最新理论力学复习总结(知识点)
理论力学知识点总结
十一、 考虑滑动摩擦时物体的平衡问题
考虑摩擦的系统平衡问题的特点
1. 平衡方程式中除主动、约束力外还出现了摩擦力,因而未知 数增多。
2. 除平衡方程外还可补充关于摩擦力的物理方程 Fs≤fsFN 。 3. 为避免解不等式,可以解临界情况,即补充方程Fmax = fsFN 。
常见的问题有
● 检验物体是否平衡; ● 临界平衡问题; ● 求平衡范围问题。
• 当拿到一道计算力对轴之矩的题目时,首先观察一下力F 与Z 轴的空间位置,一般有三种情况:
第一种情况:若力F与Z轴平行或相交,则MZ(F )=0; 第二种情况:若力F与Z轴垂直,可根据定义来计算,即通过力F作
一个平面垂直于Z轴,那么力F在该平面上的投影就是它自己, 即F=Fxy,Z轴与该平面的交点为O点,且O点到F=Fxy作用线 的距离d为已知,则MZ(F)=Mo(F)=Mo (Fxy)=±Fd。 第三种情况:若力F与Z轴既不相交、也不平行、也不垂直,此时 可把力F分解为三个分力Fx、Fy、Fz,再运用合力矩定理来 算,即:MZ(F)=MZ( Fx)+MZ( Fy)+MZ( Fz)。
下面给出具体的方法。
大理论力学知识点总复习
大理论力学知识点总复习1.摩擦力:摩擦力是物体相互接触时发生的一种力。
根据接触面之间的压力大小和物体的粗糙程度,可以分为静摩擦力和动摩擦力。
2.牛顿第一定律:牛顿第一定律也称为惯性定律,它指出一个物体如果没有外力作用,将保持静止或匀速直线运动。
3. 牛顿第二定律:牛顿第二定律描述了物体在受到外力作用下的加速度与作用力的关系。
F=ma,其中F代表作用力,m代表物体的质量,a代表物体的加速度。
4.牛顿第三定律:牛顿第三定律指出,对于任何作用力都有相等大小、方向相反的反作用力。
这意味着作用力和反作用力总是成对存在的。
5.动量守恒定律:当物体间没有外力作用时,系统的总动量保持不变。
动量的大小等于物体的质量乘以其速度。
6.能量守恒定律:在一个封闭系统中,能量总量保持不变。
能量可以相互转化,但总能量不会减少或增加。
7. 动能与势能:动能是物体由于运动而具有的能量,公式为K=1/2mv²,其中m为物体的质量,v为物体的速度。
势能是物体由于位置变化而具有的能量,公式为E=mgh,其中m为物体的质量,g为重力加速度,h为高度。
8.弹性碰撞与非弹性碰撞:弹性碰撞指在碰撞过程中物体之间的动能守恒,且碰撞后物体之间没有能量损失。
非弹性碰撞指碰撞后物体之间有能量损失。
9.万有引力定律:万有引力定律描述了两个物体之间的引力与它们质量和距离的关系。
公式为F=G(m1m2/r²),其中F为引力,G为万有引力常量,m1和m2为两个物体的质量,r为它们之间的距离。
10.刚体力学:刚体力学研究刚体的运动和平衡条件。
刚体是指形状和大小在外力作用下不会改变的物体。
11.流体力学:流体力学研究流体(包括气体和液体)的运动和性质。
其中包括流体的压力、密度和流速等。
12.静力学:静力学研究物体处于平衡状态时的力学性质。
对于平衡物体,其力合为零,力矩合为零。
13.动力学:动力学研究物体运动时的力学性质。
通过牛顿第二定律可以描述物体的加速度。
理论力学知识点总结(15篇)
理论力学知识点总结第1篇xxx体惯性力系的简化:在任意瞬时,xxx体惯性力系向其质心简化为一合力,方向与质心加速度(也就是刚体的加速度)的方向相反,大小等于刚体的质量与加速度的乘积,即。
平面运动刚体惯性力系的简化:如果刚体具有质量对称面,并且刚体在质量对称面所在的平面内运动,则刚体惯性力系向质心简化为一个力和一个力偶,这个力的作用线通过该刚体质心,大小等于刚体的质量与质心加速度的乘积,方向与质心加速度相反;这个力偶的力偶矩等于刚体对通过质心且垂直于质量对称面的轴的转动惯量与刚体角加速度的乘积,其转向与角加速度的转向相反。
即(10-3)定轴转动刚体惯性力系的简化:如果刚体具有质量对称面,并且转轴垂直于质量对称面,则刚体惯性力系向转轴与质量对称面的交点O简化为一个力和一个力偶,这个力通过O点,大小等于刚体的质量与质心加速度的乘积,方向与质心加速度的方向相反;这个力偶的力偶矩等于刚体对转轴的转动惯量与角加速度的乘积,其转向与角加速度的转向相反。
即(10-4)理论力学知识点总结第2篇定点运动刚体的动量矩。
定点运动刚体对固定点O的动量矩定义为:(12-6)其中:分别为刚体上的质量微团的矢径和速度,为刚体的角速度。
当随体参考系的三个轴为惯量主轴时,上式可表示成(12-7)(2)定点刚体的欧拉动力学方程。
应用动量矩定理可得到定点运动刚体的欧拉动力学方程(12-8)(3)陀螺近似理论。
绕质量对称轴高速旋转的定点运动刚体成为陀螺。
若陀螺绕的自旋角速度为,进动角速度为,为陀螺对质量对称轴的转动惯量,则陀螺的动力学方程为(12-9)其中是作用在陀螺上的力对O点之矩的矢量和。
理论力学知识点总结第3篇牛顿第二定律建立了在惯性参考系中,质点加速度与作用力之间的关系,即:其中:分别表示质点的质量、质点在惯性参考系中的加速度和作用在质点上的力。
将上式在直角坐标轴上投影可得到直角坐标形式的质点运动微分方程(6-2)如果已知质点的运动轨迹,则利用牛顿第二定律可得到自然坐标形式的质点运动微分方程(6-3)对于自由质点,应用质点运动微分方程通常可研究动力学的两类问题。
理论力学知识点总结
理论力学知识点总结理论力学是研究物体运动规律的一门基础物理学科,它主要研究在力的作用下物体的运动状态。
以下是理论力学的知识点总结:1. 基本概念- 力:物体间的相互作用,可以改变物体的运动状态。
- 质量:物体所含物质的多少,是物体惯性大小的量度。
- 惯性:物体保持其运动状态不变的性质。
- 运动:物体位置随时间的变化。
- 静止:物体相对于参照系位置不发生改变的状态。
2. 牛顿运动定律- 第一定律(惯性定律):物体在没有外力作用下,将保持静止或匀速直线运动。
