知识】1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图——光线从几何体的前面向后面正投影,得到的投影图;侧视图——光线从几何体的左面向右面正投影,得到的投影图;正视图——光线从几何体的上面向下面正投影,得到的投影图;注:(1)俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右边,“高度”与正视图相等,“宽度”与俯视图。
(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽”.(2)正视图,侧视图,俯视图都是平面图形,而不是直观图。
3.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
【讲一讲基本技能】1.必备技能:三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.一般地,若俯视图中出现圆,则该几何体可能是球或旋转体,若俯视图是多边形,则该几何体一般是多面体;若主视图和左视图中出现三角形,则该几何体可能为椎体。
2.典型例题例1 【广东省惠州市2014届高三第一次调研考试】若正三棱柱的三视图如图所示,该三棱柱的表面积是()A. 623+ B. 93C. 63+ D. 3例2一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱例3如图1-2,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【练一练趁热打铁】1.如图是一个几何体的三视图.若它的体积是33,则a=________.2. 【湖北省武汉市2014届高三10月调研测试数学(文)】一个几何体的三视图如图所示,则该几何体的表面积是()A.4+2 6 B.4+ 6 C.4+2 2 D.4+ 2【答案】A【解析】根据三视图可知该几何体是三棱锥,所以62422321222212+=⨯⨯⨯+⨯⨯⨯=S.如图所示:3.【广东省广州市执信、广雅、六中2014届高三10月三校联考(文)】如图,三棱柱的棱长为2,底面是边长为2的正三角形,1111CBAAA面⊥,正视图是边长为2的正方形,俯视图为正三角形,则左视图的面积为()A.4 B.22C.23D.2几何体的表面积和体积【背一背基础知识】1. .柱体、锥体、台体和球的表面积与体积(1)表面积公式 (2)体积公式①圆柱的表面积S =2πr (r +l ); ①柱体的体积V =Sh ; ②圆锥的表面积S =πr (r +l ); ②锥体的体积V =13Sh ;③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ③台体的体积V =13(S ′+SS ′+S )h ;④球的表面积S =4πR 2 ④球的体积V =43πR【讲一讲基本技能】1.必备技能:求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在。
2014年山西省高三第四次四校联考数学理科试卷含答案
山西省忻州一中 长治二中 临汾一中 康杰中学2013-2014学年高三第四次四校联考数学试题(理科)A 卷命题: 康杰中学 临汾一中 长治二中 忻州一中【满分150分,考试时间120分】一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1.集合A={x|x 2-2x>0},B={y|y= 2 x ,x>0},R 是实数集,则(C R B)∪A 等于( ) A .R B .(-∞,0)∪1,+∞) C .(0,1 D .(-∞,1∪(2,+∞)2. 已知z 是复数z 的共轭复数, z+z + z ·z =0,则复数z 在复平面内对应的点的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 3.设公比 12q =的等比数列{n a }的前n 项和为n S ,则43Sa = ( ) A .152 B .154C .72D .744.命题p :∀x ∈R,sinx-cosx< 2命题q :“a=1”是“直线l 1:ax+2y-1=0与直线l 2:x+(a+1)y+4=0平行”的充分条件 则下列命题中,真命题是A .(⌝q)∨pB .p ∧qC .(⌝p)∧(⌝q)D .(⌝p)∨ (⌝q) 5.某一个班全体学生参加物理测试,成绩的频率分布直方图如图,则该班的平均分估计是 A .70 B .75 C .68 D .666.在长为8的线段AB 上任取一点C ,现作一矩形,邻边长分别等于AC 、BC 的长,则该矩形面积大于15的概率 ( )A .16B .14C .23D .457.右图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,则这样的x 值有 ( )A .1个B .2个C .3个D .4个8.把函数f(x)=sin 2x-2sinxcosx+3cos 2x 的图像沿x 轴向左平移m(m>0)个单位,所得函数g(x)的图像关于直线/分频率试题类型:Ax= π8对称,则m 的最小值为 ( )A.4π B.3π C.2πD.43π9.已知一个几何体的三视图如图所示,则这个几何体的体积是( )A .233 B .236C .113D .10310.已知四边形ABCD ,∠BAD=120º,∠BCD=60º,AB =AD =2,则AC 的最大值为( ) A .433 B .4 C .833D .811.已知双曲线x 2a 2 − y 2b 2=1(a>0,b>0),右焦点F 到渐近线的距离小于等于a,则该双曲线离心率的取值范围为( ) ABCD 12.若f(x)满足x 2f '(x)—2xf(x)=x 3e x ,f(2)= —2e 2.则x>0时,f(x) ( )A.有极大值,无极小值 B.有极小值,无极大值 C.既有极大值,又有极小值 D.既无极大值,也无极小值二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13.(2x+1x )6展开式中的常数项等于________14.∆ABC 中,|CB →|cos ∠ACB=|BA →|cos ∠CAB=3,且AB →·BC →=0,则AB 长为 _ 15.已知直线x+y+2a-b=0(b ∈R,0≤a ≤2)与圆x 2+y 2=2有交点,则a+b 的最大值为 16.四棱锥P-ABCD 底面是一个棱长为2的菱形,且∠DAB=60º,各侧面和底面所成角均为60º,则此棱锥内切球体积为三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12, q=S 2b 2.(1)求a n 与b n ;(2)求1S 1+1S 2+…+1S n的取值范围.18.为了普及环保知识增强环保意识,某校从理工类专业甲班抽取60人,从文史类乙班抽取50人参加环保知识测试 ⑴ 根据题目条件完成下面2×2列联表,并据此判断你是否有99%的把握认为环保知识与专业有关分,优秀的同学得60分以上通过预选,非优秀的同学得80分以上通过预选,若每位同学得60分以上的概率为12,得80分以上的概率为13,现已知甲班有3人参加预选赛,其中1人为优秀学生,若随机变量X 表示甲班通过预选的人数,求X的分布列及期望E (X ). 附: k 2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d), n=a+b+c+d19.(本题满分12分)如图,四棱锥P-ABCD 的底面是矩形,侧面PAD ⊥底面ABCD ,在∆PAD 中PA →+PD →=2PE →,且AD=2PE(1)求证:平面PAB ⊥平面PCD ;(2)如果AB=BC,∠PAD=60º,求DC 与平面PBE 的正弦值20.已知点P 在圆x 2+y 2=1上运动,DP ⊥y 轴,垂足为D,点M 在线段DP 上,且|DM||DP|=22 (Ⅰ)求点M 的轨迹方程;(Ⅱ)直线l 与y 轴交于点Q(0,m)(m≠0),与点M 的轨迹交于相异的两点A,B ,且AQ →=λQB →,若OA →+λOB →=4OQ →.求m 的取值范围.21.已知函数()x f x e =(e 为自然对数的底),()ln(())g x f x a =+(a 为常数),()g x 是实BP ACDE数集R 上的奇函数.⑴ 求证:()1f x x ≥+()x R ∈;⑵ 讨论关于x 的方程:2ln ()()(2)g x g x x ex m =⋅-+()m R ∈的根的个数;请考生在(22).(23).(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B 、C ,∠APC 的平分线分别交AB 、AC 于点D 、E ,(Ⅰ)证明:∠ADE=∠AED ; (Ⅱ)若AC=AP ,求PCPA的值。
山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第三次联考数学(文)试卷
2014届高三年级第三次四校联考数学试题(文科)命题:临汾一中 忻州一中 康杰中学 长治二中【考试时间120分钟,满分150分】第Ⅰ卷(选择题 60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项是最符合题目要求的)1. 设全集{}6,5,4,3,2,1=U ,{}3,2,1=M ,{}5,4,3=N ,则=N M C U )(( ) A.{}3B.{}5,4C.{}5,4,3D.()5,42. 设复数1z i =+(i 是虚数单位),则22z z+=( ) A .1i --B .1i -+C .1i -D .1i +3. 函数41++=x xy 的定义域为( ) A.[)+∞-,4 B.()()+∞-,00,4 C.()+∞-,4D.[)()+∞-,00,44. 已知x 、y 的取值如右表所示: (第4题)从散点图分析,y 与x 线性相关,且a x y+=8.0ˆ,则a =( ) A. 0.8 B. 1 C. 1.2 D. 1.55. 某三棱锥的三视图如右图所示,该三棱锥的体积是( ) A.4B. 38C.2D.34 6. 执行如图所示的程序框图,若输入n 的值为7,则输出s 的值是( ) A .10 B .16 C .22D .177. 直线()31-=-x k y 被圆22(2)(2)4x y -+-=所截得的最短弦长等于( )A.B. C.D.8. 若3tan =α,则sin(2)4πα+的值为( )A .-210B .210C .5210D .72109. 实数,x y 满足2240240x x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若z kx y =+的最大值为13,则实数k =( )A. 2B.132 C. 94D. 510.设等差数列{}n a 和等比数列{}n b 首项都是1,公差与公比都是2,则=++++54321b b b b b a a a a a ( )A.54B.56C.58D.5711.已知圆锥曲线2244mx y m +=的离心率e 为方程22520x x -+=的根,则满足条件的圆锥曲线的个数为( ) A .4 B .3 C .2 D .1 12. 定义在R 上的函数()f x 满足()(),(2)(2),f x f x f x f x -=--=+且(1,0)x ∈-时,1()2,5x f x =+则2(log 20)f =( )A .-1B .45C .1D .-45第Ⅱ卷(非选择题90分)二、填空题(本大题共4小题,每小题5分,共20分) 13. 曲线()xe xf =在0x =处的切线方程为 .14. 已知向量()1,2-=p ,()2,x q =,且q p ⊥+的最小值为 . 15.已知数列{}n a 的前n 项和为n S ,n a S n n -=2,则=n a .16. 将长、宽分别为4和3的长方形ABCD 沿对角线AC 折起,得到四面体A ﹣BCD ,则四面体A ﹣BCD 的外接球的体积为 . 