完整word版,理论力学动力学知识点总结,推荐文档
动力学知识点总结
动力学知识点总结动力学知识点总结总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可以提升我们发现问题的能力,让我们一起认真地写一份总结吧。
但是总结有什么要求呢?下面是小编帮大家整理的动力学知识点总结,仅供参考,希望能够帮助到大家。
一、直线运动(1)匀变速直线运动1、平均速度V平=s/t(定义式)2、有用推论Vt2—Vo2=2as3、中间时刻速度Vt/2=V平=(Vt+Vo)/24、末速度Vt=Vo+at5、位移s=V平t=Vot+at2/2=Vt/2t6、加速度a=(Vt—Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}7、实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt—Vo)/t只是量度式,不是决定式;(2)自由落体运动1、初速度Vo=02、末速度Vt=gt3、下落高度h=gt2/2(从Vo位置向下计算)4、推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9、8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动位移s=Vot—gt2/22、末速度Vt=Vo—gt(g=9、8m/s2≈10m/s2)3、有用推论Vt2—Vo2=—2gs4、上升最大高度Hm=Vo2/2g(抛出点算起)5、往返时间t=2Vo/g(从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等性;二、曲线运动万有引力(1)平抛运动水平方向速度:Vx=Vo2、竖直方向速度:Vy=gt3、水平方向位移:x=Vot4、竖直方向位移:y=gt2/25、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V07、合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo8、水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
理论力学知识点范文
理论力学知识点范文理论力学是力学的一种,是研究物体运动的规律、物体受力、运动方程及其解法的基本理论。
下面将介绍一些常见的理论力学知识点。
1.牛顿三定律:(1)第一定律:一个物体如果不受外力作用,将保持静止或匀速直线运动的状态。
(2) 第二定律:作用于物体的力与物体的加速度成正比,与物体的质量成反比。
即 F = ma。
(3)第三定律:任何物体之间的相互作用力中,力的大小相等,方向相反。
2.动量和动量守恒定律:动量定义为物体的质量与速度的乘积,即 p = mv。
动量守恒定律指的是在一个孤立系统内,系统的总动量保持不变。
当外力作用时,系统的总动量将发生变化,但总动量的变化量等于外力的冲量。
3.力学能量和能量守恒定律:(1) 动能:物体的动能定义为1/2mv²,即物体的质量与速度平方的乘积的一半。
动能的大小取决于物体的质量和速度。
(2)势能:势能是由于物体在其中一种场中所具有的能量,常见的势能包括重力势能、弹簧势能等。
能量守恒定律指的是在一个封闭系统内,系统的总能量保持不变。
4.动量定理:动量定理给出了力对物体运动产生的效果。
它表明,作用在物体上的净力的时间积分等于物体的动量变化。
即FΔt = Δmv。
5.圆周运动:圆周运动也是理论力学的一个重要部分。
对于匀速圆周运动,物体在一个半径为r的圆周上以常速v运动时,其加速度指向圆心,并且大小为a=v²/r。
根据牛顿第二定律,这个加速度是由作用在物体上的向心力所引起的。
6.万有引力定律:万有引力定律描述了两个物体之间的引力的力学性质。
它表明两个物体之间的引力与它们的质量成正比,与它们之间距离的平方成反比。
即F=G(m₁m₂/r²),其中G是引力常数。
7.科里奥利力和刚体力学:科里奥利力是描述旋转体上物体受到的惯性力。
在一个相对于旋转参考系下观测的力学系统中,物体受到的科里奥利力与它们相对于旋转参考系的速度和旋转参考系的角速度有关。
动力学定理及公式知识点总结