- 第二定律(加速度定律):物体的加速度与作用力成正比,与物体质量成反比,方向与作用力方向相同。
- 第三定律(作用与反作用定律):对于任何两个相互作用的物体,它们之间的作用力和反作用力大小相等、方向相反。
3. 功和能- 功:力在物体上做功,等于力与位移的乘积,是能量转化的量度。
- 动能:物体由于运动而具有的能量,与物体质量和速度的平方成正比。
- 势能:物体由于位置而具有的能量,与物体位置有关。
- 机械能守恒定律:在没有非保守力做功的情况下,系统的机械能(动能加势能)保持不变。
4. 动量和角动量- 动量:物体运动状态的量度,等于物体质量与速度的乘积。
- 角动量:物体绕某一点旋转运动状态的量度,等于物体质量、速度与该点到物体距离的乘积。
- 动量守恒定律:在没有外力作用的系统中,系统总动量保持不变。
- 角动量守恒定律:在没有外力矩作用的系统中,系统总角动量保持不变。
5. 刚体运动- 平动:刚体上所有点的运动状态相同,即刚体整体移动。
- 转动:刚体绕某一点或某一轴的旋转运动。
- 刚体的转动惯量:衡量刚体对转动的抵抗程度,与刚体的质量分布和旋转轴的位置有关。
6. 振动和波动- 简谐振动:物体在回复力作用下进行的周期性振动,其运动方程为正弦或余弦函数。
- 阻尼振动:在阻尼力作用下的振动,振幅随时间逐渐减小。
- 波动:能量在介质中的传播,包括横波和纵波。
7. 分析力学- 拉格朗日力学:通过拉格朗日量(动能减势能)来描述物体的运动。
理论力学下知识点总结
理论力学下知识点总结一、静力学1. 作用力和反作用力作用力是指物体之间相互作用的力,它是使物体产生变化的原因。
而反作用力是作用力的作用对象对作用力的作用体产生的一种力,大小相等、方向相反。
2. 牛顿定律牛顿第一定律:一个物体如果受到平衡力的作用,将保持原来的状态,即匀速直线运动或静止状态。
牛顿第二定律:一个物体所受的合外力等于它的质量与加速度的乘积,即F=ma。
牛顿第三定律:相互作用的两个物体之间的作用力和反作用力大小相等、方向相反。
3. 力的分解在斜面上,对一个斜面上的物体,可以将它的重力分为垂直于斜面的力和平行于斜面的力,然后分解力的作用,得到物体的加速度和受力情况。
4. 力矩力矩是力偶对物体的作用引起的旋转效果,是物体受力的结果。
力矩的大小等于力乘以力臂的长度,方向垂直于力和力臂所在平面。
二、动力学1. 动量和冲量动量是物体运动时固有的属性,它等于物体的质量乘以速度。
而冲量是力对物体加速度的积分,是描述力的作用效果的物理量。
牛顿第二定律可以表示为动量定理:FΔt=Δp。
2. 动能和动能定理动能是物体运动时所具有的能量,它等于物体的质量乘以速度的平方再乘以1/2。
动能定理表明外力对物体做功,使得物体的动能发生改变。
动能定理可以表示为W=ΔK。
3. 力和功功是力对物体做的功,它等于力乘以位移,力与位移方向一致时做正功,反之做负功。
功可以用来表示物体的动能的变化。
4. 动量守恒定律动量守恒定律指的是在一个封闭系统中,如果系统内部没有受到外力的作用,系统内部各个物体的总动量保持不变。
5. 动能守恒定律动能守恒定律指的是在一个封闭系统中,如果系统内部没有受到非弹性碰撞和外力的作用,系统内部各个物体的总动能保持不变。
三、运动学1. 加速度和速度加速度是物体运动过程中速度变化的快慢程度的物理量,它等于速度的变化量除以时间。
速度是物体在单位时间内移动的距离。
在直线运动中,加速度可以表示为v=at。
2. 弹性碰撞和非弹性碰撞在弹性碰撞中,碰撞前后物体的总动能保持不变;而在非弹性碰撞中,碰撞前后物体的总动能发生改变,一部分能量转化为其他形式。
理论力学知识点
理论力学知识点理论力学是一门研究物体机械运动一般规律的科学,它为后续的材料力学、结构力学等课程奠定了基础。
以下是理论力学中的一些重要知识点。
一、静力学静力学主要研究物体在力系作用下的平衡问题。
(一)力的基本概念力是物体之间的相互作用,它具有大小、方向和作用点三个要素。
力的单位是牛顿(N)。
(二)力系的简化力系是指作用在物体上的一群力。
通过力的平移定理,可以将一个复杂的力系简化为一个合力和一个合力偶。
(三)受力分析对物体进行准确的受力分析是解决静力学问题的关键。
要明确研究对象,画出其受力图,注意区分内力和外力,主动力和约束力。
(四)平面力系的平衡条件平面任意力系的平衡条件是:力系中各力在两个坐标轴上投影的代数和分别为零,以及各力对平面内任一点之矩的代数和为零。
(五)摩擦摩擦力是阻碍物体相对运动或相对运动趋势的力。
要了解静摩擦力、滑动摩擦力和滚动摩擦力的特点及计算方法。
二、运动学运动学研究物体的运动而不考虑引起运动的原因。
(一)点的运动学描述点的运动有矢量法、直角坐标法、自然法等。
要掌握速度、加速度的计算方法。
(二)刚体的简单运动刚体的平动和定轴转动是常见的简单运动。
平动时,刚体上各点的运动轨迹、速度和加速度相同;定轴转动时,要了解角速度、角加速度以及转动刚体上各点的速度和加速度的计算。
(三)点的合成运动将一个点的运动分解为相对于不同参考系的运动,利用速度合成定理和加速度合成定理来求解。
(四)刚体的平面运动可以将刚体的平面运动分解为随基点的平动和绕基点的转动。
通过基点的选择,求解平面运动刚体上各点的速度和加速度。
三、动力学动力学研究物体的运动与作用在物体上的力之间的关系。
(一)牛顿运动定律牛顿第一定律揭示了惯性的本质;牛顿第二定律给出了力与加速度之间的定量关系;牛顿第三定律说明了力的相互作用性质。
(二)动量定理物体的动量在一段时间内的变化等于作用在物体上的冲量。
(三)动量矩定理对于绕定轴转动的刚体,动量矩定理可以用来分析其转动状态的变化。
(完整版)理论力学复习总结(知识点)
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即FR=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。