三、解答题(本大题共70分)17. (本小题满分12分)在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,c b 2=,且=3B C π-.(1) 求角C ;(2) 若1=c ,求ABC ∆的面积.18. (本小题满分12分)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查, (Ⅰ)求应从优秀生、中等生、学困生中分别抽取的学生人数; (Ⅱ)若从抽取的6名学生中随机抽取2名学生做进一步数据分析, (1)列出所有可能的抽取结果;(2)求抽取的2名学生均为中等生的概率.19. (本小题满分12分)在直三棱柱111ABC A B C -中,13AB AC AA ===,2BC =,D 是BC 的中点,F 是1C C上一点.(1)当2CF =,求证:1B F ⊥平面ADF ; (2)若D B FD 1⊥,求三棱锥1B ADF -体积.20. (本小题满分12分)已知函数()x x x ax x f ln 2-+=,(1)若0a =,求函数()x f 的单调区间;(2)若(1)2f =,且在定义域内2()2f x bx x ≥+恒成立,求实数b 的取值范围. 21.(本小题满分12分)已知椭圆C :12222=+bya x (0>>b a )的右焦点)0,1(F ,右顶点A ,且1||=AF .(1) 求椭圆C 的标准方程;(2)若动直线l :m kx y +=与椭圆C 有且只有一个交点P ,且与直线4=x 交于点Q ,问:是否存在一个定点)0,(t M ,使得0=⋅MQ MP .若存在,求出点M 坐标;若不存在,说明理由.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22. (本小题满分10分) 选修4—1;几何证明选讲.如图,已知⊙O 中,直径AB 垂直于弦CD ,垂足为M ,P 是CD 延长线上一点,PE 切⊙O 于点E ,连接BE 交CD 于点F ,证明:(1)∠BFM =∠PEF ; (2)PF 2=PD ·PC . 23.(本题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系xoy 中,曲线1C 的参数方程为⎩⎨⎧==ααsin cos 3y x ,(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为24)4sin(=+πθρ.(1) 求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2) 设P 为曲线1C 上的动点,求点P 到2C 上点的距离的最小值,并求此时点P 的坐标. 24. (本小题满分10分)选修4-5:不等式选讲设函数()312--+=x x x f (1) 求函数()x f y =的最小值; (2) 若272)(-+≥a ax x f 恒成立,求实数a 的取值范围.2014届高三年级第三次四校联考答案数 学(文科)1-5 BDDBA, 6-10 CCACD, 11-12 BA13. 01=+-y x .15.12-n .16.1256π 17.(1) 由2b c =.又由正弦定理,得2sin b R B =,2sin c R C =,将其代入上式,得sin 2sin B C =. ------------2分 ∵3B C π-=, ∴3B C π=+,将其代入上式,得sin()2sin 3C C π+= ∴sincos cossin 2sin 33C C C ππ+=,cos C C =. ----- --------4分∴tan C =∵角C 是三角形的内角,∴6C π=. --------- ------6分(2) ∵6C π=,则2π=B --------- ------8分又1=c ,3=∴a --------- ------10分∴2321==∆ac S ABC --------- ------12分 18. (Ⅰ)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1. ----------4分 (Ⅱ)(1)在抽取到的6名学生中,3名中等生分别记为123,,A A A ,2名优秀生分别记为45,A A ,1名学困生记为6A ,则抽取2名学生的所有可能结果为121314151623242526{,},{,},{,},{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A A A A A A A343536454656{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 共15种. -------------8分(2)从这6名学生中抽取的2名学生均为中等生(记为事件B )的所有可能结果为121323{,},{,},{,}A A A A A A ,共3种,所以31().155P B == -------------12分 19. (1)证明:∵AB AC =,D 是BC 的中点,∴AD ⊥BC .在直三棱柱111ABC A B C -中,∵1B B ⊥底面ABC ,AD ⊂底面ABC ,∴AD ⊥1B B . ∵BC ∩1B B =B ,∴AD ⊥平面11B BCC .∵1B F ⊂平面11B BCC ,∴AD ⊥1B F . -------------3分 在矩形11B BCC 中,∵11C F CD ==,112B C CF ==, ∴Rt DCF ∆≌11Rt FC B ∆.∴∠CFD =∠11C B F .∴∠1B FD =90°,∴1B F FD ⊥.∵AD ∩FD =D ,∴1B F ⊥平面ADF . -------------6分 (2)1AD B DF ⊥面,AD =,又1B D 1CD =, -------------8分1FD B D ⊥CDF Rt ∆∴∽1Rt BB D ∆,11DF CDB D BB ∴=. 13DF ∴==分11111332B ADF B DF V S AD -∆=⋅=⨯=. -------------12分 20. (1)当0a =时,()ln f x x x x =-,函数定义域为(0,)+∞.'()ln f x x =-,由ln 0x -=,得1x =. -------------3分 (0,1)x ∈时,'()0f x >,()f x 在(0,1)上是增函数.(1,)x ∈+∞时,'()0f x <,()f x 在(1,)+∞上是减函数; -------------6分(2)由(1)2f =,得21=+a ,1=∴a ,∴ 2()ln f x x x x x =+-,由2()2f x bx x ≥+,得()x x b ln 11≥--,又0>x∴11b x ≤--------------9分 令()1g x =)+∞上递增.∴min ()(1)0g x g ==即0b ≤,即b 的取值范围是(,0]-∞. ----------12分 21. 由1,1=-=c a c ,,2=∴a 3=∴b ,椭圆C 的标准方程为13422=+y x . -------------4分 ⎩⎨⎧=++=1243)2(22y x m kx y 由得:01248)43(222=-+++m kmx x k , -------------6分 22222243,0)124)(43(464k m m k m k +==-+-=∆∴即.m k kkm x p 44342-=+-=,m m m k m kx y p p 342=+-=+=,即P )3,4(m m k -. ---------9分 M )0,(t .又Q()m k +4,4,)3,4(mt m k MP --=,)4,4(m k t MQ +-=,∴⋅MP =MQ ⋅--)4(t m k ()t -4+)4(3m k m +⋅=0)1(4342=-++-t mkt t 恒成立,故⎩⎨⎧=+-=03412t t t ,即1=t . ∴存在点M (1,0)适合题意. ------------12分 22. (1)连接OE ,∵PE 切⊙O 于点E ,∴OE ⊥PE. ∴∠PEF +∠FEO =90°.又∵AB ⊥CD ,∴∠B +∠BFM =90°. 又∵∠B =∠FEO ,∴∠BFM =∠PEF. -------------5分(2)∵∠EFP =∠BFM , ∴∠EFP =∠PEF. ∴PE =PF.又∵PE 2=PD ·PC ,∴PF 2=PD ·PC. -------------10分23.(本题满分10分)选修4-4:坐标系与参数方程选讲解:(1)由曲线1C :⎩⎨⎧==ααsin cos 3y x 得⎪⎩⎪⎨⎧==ααsin cos 3y x两式两边平方相加得:1)3(22=+y x即曲线1C 的普通方程为:1322=+y x由曲线2C :24)4sin(=+πθρ得:24)cos (sin 22=+θθρ 即8cos sin =+θρθρ,所以08=-+y x即曲线2C 的直角坐标方程为:08=-+y x ...........5分 (2)由(1)知椭圆1C 与直线2C 无公共点,椭圆上的点)sin ,cos 3(ααP 到直线08=-+y x 的距离为28)3sin(228sin cos 3-+=-+=παααd所以当1)3sin(=+πα时,d 的最小值为23,此时点P 的坐标为)21,23( ----------10分24. (1)由题意得()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+⎪⎭⎫⎝⎛≤≤---<--=3432123)21(4x x x x x x x f所以 f (x )在⎪⎭⎫ ⎝⎛-∞-21,上单调递减,在⎪⎭⎫⎝⎛+∞-,21上单调递增. 所以当21-=x 时()x f y =取得最小值 此时()min=x f -------------5分(2)272)(-+=a ax x g 的图像恒过点过⎪⎭⎫ ⎝⎛--27,21由图象可知11≤≤-a . -------------10分。
山西省忻州一中 康杰中学 临汾一中 长治二中高三理综
2014届高三年级第三次四校联考理科综合试题命题:临汾一中 忻州一中 康杰中学 长治二中 【考试时间150分钟,满分300分】 以下数据可供解题时参考:可能用到的相对原子质量 H:1 C:12 N:14 O:16 Na:23 S:32 Cl:35.5 Fe:56 第Ⅰ卷 (选择题 126分)一、选择题:本大题共13小题,每小题6分。
在每小题列出的四个选项中,只有一项是最符合题目要求的。
1.右图为人体内某细胞发生的变化,则一定发生的是 A. 甲细胞发生了脱分化过程 B. 甲细胞正在发生凋亡C. 乙细胞将不断进行减数分裂D. 乙细胞的蛋白质成分发生了改变2. 胰液分泌的调节是一个复杂的过程,右图为胰 液分泌调节的部分示意图。
下列分析正确的是 咀嚼食物引起胰腺分泌胰液的调节方式属 于条件反射 食物进入胃内后,引起胰液分泌的调节方 式为体液调节激素A 能作用于胰腺与细胞膜的信息传递 功能有关激素B 作用于胰腺后很快被灭活导致激素 的作用时间短3.取某种植物生长状态一致的新鲜叶片,用打孔 器打出若干圆片,平均分成四组,各置于相同的密闭装置内,在其他条件相同且适宜的情况下,分别置于四种不同温度下﹙t1<t2<t3<t4﹚。
测得光照相同 时间后各装置内O2的增加值及黑暗条件下各装置内O2的消耗值,结果如下表。