动力学定理及公式知识点总结(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如教学资料、考试资料、课堂资料、幼教资源、作文大全等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of educational materials, such as teaching materials, exam materials, classroom materials, preschool education resources, essays, etc. If you want to learn about different formats and writing methods, please pay attention!动力学定理及公式知识点总结动力学定理及公式知识点总结动力学是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的'关系,下面是本店铺整理的动力学定理及公式知识点总结,希望能帮助到大家!1、牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2、牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3、牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4、共点力的平衡;F合=0,推广{正交分解法、三力汇交原理}5、超重:FN>G,失重:FN6、牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
理论力学知识点集合
平面力系1. 平面汇交力系可简化为以合力,其大小和方向等于各分力的矢量和,合力的作用线通过汇交点。
2. 平面汇交力系平衡的充要条件为合力等于零,与任意力系不同,任意力系由于不能汇交,会产生力偶,必须得满足主矢主矩都等于零才平衡。
3. 平面汇交力系可以通过解析法,即将各力分解到直角坐标系上,再求合力。
4. 力对点取矩:是一个代数量,绝对值等于力的大小与力臂的乘积:Fd F Mo =)(5. 合力矩定理:平面力系的合力对于平面内任一点的矩等于所有分力对该点的矩的代数和。
6. 力偶、力偶矩:力偶由两个大小相等,方向相反,作用线不在同一直线上的平行力组成。
力偶矩等于平行力的大小乘上平行力的间距,逆时针为正,顺时针为负。
7. 力偶的等效定理:在同一平面内,只要力偶矩的大小和转向不变,力偶的作用效果就不变。
8. 平面力系的简化:平面任意力系向一点的简化结果为一合力和一合力偶,合力称为主矢,合力偶为主矩。
主矢作用线过简化中心。
9. 平面任意力系平衡的充要条件:⎩⎨⎧==00'Mo F R ,其平衡方程为∑=0x F ,∑=0y F ,∑=0)(Fi Mo ,是三个独立的方程,可以求解三个未知数。
10. 静定问题:当系统中的未知量数目等于独立平衡方程的数目,则所有未知数都能解出,这种问题称为静定问题。
反之为非静定问题。
空间力系11. 空间汇交力系的合力等于各分力的矢量和,合力的作用线过汇交点。
可得合力的大小和方向余弦:()()()222∑∑∑++Fz Fy Fx R F ,()R R F Fx i F ∑=,cos ,其余类似。
12. 空间汇交力系平衡的充要条件为该力系的合力为零,或所有分力在三个坐标轴上投影的代数和为零,∑∑∑===0,0,0Fz Fy Fx ,可求三个未知数。
13. 力对点的矩矢等于该力作用点的矢径与该力的矢量积:()F r F M ⨯=o ;若k Fz j Fy i Fx F k z j y i x r ++=++=,,由行列式可得,()()()()k yFx xFy j xFz zFx i zFy yFz F Mo -+-+-=,在坐标轴上的投影为()[]yFz zFy F Mo x -=,()[]xFz zFx F Mo y -=,()[]yFx xFy F Mo z -=。
动力学基础知识总结
动力学基础知识总结动力学是物体运动的研究,主要研究物体的运动规律和力的作用。
在学习动力学的过程中,我们需要了解一些基础知识,包括质点、牛顿三定律、动力学方程等内容。
下面将对这些基础知识进行总结。
一、质点质点是研究物体运动的一种理想化模型,它忽略了物体的形状和大小,仅考虑了物体的质量以及物体所受到的外力。
质点的运动可用一个点来表示,该点称为质点的“质心”。
二、牛顿三定律1. 第一定律:也称为惯性定律,它指出:如果物体上没有合外力作用,或者合外力的矢量和为零,则物体将保持静止状态或匀速直线运动状态,也就是“物体的运动状态不会自发改变”。
2. 第二定律:也称为加速度定律,它指出:物体受到的合外力等于物体的质量乘以其加速度,即F = ma。
其中,F为物体所受合外力的矢量和,m为物体的质量,a为物体的加速度。
该定律说明了力是引起物体加速度变化的原因。
3. 第三定律:也称为作用-反作用定律,它指出:任何两个物体之间的相互作用力,其大小相等、方向相反,且作用在两个物体上。
简单来说,作用力与反作用力是一对相互作用力。
三、动力学方程动力学方程是描述物体运动规律的方程。
对于质点运动来说,它的动力学方程可以用牛顿第二定律来表示,即F = ma。
这里的F是物体所受合外力的矢量和,m是物体的质量,a是物体的加速度。
通过对动力学方程的求解,我们可以得到物体的运动轨迹和速度变化情况。