理论力学单元知识点总结
理论力学单元知识点总结1. 受力分析力是物体间相互作用的结果,有多种类型的力,如重力、弹力、摩擦力、拉力等。
受力分析是力学研究的基础,通过对物体受到的不同力的分析,可以确定物体的受力情况,从而进一步研究物体的运动规律。
2. 牛顿定律牛顿定律是力学研究的基本原理,包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律表明物体在不受外力作用时保持匀速直线运动或静止状态;牛顿第二定律表明物体的加速度与作用在它上面的净力成正比,反向与物体的质量成反比;牛顿第三定律表明任何两个物体之间的相互作用力大小相等、方向相反。
3. 运动学运动学是研究物体的运动轨迹、速度和加速度等参数的学科。
通过运动学的研究,可以获取物体在受力作用下的运动规律,包括匀速直线运动、变速直线运动、曲线运动等不同类型的运动规律。
4. 动力学动力学是研究物体受力作用下的运动规律的学科。
在受到外力作用时,物体的速度和加速度会发生变化,动力学通过对受力物体的运动状态和力的关系进行研究,揭示了物体在受力作用下的运动规律。
5. 势能和势能守恒势能是物体由于位置或状态而具有的能量,包括重力势能、弹性势能、化学势能等不同类型的势能。
势能守恒是指在不受非保守力(如摩擦力、拉力)作用时,系统的总机械能(动能和势能之和)保持不变。
势能的研究对于理解物体在受力作用下的运动规律具有重要意义。
6. 动能和动能守恒动能是物体由于速度而具有的能量,物体的动能与速度的平方成正比。
动能守恒是指在不受非保守力(如摩擦力、拉力)作用时,系统内的动能保持不变。
动能的研究对于理解物体在受力作用下的运动规律具有重要意义。
7. 力的合成与分解力的合成是指将多个力合成为一个合力的过程,力的分解是指将一个力分解为多个分力的过程。
通过力的合成与分解,可以对受力物体的受力情况进行分析,进一步研究物体的运动规律。
8. 圆周运动圆周运动是物体在圆周轨道上的运动规律,包括匀速圆周运动和变速圆周运动两种类型。
理论力学知识点总结
理论力学知识点总结理论力学是物理学中的一个重要分支,研究物体的运动规律和受力情况。
其基础在于牛顿力学,也称为经典力学。
本文将总结理论力学领域中的一些重要知识点,包括牛顿定律、动量、能量等概念。
1. 牛顿定律牛顿定律是理论力学的基石,共分为三个定律。
第一定律也称为惯性定律,描述了物体的运动状态。
它指出,任何物体都保持静止或匀速直线运动,除非有外力作用于它。
第二定律是物体的运动状态与作用在其上的力成正比的关系。
其公式为F = ma,其中F为物体所受力,m为物体的质量,a为物体的加速度。
第三定律是作用力和反作用力总是成对存在的。
这些定律对于解释物体的运动行为和相互作用提供了基础。
2. 动量动量是物体运动的重要物理量,定义为物体质量与速度的乘积。
动量为矢量量,方向与速度方向一致。
动量的变化率等于作用在物体上的力。
这一关系可以表示为F = dp/dt,其中F为物体的受力,p为物体的动量,t为时间。
动量在碰撞、运动和相互作用等情况下起着重要的作用,也是守恒定律的基础之一。
3. 动能和势能动能是物体运动时具有的能量形式,定义为物体质量与速度平方的乘积的一半。
动能可以表示为K = 1/2 mv^2,其中m为物体质量,v为物体速度。
动能与物体的质量和速度平方成正比,是运动状态的指示器。
势能是与物体位置有关的能量,通常体现为引力和弹性力。
势能是因物体在某一位置而具有的能量,可以转化为动能,也可以从动能转化为势能,满足能量守恒定律。
4. 转动理论力学不仅研究物体的直线运动,还涉及到了转动的问题。
刚体的转动是指刚体绕固定轴线旋转的运动。
转动的物理量包括角位移、角速度和角加速度。
角位移表示物体绕轴线旋转的角度,角速度是单位时间内角位移的变化率,角加速度是单位时间内角速度的变化率。
转动存在着转动惯量、角动量、角动量守恒和角动量定理等重要概念。
5. 平衡在理论力学中,平衡是指物体处于静止或匀速直线运动的状态。
平衡可以分为静平衡和动平衡。
理论力学知识点总结大一
理论力学知识点总结大一理论力学是力学的基础学科之一,它是研究物体在受力作用下的静力学平衡和运动学运动的规律的一门学科。
在大一的学习中,我们接触了一些理论力学的基本知识点,本文将对这些知识点进行总结和梳理。
1. 静力学平衡静力学平衡是理论力学的基本概念之一,它描述了物体在受力作用下的平衡状态。
在静力学平衡中,物体的合力为零,而且力矩也为零。
通过分析物体所受的各个力和力矩,我们可以求解物体所处的平衡位置和平衡条件。
2. 牛顿定律牛顿定律是理论力学的核心理论,包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律,也称为惯性定律,描述了物体在外力作用下的运动状态。
牛顿第二定律则给出了物体受力和运动加速度之间的关系,即F=ma,其中F为物体所受合力,m为物体的质量,a为物体的加速度。
牛顿第三定律则表明,任何两个物体之间的作用力与反作用力大小相等、方向相反。
3. 动量和动量守恒动量是物体运动的物理量,它定义为物体的质量乘以其速度。
动量具有矢量性质,它的方向与物体的运动方向一致。
根据牛顿第二定律,物体所受的合力等于其动量的变化率。
动量守恒定律指出,在没有外力作用的情况下,物体的总动量保持不变。
通过对动量守恒定律的应用,我们可以分析和解决一些与碰撞、爆炸等相关的物理问题。
4. 力和位移的功力和位移的功是描述物体在力作用下所做的功的物理量。
功可以理解为力对物体能量的传递或转化。
力对物体所做的功等于力的大小与物体位移的乘积,并且功可以是正功、负功或零功。
功的单位为焦耳(J)。
通过对功的定义和计算,我们可以研究物体的机械能变化和能量转化的过程。