下列分析不正确的是温度t1t2t3t4 光照下O2的增加值(相对值/mg•h) 2.7 6.0 12.5 12.0 黑暗下O2的消耗值(相对值/mg•h)2.0 4.0 8.012.0A.在实验的温度范围内,呼吸作用强度随着温度的升高而升高B.由实验数据可知,光合作用与呼吸作用的最适温度均为t4C.光照相同时间后,t4温度下装置内O2的增加量与细胞呼吸消耗的O2量相等D.在实验的四种温度下,若均给予24小时光照,植物有机物的积累量均大于0 4.下图表示人体内的某反射弧及其神经纤维局部放大的示意图,相关说法不正确 的是甲图中,①所示的结构属 于反射弧的感受器胰液 咀嚼食物 神经中枢 乙 甲B. 乙图的b 处神经纤维膜对 Na+ 的通透性强 C .甲图的⑥结构中发生的信 号变化需要消耗ATPD .人体内乙图所示神经纤维的兴奋传导方向是a←b→c 5.下列有关生物学研究的叙述,正确的有A.“35S 标记的T2噬菌体侵染细菌”的实验中,若未经搅拌就进行离心,则上清液放射性低B.“探究细胞大小与物质运输效率的关系”的实验中,NaOH 扩散速度是因变量C. 在电子显微镜下拍摄到的叶绿体的结构照片属于物理模型D.对酵母菌计数时,应吸取培养液滴满血细胞计数板的计数室,然后再盖上盖玻片并镜检 6.下图为皱粒豌豆形成的原因和囊性纤维病的病因图解。
山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考数学(文)试题(含答案)
12014届高三年级第二次四校联考数学试题(文)【满分150分,考试时间120分】一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知全集U R =,集合{}2|2A x x =>,则U C A 是A.( B.(),-∞⋃+∞C. ⎡⎣D.(),-∞⋃+∞2. 复数()22i iZ --=(i 为虚数单位),Z 在复平面内所对应的点在 A.第一象限B.第二象限C.第三象限D.第四象限3. 从1、2、3、4这四个数中一次随机取两个,则取出的这两数字之和为偶数的概率是 A .16B .13 C. 12 D .154. 已知212sin =⎪⎭⎫⎝⎛+απ,02<<-απ,则cos()3πα-的值是A.21B.23C.21-D.15. 阅读右边的程序框图,运行相应的程序,则输出的结果是 A .6B .5 C. 4D .36. 已知直线b x y +=与曲线()0122>=+x y x 有交点,则 A . 11<<-b B. 21<<-bC. 22≤≤-b D. 12<≤-b7. 已知等差数列{}n a 的前n 项和为n S ,若80S >且90S <,则当n S 最大时n 的值是A .8B .4C. 5D .38. 设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≤--≥-+0302063y y x y x ,且目标函数z y ax =+的最小值为-7,则a 的值为A.-2B.-4C.-1D.19. 如图是一几何体的三视图,则该几何体的表面积是A.35+B. 325+C. 4+D. 4+10. 设()23ln ,3,2234.1===c b a ,则a b c 的大小关系是A .a b c >>B .b c a >>C. c a b >>D .b a c >>11. 函数3cos391x xxy =-的图像大致为12. 函数121()4cos 2(35)32x y x x π-=+--≤≤,则此函数的所有零点之和等于( )A.4B.8C.6D.10二、填空题(本大题共4个小题,每小题5分,共20分)13. 已知||=2a ,(cos ,sin ),()3b a a b αα=⋅+=,则向量a 与b 的夹角为 .14. 已知函数()x f 是定义在R 上的奇函数,且对于任意x R ∈,恒有()()11f x f x -=+成立,当[1,0]x ∈-时,()21x f x =-,则=)2013(f .15. 已知正四棱锥ABCD S -的所有棱长均为2,则过该棱锥的顶点S 及底面正方形各边中点的球的体积为 .16. 已知双曲线2221(0)9x y b b-=>,过其右焦点F 作圆922=+y x 的两条切线,切点记作,C D ,双曲线的右顶点为E ,150CED ∠=,则双曲线的离心率为 三、解答题:解答应写出文字说明,证明过程或演算步骤。
山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理数试题
山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理数试题(满分150分,考试时间120分)一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1.已知全集U R =,集合{A x Z y =∈={}5B x x =>,则 A =)(B C U A.[]3,5 B. [)3,5 C. {}4,5 D. {}3,4,5 2.复数iiz +-=13的虚部为 A. 2 B. 2- C.2i D.2i -3.若焦点在x 轴上的双曲线1222=-my xA. x y 22±= B. x y 2±= C.x y 21±= D.x y 2±= 4.按照如图的程序运行,已知输入x 的值为2+log 23,则输出y 的值为 A. 112 B.18 C.124 D.385.已知等比数列{}n a 的首项,11=a 公比2=q ,则=+++1122212log log log a a aA.50B.35C.55D.466.已知nx )21(-展开式中,奇数项的二项式系数之和为64,则)1()21(x x n+-展开式中含2x 项的系数为A. 71B. 70C.21D. 49 7.如图是一几何体的三视图,则该几何体的体积是A.9B.10C.12D. 1848.设1>m ,当实数y x ,满足不等式组⎪⎩⎪⎨⎧≤+≤≥12y x x y x y 时,目标函数my x z +=的最大值等于2,则m 的值是A. 2B.3C.32 D. 529.已知函数⎪⎩⎪⎨⎧∈---∈-=)1,0[,1)1(1)0,1[,)(x x f x x x f ,若方程0)(=+-k kx x f 有两个实数根,则k 的取值范围是A. 11,2⎛⎤-- ⎥⎝⎦ B.1,02⎡⎫-⎪⎢⎣⎭C. [)1,-+∞D. 1,2⎡⎫-+∞⎪⎢⎣⎭10.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB ∆为等边三角形,三棱锥S ABC -O 的半径为 A . 3 B. 1 C. 2 D. 411.抛物线x y 122=的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当FPM ∆为等边三角形时,则FPM ∆的外接圆的方程为A.. 5)5()3(22=±+-y x B. 48)34()3(22=±+-y x C. 9)3()3(22=±+-y x D. 28)72()3(22=±+-y x12.已知函数)(x f y =定义域为),(ππ-,且函数)1(+=x f y 的图象关于直线1-=x 对称,当),0(π∈x 时,x x f x f ln sin )2()(ππ-'-=,(其中)(x f '是)(x f 的导函数),若)91(log ),3(log ),3(33.0f c f b f a ===π,则c b a ,,的大小关系是A. c b a >>B. c a b >>C. a b c >>D. b a c >> 二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13.已知向量a ,b 满足1||=,2||=,a b a ⊥-)(,则向量a与向量b 的夹角为 .14.已知数列{n a }满足)(11,2*11N n a a a a nnn ∈-+==+,则2014a 的值为 .15.设θ为第四象限角,21)4tan(=+πθ,则=-θθcos sin .ED CBAP16.已知数列{n a }的前n 项和n s 满足*130(2,)n n n a s s n n N -+=≥∈ ,311=a ,则n na 的最小值为 .三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.(本小题满分12分)已知函数2()sin(2)2cos 1()6f x x x x R π=-+-∈.(1)求()f x 的单调递增区间;(2)在ABC ∆中,三内角,,A B C 的对边分别为,,a b c ,已知1()2f A =,2a b c =+,18bc =.求a 的值.18.(本小题满分12分)如图,四棱锥P-ABCD 中,PA ABCD ⊥底面,AB AD ⊥,AC CD ⊥,PA AB BC AC ===,E 是PC 的中点.(1)求证:PD ABE ⊥平面;(2)求二面角A PD C --的平面角的正弦值.19.(本小题满分12分)在一次数学考试中,第22,23,24题为选做题,规定每位考生必须且只须在其中选做一题,设5名考生选做这三题的任意一题的可能性均为31,每位学生对每题的选择是相互独立的,各学生的选择相互之间没有影响. (1)求其中甲、乙两人选做同一题的概率;(2)设选做第23题的人数为ξ,求ξ的分布列及数学期望.20.(本小题满分12分)设椭圆)0(12222>>=+b a by a x 的左焦点为F ,离心率为22,过点F 且与x 轴垂直的直线被椭圆截得的线段长为2.(1) 求椭圆方程.(2) 过点)2,0(P 的直线l 与椭圆交于不同的两点B A ,,当OAB ∆面积最大时,求AB . 21.(本小题满分12分)设函数32)1()(ax e x x f x+-=(1) 当31-=a 时,求)(x f 的单调区间;(2) 若当0≥x 时,)(x f 0≥恒成立,求a 的取值范围.请考生在(22).(23).(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线PA 为圆O 的切线,切点为A ,直径BC OP ⊥,连接AB 交PO 于点D . (Ⅰ)证明:PA PD =; (Ⅱ)求证:PA AC AD OC = .23.(本小题10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为2sin 2cos (0)a a ρθθ=>,过点P (-2,-4)的直线l 的参数方程为24x y =-=-⎧⎪⎨⎪⎩(t 为参数),直线l 与曲线C 相交于,A B 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若2PA PB AB = ,求a 的值.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()31f x x x =-++.(Ⅰ)求使不等式()6f x <成立的x 的取值范围; (Ⅱ)o x R ∃∈,()o f x a <,求实数a 的取值范围.Bxyz2014届高三年级第一次四校联考数学试题答案(理)1-12题答案:1.D 2.B 3.A 4.C 5.C 6.B 7.A 8.D 9.B 10.C 11.B 12.B 二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13.60 14.3- 15. 5102-16. 31- 三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.解析.解:(1)f(x)= sin(2x - π6)+2cos 2x-1=32sin2x-12cos2x+cos2x=32sin2x+12cos2x= sin(2x + π6)………………………………………3分 由2k π-π2≤2x+π6≤2k π+π2,(k ∈Z)得k π-π3≤x ≤k π+π6,(k ∈Z)…………5分∴f(x)的单调递增区间为[k π-π3,k π+π6](k ∈Z).………………………6分(2) 由f(A)=12, 得sin(2A + π6)=12∵π6<2A+π6<2π+π6 , ∴2A+π6=5π6,∴A=π3……………………………8分 由余弦定理得a 2=b 2+c 2-2bccosA=(b+c)2-3bc ………………………10分 又2a=b+c,bc=18. ∴a 2=18,∴a=32………………………………………………………………12分 18.(1)证明:⊥PA 底面ABCD ,PA CD ⊥∴又AC CD ⊥,A AC PA =⋂,故⊥CD 面PAC ⊆AE 面PAC ,故AE CD ⊥………………………………………… 4分又PA AC =, E 是PC 的中点,故PC AE ⊥ 从而⊥AE 面PCD ,故PD AE ⊥易知PD BA ⊥,故⊥PD 面ABE ……………………………… 6分(2)如图建立空间直角坐标系,设a AC =,则(0,0,0)A 、(0,0,)P a 、(,0,0)B a、0,0D ⎛⎫⎪⎝⎭,,,022a C ⎛⎫ ⎪ ⎪⎝⎭,从而(0,)PD a =- ,,,02a DC ⎛⎫=- ⎪ ⎪⎝⎭,…………………………………………………9分 设1(,,)n x y z =为平面PDC 的法向量,则11002n PD y az a n DC x y ⎧⋅=-=⎪⎪⇒⎨⎪⋅=-=⎪⎩可以取12)n = ……………………11分又2(1,0,0)n =为平面PAD 的法向量,若二面角A PD C --的平面角为θ则121cos n n θ==⋅ ……………………11分因此sin 4θ=。