在实际问题中,动力学方程的求解可以采用不同的方法,比如分析法、数值法等。
四、运动学和动力学的关系运动学研究的是物体的运动规律,而动力学研究的是物体运动的原因。
可以说,动力学是运动学的基础。
通过运动学我们可以了解物体的位置、速度和加速度等信息,而动力学可以告诉我们物体之所以如此运动的原因。
总结:动力学是物体运动的研究,它包括了质点、牛顿三定律和动力学方程等基础知识。
质点是物体运动的理想化模型,忽略了物体的形状和大小。
牛顿三定律包括了惯性定律、加速度定律和作用-反作用定律,它们描述了物体运动的规律。
(完整版)理论力学复习总结(知识点)
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即FR=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。
动力学知识点总结
动力学知识点总结动力学知识点总结「篇一」一、参照物1、定义:为研究物体的运动假定不动的物体叫做参照物。
2、任何物体都可做参照物3、选择不同的参照物来观察同一个物体结论可能不同。
同一个物体是运动还是静止取决于所选的参照物,这就是运动和静止的相对性。
二、机械运动1、定义:物理学里把物体位置变化叫做机械运动。
2、特点:机械运动是宇宙中最普遍的现象。
3、比较物体运动快慢的方法:⑴时间相同路程长则运动快⑵路程相同时间短则运动快⑶比较单位时间内通过的路程。
分类:(根据运动路线)⑴曲线运动⑵直线运动Ⅰ 匀速直线运动:A、定义:快慢不变,沿着直线的运动叫匀速直线运动。
定义:在匀速直线运动中,速度等于运动物体在单位时间内通过的路程。
物理意义:速度是表示物体运动快慢的物理量计算公式:B、速度单位:国际单位制中 m/s 运输中单位km/h 两单位中m/s 单位大。
换算:1m/s=3.6km/h 。
Ⅱ 变速运动:定义:运动速度变化的运动叫变速运动。
平均速度:= 总路程总时间物理意义:表示变速运动的平均快慢三、力的作用效果1、力的概念:力是物体对物体的作用。
2力的性质:物体间力的作用是相互的(相互作用力在任何情况下都是大小相等,方向相反,作用在不同物体上)。
两物体相互作用时,施力物体同时也是受力物体,反之,受力物体同时也是施力物体。
3、力的作用效果:力可以改变物体的运动状态。
力可以改变物体的形状。
4、力的单位:国际单位制中力的单位是牛顿简称牛,用N 表示。
力的感性认识:拿两个鸡蛋所用的力大约1N。
5、力的测量:⑴测力计:测量力的大小的工具。
⑶弹簧测力计:6、力的三要素:力的大小、方向、和作用点。
7、力的表示法四、惯性和惯性定律:1、牛顿第一定律:⑴牛顿第一定律内容是:一切物体在没有受到力的作用的时候,总保持静止状态或匀速直线运动状态。
2、惯性:⑴定义:物体保持运动状态不变的性质叫惯性。
⑵说明:惯性是物体的一种属性。
一切物体在任何情况下都有惯性。
理论力学知识点大总结
理论力学知识点大总结理论力学是研究物体运动规律以及物体如何受到力的影响的科学。
它是物理学的一个重要分支,对于了解自然界的运动规律有着重要的意义。
在这篇文章中,我们将对理论力学的各个知识点进行大总结,包括牛顿运动定律、动力学、角动量、能量守恒定律等内容。
牛顿运动定律牛顿运动定律是理论力学的基础,它由英国物理学家艾萨克·牛顿在17世纪提出,对于描述物体运动的规律有着重要的作用。
牛顿的三大运动定律如下:第一定律:一个物体如果没有受到外力的作用,它将保持静止或匀速直线运动的状态。
第二定律:物体的加速度与作用在其上的合外力成正比,与物体的质量成反比。
描述物体的加速度与所受力的关系。
第三定律:如果物体A受到物体B的作用力,物体B也会受到物体A相同大小、方向相反的作用力。
描述物体之间的相互作用。
动力学动力学是研究物体运动规律的一门学科,它包括了物体的运动学和动力学两个方面。
运动学研究物体的运动状态,包括位置、速度、加速度等;而动力学则研究物体受到的力的影响,以及力与运动之间的关系。
动力学的关键概念包括合力、牛顿第二定律、惯性系、加速度等。
角动量角动量是研究物体围绕某个固定点进行转动的性质,它是力学中的一个重要概念。
角动量的大小与物体的质量、速度、旋转半径相关,它的方向由右手定则确定。
根据角动量守恒定律,系统的总角动量在没有外力作用下保持不变。
角动量在自然界的许多现象中都有着重要的作用,比如行星公转、自转、陀螺的转动等。
能量守恒定律能量守恒定律是理论力学中的重要定律之一,它表明在一个封闭系统中,系统的能量总和保持不变。
能量可以互相转化,但总能量保持不变。
能量守恒定律描述了在热力学、电磁学、核物理等领域中广泛存在的能量转化现象,对于解释自然现象具有重要的意义。
碰撞碰撞是理论力学中研究物体在相互作用下发生的瞬间现象,它是一个重要的研究对象。
根据碰撞的性质,可以将碰撞分为弹性碰撞和非弹性碰撞两种类型。