5. 动能和动能定理动能是物体运动所具备的能量,它的大小等于物体的质量乘以速度的平方再乘以1/2。
动能定理描述了物体动能与所受合力之间的关系。
根据动能定理,物体所受合力所做的功等于物体动能的变化量。
动能定理为分析和解决与物体运动和能量转化相关的问题提供了重要的工具。
本文对大一学习中涉及的理论力学知识点进行了简要总结,包括静力学平衡、牛顿定律、动量和动量守恒、力和位移的功,以及动能和动能定理。
理论力学教材知识点总结
理论力学教材知识点总结1. 牛顿运动定律牛顿运动定律是理论力学的基础,它包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律:一个物体如果受到合外力作用,将保持静止状态或匀速直线运动状态。
这一定律反映出了物体的运动状态与外力的关系。
牛顿第二定律:物体的加速度与作用在其上的合外力成正比,与物体的质量成反比。
即F=ma,其中F为合外力,m为物体的质量,a为物体的加速度。
牛顿第三定律:任何两个物体之间的相互作用都是相等的,方向相反。
即作用力等于反作用力,它们的方向相反,大小相等。
这三条定律是理论力学的基石,它们为我们理解物体的运动提供了基本的规律。
在学习理论力学的过程中,我们要深刻理解这些定律,并能够灵活运用它们来解决实际问题。
2. 力的概念力是物体之间相互作用的表现,它是导致物体产生加速度的原因。
力的大小可以用牛顿(N)作为单位来表示,力的方向对物体的运动状态有着重要的影响。
在学习力的概念时,我们要了解各种不同类型的力,例如重力、弹力、摩擦力、弦力等,以及它们的性质和作用规律。
3. 动力学动力学是研究物体运动状态变化规律的学科,它包括物体的运动参数、牛顿第二定律、动量定理、动量守恒定律等内容。
动量是描述物体运动状态的物理量,它等于物体质量乘以速度。
动量定理指出,当合外力作用于物体时,物体的动量将发生改变,这个变化率等于作用力的大小与方向。
动量守恒定律说明了在某些特定条件下,物体的总动量是守恒的,即在某个过程中总动量保持不变。
通过学习动力学,我们可以更好地理解物体的运动状态变化规律,掌握物体的动量和动能等重要概念。
4. 静力学静力学是研究物体静止状态和平衡的学科,它包括物体受力平衡条件、力的分解、受力分析等内容。
物体受力平衡条件是指物体受到的各个力的合力和合力矩均为零时,物体处于平衡状态。
通过受力平衡条件,我们可以分析物体受力的情况,判断物体的平衡状态。
力的分解是指将一个斜面上的力分解为平行于斜面和垂直于斜面的两个分力,这样可以更好地分析斜面上物体的运动状态。
理论力学总结知识点
理论力学总结知识点1. 牛顿力学牛顿力学是经典力学的基础,主要包括牛顿三定律、万有引力定律和动量定理等内容。
牛顿三定律是牛顿力学的基本定律,它分别描述了物体的运动状态、受力作用和反作用的关系。
动量定理则是描述了力对物体运动状态的影响,通过动量定理可以得到物体的运动规律。
而万有引力定律则描述了质点之间的引力作用,是描述天体运动和行星运动的基础。
2. 哈密顿力学哈密顿力学是经典力学的一种形式,它以哈密顿量为基础,通过哈密顿正则方程描述物体的运动规律。
哈密顿量是描述系统动能和势能的函数,通过对哈密顿量的推导和求解可以得到系统的运动规律。
哈密顿正则方程则是描述了对应于哈密顿量的广义动量和广义坐标的变化规律,通过它可以得到物体的运动轨迹。
3. 拉格朗日力学拉格朗日力学是经典力学的另一种形式,它以拉格朗日函数为基础,描述了物体在一定势场中的运动规律。
拉格朗日函数是描述系统动能和势能的函数,通过对拉格朗日函数的求导和求解可以得到系统的运动规律。
拉格朗日方程则是描述了对应于拉格朗日函数的广义坐标和时间的变化规律,通过它可以得到物体的运动轨迹。
4. 动力学动力学是研究物体在受力作用下的运动规律的一门学科,它主要包括质点动力学、刚体动力学和连续体动力学等内容。
质点动力学是研究质点在受力作用下的运动规律,通过牛顿三定律和动量定理可以得到质点的运动规律。
刚体动力学则是研究刚体在受力作用下的运动规律,它包括刚体的平动和转动运动规律。
而连续体动力学是研究连续体在受力作用下的变形和运动规律,它是弹性力学和流体力学的基础。
5. 卡诺周期卡诺周期是描述热力学循环过程的一个理论模型,它包括等温膨胀、绝热膨胀、等温压缩和绝热压缩四个基本过程。
在卡诺周期中,工质从高温热源吸热,然后做功,再放热到低温热源,最后再做功回到原始状态。
卡诺周期是理想热机的工作过程,它具有最高的热效率,是实际热机效率的理论上界。
总之,理论力学是研究物体在受力作用下的运动规律的一门基础学科,它包括牛顿力学、哈密顿力学和拉格朗日力学等内容。
理论力学知识点总结
理论力学知识点总结理论力学是研究物体运动规律和力的作用规律的学科,它是物理学的基础和核心内容之一、理论力学是以牛顿力学为基础的,通过描述和解决物体运动的数学模型来研究系统的行为。
本文将对理论力学的几个重要知识点进行总结。
1.牛顿运动定律:牛顿运动定律是理论力学的基石,包括三个定律:(1)第一定律:也称为惯性定律,物体在没有外力作用时将保持静止或匀速直线运动的状态。
(2) 第二定律:物体的加速度与作用在物体上的合力成正比,与物体的质量成反比,可以用公式F=ma表示,其中F为合力,m为质量,a为加速度。
(3)第三定律:也称为作用-反作用定律,任何作用力都有一个等大相反方向的反作用力。
2.动量和动量守恒定律:动量是物体运动的物理量,是质量和速度的乘积。
动量守恒定律是指在一个封闭系统中,系统总动量在时间上保持不变。
对于两个物体的弹性碰撞,可以用动量守恒定律来描述。
3.力学能的转化和守恒:力学能包括动能和势能。
动能是物体由于运动而具有的能量,可以用公式K = 1/2mv^2表示,其中m为质量,v为速度。
势能是物体由于其位置而具有的能量,例如重力势能和弹性势能。