专题6 数列-2014届高三名校数学(理)试题解析分项汇编(第01期)Word版无答案
一.基础题组1.【河北省唐山市2013-2014学年度高三年级摸底考试理科】设等差数列{}n a 的前n 项和为n S ,且513S =,1563S =,则20S =( )A .90B .100C .110D .1202.【广东省广州市海珠区2014届高三入学摸底考试数学理试题】已知等差数列{}n a 满足244a a +=, 3510a a +=,则它的前10项和10S = ( )A.85B.135C.95D.233.【内蒙古赤峰市全市优质高中2014届高三摸底考试(理)】已知数列{n a }是公差为3的等差数列,且124,,a a a 成等比数列,则10a 等于( ) A. 30 B. 27 C.24 D.334.【广东省广州市“十校”2013-2014学年度高三第一次联考理】已知等差数列{}n a 中,25a = ,411a =,则前10项和=10S ( )A . 55B . 155C . 350D . 4005.【安徽省六校教育研究会2014届高三素质测试理】在正项等比数列{n a }中,1n a +<n a ,28466,5a a a a ∙=+=,则57a a = ( ) A .56 B .65 C .23 D .326.【广东省汕头四中2014届高三第一次月考数学(理)】设等差数列{}n a 的公差d ≠0,14a d =.若k a 是1a 与2k a 的等比中项,则k =( )(A) 3或 -1 (B) 3或1 (C) 3 (D) 1 7.【广东省佛山市南海区2014届普通高中高三8月质量检测理】已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于( )(A ) 1 (B ) 53(C ) 2 (D ) 38.【江苏省扬州中学2013—2014学年高三开学检测】设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,63k S =,则k =___ ___.9.【江苏省南京市2014届高三9月学情调研】在等差数列{}n a 中,487,15a a ==,则数列{}n a 的前n 项和n S = .10.【广东省珠海市2014届高三9月摸底考试数学(理)】 设等比数列{}n a 的公比2q =,则44S a = . 11.【广东省惠州市2014届高三第一次调研考试】已知等差数列{n a },满足381,6a a ==,则此数列的前10项的和10S = .二.能力题组12.【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理】已知等比数列{}n a 的首项,11=a 公比2=q ,则=+++1122212log log log a a a ( ) A.50 B.35 C.55 D.4613.【吉林省白山市第一中学2014届高三8月摸底考试理】若数列{}n a 的前n 项和为n S ,则下列命题:(1)若数列{}n a 是递增数列,则数列{}n S 也是递增数列; (2)数列{}n S 是递增数列的充要条件是数列{}n a 的各项均为正数;(3)若{}n a 是等差数列(公差0d ≠),则120k S S S ⋅= 的充要条件是120.k a a a ⋅=(4)若{}n a 是等比数列,则120(2,)k S S S k k N ⋅=≥∈ 的充要条件是10.n n a a ++= 其中,正确命题的个数是( )A .0个B .1个C .2个D .3个14.【江西师大附中高三年级2013-2014开学考试】设{}n a 是公比为q 的等比数列,令1(1,2,)n n b a n =+= ,若数列{}n b 的连续四项在集合}{53,23,19,37,82--中,则q 等于( )A .43-B .32-C .32-或23-D .34-或43- 15.【安徽省示范高中2014届高三上学期第一次联考数学(理)】已知数列{}n a 的前n 项和2n S n n =-,正项等比数列{}n b 中,23b a =,2314(2,)n n n b b b n n N +-+=≥∈,则2log n b =( )A .1n -B .21n -C .2n -D .n16.【四川省德阳中学2014届高三“零诊”试题理科】等差数列{}n a 中的40251a a ,是函数16431)(23-+-=x x x x f 的极值点,则=20132log a ( )A .2B .3C .4D .517.【安徽省望江四中2014届高三上学期第一次月考数学(理)】已知{}n a 为等差数列,若π8951=++a a a ,则)cos(73a a +的值为( )A B . C .12D .12-18.【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理】已知数列{n a }满足)(11,2*11N n a a a a nnn ∈-+==+,则2014a 的值为 .19.【2014届新余一中宜春中学高三年级联考数学(理)】已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为________.20.【广东省广州市“十校”2013-2014学年度高三第一次联考理】两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图4中的实心点个数1,5,12,22,…, 被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,若145n a =,则n = .21.【安徽省望江四中2014届高三上学期第一次月考数学(理)】数列{}n a 的通项公式cos2n n a n π=,其前n 项和为n S ,则2013S = . 22.【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理】已知数列{n a }的前n 项和n s 满足*130(2,)n n n a s s n n N -+=≥∈ ,311=a ,则n na 的最小值为 . 23.【四川省德阳中学2014届高三“零诊”试题理科】定义在(0,)+∞错误!未找到引用源。
基本初等函数综合复习
基本初等函数综合复习题型一 幂函数的定义及应用例1.已知y =(m 2+2m -2)·211m x -+(2n -3)是幂函数,求m 、n 的值.探究提升 (1)判断一个函数是否为幂函数,只需判断该函数的解析式是否满足:①指数为常数;②底数为自变量;③幂系数为1.(2)若一个函数为幂函数,则该函数解析式也必具有以上的三个特征.已知f (x )=(m 2+2m )21m m x +-,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.2.【江西省2014届高三新课程适合性考试文科数学】由幂函数n y x =的图像过点(8,2),则这个幂函数的定义域是( )A .[0,)+∞B .(,0)(0,)-∞+∞C .(0,)+∞D .R题型二 指数式与根式,对数式的化简,求值问题例2. 【2014届新余一中宜春中学高三年级联考数学(文)】已知函数)241(log )(22x x x f -+=,则4(tan )(tan )55f f ππ+=( ) A .1- B .0 C .1 D .2变式训练:1.【安徽省池州一中2014届高三第一次月考数学(文)】求值:()70log 23log lg 25lg 472013++++-= .2. 【江西师大附中高三年级2013-2014开学考试】已知函数,则 . 题型三 基本初等函数的单调性问题例3.【安徽省示范高中2014届高三上学期第一次联考数学(文)】已知函数3,0()2,0x x a x f x a x --<⎧=⎨-≥⎩,(0a >且1a ≠)是R 上的减函数,则a 的取值范围是( ) A .2(0,]3 B .1(0,]3C .(0,1)D .(0,2]变式训练 1.【宁夏银川一中2014届高三年级第一次月考文科】已知函数),1,0(,,ln )(21ex x x x f ∈=且21x x <则下列结论准确的是( ) A .0)]()()[(2121<--x f x f x x B .2)()()2(2121x f x f x x f +<+ 2log ,0,()2,0x x x f x x >⎧=⎨<⎩1()(2)4f f +-=C .)()(1221x f x x f x >D .)()(1122x f x x f x >2.【广东省珠海市2014届高三9月摸底考试数学(文)】下列函数中,既是偶函数又在区间上单调递增的函数为( )A .B .C .D . 3. 【江西省2014届高三新课程适合性考试文科数学】函数()f x 的定义域为{|1}x R x ∈≠,对定义域中任意的x ,都有(2)()f x f x -=,且当1x <时,2()2f x x x =-,那么当1x >时,()f x 的递减区间是( ) A .5[,)4+∞ B .5(1,]4 C .7[,)4+∞ D .7(1,)4 题型四 基本初等函数的奇偶性与周期性问题例4【宁夏银川一中2014届高三年级第一次月考文科】已知函数)2cos()(ϕ+=x x f 满足)1()(f x f ≤对R x ∈恒成立,则( )A. 函数)1(+x f 一定是偶函数B.函数)1(-x f 一定是偶函数C. 函数)1(+x f 一定是奇函数D.函数)1(-x f 一定是奇函数变式训练1.【2014届吉林市普通高中高中毕业班复习检测】给出下列函数①②③④,其中是奇函数的是( ) A. ①② B. ①④ C. ②④ D. ③④2.【广东省广州市海珠区2014届高三入学摸底考试数学文】已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为 ( )A.1-B. 2-C. 2D.13.【吉林省白山市第一中学2014届高三8月摸底考试文】已知定义在R 上的偶函数f (x )满足:∀x ∈R 恒有f (x +2)=f (x )-f (1).且当x ∈[2,3]时,f (x )=-2(x -3)2.若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则实数a 的取值范围为( )A .(0,22)B .(0,33)C .(1,2)D .(1,3)题型五 函数的零点问题例5.【广东省汕头四中2014届高三第一次月考数学(文)】函数f (x )=x121x 2⎛⎫- ⎪⎝⎭的零点个数为( ) 0,+∞()1y x -=2log y x =||y x =2y x =-cos y x x=2sin y x =2y x x =-x xy e e -=-A .0 B.1 C.2 D.3变式训练1.【安徽省池州一中2014届高三第一次月考数学(文)】定义在R 上的偶函数()f x ,满足(3)()f x f x +=,(2)0f =,则函数()y f x =在区间()0,6内零点的个数为( )A .2个B .4个C .6个D .至少4个2.