弹性碰撞中动能守恒,而非弹性碰撞中动能不守恒,部分能量转化为其他形式。
力学动力学知识点总结
力学动力学知识点总结力学动力学是物理学的一个重要分支,研究物体运动的原因和规律。
它包含了许多基本概念和原理,下面将对力学动力学的一些重要知识点进行总结。
一、牛顿力学牛顿力学是经典力学的基石,它描述了运动物体的行为。
牛顿第一定律,也被称为惯性定律,指出物体在无外力作用下将保持静止或匀速直线运动。
牛顿第二定律则是最著名的定律,它表达了物体加速度与作用在物体上的力之间的关系,即F=ma。
牛顿第三定律则是动力学中的作用-反作用定律,指出力是成对存在的,并且大小相等、方向相反。
二、质点和刚体质点是指物体在运动中忽略其大小和形状,只考虑其质量和位置的点。
刚体则是指物体在运动和受力过程中,不发生形变的物体。
在力学动力学中,我们经常将物体抽象为质点或刚体来进行分析和计算,简化了问题的复杂性。
三、力和受力分析力是导致物体发生运动或形变的原因,通常用箭头表示其大小和方向。
常见的力包括重力、弹力、摩擦力等。
对物体的受力分析是力学动力学中的重要内容,它可以帮助我们理解物体的运动规律。
受力分析中需要考虑力的合成和分解,以及坡面问题等。
四、动量和动量守恒定律动量是描述物体运动状态的物理量,由质量和速度的乘积所得。
动量守恒定律是指在系统内部没有外力作用时,系统的总动量保持不变。
根据动量守恒定律,我们可以推导出弹性碰撞和非弹性碰撞的相关性质,并解决相应的问题。
五、功和能量功是力对物体运动所做的功率乘以时间的积分,它描述了力对物体的能量转移。
能量是物体所具有的做功能力,包括动能和势能。
动能是物体由于运动而具有的能量,它与物体的质量和速度的平方成正比。
势能是物体由于位置和形态而具有的能量,常见的有重力势能和弹性势能等。
六、力学运动学和动力学方程力学运动学研究物体的运动规律,通过描述物体的位移、速度和加速度等来分析和计算运动过程。
动力学方程则是描述物体受力及其运动规律的方程,包括牛顿第二定律和牛顿万有引力定律等。
利用动力学方程,我们可以解决各种力学问题,如平抛运动、竖直上抛运动、圆周运动等。
《理论力学》知识点复习总结
《理论力学》知识点复习总结1.物体的力学性质:力、质量、惯性、受力分析方法等。
-力是物体之间相互作用的结果,具有大小和方向。
-质量是物体所固有的特性,是描述物体所具有惯性的物理量。
-惯性是物体保持运动状态的性质。
-受力分析方法包括自由体图、受力分解和力的合成等。
2.静力学:物体在平衡状态下的力学性质。
-质点和刚体的平衡条件:质点处于平衡状态的条件是合外力为零;刚体处于平衡状态的条件包括合外力为零和合力矩为零。
-平衡条件的应用:包括静力平衡、摩擦力和弹簧力的分析。
3.动力学:物体在运动状态下的力学性质。
- 牛顿第二定律:力的大小与物体的加速度成正比,与物体的质量成反比。
F=ma。
-牛顿第三定律:相互作用的两个物体对彼此施加的力大小相等、方向相反且作用线共面。
-看似相矛盾的运动:如撞击问题、弹性碰撞和非弹性碰撞等。
-应用:包括运动学方程、加速度分析和力学功与功率。
4.系统动力学:多个物体组成的力学系统的运动性质。
-质心和运动质量:质心是体系质点整体运动的简化描述,质点与质心之间的相对运动。
-惯性张量:描述刚体旋转运动的物理量,与刚体的形状和质量分布有关。
- 牛顿第二运动定理的推广:F=ma,扩展到系统的质心运动和转动运动。
-平面运动:考虑力矩与角动量的关系,通过角动量守恒定律解决问题。
-空间运动:考虑转动动力学和刚体旋转平衡。
5.两体问题:描述两个物体之间的相互作用。
-地球质点模型:解析化描述地球和物体之间的万有引力相互作用。
-地球表面近似:解析化描述地球表面物体之间的重力相互作用。
-行星运动:描述行星围绕太阳轨道运动和轨道素描和轨道周期的计算。
-卫星运动:描述人造卫星的轨道运动和发射速度的计算。
以上是对《理论力学》知识点的复习总结,需要注意的是理论力学是一个复杂的学科,其中涉及了静力学、动力学和系统动力学等多个方面的知识,所以复习时需要对每个知识点进行深入理解和掌握,并进行相关的计算和应用。
通过理论力学的学习,可以更好地理解和应用力学原理,提高分析和解决实际问题的能力。
理论力学动力学知识点总结
理论力学动力学知识点总结理论力学动力学是物理学的一个重要分支,研究物体的运动与力的关系。
从牛顿的力学开始到现代相对论力学和量子力学,动力学一直在不断发展和完善。
动力学的核心是牛顿运动定律,它描述了物体受力时的运动规律。
以下是关于理论力学动力学的一些重要知识点总结。
1.牛顿第一定律牛顿第一定律也称为惯性定律,它描述了一个物体在没有外力作用下将保持匀速直线运动或保持静止的状态。
即物体有惯性,需要外力才能改变它的状态。
2.牛顿第二定律牛顿第二定律描述了物体受力时的加速度与作用力的关系。
根据牛顿第二定律可以得到F=ma的公式,其中F是作用力,m是物体的质量,a是物体的加速度。