力学能转化和守恒定律描述了力学能在物体运动过程中的转化和守恒。
4.圆周运动和万有引力:圆周运动是物体在向心力作用下绕固定轴作匀速圆周运动。
对于向心力和离心力的大小可以用公式F = mv^2 / R来计算,其中m为质量,v为速度,R为半径。
万有引力是质点之间的引力,可以用公式F = Gm1m2/ r^2来计算,其中G为万有引力常数,m1和m2为质量,r为两个质点之间的距离。
5.刚体力学:刚体是指形状保持不变的物体。
刚体力学研究刚体的运动和力学性质。
刚体的运动可以分为平动和转动两种。
平动是指刚体的所有点都以相同的速度和方向运动,转动是指刚体以一个固定轴为圆心绕轴进行旋转。
刚体力学还研究了刚体的稳定性和平衡条件。
6.振动和波动:振动是物体围绕平衡位置往复运动的现象。
《理论力学》知识点复习总结
《理论力学》知识点复习总结1.物体的力学性质:力、质量、惯性、受力分析方法等。
-力是物体之间相互作用的结果,具有大小和方向。
-质量是物体所固有的特性,是描述物体所具有惯性的物理量。
-惯性是物体保持运动状态的性质。
-受力分析方法包括自由体图、受力分解和力的合成等。
2.静力学:物体在平衡状态下的力学性质。
-质点和刚体的平衡条件:质点处于平衡状态的条件是合外力为零;刚体处于平衡状态的条件包括合外力为零和合力矩为零。
-平衡条件的应用:包括静力平衡、摩擦力和弹簧力的分析。
3.动力学:物体在运动状态下的力学性质。
- 牛顿第二定律:力的大小与物体的加速度成正比,与物体的质量成反比。
F=ma。
-牛顿第三定律:相互作用的两个物体对彼此施加的力大小相等、方向相反且作用线共面。
-看似相矛盾的运动:如撞击问题、弹性碰撞和非弹性碰撞等。
-应用:包括运动学方程、加速度分析和力学功与功率。
4.系统动力学:多个物体组成的力学系统的运动性质。
-质心和运动质量:质心是体系质点整体运动的简化描述,质点与质心之间的相对运动。
-惯性张量:描述刚体旋转运动的物理量,与刚体的形状和质量分布有关。
- 牛顿第二运动定理的推广:F=ma,扩展到系统的质心运动和转动运动。
-平面运动:考虑力矩与角动量的关系,通过角动量守恒定律解决问题。
-空间运动:考虑转动动力学和刚体旋转平衡。
5.两体问题:描述两个物体之间的相互作用。
-地球质点模型:解析化描述地球和物体之间的万有引力相互作用。
-地球表面近似:解析化描述地球表面物体之间的重力相互作用。
-行星运动:描述行星围绕太阳轨道运动和轨道素描和轨道周期的计算。
-卫星运动:描述人造卫星的轨道运动和发射速度的计算。
以上是对《理论力学》知识点的复习总结,需要注意的是理论力学是一个复杂的学科,其中涉及了静力学、动力学和系统动力学等多个方面的知识,所以复习时需要对每个知识点进行深入理解和掌握,并进行相关的计算和应用。
通过理论力学的学习,可以更好地理解和应用力学原理,提高分析和解决实际问题的能力。
理论力学知识点总结.doc
理论力学知识点总结相关热词搜索:理论力学知识点理论力学所有定理公式理论力学1详细总结理论力学题目答案篇一:理论力学重点总结绪论1. 学习理论力学的目的:在于掌握机械运动的客观规律,能动地改造客观世界,为生产建设服务。
2. 学习本课程的任务:一方面是运用力学基本知识直接解决工程技术中的实际问题;另一方面是为学习一系列的后继课程提供重要的理论基础,如材料力学、结构力学、弹性力学、流体力学、机械原理、机械零件等以及有关的专业课程。
此外,理论力学的学习还有助于培养辩证唯物主义世界观,树立正确的逻辑思维方法,提高分析问题与解决问题的能力。
第一章静力学的基本公理与物体的受力分析1-1 静力学的基本概念1. 刚体:即在任何情况下永远不变形的物体。
这一特征表现为刚体内任意两点的距离永远保持不变。
2. 质点:指具有一定质量而其形状与大小可以忽略不计的物体。
1-3 约束与约束力1. 自由体:凡可以在空间任意运动的物体称为自由体。
2. 非自由体:因受到周围物体的阻碍、限制不能作任意运动的物体称为非自由体。
3. 约束:力学中把事先对于物体的运动(位置和速度)所加的限制条件称为约束。
约束是以物体相互接触的方式构成的,构成约束的周围物体称为约束体,有时也称为约束。
4. 约束力:约束体阻碍限制物体的自由运动,改变了物体的运动状态,因此约束体必须承受物体的作用力,同时给予物体以相等、相反的反作用力,这种力称为约束力或称反力,属于被动力。
5. 单面约束、双面约束:凡只能阻止物体沿一方向运动而不能阻止物体沿相反方向运动的约束称为单面约束;否则称为双面约束。
单面约束的约束力指向是确定的,即与约束所能阻止的运动方向相反;而双面约束的约束力指向还决定于物体的运动趋势。
6. 柔性体约束:为单面约束。
只能承受拉力,作用在连接点或假想截割处,方向沿着柔软体的轴线而背离物体,常用符号FT表示。
(绳索、胶带、链条)7. 光滑接触面(线)约束:为单面约束,其约束力常又称为法向约束力。
理论力学知识点详细总结
理论力学知识点详细总结引言理论力学是物理学的一个重要分支,研究物体的运动规律和力学特性。
它是一门基础学科,也是物理学中最早发展的学科之一。
理论力学对于理解和解释自然界的很多现象都起着关键作用,广泛应用于航天、航空、土木工程、机械制造等领域。
本文将对理论力学的主要知识点进行详细总结,包括牛顿力学、拉格朗日力学和哈密顿力学等内容。
一、牛顿力学牛顿力学是经典力学的基础理论,是研究物体运动规律和力学现象的最基本方法。
牛顿力学建立在牛顿三大定律的基础上,主要包括运动学和动力学两大部分。
1. 运动学运动学是研究物体运动的几何学方法,包括位置、速度、加速度等概念。
基本知识点包括:① 位移:物体从一个位置移动到另一个位置的距离和方向称为位移。
位移可用位移矢量表示。
② 速度:物体单位时间内移动的位移称为速度。
平均速度可用位移除以时间计算,瞬时速度可用极限定义。
③ 加速度:物体单位时间内速度变化的量称为加速度。