【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考文】在下列区间中函数()24x f x e x =+-的零点所在的区间为( ) A.1(0,)2 B.1(,1)2 C.(1,2) D.⎪⎭⎫ ⎝⎛23,1 3.【江西省2014届高三新课程适应性考试文科数学】已知函数()y f x =是周期为2的周期函数,且当[1,1]x ∈-时,||()21x f x =-,则函数()()|lg |F x f x x =-的零点个数是( )A .9B .10C .11D .12 题型六 函数的图象问题例6【吉林省白山市第一中学2014届高三8月摸底考试文】象是 ( )变式训练1.【安徽省示范高中2014届高三上学期第一次联考数学(文)】函数()f x 的图像如图所示,若函数()y f x c =-与x 轴有两个不同交点,则c 的取值范围是( )A .(2,0.5)--B .[2,0.5)--C .(1.1,1.8)D .[2,0.5)(1.1,1.8)--2.【成都外国语学校2014级高三开学检测试卷】设()f x 是定义在R 上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图像,则(2013)f +(2014)f =( )A 、3B 、2C 、1D 、03.【2014届新余一中宜春中学高三年级联考数学(文)】已知在函数()的图象上有一点,该函数的图象与 x 轴、直线x =-1及 x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )题型七 基本初等函数的函数值大小比较问题例7.【宁夏银川一中2014届高三年级第一次月考文科】下列大小关系正确的是( )A. 3log 34.044.03<< B. 4.03434.03log << C. 4.04333log 4.0<< D. 34.044.033log <<变式训练1.【成都外国语学校2014级高三开学检测试卷】 设0.33log 3,2,log sin 6a b c ππ===,则( )A 、a b c >>B 、c a b >>C 、b a c >>D 、b c a >>2.【广东省广州市海珠区2014届高三入学摸底考试数学文】设||y x =[1,1]x ∈-(,||)P tt0.220.20.2log 2,log 3,2,0.2a b c d ====,则这四个数的大小关系是 ( )A.a b c d <<<B.d c a b <<<C.b a c d <<<D.b a d c <<<题型八 基本初等函数的定义域,值域,取值范围问题例8 【吉林市普通中学2013—2014学年度高中毕业班摸底测试文】设函数的最小值为,则实数的取值范围是( )变式训练1.【江西省2014届高三新课程适应性考试文科数学】已知函数32,0()2,04x a x f x x x x ⎧≤<=⎨-+≤≤⎩的值域是[8,1]-,则实数a 的取值范围是( ) A .(,2]-∞- B .[2,0)- C .[2,1]-- D .{2}-2.【江苏省苏州市2014届高三九月测试试卷】已知函数2, 0,()2, 0x x f x x x x -≤⎧⎪=⎨->⎪⎩,则满足()1f x <的x 的取值范围是______.【宁夏银川一中2014届高三年级第一次月考文科】已知函数x a x f 2log )(-=的图象经过点A (1,1),则不等式1)(>x f 的解集为______.3.【成都外国语学校2014级高三开学检测试卷】函数x x f 6log 21)(-=的定义域为____.4.【安徽省望江四中2014届高三上学期第一次月考数学(文)】函数的定义域为 。
2014年山西省临汾一中、忻州一中、康杰中学、长治二中联考高考数学模拟试卷(文科)
2014年山西省临汾一中、忻州一中、康杰中学、长治二中联考高考数学模拟试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.设全集U={1,2,3,4,5,6},M={1,2,3},N={3,4,5},则(∁U M)∩N=()A.{3}B.{4,5}C.{3,4,5}D.(4,5)2.设复数z=1+i(i是虚数单位),则+z2=()A.-1-iB.-1+iC.1-iD.1+i3.函数的定义域为()A.[-4,+∞)B.(-4,0)∪(0,+∞)C.(-4,+∞)D.[-4,0)∪(0,+∞)从散点图分析,y与x线性相关,且,则a=()A.0.8B.1C.1.2D.1.55.某三棱锥的三视图如图所示,该三棱锥的体积是()A. B.4 C.2 D.6.执行如图所示的程序框图,若输入n的值为7,则输出s的值是()A.10B.16C.22D.177.直线y-1=k(x-3)被圆(x-2)2+(y-2)2=4所截得的最短弦长等于()A. B. C. D.8.若tanα=3,则的值为()A.-B.C.D.9.实数x,y满足,若z=kx+y的最大值为13,则实数k=()A.2B.C.D.510.设等差数列{a n}和等比数列{b n}首项都是1,公差与公比都是2,则=()A.54B.56C.58D.5711.已知圆锥曲线mx2+4y2=4m的离心率e为方程2x2-5x+2=0的两根,则满足条件的圆锥曲线的条数为()A.1B.2C.3D.412.定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2)且x∈(-1,0)时,f(x)=2x+,则f(log220)=()A.1B.C.-1D.-二、填空题(本大题共4小题,共20.0分)13.曲线f(x)=e x在x=0处的切线方程为______ .14.已知向量,,,,且,则的最小值为______ .15.已知数列{a n}的前n项和为S n,S n=2a n-n,则a n= ______ .16.将长、宽分别为4和3的长方形ABCD沿对角线AC折起,得到四面体A-BCD,则四面体A-BCD的外接球的体积为______ .三、解答题(本大题共8小题,共94.0分)17.在△ABC中,a,b,c分别为角A,B,C的对边,b=2c,且.(1)求角C;(2)若c=1,求△ABC的面积.18.某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查,(Ⅰ)求应从优秀生、中等生、学困生中分别抽取的学生人数;(Ⅱ)若从抽取的6名学生中随机抽取2名学生做进一步数据分析,(1)列出所有可能的抽取结果;(2)求抽取的2名学生均为中等生的概率.19.在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是C1C上一点.(1)当CF=2,求证:B1F⊥平面ADF;(2)若FD⊥B1D,求三棱锥B1-ADF体积.20.已知函数f(x)=ax2+x-xlnx,(1)若a=0,求函数f(x)的单调区间;(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.21.已知椭圆C:(a>b>0)的右焦点F(1,0),右顶点A,且|AF|=1.(1)求椭圆C的标准方程;(2)若动直线l:y=kx+m与椭圆C有且只有一个交点P,且与直线x=4交于点Q,问:是否存在一个定点M(t,0),使得.若存在,求出点M坐标;若不存在,说明理由.22.选修4-1:几何证明选讲如图,已知⊙O中,直径AB垂直于弦CD,垂足为M,P是CD延长线上一点,PE切⊙O于点E,连接BE交CD于点F,证明:(1)∠BFM=∠PEF;(2)PF2=PD•PC.23.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.24.设函数f(x)=|2x+1|-|x-3|(1)求函数y=f(x)的最小值;(2)若f(x)≥ax+恒成立,求实数a的取值范围.。
山西地区忻州一中康杰中学临汾一中长治二中2014届高三第一次四校联考理数试题
山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理数试题(满分150分,考试时间120分)一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1.已知全集U R =,集合{A x Z y =∈={}5B x x =>,则 A =)(B C U A.[]3,5 B. [)3,5 C. {}4,5 D. {}3,4,5 2.复数iiz +-=13的虚部为 A. 2 B. 2- C.2i D.2i -3.若焦点在x 轴上的双曲线1222=-my xA. x y 22±= B. x y 2±= C.x y 21±= D.x y 2±= 4.按照如图的程序运行,已知输入x 的值为2+log 23,则输出y 的值为A. 112B.18C.124D.385.已知等比数列{}n a 的首项,11=a 公比2=q ,则=+++1122212log log log a a aA.50B.35C.55D.466.已知nx )21(-展开式中,奇数项的二项式系数之和为64,则)1()21(x x n+-展开式中含2x 项的系数为A. 71B. 70C.21D. 49 7.如图是一几何体的三视图,则该几何体的体积是A.9B.10C.12D. 1848.设1>m ,当实数y x ,满足不等式组⎪⎩⎪⎨⎧≤+≤≥12y x x y x y 时,目标函数my x z +=的最大值等于2,则m 的值是A. 2B.3C.32 D. 529.已知函数⎪⎩⎪⎨⎧∈---∈-=)1,0[,1)1(1)0,1[,)(x x f x x x f ,若方程0)(=+-k kx x f 有两个实数根,则k 的取值范围是A. 11,2⎛⎤-- ⎥⎝⎦B. 1,02⎡⎫-⎪⎢⎣⎭C. [)1,-+∞D. 1,2⎡⎫-+∞⎪⎢⎣⎭10.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB ∆为等边三角形,三棱锥S ABC -O 的半径为 A . 3 B. 1 C. 2 D. 411.抛物线x y 122=的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当FPM ∆为等边三角形时,则FPM ∆的外接圆的方程为A.. 5)5()3(22=±+-y xB. 48)34()3(22=±+-y xC. 9)3()3(22=±+-y x D. 28)72()3(22=±+-y x12.已知函数)(x f y =定义域为),(ππ-,且函数)1(+=x f y 的图象关于直线1-=x 对称,当),0(π∈x 时,x x f x f ln sin )2()(ππ-'-=,(其中)(x f '是)(x f 的导函数),若)91(log ),3(log ),3(33.0f c f b f a ===π,则c b a ,,的大小关系是A. c b a >>B. c a b >>C. a b c >>D. b a c >> 二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13.已知向量a ,b 满足1||=,2||=,a b a ⊥-)(,则向量a与向量b 的夹角为 .14.已知数列{n a }满足)(11,2*11N n a a a a nnn ∈-+==+,则2014a 的值为 .15.设θ为第四象限角,21)4tan(=+πθ,则=-θθcos sin .ED CBAP16.已知数列{n a }的前n 项和n s 满足*130(2,)n n n a s s n n N -+=≥∈,311=a ,则n na 的最小值为 .三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.(本小题满分12分)已知函数2()sin(2)2cos 1()6f x x x x R π=-+-∈.(1)求()f x 的单调递增区间;(2)在ABC ∆中,三内角,,A B C 的对边分别为,,a b c ,已知1()2f A =,2a b c =+,18bc =.求a 的值.18.