牛顿第二定律也可以表示为力的矢量形式:F=dp/dt,其中p是物体的动量,t是时间。
3.牛顿第三定律牛顿第三定律也称为作用与反作用定律,它指出任何两个物体之间的相互作用力均有相等大小但方向相反的反作用力。
即作用力和反作用力是相互作用的两个力,它们的大小相等,方向相反。
4.动量动量是描述物体运动状态的物理量,定义为物体的质量乘以速度,表示为p=mv,其中p是动量,m是质量,v是速度。
根据牛顿第二定律可以得到动量定理:F=dp/dt,即力是动量随时间的变化率。
5.动能动能是描述物体运动能量的物理量,定义为物体的动量的平方与质量的乘积的一半,表示为K=(1/2)mv^2,其中K是动能,m是质量,v是速度。
动能定理描述了力对物体做功时动能的变化:W=ΔK,即功等于动能的变化。
6.势能势能是描述物体位置能量的物理量,表示为U。
重力势能是物体在重力场中的位置能量,定义为U=mgh,其中m是质量,g是重力加速度,h 是高度。
弹性势能是弹簧或弹性体储存的能量,定义为U=(1/2)kx^2,其中k是弹性系数,x是弹性体的变形量。
7.动能和势能的转换根据机械能守恒定律,当物体在没有外力做功的情况下,动能和势能可以互相转换,但总机械能保持不变。
例如,自由落体过程中,重力势能转化为动能,而摆动过程中,动能转化为重力势能。
动力学知识点
动力学知识点关键信息项:1、动力学的基本概念2、牛顿运动定律3、常见的力与受力分析4、动量定理与动量守恒定律5、动能定理与机械能守恒定律6、圆周运动的动力学分析7、简谐运动的动力学特征8、动力学在实际问题中的应用11 动力学的基本概念111 动力学是研究物体运动与所受力之间关系的学科。
112 物体的运动状态改变是由于受到力的作用。
113 力是改变物体运动状态的原因,而不是维持物体运动的原因。
12 牛顿运动定律121 牛顿第一定律:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
122 牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。
表达式为 F = ma 。
123 牛顿第三定律:两个物体之间的作用力和反作用力,总是大小相等,方向相反,作用在同一条直线上。
13 常见的力与受力分析131 重力:物体由于地球的吸引而受到的力,方向竖直向下。
132 弹力:物体由于发生弹性形变而产生的力,常见的有压力、支持力、拉力等。
133 摩擦力:分为静摩擦力、滑动摩擦力和滚动摩擦力。
静摩擦力的大小取决于使物体产生相对运动趋势的外力;滑动摩擦力的大小与接触面的粗糙程度和压力大小有关。
134 受力分析的步骤:确定研究对象,隔离物体,分析重力、弹力、摩擦力等力的作用,画出受力示意图。
14 动量定理与动量守恒定律141 动量定理:合外力的冲量等于物体动量的增量。
表达式为 I =Δp 。
142 动量守恒定律:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。
143 应用动量守恒定律解决碰撞、爆炸等问题。
15 动能定理与机械能守恒定律151 动能定理:合外力对物体所做的功等于物体动能的变化。
表达式为 W =ΔEk 。
152 机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
153 利用机械能守恒定律分析物体的运动过程和能量转化。
理论力学知识点总结pdf
理论力学知识点总结pdf引言理论力学是物理学的一个重要分支,研究物体在受力作用下的运动规律和相互作用。
它在物理学、工程学、地质学等领域都有着重要的应用。
理论力学主要包括牛顿力学、理论动力学、固体力学和流体力学等内容。
在这篇论文中,将会总结理论力学的主要知识点,并对其进行深入探讨。
1. 牛顿力学牛顿力学是理论力学的基础,主要包括牛顿三定律和运动方程。
牛顿第一定律指出一个物体如果没有受到外力作用,它将保持静止或匀速直线运动。
牛顿第二定律则描述了物体受力作用下的加速运动规律,即力与加速度的关系。
而牛顿第三定律则说明了物体间相互作用的力是相等的、方向相反的。
理解并掌握牛顿力学的知识对于理论力学的深入学习至关重要。
2. 理论动力学理论动力学是研究具有确定力学规律的物体在受力作用下的运动规律。
它包括刚体力学和振动力学两个部分。
刚体力学研究的是刚体在受力作用下的运动规律,其中包括刚体的平动和转动运动。
振动力学则研究的是物体在受到一定条件下的振动规律,如弹簧振子、单摆等。
3. 固体力学固体力学是研究物体内部力的平衡和运动规律的学科,其研究对象是固体。
它包括静力学和动力学两个部分。
静力学研究的是固体在静止或匀速运动下的内部力的平衡规律,而动力学则研究的是固体在受力作用下的运动规律。
4. 流体力学流体力学是研究流体在受力作用下的运动规律和相互作用的学科。