平均加速度可用速度变化除以时间计算,瞬时加速度可用速度的导数定义。
2. 动力学动力学是研究物体受力运动的学科,主要包括牛顿运动定律和牛顿万有引力定律。
① 牛顿三大定律:第一定律指出,物体在不受外力作用时保持匀速直线运动或静止;第二定律指出,物体受到的力与其加速度成正比,与质量成反比;第三定律指出,相互作用的两个物体之间的作用力和反作用力大小相等、方向相反。
② 牛顿万有引力定律:物体间的引力与它们的质量和距离平方成反比。
万有引力定律可用来解释行星运动、天体引力等现象。
二、拉格朗日力学拉格朗日力学是研究自由度受限制的多体系统的运动方程和动力学的方法。
它是经典力学的重要分支,由拉格朗日于18世纪提出,是经典力学的另一种处理方法。
主要包括拉格朗日方程和哈密顿原理等内容。
1. 拉格朗日方程拉格朗日方程是描述多体系统的运动方程的方法,它由拉格朗日量和运动方程组成。
主要包括:① 拉格朗日量:拉格朗日力学的核心概念,它是系统动能和势能的差的函数。
理论力学知识点总结联系
理论力学知识点总结联系一、牛顿运动定律1.牛顿第一定律:一个静止的物体如果不受力的作用,将永远保持静止;一个匀速直线运动的物体如果不受力的作用,将永远保持匀速运动。
牛顿第一定律是描述惯性的物理定律。
它告诉我们,如果物体不受外力作用,它将永远保持原来的状态,包括静止和匀速直线运动状态。
这意味着,物体本身具有一种保持状态的倾向,这种倾向就是物体的惯性。
牛顿第一定律为我们分析物体运动提供了重要的参考。
2.牛顿第二定律:物体受到的作用力等于其质量乘以加速度。
牛顿第二定律是最著名的力学定律之一,它描述了物体所受力和物体的加速度之间的关系。
表达式为F=ma,其中F为受到的作用力,m为物体的质量,a为物体的加速度。
牛顿第二定律告诉我们,作用力越大,加速度越大;质量越大,同样的力的作用下加速度越小。
这一定律为我们提供了分析物体受力和加速度的重要工具。
3.牛顿第三定律:相互作用的两个物体对彼此的作用力大小相等、方向相反。
牛顿第三定律描述了物体间相互作用的性质。
它告诉我们,相互作用的两个物体对彼此的作用力大小相等、方向相反。
这一定律为我们提供了理解物体相互作用的重要原则。
二、动量定理和动能定理1.动量定理:物体的动量变化率等于它所受到的外力。
动量定理描述了物体的动量随时间的变化规律。
它告诉我们,物体的动量变化率等于它所受到的外力。
表达式为F=dp/dt,其中F为外力,p为物体的动量,t为时间。
动量定理为我们提供了一种描述物体受力和动量变化的重要方法。
2.动能定理:物体的动能变化率等于它所受到的外力与物体的速度之积。
动能定理描述了物体的动能随时间的变化规律。
它告诉我们,物体的动能变化率等于它所受到的外力与物体的速度之积。
表达式为Fv=d(1/2 mv^2)/dt,其中F为外力,v为物体的速度,m为物体的质量。
动能定理为我们提供了一种描述物体受力和动能变化的重要方法。
三、角动量定理和万有引力定律1.角动量定理:物体的角动量变化率等于外力对物体的力矩。
理论力学知识点总结大学
理论力学知识点总结大学引言力学是物理学的一个重要分支,研究物体的运动规律以及受力的作用。
它是物理学中最古老和最基础的学科之一,也是多个工程学科的基础。
理论力学是力学的一个重要分支,它主要研究物体在受力作用下的运动规律,从而揭示物体之间的相互作用。
理论力学的研究内容广泛,包括牛顿力学、分析力学、连续介质力学等多个方面。
本文将围绕理论力学中的重要知识点进行总结,主要包括牛顿力学、分析力学和连续介质力学。
通过对这些知识点的总结,可以更好地理解力学的基本原理和规律,从而为工程学科的发展和应用提供理论基础。
一、牛顿力学牛顿力学是力学的基本理论,由英国科学家牛顿在17世纪提出并系统阐述。
牛顿力学主要包括牛顿运动定律、运动方程和动量守恒定律等重要内容。
1. 牛顿运动定律牛顿运动定律是牛顿力学的基础,它包括三条定律:(1)第一定律:一个物体如果不受外力作用,将保持恒定的速度或静止状态。
(2)第二定律:一个物体所受外力的加速度正比于该力的大小,与物体的质量成反比。
用数学表达式可以表示为F=ma,其中F为物体所受外力,m为物体的质量,a为物体的加速度。
(3)第三定律:任何物体对另一物体施加一个力,则另一物体将对第一个物体施加一个大小相等、方向相反的力。
这一定律也被称为作用-反作用定律。
牛顿运动定律为研究物体的运动规律提供了基本原理,成为后来力学研究的基础。
2. 运动方程运动方程是描述物体在受力作用下的运动规律的基本方程。
根据牛顿第二定律,可以得到物体在受力作用下的运动方程:F=ma其中F为物体所受外力,m为物体的质量,a为物体的加速度。
通过这一方程可以描述物体的运动轨迹、速度和加速度,为研究物体的运动规律提供了重要的数学工具。
3. 动量守恒定律动量守恒定律是牛顿力学的一个重要定律,它指出在一个封闭系统中,系统的总动量保持不变。
具体表达为:Σ(p1+p2)=Σ(p1'+p2')其中p1和p2分别为系统内两个物体的动量,p1'和p2'分别为系统内两个物体的动量在一段时间后的值。
理论力学知识点框架总结
理论力学知识点框架总结理论力学是研究物体运动规律的一门物理学科,它包括了经典力学和相对论力学两大部分。
经典力学是描述宏观物体运动规律的理论,而相对论力学则是描述高速运动和极端条件下物体运动规律的理论。
理论力学是物理学的基础学科,它对于理解自然界的运动规律和发展科技具有重要的意义。
下面将对理论力学的一些重要知识点进行总结,以便对这一领域有一个更深入的了解。
1. 牛顿运动定律牛顿运动定律是经典力学的基础,它包括了牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律指出,物体如果不受外力作用,将保持静止状态或者匀速直线运动状态。