(本小题满分12分)如图,四棱锥P-ABCD 中,PA ABCD ⊥底面,AB AD ⊥,AC CD ⊥,PA AB BC AC ===,E 是PC 的中点.(1)求证:PD ABE ⊥平面;(2)求二面角A PD C --的平面角的正弦值.19.(本小题满分12分)在一次数学考试中,第22,23,24题为选做题,规定每位考生必须且只须在其中选做一题,设5名考生选做这三题的任意一题的可能性均为31,每位学生对每题的选择是相互独立的,各学生的选择相互之间没有影响. (1)求其中甲、乙两人选做同一题的概率;(2)设选做第23题的人数为ξ,求ξ的分布列及数学期望.20.(本小题满分12分)设椭圆)0(12222>>=+b a by a x 的左焦点为F ,离心率为22,过点F 且与x 轴垂直的直线被椭圆截得的线段长为2.(1) 求椭圆方程.(2) 过点)2,0(P 的直线l 与椭圆交于不同的两点B A ,,当OAB ∆面积最大时,求AB . 21.(本小题满分12分)设函数32)1()(ax e x x f x+-=(1) 当31-=a 时,求)(x f 的单调区间;(2) 若当0≥x 时,)(x f 0≥恒成立,求a 的取值范围.请考生在(22).(23).(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线PA 为圆O 的切线,切点为A ,直径BC OP ⊥,连接AB 交PO 于点D . (Ⅰ)证明:PA PD =; (Ⅱ)求证:PA AC AD OC =.23.(本小题10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为2sin 2cos (0)a a ρθθ=>,过点P (-2,-4)的直线l 的参数方程为24x y =-=-⎧⎪⎨⎪⎩(t 为参数),直线l 与曲线C 相交于,A B两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若2PA PB AB =,求a 的值.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()31f x x x =-++.(Ⅰ)求使不等式()6f x <成立的x 的取值范围; (Ⅱ)o x R ∃∈,()o f x a <,求实数a 的取值范围.Bxyz2014届高三年级第一次四校联考数学试题答案(理)1-12题答案:1.D 2.B 3.A 4.C 5.C 6.B 7.A 8.D 9.B 10.C 11.B 12.B 二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上) 13.60 14.3- 15. 5102-16. 31- 三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.解析.解:(1)f(x)= sin(2x - π6)+2cos 2x-1=32sin2x-12cos2x+cos2x=32sin2x+12cos2x= sin(2x + π6)………………………………………3分 由2k π-π2≤2x+π6≤2k π+π2,(k ∈Z)得k π-π3≤x ≤k π+π6,(k ∈Z)…………5分∴f(x)的单调递增区间为[k π-π3,k π+π6](k ∈Z).………………………6分(2) 由f(A)=12, 得sin(2A + π6)=12∵π6<2A+π6<2π+π6 , ∴2A+π6=5π6,∴A=π3……………………………8分 由余弦定理得a 2=b 2+c 2-2bccosA=(b+c)2-3bc ………………………10分 又2a=b+c,bc=18. ∴a 2=18,∴a=32………………………………………………………………12分 18.(1)证明:⊥PA 底面ABCD ,PA CD ⊥∴又AC CD ⊥,A AC PA =⋂,故⊥CD 面PAC ⊆AE 面PAC ,故AE CD ⊥………………………………………… 4分又PA AC =, E 是PC 的中点,故PC AE ⊥ 从而⊥AE 面PCD ,故PD AE ⊥易知PD BA ⊥,故⊥PD 面ABE ………………………………6分(2)如图建立空间直角坐标系,设a AC =,则(0,0,0)A 、(0,0,)P a 、(,0,0)B a、0,,0D ⎛⎫⎪⎝⎭,2a C ⎛⎫ ⎪ ⎪⎝⎭,从而(0)PD a =-,,,026a DC ⎛⎫=- ⎪ ⎪⎝⎭,…………………………………………………9分 设1(,,)n x y z =为平面PDC 的法向量,则1103026n PD y az a n DC x y ⎧⋅=-=⎪⎪⇒⎨⎪⋅=-=⎪⎩可以取1(1,2)n = ……………………11分 又2(1,0,0)n =为平面PAD 的法向量,若二面角A PD C --的平面角为θ则121cos 8n n θ==⋅……………………11分 因此sin 4θ=。
山西省忻州一中等四校2014-2015学年高三第四次联考数学理试题
2015届高三年级第四次四校联考数学试题(理)命题:忻州一中临汾一中康杰中学长治二中(满分150分,考试时间120分)第Ⅰ卷(选择题 60分)一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1. 设全集,UR 集合},12161|{Z x x A x,},0)1)(3(|{Z xx x x B ,则()U C B AA .}4,32,10{,,B .}32,1{,C .}2,10{, D. }2,1{2. 复数z 为纯虚数,若(3)i z a i (i 为虚数单位),则实数a 的值为A .3B . 3C .13D.133. 已知双曲线12222ax y过点)2,1(,则该双曲线的渐近线方程为A.xy 225 B.x y C.xy2 D.xy224. 执行如图所示的算法,则输出的结果是A.1B.2C.3D.45. 把函数)2|(|)2sin()(x x f 的图象向左平移6个单位,得到函数)(x g 的图象,若)(x g 的图象关于)0,3(对称,则)2(f 23A.21 B.21 C.D.236. 从4名男生和6名女生中各选2人参加跳绳比赛,则男生甲和女生乙至少有一个被选中的概率是A.61 B.21 C.32 D.657. 在三棱锥ABC S中,ABC 是边长为1的正三角形,SC面ABC ,2SC,则三棱锥ABC S 外接球的表面积为A. 6B.316 C.940 D.38试题类型: A8. 已知)4,0(),0,2(,22tan1tan2sin21,则有A. 22B. 22C. 22D. 229. 某四面体的三视图如图所示,该四面体的六条棱长中长度最长的是A. 5 B. 6C.7D.2210. 设椭圆)0(12222ba by ax 的左右焦点分别为21F F 、,点221),(PF F F b a P 满足,设直线2PF 与椭圆交于M 、N 两点,若MN =16,则椭圆的方程为A. 110814422yxB. 17510022yxC.1273622y x D.1121622y x 11. 已知定义在),0[上的函数)(x f 满足)2(2)(xf x f ,当)2,0[x时,x xx f 42)(2,设)(x f 在)2,22[n n上的最大值为)(*N na n ,且}{n a 的前n 项和为n S ,则n S =A.1212n B. 2214n C. n212D. 1214n 12. 设函数xex x g x x x f )(,ln )(2,若存在],[21e e x ,]2,1[2x ,使得)()()2(1223x kf x g ke 成立(其中e 为自然对数的底数),则正实数k 的取值范围是A . 2k B . 2k C .2863eekD.28063e ek第Ⅱ卷(非选择题 90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13.6211xxx 的展开式中4x 的系数是.14. 已知实数x ,y 满足003042yx y x y x,则目标函数x y z 23的最大值为.15. 已知,且4,3,0BC ABBCAB M 为线段BC 上一点,且),(||||R AC AC AB AB AM , 则的最大值为.16. 在ABC 中,角C B A 、、的对边分别为c b a 、、,)cos 724(B a )5cos 72(A b ,则C cos 的最小值为.三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上) 17.(本题满分12分)已知等差数列}{n a 的公差22cos xdx d,562224aa;等比数列}{n b 满足:11b ,512642b b b ,*N n(1)求数列}{n a 和}{n b 的通项公式;(2)设}{n a 的前n 项和为n S ,令为偶数为奇数n b n S c n nn,,2,求n c c c c 2321.18.(本题满分12分)如图,三棱柱111ABC A B C 中,侧棱1AA 平面ABC ,ABC 为等腰直角三角形,90BAC,且1,,ABAA E F 分别是1,CC BC 的中点(1)求证:1B F平面AEF ;(2)求锐二面角1B AE F 的余弦值.19.(本题满分12分)某工厂生产某种零件,每天生产成本为1000元,此零件每天的批发价和产量均具有随机性,且互不影响.其具体情况如下表:日产量400 500 批发价8 10 概率0.40.6概率0.50.5(1)设随机变量X 表示生产这种零件的日利润,求X 的分布列及期望;(2)若该厂连续3天按此情况生产和销售,设随机变量Y 表示这3天中利润不少于3000的天数,求Y 的数学期望和方差,并求至少有2天利润不少于3000的概率.(注:以上计算所得概率值用小数表示)20. (本题满分12分)已知抛物线)0(2:2p px yC ,过焦点且斜率为1的直线m 交抛物线C 于,A B 两点,以线段AB 为直径的圆在y 轴上截得的弦长为72.(1)求抛物线C 的方程;(2)过点)(2,0P 的直线l 交抛物线C 于F 、G 两点,交x 轴于点D ,设,,21GD PGFD PF试问21是否为定值?若是,求出该定值;若不是,说明理由.FEC 1B 1A 1CBA21. (本题满分12分)已知函数11ln )(xa axx x f (1)当41a时,求函数()y f x 的极值;(2)当)1,31(a 时,若对任意实数[2,3]b,当(0,]xb 时,函数()f x 的最小值为()f b ,求实数a 的取值范围.请考生在(22).(23).(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑.22. (本小题满分10分)选修4—1:几何证明选讲如图,已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B .C ,APC 的平分线分别交AB .AC 于点D .E .(1)证明:ADE AED .(2)若AC=AP ,求PC PA的值.23. (本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为)(sincos 2为参数yx ,直线l 的参数方程为)(54453为参数t t yt x .以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的直角坐标方程和直线l 的极坐标方程;(2)若),(y x P 为曲线C 上的动点,求点P 到直线l 的距离d 的最大值和最小值.24. (本小题满分10分)选修4—5:不等式选讲DEPCBAO已知关于x 的不等式|2|1m x 的解集是[0,4](1)求m 的值;(2)若,a b 均为正实数,且a bm ,求22a b 的最小值.2015届高三年级第四次四校联考数学试题答案(理)A 卷一、选择题1-5: DDCAC 6-10: CBADB 11-12: BA二、填空题:13.-2014.915.415 16.2117.