它包括流体静力学和流体动力学两个部分。
流体静力学研究的是流体在静止或匀速运动下的内部力的平衡规律,而流体动力学则研究的是流体在受力作用下的运动规律,包括流体的流动规律和流体的阻力等。
结论理论力学是物理学中非常重要的一个分支,其研究对象是物体在受力作用下的运动规律和相互作用。
本文总结了理论力学的主要知识点,包括牛顿力学、理论动力学、固体力学和流体力学。
对这些知识点的深入学习和理解将有助于我们更好地应用理论力学的知识来解决实际问题。
希望通过本文的总结,读者能对理论力学有更全面的认识,并在实践中运用这些知识解决实际问题。
动力学知识点总结
动力学知识点总结动力学是研究力的起源和力的作用下物体的运动规律的科学。
它是力学的一个重要分支,包括牛顿定律、运动方程、动能、势能、角动量、动量守恒定律、能量守恒定律等内容。
动力学在物理学、工程学、天文学、生物学等领域都有广泛的应用。
1. 牛顿定律牛顿定律是动力学的基础,包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律,也称为惯性定律,指出如果物体受到外力作用,则物体将产生加速度,即物体的速度将发生变化。
牛顿第二定律,也称为运动定律,指出物体的加速度与作用力成正比,与物体的质量成反比。
即F=ma,其中F为物体所受的合外力,m为物体的质量,a为物体的加速度。
牛顿第三定律,也称为作用与反作用定律,指出两个物体之间的相互作用力大小相等、方向相反。
2. 运动方程运动方程描述了物体在外力作用下的运动规律。
对于一维运动,运动方程可以写成x=x0+v0t+1/2at^2,v=v0+at,其中x为物体的位移,x0为初始位移,v为物体的速度,v0为初始速度,a为物体的加速度,t为时间。
3. 动能和势能动能是物体由于运动而具有的能量,通常用K表示,其计算公式为K=1/2mv^2,其中m 为物体的质量,v为物体的速度。
势能是物体由于位置而具有的能量,通常用U表示,其计算公式为U=mgh,其中m为物体的质量,g为重力加速度,h为物体的高度。
4. 角动量角动量是描述物体旋转运动的物理量,通常用L表示,其计算公式为L=Iω,其中I为物体的转动惯量,ω为物体的角速度。
5. 动量守恒定律动量守恒定律指出,在一个封闭系统中,系统的总动量保持不变。
即Σp=Σp',其中Σp为系统的初始总动量,Σp'为系统的最终总动量。
6. 能量守恒定律能量守恒定律指出,在一个封闭系统中,系统的总能量保持不变。
即ΣE=ΣE',其中ΣE为系统的初始总能量,ΣE'为系统的最终总能量。
综上所述,动力学是研究物体在力的作用下的运动规律的科学,包括牛顿定律、运动方程、动能、势能、角动量、动量守恒定律、能量守恒定律等内容。
理论力学动力学知识点总结
质点动力学的基本方程知识总结1.牛顿三定律适用于惯性参考系。
质点具有惯性,以其质量度量;作用于质点的力与其加速度成比例;作用与反作用力等值、反向、共线,分别作用于两个物体上。
2.质点动力学的基本方程。
质点动力学的基本方程为,应用时取投影形式。
3.质点动力学可分为两类基本问题。
质点动力学可分为两类基本问题:(1). 已知质点的运动,求作用于质点的力;(2). 已知作用于质点的力,求质点的运动。
求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。
质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。
动量定理知识点总结1.牛顿三定律适用于惯性参考系。
质点具有惯性,以其质量度量;作用于质点的力与其加速度成比例;作用与反作用力等值、反向、共线,分别作用于两个物体上。
2.质点动力学的基本方程。
质点动力学的基本方程为,应用时取投影形式。
3.质点动力学可分为两类基本问题。
质点动力学可分为两类基本问题:(1). 已知质点的运动,求作用于质点的力;(2). 已知作用于质点的力,求质点的运动。
求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。
质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。
常见问题问题一在动力学中质心意义重大。
质点系动量,它只取决于质点系质量及质心速度。
问题二质心加速度取决于外力主失,而与各力作用点无关,这一点需特别注意。
动量矩定理知识点总结1.动量矩。
质点对点O 的动量矩是矢量。
质点系对点O 的动量矩是矢量。
若z 轴通过点O ,则质点系对于z 轴的动量矩为。
若 C 为质点系的质心,对任一点O 有。
2.动量矩定理。
对于定点O 和定轴z 有若 C 为质心,C z 轴通过质心,有3.转动惯量。
若z C 与z 轴平行,有4.刚体绕 z 轴转动的动量矩。
刚体绕z 轴转动的动量矩为若z 轴为定轴或通过质心,有5.刚体的平面运动微分方程。