牛顿第二定律则是描述了物体受力后产生加速度的规律,它的数学表达式为F=ma,其中F为受力,m为物体的质量,a为加速度。
牛顿第三定律指出,任何一对物体之间的相互作用力,大小相等、方向相反。
牛顿运动定律是经典力学的基础,它为描述物体的运动规律提供了重要的理论支持。
2. 运动的描述描述物体的运动状态需要引入一些物理量,例如位移、速度和加速度等。
位移是描述物体位置变化的物理量,它的大小和方向共同决定了物体的运动状态。
速度是描述物体运动快慢的物理量,它的大小为单位时间内位移的大小,方向为位移的方向。
加速度是描述物体运动加速或减速的物理量,它的大小为单位时间内速度的变化率,方向为速度变化的方向。
这些物理量可以帮助我们更准确地描述物体的运动状态,从而推导出物体的运动规律。
3. 动能和动能定理动能是描述物体运动状态的物理量,它是物体由于运动而具有的能量。
动能的大小和物体的质量、速度相关,它的表达式为K=1/2mv^2,其中m为物体质量,v为物体速度。
根据动能定理,物体的动能变化等于物体所受的合外力作用做功的大小。
这一定理对于理解物体运动和动能转化具有重要的意义,它帮助我们理解了物体的运动规律和能量转化过程。
4. 势能和机械能守恒定律势能是描述物体在力场中具有的能量,它的大小和物体在力场中的位置相关。
理论力学知识点总结
理论力学知识点总结关键信息项:1、静力学受力分析力系简化平衡方程2、运动学点的运动学刚体的平动与转动点的合成运动3、动力学牛顿定律动量定理动量矩定理动能定理11 静力学111 受力分析受力分析是理论力学的基础,它的主要任务是确定研究对象所受的外力。
通过对物体的约束和接触情况进行分析,画出受力图。
常见的约束类型包括柔索约束、光滑面约束、铰链约束等。
112 力系简化力系简化的目的是将复杂的力系用一个简单的力系等效替代。
通过力的平移定理,可以将力系向一点简化,得到主矢和主矩。
113 平衡方程对于平衡的物体或系统,其合力和合力矩都为零。
根据不同的约束条件,可以列出相应的平衡方程,如平面力系的平衡方程、空间力系的平衡方程。
12 运动学121 点的运动学描述点在空间中的位置随时间的变化规律。
可以用直角坐标法、自然法和弧坐标法来表示点的运动方程。
122 刚体的平动与转动刚体的平动是指刚体上各点的运动轨迹相同,速度和加速度也相同。
刚体的转动则是围绕某一固定轴的旋转运动,其角速度和角加速度描述了转动的快慢和变化。
123 点的合成运动研究一个点相对于不同参考系的运动之间的关系。
通过牵连运动、相对运动和绝对运动的分析,运用速度合成定理和加速度合成定理求解问题。
13 动力学131 牛顿定律牛顿第一定律指出物体具有保持原有运动状态的惯性;牛顿第二定律阐明了力与加速度的关系;牛顿第三定律说明了作用力与反作用力的大小相等、方向相反且作用在同一直线上。
132 动量定理物体的动量变化等于作用在物体上的冲量。
通过动量定理可以解决涉及力的时间累积效应的问题。
133 动量矩定理对于绕定轴转动的刚体,其动量矩的变化等于作用于刚体上的外力矩的冲量矩。
134 动能定理合外力对物体做功等于物体动能的变化。
动能定理常用于分析物体的能量变化和运动状态的改变。
14 达朗贝尔原理引入惯性力,将动力学问题转化为静力学问题来求解。
15 虚位移原理利用虚功的概念,通过分析系统在虚位移上的功来确定系统的平衡条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。
例2-8如图2.-17(a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩为500kN•m,求A、C两点的约束力。
解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17(b)所示。
由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB’构成一力偶与矩为M的力偶平衡(见图2-17(c))。
由平面力偶系的平衡方程∑Mi=0,得﹣Fad+M=0则有FA=FB’N=471.40N由于FA、FB’为正值,可知二力的实际方向正为图2-17(c)所示的方向。
根据作用力与反作用力的关系,可知FC=FB’=471.40N,方向如图2-17(b)所示。
第3章平面任意力系1.合力矩定理:若平面任意力系可合成为一合力。
则其合力对于作用面内任意一点之矩等于力系中各力对于同一点之矩的代数和。
2.平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q的主矩同时为零,即F R`=0,Mo=0.3.平面任意力系的平衡方程:∑Fx=0, ∑Fy=0, ∑Mo(F)=0.平面任意力系平衡的解析条件是,力系中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零.例3-1如图3-8(a)所示,在长方形平板的四个角点上分别作用着四个力,其中F1=4kN,F2=2kN,F3=F4=3kN,平板上还作用着一力偶矩为M=2kN·m的力偶。
试求以上四个力及一力偶构成的力系向O点简化的结果,以及该力系的最后合成结果。
解(1)求主矢FR’,建立如图3-8(a)所示的坐标系,有F’Rx=∑Fx=﹣F2cos60°+F3+F4cos30°=4.598kNF’Ry=∑Fy=F1-F2sin60°+F4sin30°=3.768kN所以,主矢为F’R==5.945kN主矢的方向cos(F’R,i)==0.773, ∠(F’R,i)=39.3°cos(F’R,j)==0.634,∠(F’R,j)=50.7°(2)求主矩,有M0=∑M0(F)=M+2F2cos60°-2F2+3F4sin30°=2.5kN·m由于主矢和主矩都不为零,故最后的合成结果是一个合力FR,如图3-8(b)所示,FR=F’R,合力FR到O点的距离为d==0.421m例3-10连续梁由AC和CE两部分在C点用铰链连接而成,梁受载荷及约束情况如图3-18(a)所示,其中M=10kN·m,F=30kN,q=10kN/m,l=1m。