解:(1)公差2cos 22xdx d,5622))((324242224da a a a a aa73a ………2分∴721d a ∴31a ∴12)1(23n n a n………4分设等比数列}{n b 的公比为q∵51234642bb b b ∴84b 即1b 83q ∴2q 即1112n n nqb b ………6分(2)由12,31n a a n得:)2(n n S n∴为偶数,为奇数n 2,)2(21n n n n n c 即为偶数,为奇数n 2,21n 11n n n n c ………8分∴n c c c c 2321=)()(2421231n n c c c c c c ………10分=)222()]121121()5131()311[(123n n n =)14(3212241)41(21211nnnn n ………12分18.(1)连结AF ,∵F 是等腰直角三角形ABC 斜边BC 的中点,∴AFBC .又三棱柱111ABC A B C 为直三棱柱,∴面ABC 面11BBC C ,∴AF 面11BB C C ,1AFB F .……… 2分设11ABAA ,则11633,,222B FEFB E.∴22211B F EF B E ,∴1B F EF .………4分又AFEFF ,∴1B F平面AEF .………6分(2)以F 为坐标原点,,FA FB 分别为,x y 轴建立直角坐标系如图,设11ABAA ,则12221(0,0,0),(,0,0),(0,,1),(0,,)2222F A B E ,221(,,)222AE ,122(,,1)22AB .………8分由(Ⅰ)知,1B F平面AEF ,∴可取平面AEF 的法向量12(0,,1)2mFB .设平面1B AE 的法向量为(,,)n x y z ,由12210,0,220,2220222220,22x y z n AE x y z n AB xyzxyz∴可取(3,1,22)n .………10分设锐二面角1B AE F 的大小为,则222222203(1)12262cos |cos ,|6||||20()13(1)(22)2m n m n m n .zyxA BCA 1B 1C 1EF∴所求锐二面角1B AE F 的余弦值为66. ………12分19.解:(1)∵500×10-1000=4000,400×10-1000=500×8-1000=3000,400×8-1000=2200随机变量X 可以取:4000,3000.,2200 ………1分P(X=4000)=0.6×0.5=0.3P(X=2200)=0.4×0.5=0.2P(X=3000)=0.6×0.5+0.4×0.5=0.5 ………4分∴X 的分布列为:EX=4000×0.3+3000×0.5+2200×0.2=3140………6分(2) 由(1)知:该厂生产1天利润不少于3000的概率为:P=0.8∴Y ~)8.0,3(B ………8分∴EY=3=2.4 DY=3×0.8×0.2=0.48 ………10分至少有2天利润不少于3000的概率为:896.02.08.08.0223333CCP………12分20.解:(1)由已知:直线m 的方程为1xy,代入pxy22得:1)1(22x p x设),(),,(2211y x B y x A ,则),2(121p x x 23|AB |21p px x 且线段AB 的中点为),1(p p ,………3分由已知222)223(17p p )()(,解得2p或514p(舍去)所以抛物线C 的方程为:xy 42………6分(2)设直线l :y=kx+2(k0),则)0,2(kD ,与.42x y联立得4)1(422x k xk 由0得21k ,设),(),,(4433y x G y x F 则24322434,4-4kx x kkx x ………8分);,2()2,();,2()2,(442442331331y x ky x GD PGy x k y x FD PF 所以2,2244233331kx kx kx kx x kx ………10分则4(2)(22224343243432443321)x x k x x k x x k x x k kx kx kx kx X 4000 3000 2200 P0.30.50.2将24322434,4-4k x x kk x x 代入上式得.121即21为定值1………12分21.解:(1)由已知14341ln )(xxx x f ,则224)3)(1(43411)('xxx x x x f ………1分所以当)1,0(x 和),3(x 时,)(,0)('x f x f 单调递减;当),,10(x 时,)(,0)('x f x f 单调递增;………2分所以当1x 时,)(x f 有极小值为23,当3x时,)(x f 有极大值为213ln . ………4分(2)由已知22)1)(1(11)('xaa xx a x a axx f .①当)21,31(a 时,11210aa aa,于是(0,1)x 和1(,)a xa时,'()0,()f x f x 单调递减;1(1,)a xa时,'()0,()f x f x 单调递增;又因为21aa ,要对任意实数[2,3]b,当(0,]x b 时,函数()f x 的最小值为()f b ,只需要(2)(1)f f ,即a aa2212122ln ,解得2ln 21a,因为12ln 212所以12ln 21;2a………7分②当12a时,11a a,221(1)2'()x f x x,在(0,)x 上,恒有'()0f x ,且仅有'(1)0f ,故()f x 在(0,)上单调递减.显然成立.………8分③当112a 时,11120,10a a a aa a,于是1(0,)a x a和(1,)x 时,'()0,()f x f x 单调递减;1(,1)a x a时,'()0,()f x f x 单调递增;要对任意实数[2,3]b ,当(0,]x b 时,函数()f x 的最小值为()f b ,只需要1(2)()a f f a,即11ln(1)12ln 420;a a a a aaaa……10分令11()ln42,(,1)2a g a a aa,21(21)'()40(1)(1)a g a a a a a ,所以()g a 在1(,1)2上单调递减,1()()02g a g ,所以此时1(,1)2a综上所述:)1,12ln 2[a ………12分22.解:(1)∵PA 是切线,AB 是弦,∴∠BAP=∠C ,………2分又∵∠APD=∠CPE,∴∠BAP+∠APD=∠C+∠CPE, ∵∠ADE=∠BAP+∠APD, ∠AED=∠C+∠CPE, ∴∠ADE=∠AED .………5分(2)由(1)知∠BAP=∠C, 又∵∠APC=∠BPA, ∴△APC ∽△BPA, ∴PC CA PAAB, ………7分∵AC=AP, ∴∠APC=∠C=∠BAP, 由三角形内角和定理可知,∠APC+∠C+∠CAP=180°,∵BC 是圆O 的直径,∴∠BAC=90°, ∴∠APC+∠C+∠BAP=180°-90°=90°,∴∠C=∠APC=∠BAP=13×90°=30°.在Rt △ABC 中,CA AB=3, ∴PC CA PAAB=3.………10分23.解:(1)曲线C 的直角坐标方程为1422y x………2分直线l 的直角坐标方程为4x-3y+12=0则其极坐标方程为012sin 3cos 4………5分(2)01234),sin ,cos2(y x l P 为直线设则512)cos(73512sin 3cos8d 所以最大值为57312,最小值为57312。
山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第四次四校联考数学理试题 含答案
2014届高三年级第三次四校联考数学试题(理科)命题:临汾一中 忻州一中 康杰中学 长治二中【考试时间120分钟,满分150分】第Ⅰ卷(选择题 60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,选出符合题目要求的一项。
1。
设U=R,A={x y=x 错误!},B={yy=-x 2},则A∩(C U B)=( )A 。
B.RC. {xx 〉0} D 。
{0}2。
设复数1z i =+(i 是虚数单位),则22z z+=( ) A .1i -- B .1i -+ C .1i - D .1i +3。
下图是一个体积为10的空间几何体的三视图,则图中x 的值为( )A.2 B 。
3 C.4 D 。
54.执行如图所示的程序框图,则输出S 的值为( ) A.3 B.-6 C 。
10D.-15是开始 i=1,S=0i <6?i 是奇数?2S S i =-2S S i =+i=i+1输出S结束是否否正视图3x12侧视图俯视图o5。
实数,x y 满足2240240x x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若z kx y =+的最大值为13,则实数k =( )。
A 。
2 B. 132C. 94D 。
56。
等比数列{}na 满足0,na>n N +∈,且23232(2)n n a a n -=≥,则当1n ≥时,2122221log log log n a a a -++⋅⋅⋅+=()A 。
(21)n n -B 。
2(1)n +C 。
2n D.2(1)n -7.已知函数f (x)=sin (ωx+)(ω〉0,<错误!)的部分图象如图所示,则y=f(x+错误!)取得最小值时x 的集合为( )A 。
{x x= k错误!, kZ } B.{x x= k 错误!, k Z } C 。
{xx=2k -错误!, k Z } 。
{xx=2k错误!, kZ }8.右图可能是下列哪个函数的图象( ) A.y=2x -x 2-1 B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理数试题(满分150分,考试时间120分)一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1.已知全集U R =,集合{A x Z y =∈={}5B x x =>,则 A =)(B C U A.[]3,5 B. [)3,5 C. {}4,5 D. {}3,4,5 2.复数iiz +-=13的虚部为 A. 2 B. 2- C.2i D.2i -3.若焦点在x 轴上的双曲线1222=-my xA. x y 22±= B. x y 2±= C.x y 21±= D.x y 2±= 4.按照如图的程序运行,已知输入x 的值为2+log 23,则输出y 的值为 A.112 B.18 C.124 D.385.已知等比数列{}n a 的首项,11=a 公比2=q ,则=+++1122212log log log a a aA.50B.35C.55D.466.已知nx )21(-展开式中,奇数项的二项式系数之和为64,则)1()21(x x n+-展开式中含2x 项的系数为 A. 71 B. 70 C.21 D. 49 7.如图是一几何体的三视图,则该几何体的体积是 A.9 B.10 C.12 D. 188.设1>m ,当实数y x ,满足不等式组⎪⎩⎪⎨⎧≤+≤≥12y x x y x y 时,目标函数my x z +=的最大值等于2,则m 的值是A. 2B.3C.32 D. 529.已知函数⎪⎩⎪⎨⎧∈---∈-=)1,0[,1)1(1)0,1[,)(x x f x x x f ,若方程0)(=+-k kx x f 有两个实数根,则k 的取值范围是4E D CA P A. 11,2⎛⎤-- ⎥⎝⎦ B.1,02⎡⎫-⎪⎢⎣⎭ C. [)1,-+∞ D. 1,2⎡⎫-+∞⎪⎢⎣⎭10.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB ∆为等边三角形,三棱锥S ABC -O 的半径为 A . 3 B. 1 C. 2 D. 411.抛物线x y 122=的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当FPM ∆为等边三角形时,则FPM ∆的外接圆的方程为A.. 