理论力学第10讲动力学
2
d d
1 d
2
2 d
(3)
则式(1)化成
1 d
2 d
g l
sin
M0 at
对上式采用定积分,把初条件作为积分下限,有
从而得
2 d ( )
0
0
(
2g l
sin )d
动力学
质点系动力学
质
点——具有一定质量但可以忽略其尺寸大小的物体。
质点系——一群具有某种联系的质点,刚体可以看成不变形的质点系。 第一章 质点动力学基础
绪论
动 力 学
第一章
质点动力学基础
第一章 质点动力学基础
动
第 一 章
力
学
§1-1 动力学的基本定律
§1-2 质点运动微分方程
质 点 动 力 学 基 础
第一章 质点动力学基础
§1-2 质点运动微分方程
矢量形式 直角坐标形式 自然形式
第一章 质点动力学基础
§1-2 质点运动微分方程
一、矢量形式
z
M
设有可以自由运动的质点 M,质
量是 m,作用力的合力是 F,加速 度是 a 。
m d r dt
2 2
r O x
F a y
F
(1 2)
这就是质点运动微分方程的矢量形式。
第一定律说明了任何物体都具有惯性。
第二定律 力与加速度关系定律 质点因受力作用而产生的加速度,其方向与力相同,其大小与力成正比 而与质量成反比。
F = ma
(1–1)
第二定律说明了物体机械运动状态的改变,不仅决定于作用于物体的
理论力学(动力学部分)知识点
第十一章、动量矩定理
教学目标:能熟练运用动量矩定理及其守恒定律求解动力学问题,会计算刚体定轴转动和 平面运动的动力学问题。 知识结构: 1、质点对点 O 的动量矩—— M O mv r mv 。 2、质点系对点 O 的动量矩—— LO (2)定轴转动—— Lz J z ω 。 3、质点系动量矩定理——
动力学
动力学:研究物体的机械运动与作用力之间的关系。
第九章、质点动力学的基本方程
教学目标:能正确建立质点的运动微分方程。 知识结构: 动力学基本定律: 1、第一定律(惯性定律) ; 2、第二定律(质点动力学基本方程) : F ma ——质点运动微分方程: m
d2r ; F , dt 2
求解问题:1) 、已知运动求力;2) 、已知力求运动; 3)混合问题。 3、第三定律(作用与反作用定律) 。
W
i
C2
C1
drC M C d 。 FR
1
2
1 2
mi vi2
2
(1)平移刚体的动能—— T 1 2 mvC ; (2)定轴转动刚体的动能—— T 1 2 J zω ;
2 1 1 (3)平面运动刚体的动能—— T 1 2 J P ω 2 mvC 2 J z ω 。 2 2 2
t2
t1
Fdt I 。
mv
i i
或 p mvC
(1)质点系动量定理:[1]、微分形式—— dp 常用投影表达式
F
e
dt dI e 或
e
dp F e ; dt
[2]、积分形式—— p2 p1
e
I 。
~1~
(2)质心运动定理—— maC
动力学知识点小结
动力学知识点小结动力学是物理学的一个重要分支,主要研究物体的运动与所受的力之间的关系。
以下是对动力学一些关键知识点的小结。
一、牛顿运动定律牛顿第一定律指出,物体在不受外力作用时,将保持静止或匀速直线运动状态。
这一定律揭示了物体具有惯性,即保持原有运动状态的性质。
牛顿第二定律是动力学的核心,其表达式为 F = ma ,其中 F 表示物体所受的合力,m 是物体的质量,a 是物体的加速度。
这一定律表明,力是使物体产生加速度的原因,且加速度的大小与合力成正比,与物体的质量成反比。
牛顿第三定律阐述了作用力与反作用力的关系,即两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上。
二、常见的力重力是地球对物体的吸引力,其大小为 G = mg ,方向竖直向下。
弹力产生于物体的形变,常见的有弹簧的弹力、支持力和压力等。
胡克定律描述了弹簧弹力与形变量的关系,F = kx ,其中 k 为弹簧的劲度系数,x 为弹簧的形变量。
摩擦力分为静摩擦力和滑动摩擦力。
静摩擦力的大小在零到最大静摩擦力之间变化,方向与相对运动趋势方向相反。
滑动摩擦力的大小与接触面的压力和动摩擦因数有关,其表达式为 f =μN ,其中μ 是动摩擦因数,N 是接触面的压力。
三、运动学与动力学的结合在解决动力学问题时,常常需要结合运动学公式。
例如,已知物体的加速度、初速度和运动时间,可以通过 v = v₀+ at 求出末速度;通过 x = v₀t + ½at²求出位移。
四、超重与失重当物体具有向上的加速度时,处于超重状态,此时物体所受的支持力或拉力大于重力。
反之,当物体具有向下的加速度时,处于失重状态,支持力或拉力小于重力。
完全失重时,物体的加速度等于重力加速度,物体只受重力作用。
五、连接体问题对于由多个物体通过细绳、轻杆等连接在一起的系统,需要分析每个物体的受力情况和运动状态,利用整体法和隔离法求解。