求固定端A和支座D的约束力。
解先以整体为研究对象,其受力如图3-18(a)所示。
其上除受主动力外,还受固定端A 处的约束力Fax、Fay和矩为MA的约束力偶,支座D处的约束力FD作用。
列平衡方程有∑Fx=0,Fax-Fcos45°=0∑Fy=0,FAy-2ql+Fsin45°+FD=0∑MA(F)=0,MA+M-4ql ²+3FDl+4Flsin45°=0以上三个方程中包含四个未知量,需补充方程。
现选CE为研究对象,其受力如图3-(b)所示。
以C点为矩心,列力矩平衡方程有∑MC(F)=0,-ql ²+FDl+2Flsin45°=0联立求解得FAx=21.21kN,Fay=36.21kN,MA=57.43kN·m,FD=﹣37.43kN第4章考虑摩擦的平衡问题1.摩擦角:物体处于临界平衡状态时,全约束力和法线间的夹角。
tanψm=fs2.自锁现象:当主动力即合力Fa的方向、大小改变时,只要Fa的作用线在摩擦角内,C点总是在B点右侧,物体总是保持平衡,这种平衡现象称为摩擦自锁。
例4-3梯子AB靠在墙上,其重为W=200N,如图4-7所示。
梯长为l,梯子与水平面的夹角为θ=60°已知接触面间的摩擦因数为0.25。
今有一重650N的人沿梯上爬,问人所能达到的最高点C 到A点的距离s为多少?解整体受力如图4-7所示,设C点为人所能达到的极限位置,此时FsA=fsFNA,FsB=fsFNB∑Fx=0,FNB-FsA=0∑Fy=0,FNA+FsB-W-W1=0∑MA(F)=0,-FNBsinθ-FsBlcosθ+W cosθ+W1scosθ=0联立求解得S=0.456l第5章空间力系1.空间汇交力系平衡的必要与充分条件是:该力系的合力等于零,即F R=∑Fi=02.空间汇交力系平衡的解析条件是:力系中各力在三条坐标轴上投影的代数和分别等于零.3.要使刚体平衡,则主失和主矩均要为零,即空间任意力系平衡的必要和充分条件是:该力系的主失和对于任一点的主矩都等于零,即F R`=∑Fi=0,Mo=∑Mo(Fi)=04.均质物体的重力位置完全取决于物体的几何形状,而与物体的重量无关.若物体是均质薄板,略去Zc,坐标为xc=∑Ai*xi/A,yc=∑Ai*yi/A5.确定物体重心的方法(1)查表法(2)组合法:①分割法;②负面积(体积)法(3)实验法例5-7试求图5-21所示截面重心的位置。
解将截面看成由三部分组成:半径为10mm的半圆、50mm×20mm的矩形、半径为5mm 的圆,最后一部分是去掉的部分,其面积应为负值。
取坐标系Oxy,x轴为对称轴,则截面重心C必在x轴上,所以yc=0.这三部分的面积和重心坐标分别为A1=mm ²=157mm ²,x1=-=-4.246mm,y1=0A2=50×20mm ²=1000mm ²,x2=25mm,y2=0A3=-π×5 ²mm ²=-78.5mm ²,x3=40mm,y3=0用负面积法,可求得Xc==第二篇运动学第6章点的运动学6.2直角坐标法运动方程x=f(t) y=g(t) z=h(t) 消去t可得到轨迹方程f(x,y,z)=0 其中例题6 -1 椭圆规机构如图6-4(a)所示,曲柄oc以等角速度w绕O转动,通过连杆AB 带动滑块A、B在水平和竖直槽内运动,OC=BC=AC=L 。
求:(1)连杆上M点(AM=r)的运动方程;(2)M点的速度与加速度。
解:(1)列写点的运动方程由于M点在平面内运动轨迹未知,故建立坐标系。
点M是BA杆上的一点,该杆两端分别被限制在水平和竖直方向运动。
曲柄做等角速转动,Φ=wt 。
由这些约束条件写出M 点运动方程x=(2L-r)coswt y=rsinwt 消去t 得轨迹方程:(x/2L-r)²+(y/x)²=1 (2)求速度和加速度对运动方程求导,得dx/dt=-(2L-r)wsinwt dy/dt=rsinwt 再求导a1=-(2L-r)w²coswt a2=-rw²sinwt 由式子可知a=a1i+a2j=-w²r6.3自然法2.自然坐标系:b=t×n其中b为副法线n为主法线t3.点的速度v=ds/dt 切向加速度at=dv/dt 法向加速度an=v²/p习题6-10 滑道连杆机构如图所示,曲柄OA长r,按规律θ=θ’+wt 转动(θ以rad计,t以s计),w为一常量。
求滑道上C点运动、速度及加速度方程。
解:第七章刚体的基本运动7.1刚体的平行运动:刚体平移时,其内所有各点的轨迹的形状相同。
在同一瞬时,所有各点具有相同的速度和相同的加速度。
刚体的平移问题可归结为点的运动问题。
7.2刚体的定轴转动:瞬时角速度w=lim△θ∕△t=dθ/dt瞬时角加速度a=lim△w∕△t=dw/dt=d²θ/dt²转动刚体内任一点速度的代数值等于该点至转轴的距离与刚体角速度的乘积a=√(a²+b²)=R√(α²+w²) θ=arctan|a|/b =arctan|α|/w²转动刚体内任一点速度和加速度的大小都与该点至转轴的距离成正比。
例题7-1如图所示平行四连杆机构中,O1A=O2B=0.2m ,O1O2=AB=0.6m ,AM=0.2m ,如O1A 按φ=15πt的规律转动,其中φ以rad计,t以s计。
试求t=0.8s时,M点的速度与加速度。
解:在运动过程中,杆AB始终与O1O2平行。
因此,杆AB为平移,O1A为定轴转动。
根据平移的特点,在同一瞬时M、A两点具有相同的速度和加速度。
A点做圆周运动,它的运动规律为s=O1A·φ=3πt m所以V A=ds/dt=3πm/s a tA=dv/dt=0 a nA= (V A) ²/O1A=45 m/s为了表示V m 、a m 的2,需确定t=0.8s时,AB杆的瞬时位置。