5)5()3(22=±+-y x B. 48)34()3(22=±+-y x C. 9)3()3(22=±+-y x D. 28)72()3(22=±+-y x12.已知函数)(x f y =定义域为),(ππ-,且函数)1(+=x f y 的图象关于直线1-=x 对称,当),0(π∈x 时,x x f x f ln sin )2()(ππ-'-=,(其中)(x f '是)(x f 的导函数),若)91(log ),3(log ),3(33.0f c f b f a ===π,则c b a ,,的大小关系是A. c b a >>B. c a b >>C. a b c >>D. b a c >>二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13.已知向量a ,b 满足1||=a ,2||=b ,a b a ⊥-)(,则向量a与向量b 的夹角为 .14.已知数列{n a }满足)(11,2*11N n a a a a nnn ∈-+==+,则2014a 的值为 .15.设θ为第四象限角,21)4tan(=+πθ,则=-θθcos sin . 16.已知数列{n a }的前n 项和n s 满足*130(2,)n n n a s s n n N -+=≥∈ ,311=a ,则n na 的最小值为 . 三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.(本小题满分12分)已知函数2()sin(2)2cos 1()6f x x x x R π=-+-∈.(1)求()f x 的单调递增区间;(2)在ABC ∆中,三内角,,A B C 的对边分别为,,a b c ,已知1()2f A =,2a b c =+,18bc =.求a 的值.18.(本小题满分12分)如图,四棱锥P-ABCD 中, PA ABCD ⊥底面,AB AD ⊥,AC CD ⊥,PA AB BC AC ===,E 是PC 的中点.(1)求证:PD ABE ⊥平面; (2)求二面角A PD C --的平面角的正弦值.19.(本小题满分12分)在一次数学考试中,第22,23,24题为选做题,规定每位考生必须且只须在其中选做一题,设5名考生选做这三题的任意一题的可能性均为31,每位学生对每题的选择是相互独立的,各学生的选择相互之间没有影响.(1)求其中甲、乙两人选做同一题的概率;(2)设选做第23题的人数为ξ,求ξ的分布列及数学期望.20.(本小题满分12分)设椭圆)0(12222>>=+b a by a x 的左焦点为F ,离心率为22,过点F 且与x 轴垂直的直线被椭圆截得的线段长为2. (1) 求椭圆方程.(2) 过点)2,0(P 的直线l 与椭圆交于不同的两点B A ,,当OAB ∆面积最大时,求AB . 21.(本小题满分12分)设函数32)1()(ax e x x f x+-= (1) 当31-=a 时,求)(x f 的单调区间;(2) 若当0≥x 时,)(x f 0≥恒成立,求a 的取值范围.请考生在(22).(23).(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线PA 为圆O 的切线,切点为A ,直径BC OP ⊥(Ⅰ)证明:PA PD =; (Ⅱ)求证:PA AC AD OC = .23.(本小题10分)选修4—4:坐标系与参数方程 在平面直角坐标系中,以坐标原点为极点,x 轴的 正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为2sin 2cos (0)a a ρθθ=>,过点P (-2,-4)的直线l 的参数方程为24x y =-=-⎧⎪⎨⎪⎩(t 为参数),直线l 与曲线C 相交于,A B 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若2PA PB AB = ,求a 的值.Bx yz24.(本小题满分10分)选修4—5:不等式选讲已知函数()31f x x x=-++.(Ⅰ)求使不等式()6f x<成立的x的取值范围;(Ⅱ)ox R∃∈,()of x a<,求实数a的取值范围.2014届高三年级第一次四校联考数学试题答案(理)1-12题答案:1.D 2.B 3.A 4.C 5.C 6.B 7.A 8.D 9.B 10.C 11.B 12.B二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13.6014.3-15.5102-16.31-三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.解析.解:(1)f(x)= sin(2x -π6)+2cos2x-1=32sin2x-12cos2x+cos2x=32sin2x+12cos2x= sin(2x +π6)………………………………………3分由2kπ-π2≤2x+π6≤2kπ+π2,(k∈Z)得kπ-π3≤x≤kπ+π6,(k∈Z)…………5分∴f(x)的单调递增区间为[kπ-π3,kπ+π6](k∈Z).………………………6分(2) 由f(A)=12, 得sin(2A +π6)=12∵π6<2A+π6<2π+π6, ∴2A+π6=5π6,∴A=π3……………………………8分由余弦定理得a2=b2+c2-2bccosA=(b+c)2-3bc………………………10分又2a=b+c,bc=18.∴a2=18,∴a=32………………………………………………………………12分18.(1)证明:⊥PA底面ABCD,PACD⊥∴又ACCD⊥,AACPA=⋂,故⊥CD面PAC⊆AE面PAC,故AECD⊥…………………………………………4分又PA AC=,E是PC的中点,故PCAE⊥从而⊥AE面PCD,故PDAE⊥易知PDBA⊥,故⊥PD面ABE………………………………6分(2)如图建立空间直角坐标系,设aAC=,则(0,0,0)A、(0,0,)P a、(,0,0)B a、0,,0D⎛⎫⎪⎝⎭,2aC⎛⎫⎪⎪⎝⎭,从而(0,)PD a=-,,,02aDC⎛⎫= ⎪⎪⎝⎭,…9分设1(,,)n x y z =为平面PDC 的法向量,则11002n PD y az a n DC x y ⎧⋅=-=⎪⎪⇒⎨⎪⋅=-=⎪⎩可以取12)n = ……………………11分又2(1,0,0)n =为平面PAD 的法向量,若二面角A PD C --的平面角为θ则121cos n n θ==⋅ ……………………11分因此sin θ=12分 19.解:(1)设事件1A 表示甲选22题,2A 表示甲选23题,3A 表示甲选24题,1B 表示乙选22题,2B 表示乙选23题,3B 表示乙选24题,则甲、乙两人选做同一题事件为332211B A B A B A ++, 且332211B A B A B A 与,与,与相互独立,所以()()()()()()()31913332211332211=⨯=++=++B P A P B P A P B P A P B A B A B A P …………………………………………………………4分(2)设ξ可能取值为0,1,2,3,4,5.⎪⎭⎫ ⎝⎛31,5~B ε()55555323231kk kkk C C k P --=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==∴ξ,5,4,3,2,1,0=k∴分布列为ξ 0 1 2 3 4 5P24332 24380 24380 24340 24310 2431 ()35315=⨯==∴np E ξ ………………………………………12分20.解:(1) 1222=+y x ……… …(4分) (2)根据题意可知,直线l 的斜率存在,故设直线l 的方程为2+=kx y ,设),(11y x A ,()22,y x B 由方程组⎪⎩⎪⎨⎧=++=12222y x kx y 消去y 得关于x 的方程068)21(22=+++kx x k (6分)由直线l 与椭圆相交于B A ,两点,则有0>∆,即02416)21(2464222>-=+-k k k 得232>k 由根与系数的关系得⎪⎪⎩⎪⎪⎨⎧+=⋅+-=+221221216218k x x k k x x故22222112124161k kk k x x AB ++-=+⋅⋅=………………… (9分) 又因为原点O到直线l的距离212kd +=,故O A B ∆的面积222221322221241621k k k k d AB S +-⨯=+-=⋅= 令0322>-=k t 则3222+=t k所以224222≤+=∆t t S AOB 当且仅当2=t 时等号成立, 即214±=k 时,23=AB ……………………………………(12分) 21、解:(1)当31-=a 时,3231)1()(x e x x f x--= 22')1(2)(x e x e x x f xx-+-= )1)(2(2-+=xe x x 令0)('>x f ,得0>x 或02<<-x ;令0)('<x f ,得2-<x∴)(x f 的单调递增区间为),0(,)0,2(∞+-)(x f 的单调递减区间为)2,(--∞ ………………………………………4分 (2)32)1()(ax e x x f x+-=)1(2ax e x x+-= 令),0[1)(+∞∈+-=x axe x g xa e x g x +=)('当1-≥a 时,)(,0)('x g a e x g x>+=在),0[∞+上为增函数. 而,0)0(=g 从而当0≥x 时,0)(≥x g ,即)(x f 0≥恒成立. 若当1-<a 时,令0)('=+=a e x g x,得)ln(a x -=当))ln(,0(a x -∈时,)(,0)('x g x g <在))ln(,0(a -上是减函数,而,0)0(=g 从而当))ln(,0(a x -∈时,0)(<x g ,即0)(<x f综上可得a 的取值范围为),1[+∞-. …………………………………………………12分 22.证明:(1)∵直线PA 为圆O 的切线,切点为A∴∠PAB=∠ACB …………………………………………2分∵BC 为圆O 的直径,∴∠BAC=90° ∴∠ACB=90°-B∵OB ⊥OP,∴∠BDO=90°-B ……………………………4分又∠BDO=∠PDA,∴∠PAD=∠PDA=90°-B∴PA=PD …………………………………………………5分 (2)连接OA,由(1)得∠PAD=∠PDA=∠ACO∵∠OAC=∠ACO∴ΔPAD ∽ΔOCA ………………………………………8分 ∴PA OC = ADAC∴PA ⋅AC=AD ⋅OC ………………………………………10分 23.解:(1) 由ρsin 2θ=2acos θ(a>0)得ρ2sin 2θ=2a ρcos θ(a>0)∴曲线C 的直角坐标方程为y 2=2ax(a>0)………………………2分 直线l 的普通方程为y=x-2…………………………………4分(2)将直线l 的参数方程代入曲线C 的直角坐标方程y 2=2ax 中,得t 2-22(4+a)t+8(4+a)=0设A 、B 两点对应的参数分别为t 1、t 2则有t 1+t 2=22(4+a), t 1t 2=8(4+a)……………………………6分∵|PA|⋅|PB|=|AB|2∴t 1t 2=(t 1-t 2)2, 即(t 1+t 2)2=5t 1t 2………………………………8分∴[22(4+a)]2=40(4+a) a 2+3a-4=0 解之得:a=1或a=-4(舍去)∴a 的值为1…………………………………………………10分24. 解:(1) 由绝对值的几何意义可知x 的取值范围为(-2,4) ………5分(Ⅱ)∃x 0∈R,f(x 0)<a,即a>f(x)min ……………………………………7分 由绝对值的几何意义知:|x -3|+|x +1|可看成数轴上到3和-1对应点的距离和.∴f(x)min =4 …………………………………………………9分 ∴a>4所求a 的取值范围为(4,+∞) …………………………………………10分B。