整体法可以求出系统的加速度,隔离法可以求出每个物体所受的力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质点动力学的基本方程
知识总结
1.牛顿三定律适用于惯性参考系。
质点具有惯性,以其质量度量;
作用于质点的力与其加速度成比例;
作用与反作用力等值、反向、共线,分别作用于两个物体上。
2.质点动力学的基本方程。
质点动力学的基本方程为,应用时取投影形式。
3.质点动力学可分为两类基本问题。
质点动力学可分为两类基本问题:
(1). 已知质点的运动,求作用于质点的力;
(2). 已知作用于质点的力,求质点的运动。
求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。
质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。
动量定理
知识点总结
1.牛顿三定律适用于惯性参考系。
质点具有惯性,以其质量度量;
作用于质点的力与其加速度成比例;
作用与反作用力等值、反向、共线,分别作用于两个物体上。
2.质点动力学的基本方程。
质点动力学的基本方程为,应用时取投影形式。
3.质点动力学可分为两类基本问题。
质点动力学可分为两类基本问题:
(1). 已知质点的运动,求作用于质点的力;
(2). 已知作用于质点的力,求质点的运动。
求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。
质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。
常见问题
问题一在动力学中质心意义重大。
质点系动量,它只取决于质点系质量及质心速度。
问题二质心加速度取决于外力主失,而与各力作用点无关,这一点需特别注意。
动量矩定理
知识点总结
1.动量矩。
质点对点O 的动量矩是矢量。
质点系对点O 的动量矩是矢量。
若z 轴通过点O ,则质点系对于z 轴的动量矩为。
若 C 为质点系的质心,对任一点O 有。
2.动量矩定理。
对于定点O 和定轴z 有
若 C 为质心,C z 轴通过质心,有
3.转动惯量。
若z C 与z 轴平行,有
4.刚体绕 z 轴转动的动量矩。
刚体绕z 轴转动的动量矩为
若z 轴为定轴或通过质心,有
5.刚体的平面运动微分方程。
常见问题
问题一要注意,计算动量矩时,仅仅计算对质心动量矩时,用静止坐标系或用随质心平移的坐标系都可以,两者的计算结果是相同的。
对一般的动点,两者计算结果不同,必须用静止坐标系计算,或用书中的公式计算。
问题二要注意,动量矩定理仅仅对定点或质心成立,对一般的动点通常是不成立的。
问题三要仔细体会在知识点例题中所提到的技巧及注意事项。
问题四求解运动学问题时,通常要补充运动学关系,一定注意正确的补充运动学关系。
动能定理
知识点总结
1.动能是物体机械运动的一种度量。
质点的动能
质点系的动能
平移刚体的动能
绕定轴转动刚体的动能
平面运动刚体的动能
2.力的功是力对物体作用的积累效应的度量。
重力的功
弹性力的功
定轴转动刚体上力的功
平面运动刚体上力系的功
3.动能定理。
微分形式
积分形式
理想约束条件下,只计算主动力的功,内力有时作功之和不为零。
4.功率是力在单位时间内所作的功。
5.功率方程。
功率方程
6.机械效率。
7.功与物体运动的起点和终点的位置关系。
有势力的功只与物体运动的起点和终点的位置有关,而与物体内各点轨迹的形状无关。
8.机械能守恒定律。
机械能=动能+势能=T+V
机械能守恒定律:如质点或质点系只在有势力作用下运动,则机械能保持不变,即
T+V=常量
由于利用动能定理可以较方便的计算速度和角速度、加速度和角加速度,因此很多动力学题目都是优先选用动能定理。
利用动能定理的积分形式很容易求得速度及角速度。
如果这一积分形式的动能定理表达的是函数关系(即适用于任意时刻或者任意位置),那么将其两端对时间求导即可得到加速度及角速度(或利用动能定理的微分形式或功率方程也可直接求得加速度或角速度)。
进而再利用刚体平面运动微分方程(或动量定理、动量矩定理)就可以求得作用力。
常见问题
问题一正确计算功和动能,分析哪些力不作功,哪些力作功。
问题二在理想约束下只考虑主动力的功。
如果有摩擦,只需记入摩擦力的功。
问题三功是力与受力物体上力作用点位移的点积,不是力与力在空间位移的点积。
问题四作用于纯滚动圆盘与静止地面接触点的法向约束力和摩擦力(不含滚动摩阻)不作功。
问题五如果动能定理的积分形式用函数形式表示,则将其对时间求导即可求得加速度和角加速度,当然也可以用动能定理的微分形式或功率方程。
问题六多数动力学问题可优先考虑动能定理求得加速度和角加速度,然后再利用动量及动量矩定理求得力。
问题七对某些动力学问题,在求解时注意分析是否存在动量守恒和动量矩守恒。
问题八求解动力学问题,一般要补充运动学关系。